
University of Castilla–La Mancha

A publication of the

Computing Systems Department

An Alternative for Building High-Radix Switches:
Application for Special Traffic Patterns∗

by

J.A. Villar, F.J. Andújar, J.L. Sánchez, F.J. Alfaro, J. Duato

Technical Report #DIAB-11-02-2 February 2011

(*) This work was supported by the Spanish MEC and MICINN as well as European Comission
FEDER funds, under Grants “Consolider Ingenio–2010 CSD2006-00046” and “TIN2009–14475–C04”,
respectively; it was also partly supported by Junta de Comunidades de Castilla–La Mancha under
grants “PCC08–0078–9856” and “POII10–0289–3724”.

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS
ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA

UNIVERSIDAD DE CASTILLA-LA MANCHA
CAMPUS UNIVERSITARIO s/n
02071, ALBACETE, ESPAÑA

Tlf. +34.967.599200, Fax +34.967.599224

2

An Alternative for Building High-Radix Switches: Application

for Special Traffic Patterns

Juan A. Villar and Francisco J. Andújar
Instituto de Investigación en Informática

Campus Universitario s/n
02071 – Albacete, España
{juanan,fandujar}@dsi.uclm.es

José L. Sánchez and Francisco J. Alfaro
Departamento de Sistemas Informáticos

Escuela Superior de Ingeniería Informática
02071 – Albacete, España
{falfaro, jsanchez}@dsi.uclm.es

José Duato
Dpto. de Ingeniería de Sistemas y Computadores

Camino de Vera, s/n
Universidad Politécnica de Valencia

46022 – Valencia, España
jduato@gap.upv.es

February 9, 2011

3

4

Contents

1 Introduction 7

2 High-Radix Switches by Combining Low-Radix Switches 9

2.1 Combined Switches . 9

2.2 Combined Switches Configuration Methodology . 11

2.3 Study Conditions . 12

3 Notation 12

4 Twin Switches 12

4.1 Internal connections of Twin switches . 16

5 Reachable Nodes from a BMIN Switch 19

5.1 Reachable nodes from a BMIN switch considering the network topology 19

5.2 Reachable nodes from a BMIN switch considering the network topology and the routing
algorithm . 22

6 Applying the Methodology for Complement Traffic 27

6.1 Network Paths Analysis . 27

6.1.1 Ascending phase of the paths . 27

6.1.2 Turnaround phase of the paths . 29

6.1.3 Descending phase of the paths . 30

6.2 Switch Classification . 32

6.3 Switch Configuration . 33

6.3.1 Type πa configuration of switch . 33

6.3.2 Type πb configuration of switch . 43

6.3.3 Type π configuration of switch . 44

7 Applying the Methodology for Perfect-Shuffle Traffic 46

7.1 Network Paths Analysis . 46

7.1.1 Ascending phase of the paths . 47

7.1.2 Turnaround phase of the paths . 49

7.1.3 Descending phase of the paths . 51

7.2 Switch Classification . 54

7.2.1 First stage (s = 0) . 54

5

7.2.2 Intermediate stages (1 ≤ s < n− 1) . 56

7.2.3 Last stage (s = n− 1) . 57

7.3 Switch Configuration . 58

7.3.1 Type σa configuration of switch . 58

7.3.2 Type σb configuration of switch . 60

7.3.3 Type σc configuration of switch . 62

7.3.4 Type σd configuration of switch . 64

7.3.5 Type σe configuration of switch . 67

7.3.6 Type σf configuration of switch . 67

7.3.7 s–stage switch configuration, 0 ≤ s < n− 1 . 68

7.3.8 Configuration of switch . 68

8 Related Work 69

Bibliography 72

A Multistage Interconnection Networks 73

A.1 Multistage interconnection networks . 73

A.2 Preliminary definitions . 75

A.2.1 Notation . 75

A.3 Connection pattern . 76

A.4 Unidirectional MINs . 76

A.4.1 Self–routing algorithm . 77

A.5 Bidirectional MINs . 78

A.5.1 Turnaround–routing algorithm . 80

A.6 Fat–tree topology . 80

A.6.1 k–ary n–tree topology . 82

A.7 Load–balanced routing algorithm . 82

A.7.1 DESTRO routing algorithm . 84

6

7

1 Introduction

Interconnection networks are a key component for a wide range of multiprocessor systems, ranging from
large supercomputers to multicore chips. High performance networks are essential in these systems,
where high reliability in communications, high information transfer rates and very low latencies are
critical. Often, the interconnection network is the subsystem that a more custom design requires.
For instance, Tianhe-1A supercomputer [top10], number one in the November 2010 Top500 list, is
composed of standard Intel and NVIDIA processors and a fancy new interconnection network. This
custom interconnect design removes the interconnect bottleneck and significantly contributes to the
high global performance of Tianhe-1A.

Interconnection network design is determined by the available technology. Recent advances on
the technology have substantially improved the performance of the basic network components: links
and switches. The latter are responsible for most of the interconnection network performance, and so
they are the subject of major research. One of the main parameters characterizing network switches
is the number of ports, which has a strong influence on cost, consumption and performance in the
whole system.

Given a multiprocessor system with a large number of connected elements, increasing the
number of switch ports results in a decrease in the number of switches and network links. As the
cost of the network is proportional to the number of switches, it is clear that cost decreases by using
switches with higher number of ports. Moreover, total consumption of the network is also considerably
reduced as it is directly proportional to the number of switches in the network.

Regarding performance, in terms of latency, for example, it is clear that the use of switches with
more ports involves a reduction in the average time to transfer data over the network. In particular,
using fewer switches to connect the same number of elements reduces the number of hops and the
number of possible packet collisions in the network, and thus the time to reach their destinations.
Furthermore, having less switches, the total processing time of the packets in the switches along their
paths is also reduced.

Thus, the design of switches with a high number of ports is an attractive option to improve
the performance and reduce the cost of the interconnection network, specially for large multiprocessor
systems. However, there are some problems to design such switches. One of them is related to the
complexity of the switch logic. The switch becomes more complex as radix increases, taking up to a
significant percentage of total system power [WPM03]. The balance between cost and efficiency is not
easy to work through, requiring a deep study regarding this trade-off. On the one hand, the size of
some switch structures grows quadratically with the number of ports. That is the case of, for example,
the aggregate buffer requirements as identified in [GAG+03], or the schedulers as stated in [MAM+05].
Moreover, traditional flow control policies are also affected by switch radix in two aspects [MG07]:
the round trip time drastically increases, and the memories for storing flow control credits are linearly
dependent on the round trip time. On the other hand, pin count will slowly increase next decade,
according to the ITRS [ITR10], and therefore switch ports number will slightly increase. Moreover,
there are difficulties to apply some improvement techniques when the number of ports is high. For
instance, Virtual Output Queuing (VOQ) implementation becomes unfeasible in practice for switches
with large number of ports. To overcome these problems, different solutions have been proposed, but
actually, they are postponing the problem for coming switch generations.

In any case, switch size constraints are mainly determined by the current integration scale and
package pin count. To go beyond the integration scale bounds, an alternative solution for building
high-radix switches is the combination of several low-radix switches. This solution has the advantage
of obtaining higher number of ports. Moreover, some difficulties mentioned above lose importance.

The main idea is to implement m′-port switches from several smaller m-port switches. For
instance, a m′-port switch consisting of two identical m-port switches (m′/2 < m < m′) can internally
interconnect each other using m−m′/2 ports, using the remaining ports for external connections. Note
that this strategy will remain valid as integration scale keeps evolving.

8 1 INTRODUCTION

An important consequence of this strategy for building larger switches is that the resulting
switch will no longer be homogeneous. Switch performance will vary depending on the internal
configuration. The internal switches interconnection can become a potential bottleneck if they have
to support most of the traffic handled in the switch. Therefore, it is essential to minimize the impact
of this bottleneck, otherwise the latency on the network will be increased. Thus, the switch-level
connection pattern1 becomes an important design decision in the construction of this kind of switches.
An arbitrary pattern may produce a significant performance degradation. Consequently, it is necessary
to determine the most convenient pattern in order to obtain the best switch performance.

In this paper, we present a formalization of this kind of high-radix switches and propose
a methodology for configuring them in an optimal manner when they are used to build large
switch–based interconnection networks. To show how this methodology works, it is applied to a
particular interconnection network.

The report is organized as follows: Section 2 describes the combined switches, and in Section 3
we introduce the notation used later. Section 4 formally defines and characterizes the twin switches.
In Section 5, we propose our methodology for searching the optimal configuration of twin switches,
and show how it works in a particular case. Section 8 gives a brief review to existing proposals on
high-radix switches. Additionally, in the Appendix A we have included basic concepts on multistage
interconnection networks.

1We distinguish between network-level connection pattern and switch-level connection pattern. The former is
the traditional interconnection pattern connecting switch-based networks (e.g., butterfly permutation in multistage
interconnection networks); and the latter refers to how every high-radix switch ports are mapped to the ports of the
internal switches.

9

2 High-Radix Switches by Combining Low-Radix Switches

As mentioned above, it is possible to build high-radix switches by combining several low-radix switches.
This strategy makes possible to eventually overtake integration technology and dramatically shorten
the time-to-market. Note that this will remain valid as integration technology continues evolving.

This strategy opens a series of new issues that must be addressed so that it would be
implemented in an efficient manner. In this section, we define the combined switches and briefly
overview the issues characterizing them. Then in the next sections, we formally analyze them in
depth.

2.1 Combined Switches

In this section we define the combined switches giving a general definition. Then we turn our attention
to a particular subclass of this kind of switches, which will be used in order to show the characteristics
and evaluate the performance of combined switches as a high-radix switch alternative.

Definition 1.1 A Combined switch, or simply C-switch, is a switch formed by several smaller
interconnected switches (internal switches). The ports being offered by a C-switch are obtained from
free ports of its internal switches after they are interconnected.

This is a general definition because it does not specify either the number of internal switches
or their radix. Therefore any switch obtained by combining other lower switches is included in this
category. However, there exist some difficulties to build C-switches having many internal switches
and a high heterogeneity degree.

In order to keep low the internal latency, a full-connected subnetwork interconnecting all the
internal switches is preferred. As the number of internal switches increases, the number of ports
dedicated to subnetwork connections grows as fast as the number of ports devoted to external
communications decreases, so this way of building high-radix switches would lose interest. Therefore,
it seems reasonable that the number of internal switches may not be too large.

On the other hand, a simpler C-switch internal design can be achieved if all the internal switches
are equal. Although this aspect is not as restrictive as the number of internal switches, it would be
also recommendable that all the internal switches have the same radix.

An interesting case is that where C-switches are built from only two identical internal switches.
This subclass of C-switches still offers an important increase in the number of ports while the
interconnection between the two internal switches is the simplest one.

Definition 1.2 A Twin switch, or simply T -switch, is a switch formed by two identical smaller
interconnected switches. The ports being offered by a T -switch are obtained from free ports of its two
internal switches after they are interconnected.

Considering that the two internal switches and the T -switch have radixes m and n, respectively,
Figure 1(a) shows a basic diagram of a T -switch, where internal switches are denoted as α and β.
Although T -switches seem to be simple, there are significant challenges in its design. Two of them stand
out especially: (1) to obtain the appropriate switch-level connection pattern of internal subnetwork,
(2) to determine the adequate number of ports used to interconnect switches α and β.

Switch-level connection pattern has an important influence on packet latency. Time to cross the
T -switch will be minimal when only one internal switch (α or β) is used (Figure 1(b)). The bad case
is obtained when both internal switches are used for every path crossing the T -switch (Figure 1(c)).
To obtain the best case is not trivial and an in-depth study is required, in which several factors,

10 2 HIGH-RADIX SWITCHES BY COMBINING LOW-RADIX SWITCHES

...

...

...

α

β
0

00

m′ − 1
m− 1

m− 1

m−m′/2
sw

it
ch

-l
ev

el
co

nn
ec

ti
on

pa
tt

er
n

(a)

...

...

...

α

β
0

00

m′ − 1
m− 1

m− 1

m−m′/2

sw
it

ch
-l
ev

el
co

nn
ec

ti
on

pa
tt

er
n

(b)

...

...

...

α

β
0

00

m′ − 1
m− 1

m− 1

m−m′/2

sw
it

ch
-l
ev

el
co

nn
ec

ti
on

pa
tt

er
n

(c)

...

...

...

α

β
0

00

m′ − 1
m− 1

m− 1

m−m′/2
sw

it
ch

-l
ev

el
co

nn
ec

ti
on

pa
tt

er
n

(d)

Figure 1: (a) Basic block diagram of a T -switch and several cases: (b) Optimal, (c) Bad, and (d)
Common.

e.g., network topology, routing and traffic pattern must be considered. From Section 2.2 we show in
a formal way how the optimal switch-level connection pattern can be obtained if these factors are
considered.

Regarding the second challenge, the number of internal ports must be that which avoids the
creation of the internal bottleneck between α and β. Obviously, the number of internal ports and the
switch-level connection pattern have a clear interdependence.

The situations shown in Figure 1(b) and Figure 1(c) are appropriate for illustrating the T -switch
design challenges, but a more common situation is that shown in Figure 1(d), where both kinds of
cases coexist. In such situations, the main objective in the switch-level connection pattern design of
T -switches is to minimize the use of the ports interconnecting the internal switches.

Therefore, since in some cases communication will require the use of both internal switches (i.e.
a path passing through a T -switch will use both α and β), we have to avoid interconnection between
α and β becomes a bottleneck. Moreover, the adequate number of ports of each internal switch
to connect with each other must be determined. It is clear that the greater the number of ports
used to interconnect the internal switches the lower the probability of this interconnection becomes
a bottleneck. However, as mentioned above, as the number of ports devoted to interconnect α and
β increases the T -switch radix decreases. Note that we are assuming that all the ports provide the
same bandwidth (otherwise instead of using the number of ports, the aggregate bandwidth should be

2.2 Combined Switches Configuration Methodology 11

used). Consequently, a trade-off between both aspects must be found.

In summary, internal configuration of T -switches, and in general C-switches, becomes a key
aspect in the design of this kind of high-radix switches. In the following Section, we present a general
methodology to obtain the best configuration of this kind of switches when they are used in large
interconnection networks. It is obvious that optimal configuration of a C-switch depends on the
conditions under which it is used, that is, network type, topology, routing algorithm, traffic pattern,
etc. To show how the methodology works, we apply it to a particular subclass of interconnection
network.

2.2 Combined Switches Configuration Methodology

Our methodology to determine the optimal switch-level connection pattern of C-switches consists of
the following main steps:

1. Network paths analysis. The purpose of this step is to determine the connections required in
each C-switch at network level and the amount of times all these connections are used taking
into account all the possible paths used by the packets.

2. Switch classification. Depending on the network characteristics and load conditions, few
or many different C-switch configurations could be obtained. In this step, C-switches are
grouped according to their connection requirements, and so, several types of C-switch will be
distinguished.

As result of the previous phase, it can occur that some of the possible connections in the
C-switches support one, or more paths, and however there may be connections that are never
established.

In a fat-tree topology, for instance, C-switches in different stages may require different
switch-level connection patterns, and the same may even occur with C-switches in the same
stage. When a simple traffic pattern and balanced routing algorithm are used, it is likely all the
C-switches in the network require the same switch-level connection pattern.

3. Switch configuration. From connection requirements and given the number of internal switches
forming the C-switch, this last step consists in finding the optimal configuration for each class
of C-switch. That is, we must find the optimal switch-level connection pattern of each class,
trying to minimize the use of the interconnection between internal switches.

Summing up, given the network topology, the routing algorithm and the traffic pattern, we can
determine the paths generated in the network, the C-switches used by each path, and the connections
required in each C-switch. If the two ports involved in a C-switch connection are connected to the
same internal switch, the paths using that connection will only use one internal switch when passing
through the C-switch. Therefore, the objective is to get a switch-level connection pattern, where
the most of the connections satisfy this condition. In general, C-switches with different connection
requirements will have different internal configurations, thus the methodology proposes to search for
the optimal switch-level connection pattern for each C-switch, or group of C-switches requiring the
same connections, separately. Finally, if possible, the same switch-level connection pattern for all the
C-switches will be found.

The first two steps of this methodology are independent of the internal C-switch structure.
Obviously, the third step depends on the structure of the C-switch.

Note that although the methodology is general and can be applied considering different
C-switches and interconnection networks, the C-switch configuration depends on the particular
network properties. Therefore, in order to apply this methodology, network type, topology, routing
algorithm and traffic pattern must be specified.

12 4 TWIN SWITCHES

2.3 Study Conditions

As above mentioned, switch-based interconnection networks cover a wide range of network
configurations. To present our formal analysis of the C-switches behavior and how they can be
configured in an optimal way, we have chosen a very representative case. On the one hand, we
consider T -switches due to the reasons outlined in Section 2.1. On the other hand, and since fat-trees
are one of the most common topologies today in the largest supercomputers on the Top500 list, we
focus on bidirectional interconnection networks (BMINs).

3 Notation

We have assumed the following notation throughout this paper:

• N is the total number of terminals.

• k is the switch arity, or number of ports that connect to terminals/switches in the previous stage
and switches in the next stage (if available). Hence, the total number of ports of a k×k switch is
2k. The ports faced to the previous stage are numbered from 0 to k−1, and the ports connected
with the switches in the next stage are labeled from k to 2k − 1.

• Every switch port has an associated global identifier inside the stage, L = ln−1 . . . l0, 0 ≤ li < n,
apart from the internal identifier inside the switch. Both identifiers are related by the connection
pattern between stages.

• n is the total number of stages, where n = logk N .

• h is the terminal identifier (0 ≤ h < N). It consists of a string of n digits hn−1 . . . h1h0

(0 ≤ hi < k). H is the set whose members are the terminals of the MIN, verifying card(H) =
N .

• 〈s, o〉 is a tuple that identifies uniquely a switch, where s refers to the stage (0 ≤ s < n), and
o = on−2, . . . , o1, o0 indicates the position of the switch inside the stage, where 0 ≤ oi < k and
0 ≤ i < n− 1.

4 Twin Switches

We fully characterize the T -switches by means of the following definitions and propositions.

Definition 1.3 Let U be the set of ports on a k×k switch. Hence,

U = {i ∈ N, 0 ≤ i < 2k}

Definition 1.4 Let B be the set of ports on a k×k switch connecting to switches from the previous
stage (or the input ports in a MIN). Hence,

B = {i ∈ U , 0 ≤ i < k}

Definition 1.5 Let F be the set of ports on a k×k switch that connect to switches on the next stage
in a MIN network. Hence,

F = {i ∈ U , k ≤ i < 2k}

13

Figure 2 shows the detailed organization of T -switches. From Definitions 1.3, 1.4, and 1.5 it is
obvious that card(U) = 2k and card(B) = card(F) = k, where card is the cardinality of sets.

Most of the internal switch ports are dedicated for external communications, meanwhile a
concrete number of them are responsible for intra communications between internal switches.

• Bα ∪ Bβ = B

• Fα ∪ Fβ = F

• Bα ∩ Bβ = ∅

• Fα ∩ Fβ = ∅

According to the above, T -switches can be re-defined as follows:

Definition 1.6 A k × k T -switch is a bidirectional switch formed by two identical smaller
interconnected switches. the 2k ports being offered by this T -switch are obtained from the k free
ports of each internal switch after they are interconnected by r ports.

Definition 1.7 Let Pi be the set of ports on the switch i, where i ∈ {α, β}. Moreover, Pi is divided
into three disjoint subsets J i to interconnect the internal switches, Bi, and F i for the T -switch ports.
In a more formal way:

• Pi = J i ∪ Bi ∪ F i

• J i 6= ∅

• Bi ∩ F i = ∅

• Bi ∩ J i = ∅

• F i ∩ J i = ∅

According to this, it is clear to derive that:

• card(J α) = card(J β)

• card(Pα) = card(Pβ)

Proposition 1.1 In a T -switch consisting of two internal switches α and β, it is verified that

• card(Bα) = card(Fβ)

• card(Bβ) = card(Fα)

Proof: According to Definition 1.7 we know how the switch ports of α and β are configured:

• B = Bα ∪ Bβ

• Bα ∩ Bβ = ∅

14 4 TWIN SWITCHES

α

β

Bα

pα
Fα

qα

J α
rα

Bβ

pβ
Fβ

qβ

J β rβ

B

k

F

k

Figure 2: T -switch.

• F = Fα ∪ Fβ

• Fα ∩ Fβ = ∅

since the sets are disjoint, the expression can be rewritten as

card(B) = card(Bα) + card(Bβ) = k (1)

card(F) = card(Fα) + card(Fβ) = k (2)

clearing equations

card(Bβ) = k − card(Bα) (3)

card(Fα) = k − card(Fβ) (4)

and also

card(Bα) = k − card(Bβ) (5)

card(Fβ) = k − card(Fα) (6)

On the other hand, the Definition 1.7 describes how the switch ports of α and β are distributed,

Pα = J α ∪ Bα ∪ Fα

Pβ = J β ∪ Bβ ∪ Fβ

and also

Bα ∩ Fα = ∅, Bα ∩ J α = ∅, y Fα ∩ J α = ∅

Bβ ∩ Fβ = ∅, Bβ ∩ J β = ∅, y Fβ ∩ J β = ∅

since card(Pα) = card(Pβ), it is verified that

card(J α) + card(Bα) + card(Fα) = card(J β) + card(Bβ) + card(Fβ)

15

considering card(J α) = card(J β), and the expressions 3 and 4, we know that

card(Bα) + k − card(Fβ) = k − card(Bα) + card(Fβ)

2 ∗ card(Bα) = 2 ∗ card(Fβ)

card(Bα) = card(Fβ)

this demonstrates the first clause of the Proposition.

In a similar procedure, but using the equations 5 and 6, the second clause of the Proposition is
proved, that is,

card(Bβ) = card(Fα)

2

As it is suggested by the Figure 2, we assume that:

• card(Bα) = pα.

• card(Fα) = qα.

• card(Bβ) = pβ .

• card(Fβ) = qβ .

thus from Proposition 1.1, it is possible to conclude that pα = qβ and qα = pβ .

Accordingly, and in order to use a simpler notation and without loss of accuracy in the final
solution, or rigor in the procedure, the following simplifications are assumed:

card(Bα) = card(Fβ) = p. (7)

card(Bβ) = card(Fα) = q. (8)

Definition 1.8 Let Ci ⊂ U be the configuration of an internal switch i of a T -switch, where i defines
the set of ports on the switch i, which are a subset of the ports of the T switch, where i ∈ {α, β}.
Hence,

Ci = Bi ∪ F i

Proposition 1.2 The number of elements in Ci is k, where i ∈ {α, β}. In other words card(Ci) = k.

Proof: The cardinal of Cα is card(Cα) = card(Bα) + card(Fα). From the Proposition 1.1, we know
that card(Bβ) = card(Fα). Thus card(Cα) = card(Bα) + card(Bβ).

As defined above in Definition 1.7, Bα and Bβ are disjoint sets and B = Bα ∪ Bβ . Therefore,
card(B) = card(Bα)+card(Bβ). By substituting in the above equation, we get card(Cα) = card(B) =
k.

Starting from Cβ and applying the same process, we will also reach the conclusion that
card(Cβ) = k. 2

Definition 1.9 Let V be the set of all possible configurations of an internal switch i in a T -switch,
where i ∈ {α, β}. Hence,

V = {Ci ⊂ U | card(Ci) = k}

16 4 TWIN SWITCHES

It is important to note that U is a set, while V is a set whose members are sets. That is, any
configuration Ci is contained in U , and belongs to V. Hence, Ci ⊂ U , and Ci ∈ V.

Hereafter, the configuration of an internal switch will be denoted by C, when it does not matter
if the switch configuration refers to the switches α or β. The superscript will be only used when
necessary to distinguish between α and β.

Definition 1.10 Let T be the configuration of T -switch, which is determined by a pair of
configurations belonging to V. Hence,

T = {Cα, Cβ ∈ V | Cβ = (Cα)
C}

Definition 1.11 Let γ be a pattern of connections that are applied to a T -switch. Then we define
Sγ as the subset of V, whose configurations minimize the number of connections using the ports J of
the internal switches. In other words:

Sγ = {C ∈ V | C minimizes the use of portsJ }

Proposition 1.3 Let T be a configuration of a T -switch. The configuration T is an optimal
configuration for a specific pattern of connections γ if the configuration of its internal switches belongs
to Sγ . In other words:

If T = {Cα, Cβ | Cα, Cβ ∈ Sγ}, then T is optimal

Proof: The proof is trivial. The configurations belonging to Sγ minimize the number of connections
that use the internal link. Consequently, T is optimal since there are other configurations that
minimize the total connections. 2

The T -MINs are MIN networks built using T -switches. These networks can be both
unidirectional and bidirectional. Our study in this report focuses only on the last ones, however
the study of the unidirectional are quite similar.

Definition 1.12 A T -MIN interconnection network is a MIN network in which all the switches are
T -switches.

Definition 1.13 A T -BMIN interconnection network is a BMIN network in which all the switches
are T -switches.

4.1 Internal connections of Twin switches

A k×k T -switch, like any other same size full-duplex switch allows a set of connections between their
ports. In particular, we have

• Forward and backward connections. There are k×k possible combinations that imply pass
through the T -switch (in forward and backward directions). We denote by CC(〈s, o〉) (cross
connections) the number of different connections between k input ports and k output ports, so
CC(〈s, o〉) = k2. If necessary to make a difference between forward and backward directions we
will denote by CCf (〈s, o〉) and CCb(〈s, o〉), respectively. Hence,

CCf (〈s, o〉) = CCb(〈s, o〉) = k2

4.1 Internal connections of Twin switches 17

• Turnaround connections. Only k ports take part to establish this type of connection. We denote
by TC(〈s, o〉) (turnaround connections) the number of different connections between such ports.
It is assumed that there is no turnaround connection between a port and itself. Hence,

TC(〈s, o〉) = k(k − 1)

For the two connection types, considering the internal organization of the T -switch, some of
them imply to go across the internal links J that interconnect the switches α and β. We denote
by CCI(〈s, o〉) the number of paths that go across the 〈s, o〉 switch by using the switches α and β.
Similarly, We denote by TCI(〈s, o〉) the number of paths that turn around the 〈s, o〉 switch by using
the switches α and β. When necessary, we will differentiate the forward from backward direction by
CCIf (〈s, o〉) and CCIb(〈s, o〉), respectively. In Figure 2, and taking into account the expressions 7
and 8 it is deduced that:

CCI(〈s, o〉) = p×p+ q×q = p2 + (k − p)2 = 2p2 + k2 − 2kp

TCI(〈s, o〉) = p×q + q×p = 2p(k − p) = 2(kp− p2)

and also

CCIf (〈s, o〉) = p×p+ q×q = p2 + (k − p)2 = 2p2 + k2 − 2kp

CCIb(〈s, o〉) = p×p+ q×q = p2 + (k − p)2 = 2p2 + k2 − 2kp

The total number of times that the internal links connecting the internal switches α and β
on a 〈s, o〉 T -switch would be used, is denoted by Ci(〈s, o〉), and it is obtained from the CCI(〈s, o〉)
(CCIf (〈s, o〉) and CCIb(〈s, o〉) if applicable) and TCI(〈s, o〉) in each case are obtained under the initial
conditions.

In the previous, we saw the expressions CCI(〈s, o〉) and TCI(〈s, o〉) that have been obtained
considering the isolated T -switch, without taking into account the entire network; nor the paths that
are routed by the concrete routing algorithm; nor the characteristics of the traffic that determine the
paths. Once all these aspects are considered, it is possible to determine what happens in individual
cases and therefore we can get the configuration of all network T -switches to minimize the number of
crosses by the internal links 2 that interconnect the switches α and β.

In such cases, the number of paths that pass through switches can be calculated using these
expressions or not (depending on the characteristics of each case), all the paths that pass through or
turn on each 〈s, o〉 switch, and which of them make it through the switches α and β.

To obtain these expressions we need to know when a path reaches the switch 〈s, o〉. Considering
that is a BMIN network topology of N nodes and n stages, a switch 〈s, o〉 will be achieved:

• from a switch located in a previous stage or from one terminal node to reach a later stage. In
this case the path goes across the switch. We denote by Cf (〈s, o〉) (a.k.a. forward crosses) the
number of paths that go across the switch 〈s, o〉, 0 ≤ s < n − 1, in the forward direction. This
is true for switches belonging to all stages except the last.

• from a switch located in a later stage to arrive at an previous stage or a terminal node. In this
case the path goes across the switch. We denote by Cb(〈s, o〉) (a.k.a. backward crosses) the
number of paths that go across the switch 〈s, o〉, 0 ≤ s < n− 1, in the backward direction. This
is also true for switches belonging to all stages except the last.

• from a switch located in a previous stage or a terminal node to reach another different switch
in the same stage or different terminal node. In this case there is a twist on the switch itself.
We denote by T (〈s, o〉) (a.k.a. turnaround connection) the number of paths that turn around
the switch 〈s, o〉. Unlike earlier, this is true in all switches.

2In what follows, we will also use the term “internal link” to refer to the ports J that connect the switches α and β.

18 4 TWIN SWITCHES

Sometimes it will be convenient to consider Cf (〈s, o〉) and Cb(〈s, o〉) together. Thus, we also
introduce C(〈s, o〉) (total crosses) as C(〈s, o〉) = Cf (〈s, o〉) + Cb(〈s, o〉).

The above expressions are switch-level expressions, but they do not distinguish between
individual ports. However, for this study it is necessary to know which connections are established
between individual ports and how many times. This information will determine which of them may
be made without using the internal switches α and β.

Therefore, we will also consider counters similar to those introduced above, but at connection
level. But we will distinguish among those going in the forward, downward, or turn-around
connections. To register the number of occurrences of each event will be used, Cf (〈s, o〉, l, l

′),
Cb(〈s, o〉, l, l

′) and T (〈s, o〉, l, l′), respectively. In short:

• Cf (〈s, o〉, l, l
′) records the number of times it is used the connection between the ports l and l′,

with 0 ≤ l < k and k ≤ l′ < 2k.

• Cb(〈s, o〉, l, l
′) records the number of times it is used the connection between the ports l and l′,

with k ≤ l < 2k and 0 ≤ l′ < k.

• T (〈s, o〉, l, l′) records the number of times it is used the connection between the ports l and l′,
with 0 ≤ l, l′ < k and l 6= l′. The sum of the first two are denoted by C(〈s, o〉, l, l′).

Adding the first two we obtain C(〈s, o〉, l, l′).

19

5 Reachable Nodes from a BMIN Switch

Notice that although the methodology is general and it can be applied considering different C-switches
and interconnection networks, the optimal T -switch configuration depends on the particular network
properties. In this case we have considered the following network properties: BMINs k–ary n–tree with
N terminals and k×k T -switches (k ≥ 4), DESTRO routing algorithm, complement and perfect-shuffle
traffic patterns. Therefore, in order to apply the switch configuration methodology we must specify
the network topology, the routing algorithm, and the network load.

We have chosen the BMIN k–ary n–tree network [DYN03], a subclass of fat-trees which are
one of the most common topologies today in the largest supercomputers on the Top500 list. The
k–ary n–tree network topology belongs to the family of fat–trees and it is derived from a concrete
class of MINs: the k–ary n–butterflies (or k–ary n-flies) [Lei92]. A k–ary n–fly MIN is obtained by
applying the βk

i permutation, 0 ≤ i < n, to obtain the network-level connection patterns between
stages. The k–ary n–tree connect N nodes using nkn−1 switches. Two switches 〈s, on−2 . . . o0〉 and
〈s′, o′n−2 . . . o

′
0〉 are connected with a link if s′ = s+ 1 and oi = o′i ∀i 6= s. Moreover, there is a link

between the switch 〈0, on−2 . . . o0〉 and the terminal h = hn−1 . . . h0 if oi = hi+1, 0 ≤ i < n− 1.

The routing algorithm is DESTRO [GGG+07]. It is a deterministic routing algorithm for
fat-trees. It is based on using at each switch the ascending output port given by the destination
component of the packet that is being routed corresponding to the switch stage. This routing algorithm
is able to evenly balance network traffic and reduce to the minimum the number of paths that share
each link, and as a consequence, it reduces network contention.

Complement and perfect-shuffle traffic patterns are assumed as network workload because they
are frequently used in many studies about interconnection networks.

Under these conditions, we formally demonstrate what is the best configuration of the
T -switches. The following three sections correspond to the steps in the methodology.

For a further treatment, it is interesting to know the reachable nodes from a particular BMIN
switch. We have distinguished two cases: (1) in the first case we only take into account the topological
capabilities of butterfly BMINs; (2) however in the second case, we have additionally considered a
routing algorithm. In both cases, we introduce some definitions and derived propositions. Before
every definition, we give an example for a sake of clarity.

In all the examples, we assume a 2-ary 3-tree BMIN with N = 8 nodes, and consider the 〈1, 01〉
(dark blue) as the reference switch. On the other hand, we highlight in light blue the switches in the
middle of the reference switch and the reachable nodes.

5.1 Reachable nodes from a BMIN switch considering the network

topology

Example 1.1 Topologically speaking, a path can reach the nodes {0,1,2,3} in the descending phase,
and the nodes {4,5,6,7} in the ascending phase, from the 〈1, 01〉 switch, as it can be seen in the Figures
3(a) and 3(b), respectively.

Example 1.2 Topologically speaking, a path can reach the nodes {0,1} in the descending phase by
using the output port 0, and the nodes {4,5,6,7} in the ascending phase by using the output port 2,
from the 〈1, 01〉 switch, as it can be seen in the figures 4(a) and 4(b), respectively.

In a more formal way, given a k-ary n-tree BMIN network with N nodes, we introduce the
following definitions:

20 5 REACHABLE NODES FROM A BMIN SWITCH

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(a) Descending phase.

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(b) Ascending phase.

Figure 3: Reachable nodes from a switch considering the topology.

0

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(a) Descending phase by the output port 0.

2

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(b) Ascending phase by the output port 2.

Figure 4: Reachable nodes through a port from a switch considering the topology.

Definition 1.14 Let N t
b(〈s, o〉) be the network node set that are topologically reachable from the switch

〈s, o〉 by a path in the descending phase, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉 for 0 ≤ s < n. Hence,

N t
b(〈s, o〉) = { (hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1] }

Definition 1.15 Let N t
f (〈s, o〉) be the network node set that are topologically reachable from the

switch 〈s, o〉 by a path in the ascending phase, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉 for 0 ≤ s < n − 1.
Hence,

N t
f (〈s, o〉) = (N t

b(〈s, o〉))
C = {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1}

where C refers to set complement operation.

Similarly, we also define the reachable node set by the output port l in the switch 〈s, o〉.

5.1 Reachable nodes from a BMIN switch considering the network topology 21

Definition 1.16 Let N t
b(〈s, o〉, l) be the network node set that are topologically reachable by the output

port l from the switch 〈s, o〉 by a path in the descending phase, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉 for
0 ≤ s < n and 0 ≤ l < k. Hence,

N t
b(〈s, o〉, l) = {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1] y hs = l}

Definition 1.17 Let N t
f (〈s, o〉, l) be the network node set that are topologically reachable by using the

output port l from the switch 〈s, o〉 by a path in the ascending phase, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉
for 0 ≤ s < n− 1 and k ≤ l < 2k. Hence

N t
f (〈s, o〉, l) = {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1}

Taking the previous definitions as the starting point, the following propositions can be
considered:

Proposition 1.4 The total number of topologically reachable network nodes from the switch 〈s, o〉 by
a path in the descending phase is Dt

b(〈s, o〉) = ks+1.

Proof: Every node identifier can be written as a sequence of n digits:

(hn−1 . . . hs+1hshs−1 . . . h0)

and according to Definition 1.14, the sequence can be rewritten as:

(on−2 . . . os+1oshshs−1 . . . h0)

that is, the n − 1 − s most significant digits on−2 . . . os are the same for all the set members. The
s+1 remaining digits hs . . . h0 may be different and distinguish the set nodes between them. Every hi

would take values inside the range [0, k], that is, k different values. Therefore, the number of different
sequences, or the number of set nodes is ks+1. 2

Proposition 1.5 The total number of topologically reachable network nodes from the switch 〈s, o〉 by
a path in the ascending phase is Dt

f (〈s, o〉) = kn − ks+1.

Proof: According to Definition 1.15, N t
f (〈s, o〉) = (N t

b(〈s, o〉))
C . Therefore,

Dt
f (〈s, o〉) = card(N t

f (〈s, o〉)) = card((N t
b(〈s, o〉))

C) =

= card(H)− card(N t
b(〈s, o〉)) = N − card(N t

b(〈s, o〉)) = N − ks+1 = kn − ks+1

2

Proposition 1.6 The total number of topologically reachable network nodes by using the output port
l from the switch 〈s, o〉 by a path in the descending phase, where 0 ≤ s < n and 0 ≤ l < k, is
Dt

b(〈s, o〉, l) = ks.

Proof: If s > 0, the topologically reachable network nodes by using the output port l from the
switch 〈s, o〉 by a path in the descending phase are the same as the reachable nodes from the switch
〈s− 1, o′〉, which 〈s, o〉 is connected to through its port l, hence

Dt
b(〈s, o〉, l) = Dt

b(〈s− 1, o′〉) = k(s−1)+1 = ks

If s = 0, only one node is connected through the port l, and Dt
b(〈0, o〉, l) = ks is also verified

because k0 = 1. 2

22 5 REACHABLE NODES FROM A BMIN SWITCH

Proposition 1.7 The total number of topologically reachable network nodes by using the output port
l from the switch 〈s, o〉 by a path in the ascending phase, where 0 ≤ s < n − 1 and k ≤ l < 2k, is
Dt

f (〈s, o〉, l) = kn − ks+1.

Proof: According to Definitions 1.15 and 1.17, the sets N t
f (〈s, o〉) and N t

f (〈s, o〉, l) have the same
members. Hence,

Dt
f (〈s, o〉, l) = Dt

f (〈s, o〉) = kn − ks+1

2

5.2 Reachable nodes from a BMIN switch considering the network

topology and the routing algorithm

Similar to Section 5.1, we also give some examples to understand the following definitions and
propositions. The reference switch and the reachable nodes are highlighted in dark and light blue,
respectively. Furthermore, every output port is labeled with the reachable network nodes identifier,
which are calculated by a routing algorithm likewise the described algorithm in Section A.7.1.

Considering the routing algorithm, we have to take into account that given a switch, i.e., 〈1, 01〉,
only a concrete destinations are reachable:

Example 1.3 From switch 〈1, 01〉, the reachable destinations are {1,3} in the descending phase, and
{5,7} in the ascending phase, as it can be seen in the figures 5(a) and 5(b), respectively.

For the reason stated just before starting this example, nodes 0 and 2 are not reachable because
the routing algorithm prevents (in every hop) paths for reaching the switch 〈1, 01〉.

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,4,6

3,5,7

0,4,6

1,5,7

0,2,6

1,3,7

0,2,4

1,3,5

0

2

4

3

1

6

5

7

0

4

2

5

1

6

3

7

4

6

5

7

0

2

1

3

0

1

4

3

2

5

6

7

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(a) Descending phase.

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,4,6

3,5,7

0,4,6

1,5,7

0,2,6

1,3,7

0,2,4

1,3,5

0

2

4

3

1

6

5

7

0

4

2

5

1

6

3

7

4

6

5

7

0

2

1

3

0

1

4

3

2

5

6

7

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(b) Ascending phase.

Figure 5: Reachable nodes from the switch considering the routing algorithm.

Example 1.4 Let us take the switch 〈1, 01〉 as the reference point. Through the port 0, a path can
only reach the node {1} in the descending phase; but through the port 2, the path can only reach the
node {5} in the ascending phase. This can be observed in the figures 6(a) and 6(b), respectively.

In a more formal way, given a k-ary n-tree BMIN network with N nodes and considering
DESTRO (Section A.7.1) as the routing algorithm, R, we introduce the definitions below:

5.2 Reachable nodes from a BMIN switch considering the network topology and the routing algorithm23

0

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,4,6

3,5,7

0,4,6

1,5,7

0,2,6

1,3,7

0,2,4

1,3,5

0

2

4

3

1

6

5

7

0

4

2

5

1

6

3

7

4

6

5

7

0

2

1

3

0

1

4

3

2

5

6

7

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(a) Descending phase by the output port 0.

2

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,4,6

3,5,7

0,4,6

1,5,7

0,2,6

1,3,7

0,2,4

1,3,5

0

2

4

3

1

6

5

7

0

4

2

5

1

6

3

7

4

6

5

7

0

2

1

3

0

1

4

3

2

5

6

7

2,00

2,01

2,10

2,11

0,00

0,01

0,10

0,11

1,00

1,01

1,10

1,11

(b) Sentido ascendente by the output port 2.

Figure 6: Reachable nodes through a port from a switch considering the routing algorithm.

Definition 1.18 Let NR
b (〈s, o〉) be the reachable network nodes from the switch 〈s, o〉 by a path in

the descending phase, considering R, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉, 0 ≤ s < n. Hence

NR
b (〈s, o〉) = {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1]}

Definition 1.19 Let NR
f (〈s, o〉) be the reachable network nodes from the switch 〈s, o〉 by a path in

the ascending phase, considering R, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉, 0 ≤ s < n− 1. Hence,

NR
f (〈s, o〉) = {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1 and hi = oi ∀i ∈ [0, s− 1]}

Similarly, we also define the reachable node set by the output port l in the switch 〈s, o〉.

Definition 1.20 Let NR
b (〈s, o〉, l) be the reachable network node set by using the output port l from

the switch 〈s, o〉 by a path in the descending phase, considering R, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉 with
0 ≤ s < n and 0 ≤ l < k. Hence,

NR
b (〈s, o〉, l) = {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hs = l, andhi = oi ∀i ∈ [0, s− 1]}

Definition 1.21 Let NR
f (〈s, o〉, l) be the reachable network node set by using the output port l from

the switch 〈s, o〉 by a path in the ascending phase, considering R, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉 with
0 ≤ s < n− 1 and k ≤ l < 2k. Hence

NR
f (〈s, o〉, l) = {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1, and

hs = l − k, y hi = oi ∀i ∈ [0, s− 1]}

Taking the previous definitions as the starting point, the following propositions can be
considered:

Proposition 1.8 The number of reachable network nodes from the switch 〈s, o〉 by a path in the
descending phase, considering R, is DR

b (〈s, o〉) = k.

24 5 REACHABLE NODES FROM A BMIN SWITCH

Proof: The network node identifier is a sequence of n digits:

(hn−1 . . . hs+1hshs−1 . . . h0)

and according to Definition 1.18, the sequence can be rewritten as:

(on−2 . . . os+1oshsos−1 . . . o0)

All the digits are the same as those of the switch 〈s, o〉, with the exception of the digit hs.
Therefore, the digit hs makes the difference of the node identifiers in the set. Since hs could take k
values (0 ≤ hs < k), there are k different members belonging to the set NR

b (〈s, o〉), and consequently
DR

b (〈s, o〉) = k. 2

Proposition 1.9 The number of reachable network nodes from the switch 〈s, o〉 by a path in the
ascending phase, considering R, is DR

f (〈s, o〉) = kn−s − k.

Proof: Every node identifier is a sequence of n digits with the format below:

(hn−1 . . . hs+2hs+1hshs−1 . . . h0)

and according to Definition 1.19, such a sequence can be rewritten as:

(hn−1 . . . hs+2hs+1hsos−1 . . . o0)

The Definition 1.19 states the n − s − 1 most significant digits, hn−2 . . . hs provide kn−s−1

different combinations of valid sequences. However, there is only one combination that does not verify
the Definition 1.19. Specifically, it is that which has hn−1 . . . hs+1 = on−2 . . . os. In that way, the
number of combinations for the n− s− 1 left most significant digits is kn−s−1 − 1.

On the other hand, the s least significant digits, hs−1 . . . h0, are fixed by Definition 1.19.

Finally, the digit hs would take one value of k possibilities. Therefore, the number of possible
combinations for node identifiers, that is, the members of the set NR

f (〈s, o〉) is (kn−s−1 − 1)×k =

kn−s − k. 2

Proposition 1.10 The number of reachable network nodes by using the output port l from the switch
〈s, o〉 by a path in the descending phase, considering R, where 0 ≤ l < k and 0 ≤ s < n, is
DR

b (〈s, o〉, l) = 1.

Proof: According to Proposition 1.8, the number of reachable network nodes from the switch 〈s, o〉 by
a path in the descending phase is k, and because R is balanced, those nodes are uniformly distributed
between the k output ports, and therefore, DR

b (〈s, o〉, l) = DR
b (〈s, o〉)/k = k/k = 1. 2

Proposition 1.11 The number of reachable network nodes through the output port l from the switch
〈s, o〉 by a path in the ascending phase, considering R, where k ≤ l < 2k and 0 ≤ s < n − 1 is
DR

f (〈s, o〉, l) = kn−s−1 − 1.

Proof: According to Proposition 1.9, the number of reachable nodes from the switch 〈s, o〉 by a path
in the ascending phase is kn−s − k, and since R is balanced, those nodes are uniformly distributed
between the k output ports, and therefore DR

f (〈s, o〉, l) = DR
f (〈s, o〉)/k = (kn−s − k)/k = kn−s−1 − 1.

2

5.2 Reachable nodes from a BMIN switch considering the network topology and the routing algorithm25

Proposition 1.12 Given an input port l, k ≤ l < 2k, an output port l′, 0 ≤ l′ < k, and both belong
to a switch 〈s, o〉, where 〈s, o〉 = 〈s, (on−2 . . . o0)〉 with 0 ≤ s < n− 1, considering R, there exist paths
in the descending phase that arrive at 〈s, o〉 by l and leave it through l′ if and only if l′ = l − k is
verified.

Proof: Let us suppose that a path in the descending phase arrives at the switch 〈s, o〉, and let h′ be
the destination node of that path. The path would leave the switch through the output port l′ in the
switch 〈s, o〉.

’

’’

k

2k-1

0

k-1

0

k-1

k

2k-1

L

L’’

... ...

.

.

.
.
.
.

.

.

.
.
.
.

l

l

l
〈s, o〉 〈s′, o′〉

s s+ 1

Figure 7: Associated channel between two adjacent switches.

Since R is the routing algorithm, the Definition 1.20 determines the reachable nodes by a path
in the descending phase in 〈s, o〉 by using l′. According to Proposition 1.10, such a set has only one
member, this is, the destination node h′:

NR
b (〈s, o〉, l′) = { h′ } = { (on−2 . . . os+1osl

′os−1 . . . o0) }

Since the path is in the descending phase, it comes from one of the switches placed in the
upwards stage 〈s′, o′〉, with s′ = s + 1. If a path passes through two switches, each one belonging to
different stages, both switches are connected by a channel. For example, in the Figure 7, the switches
〈s, o〉 and 〈s′, o′〉 are connected through the ports l and l′′. Taking into account the k-ary n-tree
topology definition, it is known the switch identifiers verify oi = o′i ∀i 6= s, in other words:

〈s′, o′〉 = 〈s+ 1, (on−2 . . . os+1o
′
sos−1 . . . o0)〉

It should be notice all the values that o′ can take are known except o′s.

On the other hand, the Definition 1.20 specifies the reachable network node set in the descending
phase from the switch 〈s′, o′〉 through the output port l′′. Such a set has only one member: the
destination node h′:

NR
b (〈s′, o′〉, l′′) = {h′} = { (on−2 . . . os+1l

′′o′sos−1 . . . o0) }

Since the sets NR
b (〈s, o〉, l′) and NR

b (〈s′, o′〉, l′′) have the same members, {h′},

NR
b (〈s, o〉, l′) = { (on−2 . . . os+1osl

′os−1 . . . o0) }

NR
b (〈s′, o′〉, l′′) = { (on−2 . . . os+1l

′′o′sos−1 . . . o0) }

that is checked only if:

o′s = l′

os = l′′

26 5 REACHABLE NODES FROM A BMIN SWITCH

Let us analyze the relation between l and l′′ with the connection pattern. The pattern was
defined in Section A.2 in terms of global ports L and L′′. The number of internal port l, k ≤ l < 2k,
is associated with L = ln−1 . . . l0 by the connection pattern as:

L = k×o+ (l − k) = k×(on−2 . . . o0) + (l − k) = on−2 . . . o0(l − k)

The multiplication of o = on−2 . . . o0 (in base k) by k is calculated by shifting o = on−2 . . . o0
left one position, and assigning the digit o0 = 0. Then the addition operation sets the digit o0 to l−k
(0 ≤ l − k < k).

Similarly, the global port number L′′ = l′′n−1 . . . l
′′
0 is related with the internal port l′′, 0 ≤ l′′ < k,

by the expression below:

L′′ = k×o′ + l′′ = k×(o′n−2 . . . o
′
0) + l′′ = o′n−2 . . . o

′
0l

′′

Then again, the butterfly permutation associates the ports L and L′′ as follows:

βk
s+1(L) = L′′

βk
s+1(on−2 . . . os+1osos−1 . . . o0(l − k)) = o′n−2 . . . o

′
s+1o

′
so

′
s−1 . . . o

′
0l

′′

taking into account that o′s = l′ and l′′ = os, it is obtained in L′′

βk
s+1(on−2 . . . os+1osos−1 . . . o0(l − k)) = o′n−2 . . . o

′
s+1l

′o′s−1 . . . o
′
0os (9)

how the switches 〈s, o〉 and 〈s′, o′〉 are related

〈s′, o′〉 = 〈s+ 1, (on−2 . . . os+1o
′
sos−1 . . . o0)〉

and it can be substituted in the Expression 9, remaining then

βk
s+1(on−2 . . . os+1osos−1 . . . o0(l − k)) = on−2 . . . os+1l

′os−1 . . . o0os

at long last, the butterfly permutation is applied

on−2 . . . os+1(l − k)os−1 . . . o0os = on−2 . . . os+1l
′os−1 . . . o0os (10)

The equality 10 is verified when l′ = l − k. 2

It should be noted this section has covered the first step, which is independent of the traffic
pattern, of our methodology. The two other steps take into consideration the traffic pattern:
complement and perfect-shuffle traffic pattern. We briefly describe both steps bellow:

• This is the second step. Depending on the network characteristics and load conditions, few
or many different C-switch configurations could be obtained. In this step, C-switches are
grouped according to their connection requirements, and so, several types of C-switch will be
distinguished.

As result of the previous phase, it can occur that some of the possible connections in the
C-switches support one, or more paths, and however there may be connections that are never
established.

In a fat-tree topology, for instance, C-switches in different stages may require different
switch-level connection patterns, and the same may even occur with C-switches in the same
stage. When a simple traffic pattern and balanced routing algorithm are used, it is likely all the
C-switches in the network require the same switch-level connection pattern.

• This is the third step. From connection requirements and given the number of internal switches
forming the C-switch, this last step consists in finding the optimal configuration for each class
of C-switch. That is, we must find the optimal switch-level connection pattern of each class,
trying to minimize the use of the interconnection between internal switches.

Due to the length of these steps, we have included them in two separate sections. Hence, the
Section 6 and Section 7 deal with the complement traffic pattern and perfect-shuffle, respectively.

27

6 Applying the Methodology for Complement Traffic

This section performs the search of optimal T -switch configuration using the same methodology. On
this occasion, the network is evaluated under complement traffic pattern.

6.1 Network Paths Analysis

The generated paths with the complement traffic pattern are studied in this section. Figure 8 shows
graphically the paths generated by this traffic pattern in a 2–ary 3–tree network. There are so many
different paths as end nodes, and the internal switch connections are determined by the specific routing
algorithm. As it is shown, all the paths reach the switches of the last stage (Proposition 1.16).

Stage 0 Stage 2Stage 1

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,4,6

3,5,7

0,4,6

1,5,7

0,2,6

1,3,7

0,2,4

1,3,5

0

2

4

3

1

6

5

7

0

4

2

5

1

6

3

7

4

6

5

7

0

2

1

3

Figure 8: Generated paths under complement traffic pattern in a 2–ary 3–tree network.

To avoid continually repeating the same premises in every definition, they are now indicated
and then omitted from the propositions. In this way, the statements remain more clear and simple.
Specifically, the premises are as follows:

• The network topology is a T–BMIN k–ary n–tree with N end nodes.

• The network load is generated by the complement traffic pattern.

• The routing algorithm is that defined in Section A.7.1. It is a deterministic in the ascending
phase and self–routing in the descending phase.

6.1.1 Ascending phase of the paths

Some propositions related to the paths passing through the switch 〈s, o〉 in the ascending phase,
0 ≤ s < n, are described below.

28 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

Proposition 1.13 Given the ports l and l′ of the switch 〈s, o〉, 0 ≤ s < n − 1, 0 ≤ l < k and
k ≤ l′ < 2k, at the most there is one path passing through 〈s, o〉 in the ascending phase by using l and
l′, where l′ = l + k. Hence,

Cf (〈s, o〉, l, l
′) =

{

1, if and only if l′ = l + k

0, otherwise

Proof: A path passes through the switch 〈s, o〉 in the ascending phase by using the ports l and
l′ if the source node, h, belongs to the set N t

b(〈s, o〉, l), the destination node, h′, belongs to the set
NR

f (〈s, o〉, l′) and the identifier h′ is obtained by applying the complement function to h. Therefore,

Cf (〈s, o〉, l, l
′) = card((N t

b(〈s, o〉, l))
π ∩NR

f (〈s, o〉, l′))

(N t
b(〈s, o〉, l))

π ∩NR
f (〈s, o〉, l′) = . . . =

= ({(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1] and hs = l })π ∩

∩ {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1, hi = oi ∀i ∈ [0, s− 1] and hs = l′ − k}

Then, applying the complement function to the elements of the set of sources N t
b(〈s, o〉, l), we

obtain

(N t
b(〈s, o〉, l))

π ∩NR
f (〈s, o〉, l′) =

= {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1] and hs = l}∩

∩ {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1, hi = oi ∀i ∈ [0, s− 1] and hs = l′ − k}

According to first set, hi = oi−1 ∀i ∈ [s+ 1, n− 1], and from second set, at least one hi is not
equal to oi−1. The first condition satisfies the second one at the same time, so all the hi are different
from oi−1. The first condition is the most restrictive. Hence, the following set is obtained

(N t
b(〈s, o〉, l))

π ∩NR
f (〈s, o〉, l′) = {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+1, n− 1], hi = oi ∀i ∈ [0, s− 1],

hs = l, and hs = l′ − k}

that is to say

(N t
b(〈s, o〉, l))

π ∩NR
f (〈s, o〉, l′) = {(on−2 . . . oslos−1 . . . o0) if and only if hs = l′ − k = l}

As all the digits of every node identifier are fixed, at the most there is a path in the ascending
phase that passes through the switch 〈s, o〉 by using the ports l and l′. Moreover, hs = l′ − k = l
means that the unique path exists if l′ − k = l, in other words, if l′ = l+ k. Since otherwise the result
set would be empty. 2

Proposition 1.14 The number of paths in ascending phase passing through the switch 〈s, o〉, 0 ≤ s <
n− 1, is k. Hence,

Cf (〈s, o〉) = k

Proof: According to Proposition 1.13 we know that there are paths that pass through the switch
〈s, o〉 by using the ports l and l′, where 0 ≤ l < k and k ≤ l′ < 2k, if and only if l′ = l+ k. Moreover,
there is only one path for each pair l and l′. Therefore, the total number of paths passing through
the switch 〈s, o〉 in the ascending phase is obtained by calculating the number of pairs l and l′ that
fulfill the condition l′ = l + k.

The port l takes values between 0 and k − 1, so l′ = l + k = 2k − l − 1 takes values between k
and 2k − 1, i.e.„ inside the range where l′ is defined. Therefore, there are k valid pairs of ports l and
l′ that are used by the paths in the ascending phase for passing through the switch 〈s, o〉. 2

6.1 Network Paths Analysis 29

Proposition 1.15 There is no path passing through, in the ascending phase, the switches of the last
stage. Hence,

Cf (〈n− 1, o〉) = Cf (〈n− 1, o〉, l, l′) = 0

Proof: By the definition of the BMIN topology, there are no forward connections in the switches of
the last stage. 2

6.1.2 Turnaround phase of the paths

Some propositions related to the paths passing through the switch 〈s, o〉 in the turnaround phase,
0 ≤ s < n, are described below.

Proposition 1.16 All the paths turn around in the switches of the last stage.

Proof: Given the nodes h and h′, where 0 ≤ h, h′ < N , there is a path between both if and only if
h′ = h. For all the paths, the stage where the turnaround connection is established, is calculated by
applying the function FirstDifference() (Definition 1.26 in Section A.5)

FirstDifference(h, h′) = FirstDifference((hn−1 . . . h0), (hn−1 . . . h0)) = n− 1

Therefore, all the paths reach a switch of the last stage, and as a consequence, all the turnaround
connections are produced that stage. 2

Proposition 1.17 Given the ports l and l′ of the switch 〈n− 1, o〉, where 0 ≤ l < k and 0 ≤ l′ < k,
at the most there is one path that turns in the switch using input port l and output port l′, such as
l′ = l. Hence,

T (〈n− 1, o〉, l, l′) =

{

1, if and only if l′ = l

0, otherwise

Proof: A path is turned around in the switch 〈n− 1, o〉 by the ports l and l′ if the source node, h,
belongs to the set N t

b(〈n− 1, o〉, l), the destination node, h′, belongs to the set NR
b (〈n− 1, o〉, l′) and

the identifier h′ is obtained by applying the complement function to h. Hence,

T (〈n− 1, o〉, l, l′) = card((N t
b(〈n− 1, o〉, l))π ∩NR

b (〈n− 1, o〉, l′))

(N t
b(〈n− 1, o〉, l))π ∩NR

b (〈n− 1, o〉, l′) =

= ({(hn−1 . . . h0) : hn−1 = l})π ∩ {(hn−1 . . . h0) : hi = oi ∀i ∈ [0, n− 2] and hn−1 = l′}

Then the complement function is applied over the source set N t
b(〈n− 1, o〉, l). The fixed digits

of h are complemented and the value of the other digits are indifferent. We obtain

(N t
b(〈n− 1, o〉, l))π ∩NR

b (〈n− 1, o〉, l′) =

= {(hn−1 . . . h0) : hn−1 = l} ∩ {(hn−1 . . . h0) : hi = oi ∀i ∈ [0, n− 2] and hn−1 = l′}

= {(hn−1 . . . h0) : hi = oi ∀i ∈ [0, n− 2], hn−1 = l and hn−1 = l′}

that is to say

(N t
b(〈n− 1, o〉, l))π ∩NR

b (〈n− 1, o〉, l′) = { (hn−1 . . . h0) tal que hn−1 = l′ = l }

30 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

All the digits hi of all the node identifiers in the set are fixed. The n− 1 least significant digits
are defined by the switch and the most significant digit, hn−1, is defined by the output port l′. So, at
the most there is a path that turns around in the switch 〈n− 1, o〉 using input port l and output port
l′. Moreover, hn−1 = l′ = l means that path exists if l′ = l. Since otherwise the result set would be
empty. 2

Proposition 1.18 The number of paths that turn around in a switch of the last stage is k. Hence,

T (〈n− 1, o〉) = k

Proof: According to Proposition 1.17 there is a path that turns around in the switch 〈n−1, o〉 using
input port l and output port l′, 0 ≤ l, l′ < k, whenever l′ = l.

There are k different pairs of ports l and l′ that satisfy this condition, and therefore the total
number of paths that turn around in the switch 〈n− 1, o〉 is k. 2

6.1.3 Descending phase of the paths

Some propositions related to the paths passing through the switch 〈s, o〉 in the descending phase,
0 ≤ s < n, are described below.

Proposition 1.19 There is no path passing through, in descending phase, the switches of the last
stage. Hence,

Cb(〈n− 1, o〉) = Cb(〈n− 1, o〉, l, l′) = 0

Proof: By the definition of the BMIN topology, there are no backward connections in the switches
of the last stage. 2

Proposition 1.20 Given the ports l and l′ of the switch 〈s, o〉, where 0 ≤ s < n− 1, k ≤ l < 2k and
0 ≤ l′ < k, at the most there is one path in the descending phase that passes through the switch by
using the ports l and l′.

Proof: A path goes through the switch 〈s, o〉 in the descending phase by using the ports l and l′

if the source node, h, belongs to the set N t
f (〈s, o〉, l), the destination node, h′, belongs to the set

NR
b (〈s, o〉, l′) and the identifier h′ is obtained applying the complement function to h. Therefore,

Cb(〈s, o〉, l, l
′) = card((N t

f (〈s, o〉, l))
π ∩NR

b (〈s, o〉, l′))

(N t
f (〈s, o〉, l))

π ∩NR
b (〈s, o〉, l′) =

= ({(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1})
π ∩

∩ {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1] and hs = l′}

Then, the complement function is applied on the elements of the source set N t
f (〈s, o〉, l). The

members of this set are all the nodes, except the nodes that have hi = oi−1, ∀i ∈ [s+1, n−1], as there
exist any hi 6= oi−1. When it is complemented, the result set has all the nodes, except the nodes with
hi = oi−1, ∀i ∈ [s+ 1, n− 1]. In other words, the members of the set have at least one hi that is not
equal to oi−1:

(N t
f (〈s, o〉, l))

π ∩NR
b (〈s, o〉, l′) =

= {(hn−1 . . . h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1} ∩

∩ {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1] and hs = l′}

6.1 Network Paths Analysis 31

The first set imposes that there exists at least one hi, where i ∈ [s+1, n− 1], different to oi−1,
whereas the second set imposes that all the hi to be equal to oi−1 in the interval [s + 1, n − 1]. The
second condition also satisfies the first one at the same time, because all the digits hi are different to
oi−1. Therefore the second condition is more restrictive than the first one. Thus, the following set is
obtained:

(N t
f (〈s, o〉, l))

π ∩NR
b (〈s, o〉, l′) =

= {(hn−1 . . . h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1], and hs = l′}

that is to say
(N t

f (〈s, o〉, l))
π ∩NR

b (〈s, o〉, l′) = {(on−2 . . . osl
′os−1 . . . o0)}

All the node identifier digits that meet the conditions are fixed, so at the most there is one pair
of nodes h and h′ that passes through the switch 〈s, o〉 by using the ports l and l′ in descending phase.

It must be noticed that the obtained set only indicates the possible destination of the path and
the output port of the switch, but it gives no information of the input port l, as it was the case of the
paths in the ascending phase (Proposition 1.13). 2

Proposition 1.21 Given the ports l and l′ of the switch 〈s, o〉, where 0 ≤ s < n− 1, k ≤ l < 2k and
0 ≤ l′ < k, there is one path that uses these ports in the ascending phase if and only if l′ = l − k.

Proof: According to Proposition 1.20 at the most there is one path in the descending phase that uses
the output port l′. Moreover, according to Proposition 1.12 l′ = l−k is always satisfied in descending
phase. Hence,

Cb(〈s, o〉, l, l
′) =

{

1, if and only if l′ = l − k

0, otherwise

2

Proposition 1.22 The number of paths passing through the switch 〈s, o〉 in descending phase,
0 ≤ s < n− 1, is k. Hence,

Cb(〈s, o〉) = k

Proof: According to Proposition 1.21 there exist paths that pass through the switch 〈s, o〉 by using
the ports l and l′, where k ≤ l < 2k and 0 ≤ l′ < k, if and only if l′ = l − k. Moreover, according
to Proposition 1.20, there is only one path if l′ = l − k. Therefore, the total number of paths in the
descending phase that pass through the switch 〈s, o〉 is equal to the number of pairs of ports l and l′

that satisfy the condition l′ = l − k.

The port l takes values between k and 2k − 1, and as a consequence l′ = l − k takes values
between 0 and k − 1, i.e.„ in the range of l′. So there are k valid pairs of ports l and l′ that are used
by other paths in descending phase to pass through the switch 〈s, o〉. 2

Proposition 1.23 The number of paths passing through the switch 〈s, o〉, 0 ≤ s < n−1, is 2k. Hence,

C(〈s, o〉) = 2k

Proof: The result is directly inferred from the Propositions 1.18 and 1.22.

C(〈s, o〉) = Cf (〈s, o〉) + Cb(〈s, o〉) = k + k = 2k

2

To sum up, Table 1 outlines the expressions obtained in the previous propositions.

32 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

Table 1: Number of paths passing through the switch 〈s, o〉 in then ascending, turnaround and
descending phases under complement traffic.

Cf (〈s, o〉) =

{

k, if s ∈ [0, n− 2]
0, if s = n− 1

T (〈s, o〉) =

{

0, if s ∈ [0, n− 2]
k, if s = n− 1

Cb(〈s, o〉) =

{

k, if s ∈ [0, n− 2]
0, if s = n− 1

C(〈s, o〉) =

{

2k, if s ∈ [0, n− 2]
0, if s = n− 1

Cf (〈s, o〉, l, l
′)

0≤l<k k≤l′<2k

=

{

1, if s ∈ [0, n− 2] and l′ = l + k
0, otherwise

T (〈s, o〉, l, l′)
0≤l<k 0≤l′<k

=

{

1, if s = n− 1 and l = l′

0, otherwise

Cb(〈s, o〉, l, l
′)

k≤l<2k 0≤l′<k

=

{

1, if s ∈ [0, n− 2] and l′ = l − k
0, otherwise

6.2 Switch Classification

According to the expressions in Table 1, when the network topology is a N end nodes T–BMIN k–ary
n–tree multistage network, the generated traffic is based on the complement traffic pattern (π) and
the paths are determined by the routing algorithm defined in Section A.7.1, two types of switches are
identified according to the connections required in the switches:

Type πa All the switches, except those belonging to the last stage, fall into this class. Forward and
backward connections are required in these switches. Forward connections are established from
the input port l to the output port l′ = 2k − l − 1, 0 ≤ l < k; and backward connections are
established from input port l to output port l′ = l − k, k ≤ l < 2k.

Type πb The switches of the last stage belong to this class, because they only require turnaround
connections. Connection are established from the input port l to the output port l′ = k− l− 1,
where 0 ≤ l, l′ < k, l 6= l′.

Figure 9 shows the internal connections for a 8×8 switch.

0
1

k-1

k

2k-1

(a) Type πa.

0
1

k-1

k

2k-1

(b) Type πb.

Figure 9: Connections required for each type of switch.

6.3 Switch Configuration 33

6.3 Switch Configuration

To reach the most appropriate internal configuration of T -switches under complement traffic pattern,
the methodology indicated in Section 2.2 is applied.

6.3.1 Type πa configuration of switch

According to our methodology, firstly we identify the set of optimal configurations to forward and
backward connections, separately. Based on these two sets, we derive the global optimal configuration
for the T -switch.

6.3.1.1 Optimal switch configuration to forward connections

From Proposition 1.13, there uniquely exist forward connections between the ports l, 0 ≤ l < k and
l′, k ≤ l′ < 2k, if and only if l′ = l + k. It is clear that if all pairs of ports satisfying this condition
are connected to the same internal switch (i.e., α or β), the resulting configuration will minimize the
number of forward connections that go across the internal link in a T -switch.

Next, to establish the relation between such ports, a binary relation Rf is defined. Furthermore,
several definitions with respect to it are introduced to help obtaining later the set of optimal
configurations of forward connections in T -switch.

Definition 1.22 The binary relation Rf on a set U is defined as follows:

Rf = {(l, l′) ∈ U2 | l + l′ = 2k − 1}

Note that expression l + l′ = 2k − 1 is equivalent to l′ = l + k because:

l′ = l + k

l′ = k − l − 1 + k

l′ = 2k − 1− l

l + l′ = 2k − 1

Proposition 1.24 Rf is a symmetric relation.

Proof: If Rf is symmetric then it is verified that ∀l, l′ ∈ U , (l, l′) ∈ Rf ⇒ (l′, l) ∈ Rf . The
demonstration is trivial by the equality l + l′ = l′ + l = 2k − 1. 2

Proposition 1.25 Let l, l′, l′′ be three ports such that l, l′, l′′ ∈ U , and (l, l′) ∈ Rf . It is verified that
(l, l′′) ∈ Rf if and only if l′ = l′′.

Proof: The demonstration is trivial. There exists only one l′ satisfying l + l′ = 2k − 1. 2

In other words, this proposition indicates that each port l is associated to a unique port l′ by
Rf .

34 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

Proposition 1.26 Let Sπa
f be the set of configurations that minimize the number of paths in the

ascending phase that go across the internal link in a T -switch of type πa. Hence,

Sπa
f = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rf}

and there are no forward connections that go across the internal link.

Proof: Firstly, it is proved that Sπa
f is not empty and then its members are optimal configurations.

Let C ∈ Sπa
f be a configuration. According to the definition of Sπa

f , for a port l ∈ C there exists
another port l′ ∈ C such that (l, l′) ∈ Rf . This in turn implies that there exists a port l′′ ∈ C such
that (l′, l′′) ∈ Rf ; and another port l′′′ ∈ C such that (l′′, l′′′) ∈ Rf ; and so on.

Nevertheless, the Propositions 1.24 and 1.25 demonstrate that Rf is symmetric, and if there
exist a port l′′ such that (l′, l′′) ∈ Rf then the reason is because l′′ = l. Therefore, the inclusion of a
port l in C implies the inclusion of a unique port l′ satisfying (l, l′) ∈ Rf .

Moreover, since card(C) = k (Proposition 1.2), k is even (initial hypothesis); and all the k ports
are grouped in pairs (l, l′) which verify the binary relation Rf , there would be always configurations
belonging to Sπa

f . Hence Sπa
f 6= ∅.

On the other hand, there are only connections between two ports l and l′, if (l, l′) ∈ Rf . If
∀l ∈ C, there exists a port l′ such that (l, l′) ∈ Rf , then all the connections are established between
ports belonging to the same internal switch. Therefore, there exist no connections that use the internal
link; and the members of Sπa

f are optimal configurations.

Finally, we show by reductio ad absurdum that the members of Sπa
f are the unique optimal

configurations. Let C′ be a configuration that minimizes the use of the internal link and C′ /∈ Sπa
f .

This means there exists a port l that is not related to another port l′.

C′ /∈ Sπa
f ⇒ ∃l ∈ C′ | ∀l′ ∈ C′ (l, l′) /∈ Rf

If the configuration C′ is used to build a T -switch (it should be reminded C′ determines the
ports connected to each internal switch) the port l must accomplish the forward connections to a port
that is not allocated inside the same internal switch. Consequently, those connections have to use the
internal link, and the configuration C′ does not minimize the use of the internal link, since there are
configurations better than C′ (because they do not go across the internal link), which belong to Sπa

f .

Therefore, the members of Sπa
f are configurations that minimize the number of connections

that use the internal link. 2

Example 1.5 shows two optimal configurations for a T -switch of type πa considering the forward
connections.

Example 1.5 Let T1 and T2 be two configurations for a 8×8 T -switch

T1 =
{

Cα
1 , C

β
1 ∈ V | Cα

1 = {0, 1, 2, 3, 12, 13, 14, 15}, Cβ
1 = (Cα

1)
C
= {4, 5, 6, 7, 8, 9, 10, 11}

}

T2 =
{

Cα
2 , C

β
2 ∈ V | Cα

2 = {0, 1, 4, 5, 10, 11, 14, 15}, Cβ
2 = (Cα

2)
C
= {2, 3, 6, 7, 8, 9, 12, 13}

}

Both T1 and T2 are optimal configurations for the forward connections in a T -switch of type πa
because they verify

Cα
1 , Cβ

1 , Cα
2 , Cβ

2 ∈ Sπa
f

In the Figure 10, the connections for the configurations T1 and T2 are shown.

6.3 Switch Configuration 35

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

(a) T1

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

(b) T2

Figure 10: Optimal switch configurations for a 8× 8 T -switch of type πa considering forward
connections.

6.3.1.2 Optimal switch configuration to backward connections

By Proposition 1.12, there exist backward connections between a port l, k ≤ l < 2k, and another port
l′, 0 ≤ l′ < k, if and only if l′ = l−k. Following a similar procedure to previous one in Section 6.3.1.1,
the binary relation Rb is defined, and its corresponding Propositions, from which the set of optimal
configurations for backward connections in a T -switch is derived. These configurations have also the
property of being optimum for whatever traffic pattern generated in the network.

Definition 1.23 The binary relation Rb on a set U is defined as follows

Rb = {(l, l′) ∈ U2 | |l − l′| = k }

Note that expression |l − l′| = k comes from l′ = l − k because

l′ = l − k ⇒

{

l′ − l = −k
l − l′ = k

⇒

{

|l′ − l| = |−k|
|l − l′| = |k|

⇒ |l′ − l| = |l − l′| = k

Proposition 1.27 Rb is a symmetric relation.

Proof: If Rb is symmetric, then it will verify that ∀l, l′ ∈ U , (l, l′) ∈ Rb ⇒ (l′, l) ∈ Rb. The
demonstration is trivial because

|l − l′| = |−(l − l′)| = |l′ − l| = k

consequently Rb is symmetric. 2

Proposition 1.28 Let l, l′, l′′ be three ports such that l, l′, l′′ ∈ U and (l, l′) ∈ Rb. It is verified that
(l, l′′) ∈ Rb if and only if l′ = l′′.

Proof: If |l − l′| = k then

|l − l′| = k ⇒

l − l′ = k ⇒ l′ = l − k
or

l − l′ = −k ⇒ l′ = l + k

36 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

Although there are two possible values for l′, only one is a valid port. It is clear that if 0 ≤ l < k,
then l′ = l−k < 0 is not a valid port because it is out of bounds of valid ports; otherwise, if k ≤ l < 2k,
then l′ = l + k ≥ 2k will be an invalid port. In any case, there will be one port l′ ∈ U such that
(l, l′) ∈ Rb.

On the other hand, if l′ = l′′, then it will be trivial to demonstrate that (l, l′′) ∈ Rb. 2

The Propositions 1.29 and 1.30 that are enunciated and demonstrated bellow, are not only
applicable under complement traffic, but under any traffic pattern, since they are only derived from
the network topology and routing algorithm.

Proposition 1.29 Let Sb be the set of configurations that minimize the use of the internal link in a
T -switch considering the backward connections, then

Sb = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there are no backward connections that go across the internal link.

Proof: Let C be a configuration such that C ∈ Sb. According to the definition of Sb, for a port l ∈ C
there exists another port l′ ∈ C such that (l, l′) ∈ Rb. This in turn implies that there exists a port
l′′ ∈ C such that (l′, l′′) ∈ Rb; and another port l′′′ ∈ C such that (l′′, l′′′) ∈ Rb; and so on.

Nevertheless, according to Propositions 1.27 and 1.28, the inclusion of port l in C implies the
inclusion of a unique port l′ satisfying (l, l′) ∈ Rb.

Moreover, since card(C) = k (Proposition 1.2), k is even (initial hypothesis); and all the k ports
are grouped in pairs (l′, l′′) which verify the binary relation Rb, there would be always configurations
belonging to Sb. Hence, Sb 6= ∅.

On the other hand, there are only connections between two ports l and l′, if (l, l′) ∈ Rb. If
∀l ∈ C, there exists a port l′ such that (l, l′) ∈ Rb, then all the connections are established between
port belonging to the same internal switch. Consequently, there exist no connections that use the
internal link; and the members of Sb are optimal configurations. 2

Proposition 1.30 If there exist backward connections for every pair of ports l and l′, such that
(l, l′) ∈ Rb, then the members belonging to Sb are the unique optimal configurations. Hence,

∀(l, l′) ∈ Rb, Cb(〈s, o〉, l, l
′) > 0 ⇒ ∀C ∈ V, if C /∈ Sb, then C is not optimum

Proof: Assuming the existence of backward connections for all the pairs of ports l and l′ that verify
(l, l′) ∈ Rb, let us suppose that there exists a configuration C′ that minimizes the use of the internal
link, and C′ /∈ Sb. If C′ /∈ Sb, then there will exist a port l that is not related to l′.

C′ /∈ Sb ⇒ ∃l ∈ C′ | ∀l′ ∈ C′, (l, l′) /∈ Rb

If the configuration C′ is used to build a T -switch (it should be reminded C′ determines the
ports connected to each internal switch) the port l must accomplish the backward connections to
a port that is not allocated inside the same internal switch, since all the ports establish backward
connections. Consequently, those connections have to use the internal link, and the configuration C′

does not minimize the use of the internal link, since there are configurations better than C′ (because
they do not go across the internal link), which belong to Sb.

Therefore, the members of Sb are configurations that minimize the number of connections that
use the internal link. 2

Example 1.6 shows two optimal configurations for a T -switch of type πa considering the
backward connections.

6.3 Switch Configuration 37

Example 1.6 Let T1 and T2 be two configurations for a 8×8 T -switch

T1 =
{

Cα
1 , C

β
1 ∈ V | Cα

1 = {0, 1, 2, 3, 8, 9, 10, 11}, Cβ
1 = (Cα

1)
C
= {4, 5, 6, 7, 12, 13, 14, 15}

}

T2 =
{

Cα
2 , C

β
2 ∈ V | Cα

2 = {0, 2, 3, 4, 8, 10, 11, 12}, Cβ
2 = (Cα

2)
C
= {1, 5, 6, 7, 9, 13, 14, 15}

}

Both T1 and T2 are optimal configurations for the backward connections in a T -switch because
they verify

Cα
1 , Cβ

1 , Cα
2 , Cβ

2 ∈ Sb

The Figures 11a and 11b illustrate the connections for the configurations T1 and T2, respectively.

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

(a) T1

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

(b) T2

Figure 11: Optimal switch configurations for a 8×8 T -switch considering backward connections.

Proposition 1.31 Let Sπa
b be the set of configurations that minimize the use of the internal link in

a T -switch of type πa, considering the backward connections, then

Sπa
b = Sb = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there are no backward connections that go across the internal link.

Proof: From Proposition 1.29, members of Sb are optimal configurations considering backward
connections. Moreover, in a T -switch of type πa, where there exist backward connections between
each pair of ports l, l′ such that (l, l′) ∈ Rb, the configurations belonging to Sb are the unique optimal
configurations by the Proposition 1.30. 2

6.3.1.3 Optimal switch configuration to all the connections

To obtain the set of configurations that minimize the use of the internal link, considering at the same
time the forward and backward connections, we apply the set intersection of Sπa

f and Sπa
b . Hence,

Sπa = Sπa
f ∩ Sπa

b =

= {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rf} ∩ {C′ ∈ V | ∀l ∈ C′, ∃l′ ∈ C′ | (l, l′) ∈ Rb} =

= {C ∈ V | ∀l ∈ C, ∃l′, l′′ ∈ C | (l, l′) ∈ Rf , (l, l
′′) ∈ Rb}

This is true when k is a multiple of 4. Otherwise, the resulting set would be empty (Sπa = ∅).
For this reason, we have defined two situations: (a) k is a multiple of 4, (b) k is not a multiple of 4.

38 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

To distinguish between both situations, the set of optimal configurations that minimize the use of the
internal link would be represented by Sπa

4 in the situation (a); and by Sπa

�4
in the situation (b).

Proposition 1.32 Let l0, l1, l2 be three ports such that l0, l1, l2 ∈ U and (l0, l1) ∈ Rf and (l0, l2) ∈ Rb.
Then there exists a port l3 ∈ U such that (l2, l3) ∈ Rf and (l1, l3) ∈ Rb.

Proof: If (l0, l1) ∈ Rf and (l0, l2) ∈ Rb, then by the definitions and propositions of Rf and Rb it is
known that

l0 + l1 = 2k − 1 (12)

|l0 − l2| = k (13)

Moreover, there exist l3, l4 ∈ U such that (l1, l3) ∈ Rb and (l2, l4) ∈ Rf . Therefore,

|l1 − l3| = k (14)

l2 + l4 = 2k − 1 (15)

To avoid problems with the absolute values of the above expressions, we have considered two
separate cases:

A. 0 ≤ l0 < k.

If k ≤ l1, l2 < 2k, then 0 ≤ l3, l4 < k. So it is verified that l0 < l2 and l3 < l1, and the
expressions 13 and 14 can be substituted for

l0 − l2 = −k

l1 − l3 = k

obtaining

l2 = l0 + k

l1 = l3 + k

Also, replacing the value of l1 in the expression 12

l0 + l3 + k = 2k − 1− l0

l3 = k − 1− l0 (16)

and the value of l2 in the expression 15

l0 + k + l4 = 2k − 1

l4 = k − 1− l0 (17)

By the expressions 16 and 17, it is deduced that l3 = l4.

B. k ≤ l0 < 2k.

In this case, if 0 ≤ l1, l2 < k, then k ≤ l3, l4 < 2k. It is verified l2 < l0 and l1 < l3, and the
expressions 13 and 14 can be substituted for

l0 − l2 = k

l1 − l3 = −k

obtaining

l2 = l0 − k (18)

l1 = l3 − k (19)

6.3 Switch Configuration 39

Also, replacing the value of l1 in the expression 12

l0 + l3 − k = 2k − 1− l0

l3 = 3k − 1− l0 (20)

and the value of l2 in the expression 15

l0 − k + l4 = 2k − 1

l4 = 3k − 1− l0 (21)

By expressions 20 and 21, it is deduced that l3 = l4.

Therefore, l3 and l4 are the same port, and so (l2, l3) ∈ Rf and (l1, l3) ∈ Rb. 2

According to Proposition 1.32, once the binary relations Rf and Rb are simultaneously
considered, the switch ports are associated by groups of 4.

Proposition 1.33 Let Sπa
4 be the set of configurations that minimize the use of the internal link in

a T -switch of type πa, considering all the connections and being k a multiple of 4, then

Sπa
4 = {C ∈ V | ∀l ∈ C, ∃l′, l′′ ∈ C | (l, l′) ∈ Rf , (l, l

′′) ∈ Rb}

and there exist no connections that use the internal link.

Proof: Notice that Sπa
4 is the intersection of the sets Sπa

f and Sπa
b :

Sπa
4 = Sπa

f ∩ Sπa
b = {C ∈ V | ∀l ∈ C, ∃l′, l′′ ∈ C | (l, l′) ∈ Rf , (l, l

′′) ∈ Rb}

Let C a configuration such that C ∈ Sπa
4 . According to definition of Sπa

4 , for the port l ∈ C,
there exist two ports l′, l′′ ∈ C such that (l, l′) ∈ Rf and (l, l′′) ∈ Rb. As l and l′ belong to C, in turn,
l′ and l′′ are related to other two ports.

By the Propositions of Rf and Rb, it is verified that (l′, l) ∈ Rf and (l′′, l) ∈ Rb; and by
Proposition 1.32 there exists a fourth port l′′′ such that (l′, l′′′) ∈ Rb and (l′′, l′′′) ∈ Rf . Consequently,
if C verifies the definition of Sπa

4 , l′′′ must be included in C. In other words, to obtain a configuration
that minimizes the number of connections that go across the internal link, the switch ports must be
grouped (i.e.„ connected to the same internal switch) in fours groups.

Since card(C) = k and k is a multiple of 4, then Sπa
4 6= ∅ is verified.

For there to be connections between the ports l and l′, it must be met (l, l′) ∈ Rf or (l, l′) ∈ Rb.
If for all the ports l ∈ C, there exist l′, l′′ ∈ C such that (l, l′) ∈ Rf and (l, l′′) ∈ Rb, all connections
are established between ports belonging to the same internal switch. Therefore, no connections are
established going across the internal link, and the configuration in Sπa

4 are optimum.

Finally, we will prove by reduction ad absurdum that the members of Sπa
4 are the unique optimal

configurations. Let us suppose a configuration C′ that minimizes the use of the internal link such that
C′ /∈ Sπa

4 . This means there exists a port l, which is not related to another port l′ by neither a forward
nor backward connection.

C′ /∈ Sπa
4 ⇒ ∃l ∈ C′ | ∀l′, l′′ ∈ C′, (l, l′) /∈ Rf or (l, l′′) /∈ Rb

If C′ is used to build a T -switch (note that C′ determines the ports connected to each internal
switch), then l will participate in at least one of the connections (i.e.„ Rf or Rb) with a port, which
is not allocated at the same internal switch. Consequently, those connections must use the internal

40 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

link and C′ does not minimize the use of such link, because there exist better configurations, which
belong to Sπa

4 and do not use the internal link.

Therefore, the configurations belonging to Sπa
4 minimize the number of connections using the

internal link if k is a multiple of 4. 2

Example 1.7 shows an optimal configuration for T -switch considering forward and backward
connections at the same time, and being k a multiple of 4.

Example 1.7 Let T be a configuration of a 8×8 T -switch

T =
{

Cα, Cβ ∈ V | Cα = {0, 1, 6, 7, 8, 9, 14, 15}, Cβ = (Cα)
C
= {2, 3, 4, 5, 10, 11, 12, 13}

}

T is an optimal configuration for a T -switch of type πa, because it is verified that

Cα, Cβ ∈ Sπa
4

and k is a multiple of 4.

In Figure 12, the T configuration connections are shown.

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

Figure 12: Optimal switch configuration for a 8×8 T -switch of type πa.

Proposition 1.34 Let Sπa

�4
be the set of configurations that minimize the use of the internal link in

a T -switch of type πa, considering all the connections, and k is even, but not a multiple of 4, then

Sπa

�4
= {C ∈ V | ∃j, j′ ∈ C | (j, j′) ∈ Rf or (j, j′) ∈ Rb,

∀l ∈ (C − {j, j′}) ∃l′, l′′ ∈ C | (l, l′) ∈ Rf , (l, l
′′) ∈ Rb}

and there exist two connections using the internal link.

Proof: If k is even, but is not a multiple of 4, then k = 4i+2, i ∈ N∗. So, a k×k T -switch has 8i+4
ports and the internal switches (i.e.„ α and β) have 4i+ 2 ports each one to connect to the T -switch
ports. That is to say,

card(U) = 8i+ 4

card(C) = 4i+ 2

6.3 Switch Configuration 41

Let us assume that the (4i + 2)×(4i + 2) T -switch ports are grouped by two groups of 4i×4i
and 2×2 ports, respectively. In other words, two internal switches: one of 4i×4i ports and another of
2×2 ports. It is possible to obtain optimal configurations for the 4i×4i T -switch by means of Sπa

4 , and
it is easy to deduce the best configurations for the 2×2 T -switch because of its low number of ports.

To do this, the set U of ports is splitted up into U4i and U2, which represent the 4i×4i and
2×2 T -switches, respectively. To avoid the connections between ports belonging to U2 and U4i, the
following sets are defined:

U2 = {l0, l1, l2, l3 ∈ U | (l0, l3), (l2, l1) ∈ Rf , (l0, l2), (l1, l3) ∈ Rb} (22)

U4i = U − U2 (23)

Then, optimal configurations are obtained as follows:

The set of optimal configurations for a 4i × 4i T -switch is obtained by applying the
Proposition 1.33:

Sπa
4i = {C′ ⊂ U4i | card(C

′) = 4i, ∀l ∈ C′, ∃l′, l′′ ∈ C′ | (l, l′) ∈ Rf , (l, l
′′) ∈ Rb}

and there exist no connections that use the internal link.

Taking the 2×2 T -switch into consideration, Figure 13(a) depicts the established connections
between the ports belonging to U2. There exist three 3 possible configurations for the T -switch, which
are shown in the Figure 13. They are the following

T1 = {{l0, l1}, {l2, l3}}

T2 = {{l0, l2}, {l1, l3}}

T3 = {{l0, l3}, {l1, l2}}

l0

l1

l2

l3

(a) Internal
connections.

α

β

l0

l1

l2

l3

(b) T1 configuration.

α

β

l0

l1

l2

l3

(c) T2 configuration.

α

β

l0

l1

l2

l3

(d) T3 configuration.

Figure 13: Internal connections in a 2×2 T -switch and possible configurations.

Defined the relations between ports belonging to U2, we have noticed that all the connections in
T1 use the internal link, being 4 the total quantity. In T2, the ports establishing backward connections
are connected to the same internal switch. Meanwhile, the ports establishing forward connections are
in T3, which are connected to the same internal switch.

Therefore, the forward and backward connections in T2 and T3 use the internal link, and there
are 2 connections in both cases. That is to say, to obtain an optimal configuration, the ports that
establish either forward or backward connections have to be allocated to the same internal switch. In
such a way, an optimal configuration for those 4 ports is

Sπa
2 = {{j, j′} j, j′ ∈ U2 | (j, j′) ∈ Rb or (j, j′) ∈ Rf}

and there exist two connections that use the internal link.

3There are only three different configurations based on behavior. It is clear that there are other three different
configurations from those shown, but with the same performance.

42 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

If the two calculated sets are joined, then

Sπa

�4
= Sπa

4i ∪ Sπa
2 =

= {{j, j′}, j, j′ ∈ U2 | (j, j′) ∈ Rb or (j, j′) ∈ Rf} ∪

∪ {C′ ⊂ U4i | card(C
′) = 4i, ∀l ∈ C′, ∃l′, l′′ ∈ C′ | (l, l′) ∈ Rf , (l, l

′′) ∈ Rb}

= {C′′ ⊂ (U4i ∪ U2) = U | ∃j, j′ ∈ C′′ | ((j, j′) ∈ Rf or (j, j′) ∈ Rb),

∀l ∈ (C′′ − {j, j′}) ∃l′, l′′ ∈ C′′ | (l, l′) ∈ Rf , (l, l
′′) ∈ Rb}

Since U4i = U − U2, the sets U2 and U4i are disjoint, so the cardinal of the union of both sets
is 4i+ 2. Since, C′′ ⊂ U and card(C′′) = 4i+ 2, it is verified that C′′ ∈ V. Hence,

Sπa

�4
= {C ∈ V | ∃j, j′ ∈ C | ((j, j′) ∈ Rf or (j, j′) ∈ Rb),

∀l ∈ (C − {j, j′}) ∃l′, l′′ ∈ C | (l, l′) ∈ Rf , (l, l
′′) ∈ Rb}

and there exist two connections that use the internal link.

Moreover, the configurations in Sπa

�4
are optimum. As it was seen in the proof of

Proposition 1.33, the ports must be grouped in fours groups, in such a way that all connections
would be established with port of the same internal switch. Consequently, if k is not a multiple of
4, then it will be impossible to make groups for all the ports, so it will be no possible to obtain a
configuration without having connections through the internal link.

By a similar reasoning, it would be impossible to setup a configuration with only one connection
through the internal link. The explanation to this fact comes of the existence of connections between
the four ports that are related (Figure 13(a)). It should be noticed that it is not possible to separate
the ports, in such a way, there would be only one connection using the internal link.

Therefore, the configurations of Sπa

�4
are optimum, since there is no other configuration with

fewer connections through the internal link than thos belonging to Sπa

�4
. 2

In the Example 1.8, the optimal configuration for T -switches, considering both forward and
backward connections and being k a non–multiple of 4, is showed.

Example 1.8 Let us assume a 6×6 T -switch. There exist three 4–port groups, which establish
connections between them. Specifically, the ports 0, 5, 6, 11 form a group; the ports 1, 4, 7, 10
form another; finally, the ports 2, 3, 8, 9 form the last group. Additionally, let T1 and T2 be two
configurations of the assumed switch,

T1 =
{

Cα
1 , C

β
1 ∈ V | Cα

1 = {0, 1, 5, 6, 7, 11}, Cβ
1 = (Cα

1)
C
= {2.3, 4, 8, 9, 10}

}

T2 =
{

Cα
2 , C

β
2 ∈ V | Cα

2 = {0, 1, 5, 6, 10, 11}, Cβ
2 = (Cα

2)
C
= {2, 3, 4, 7, 8, 9}

}

Both T1 and T2 are optimum for the T -switch of type πa because it is verified:

Cα
1 , Cβ

1 , Cα
2 , Cβ

2 ∈ Sπa

�4

and k is not a multiple of 4.

In this Example it is noticeable in both cases the fours groups (i.e., 1, 4, 7, 10 ports) is split
into the two internal switches. Figure 14 illustrates the connections of the configurations T1 and T2.

2

6.3 Switch Configuration 43

α

β
10

11

0

1

2

3

4

5

6

7

8

9

(a) T1

α

β
10

11

0

1

2

3

4

5

6

7

8

9

(b) T2

Figure 14: Optimal switch configuration for a 6×6 T -switch of type πa.

6.3.2 Type πb configuration of switch

Since turnaround connections occur exclusively in the last–stage switches, only the half number of
switch ports is used, i.e., k ports. As the number of internal ports is also k, one obvius and optimal
configuration for these switches is that using all the ports of one internal switch to connect to switches
in the n − 2 stage, that is, both (p = k, q = 0) and (p = 0, q = k) alternatives offer the best results:
the internal link connecting the α and β switches is never used.

Those alternatives are valid for the last–stage switches in a BMIN, but in special cases, other
configurations would provide a similar behaviour, while reducing the number of different configurations
(i.e., the number of types of switch).

To be more comprehensive, it is now introduced an analysis like the ones that have been done
in the previous sections. In a T -switch of type πb, there only exist turnaround connections between
the ports l, l′, 0 ≤ l, l′ < k that verify l′ = l. Below, the binary relation Rt and its propositions are
defined, from which the optimal configuration set for the T -switch of type πb is obtained.

Definition 1.24 The binary relation Rt on a set U is defined as follows

Rt = {(l, l′) ∈ U2 | l + l′ = k − 1}

Note that the expression l + l′ = k − 1 is derived from l′ = l

l′ = l

l′ = k − l − 1

l + l′ = k − 1

Proposition 1.35 Let Sπb be the set of configurations that minimize the use of the internal link in
a T -switch of type πb. Hence,

Sπb = {C ∈ V | ∀l ∈ C, 0 ≤ l < k, ∃l′ ∈ C | (l, l′) ∈ Rt}

and there exist no connections that use the internal link.

Proof: The demonstration consists in proving that Sπb is not empty, but it is trivial. For instance,
C = B belongs to Sπb, as it includes every backward port, all turnaround connections belong to C,

44 6 APPLYING THE METHODOLOGY FOR COMPLEMENT TRAFFIC

and it is verified that for every port l, there exists another port l′ such that (l, l′) ∈ Rt. Therefore,
Sπb 6= ∅.

On the other hand, there exist connections between the ports l and l′ if (l, l′) ∈ Rt. If ∀l ∈ C,
there exists a port l′ such that (l, l′) ∈ Rt, then all the connections are established between ports that
belong to same internal switch. Consequently, there are no connections that use the internal link, and
the configurations in Rt are optimum.

Finally, we demonstrate by reductio ad absurdum that the configurations in Sπb are the unique
optimal configurations. Let us consider a configuration, C′, that minimizes the use of internal link
and C′ /∈ Sπb. That means there exists a port l ∈ C′ which is not related to another port l′ ∈ C′.

C′ /∈ Sπb
t ⇒ ∃l ∈ C′, 0 ≤ l < k, | ∀l′ ∈ C′ (l, l′) /∈ Rt

In this case, if the configuration C′ is used to setup a T -switch (remind that C′ determines the
ports, which are connected to each internal switch), the port l will be used to establish a turnaround
connection with another port belonging to a different internal switch. Therefore, those connections
have to go across the internal link and C′ would not minimize the use of the internal link, since there
would be better configurations such the ones belonging to Sπb, which really do not need to use the
internal link.

Consequently, the configurations in Sπb minimize the number of connections using the internal
link. 2

Example 1.9 Let T1 and T2 be two configurations for a 8×8 T -switch.

T1 =
{

Cα
1 , C

β
1 ∈ V | {0, 1, 6, 7} ⊂ Cα

1 , {2, 3, 4, 5} ⊂ Cβ
1

}

T2 =
{

Cα
2 , C

β
2 ∈ V | {0, 7} ⊂ Cα

1 , {1, 2, 3, 4, 5, 6} ⊂ Cβ
2

}

Both T1 and T2 are optimum for backward connections in a T -switch of type πb, because it is
verified

Cα
1 , Cβ

1 , Cα
2 , Cβ

2 ∈ Sπb

Figure 15 depicts the connections for the configurations T1 and T2. Both figure and example
obviate the forward ports, as their configuration is irrelevant for these cases.

6.3.3 Type π configuration of switch

Under complement traffic pattern and when k is a multiple of 4, it is possible to find optimal
configurations for T -switches considering forward, turnaround and backward connections.

Indeed, if k is a multiple of 4, it will be possible to obtain optimal configurations for a T -switch
of type πb from Sπa

4 . As discussed below, any configuration C belonging to Sπa
4 also belongs to Sπb.

However, the reverse statement is not always true because if the configuration C′ is that which has all
the backward ports belonging to F and verifying C′ ∈ Sπb, but C′ /∈ Sπa

4 . Hence,

C ∈ Sπa
4 ⇒ C ∈ Sπb

C ∈ Sπb ; C ∈ Sπa
4

Consequently, Sπa
4 ⊂ Sπb is verified, since Sπa

4 is a subset of Sπb, the configurations in Sπa
4 are

also optimum for a T -switch of type πb.

6.3 Switch Configuration 45

α

β

0

1

2

3

4

5

6

7

(a) T1

α

β

0

1

2

3

4

5

6

7

(b) T2

Figure 15: Optimal switch configurations for a 8×8 T -switch of type πb.

Proposition 1.36 Let l0, l1, l2 be ports such that l0, l1, l2 ∈ U , 0 ≤ l0, l1,l 2 < k, and verify
(l0, l1) ∈ Rf and (l0, l2) ∈ Rb. There exists a port l3 ∈ U such that (l2, l3) ∈ Rf , (l1, l3) ∈ Rb

and (l0, l3) ∈ Rt.

Proof: Proposition 1.32 proved there uniquely exists one port l3 such that (l2, l3) ∈ Rf and
(l1, l3) ∈ Rb. Furthermore, it was obtained that:

l3 = k − 1− l0, if 0 ≤ l < k (expression 16)

l3 = 3k − 1− l0, if k ≤ l < 2k (expression 20)

For the range of l in which we are focused on, 0 ≤ l < k, we have that l3 = k − 1− l0. That is
to say, l3 + l0 = k − 1. Therefore, (l0, l3) ∈ Rt. 2

Proposition 1.37 The configurations of the Sπa
4 set minimize the use of the internal link in a

T -switch of type πb, if k is a multiple of 4.

Proof: The configurations of Sπa
4 should be grouped in fours groups, because if for a port l there

are other two ports l′, l′′ such that (l, l′) ∈ Rf and (l, l′′) ∈ Rb, it will be compulsory the inclusion
of a fourth port l′′′ in that configuration such that (l′, l′′′) ∈ Rb and (l′′, l′′′) ∈ Rf . Moreover, by the
Proposition 1.36 it is known that if 0 ≤ l < k, then it verified that (l, l′′′) ∈ Rt.

Consequently, the configurations C ∈ Sπa
4 also verify that ∀l ∈ C, 0 ≤ l < k, ∃l′ | (l, l′) ∈ Rt,

and they minimize the number of connections that use the internal link when k is multiple of 4. 2

Thus, from the set Sπa
4 , it is possible to obtain one optimal configuration for the T -switches in

the network if k is a multiple of 4 and the complement pattern traffic is considered. In this case, the
configuration shown in Example 1.7 is also optimum for the T -switches located on the last stage of
the network.

It should be noticed that it is impossible to establish a unique and optimum configuration for
all the switches in the network when k is not a multiple of 4, because Sπa

�4
implies the existence of a

port that participates in the backward connection, or in the forward connection, at the same switch,
and therefore, there is not the fourth port that is needed to verify the conditions of Rt.

46 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

7 Applying the Methodology for Perfect-Shuffle Traffic

This section performs the search of optimal T -switch configuration using the same methodology as in
the complement case. On this occasion, the network is evaluated under perfect–shuffle traffic pattern.

7.1 Network Paths Analysis

The generated paths with the perfect–shuffle traffic pattern are studied in this section. Figure 16
shows graphically the paths generated by this traffic pattern in a 2–ary 3–tree. There are so many
different paths as end nodes, and the internal switch connections are determined by the specific routing
algorithm. As it is shown in the case of complement traffic, there is also a noticeable symmetry in the
paths. The paths still reach the switches of the last stage, but some of them turning around before
the last stage.

Stage 0 Stage 2Stage 1

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

2,4,6

3,5,7

0,4,6

1,5,7

0,2,6

1,3,7

0,2,4

1,3,5

0

2

4

3

1

6

5

7

0

4

2

5

1

6

3

7

4

6

5

7

0

2

1

3

Figure 16: Generated paths under perfect–shuffle traffic pattern in a 2–ary 3–tree network.

To avoid continually repeating the same premises in every definition, they are now indicated
and then omitted from the propositions. In this way, the statements remain more clear and simple.
Specifically, the premises are as follows:

• The network topology is a T–BMIN k–ary n–tree with N end nodes.

• The network load is generated by the perfect–shuffle traffic pattern.

• The routing algorithm is that defined in Section A.7.1. It is deterministic in the ascending and
descending phase (self–routing).

7.1 Network Paths Analysis 47

7.1.1 Ascending phase of the paths

Some propositions related to the paths passing through the switch 〈s, o〉 in the ascending phase,
0 ≤ s < n, are described below. Since there are differences between what happens in every switch,
the propositions will be organized by the stage.

Proposition 1.38 Given the ports l and l′ of the switch 〈0, o〉, 0 ≤ l < k and k ≤ l′ < 2k, at the most
there is one path passing through 〈0, o〉 in the ascending phase by using l and l′, and only if l′ − k =
on−2 and ∃i ∈ [2, n− 1] | oi−2 6= oi−1; or l′ − k = on−2 and ∄i ∈ [2, n− 1] | oi−2 6= oi−1 and l 6= on−2.
Hence,

Cf (〈0, o〉, l, l
′) =

1, if l′ − k = on−2 and ∃i ∈ [2, n− 1] | oi−2 6= oi−1

1, if l′ − k = on−2 and ∄i ∈ [2, n− 1] | oi−2 6= oi−1 and l 6= on−2

0, otherwise

Proof: A path passes through the switch 〈0, o〉 in the ascending phase by using the ports l and
l′ if the source node, h, belongs to the set N t

b(〈0, o〉, l), the destination node, h′, belongs to the set
NR

f (〈0, o〉, l′), and the identifier h′ is obtained by applying the perfect–shuffle function to h. Therefore,

Cf (〈0, o〉, l, l
′) = card((N t

b(〈0, o〉, l))
σ ∩NR

f (〈0, o〉, l′))

(N t
b(〈0, o〉, l))

σ ∩NR
f (〈0, o〉, l′) = ({ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1] and h0 = l })σ ∩

{ (hn−1, . . . , h0) : ∃i ∈ [1, n− 1] | hi 6= oi−1 and h0 = l′ − k }

Then applying the perfect–shuffle function to the elements of the source set N t
b(〈0, o〉, l), we

obtain

(N t
b(〈0, o〉, l))

σ ∩NR
f (〈0, o〉, l′) =

= { (hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [2, n− 1], h1 = l, h0 = on−2 } ∩

{ (hn−1, . . . , h0) : ∃i ∈ [1, n− 1] hi 6= oi−1 and h0 = l′ − k }

= { (hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [2, n− 1], h1 = l, ∃i ∈ [1, n− 1] | hi 6= oi−1,

h0 = on−2 = l′ − k }

= { (on−3, . . . , o0, l, on−2) if on−2 = l′ − k and ∃i ∈ [1, n− 1] | oi−2 6= oi−1 }

that is

(N t
b(〈0, o〉, l))

σ ∩NR
f (〈0, o〉, l′) =

{ (on−3, . . . , o0, l, on−2) if on−2 = l′ − k and (∃i ∈ [2, n− 1] | oi−2 6= oi−1 ó l 6= on−2) }

As all the digits of every node identifier are fixed, at the most there is one path in the ascending
phase that passes through the switch by using the ports l and l′. Moreover, l′ − k = on−2 means that
in the switches of the first stage, s = 0, the path always has the output port l′ = on−2 + k in the
ascending phase apart from the input port l.

On the other hand, there must exist a i ∈ [1, n− 1] such as hi 6= oi−1. As all hi of the interval
[1, n− 1] are known, they can be substituted in the last condition. So, either, there is a i ∈ [2, n− 1]
such as oi−2 6= oi−1; or l 6= o0. If the first one is satisfied then the second one will not be necessary,
taking l an arbitrary value of the interval [0, k − 1]. Otherwise, on−2 = . . . = o1 = o0, and only if
l 6= o0 there would be a path between l and l′, which is verified because o0 = on−2 and therefore
l 6= on−2. 2

48 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Proposition 1.39 The number of paths in the ascending phase passing through a switch of the first
stage is k if ∃i ∈ [2, n− 1] | oi−2 6= oi−1. Otherwise, it is k − 1. Hence,

Cf (〈0, o〉) =

{

k, if ∃i ∈ [2, n− 1] | oi−2 6= oi−1

k − 1, otherwise

Proof: According to Proposition 1.38 we know that all the paths that pass through the switch
in ascending phase use the output port l′ = on−2 + k. In case of existing a i ∈ [2, n − 1] such as
oi−2 6= oi−1, all the k values for the input port l are valid and therefore there would be k×1 = k paths
passing through the switch by using the input port l. If l 6= on−2, only k− 1 input ports are valid and
therefore there would be (k − 1)×1 = k − 1 paths. 2

Proposition 1.40 Given the ports l and l′ of the switch 〈s, o〉, where 1 ≤ s < n − 1, 0 ≤ l < k
and k ≤ l′ < 2k, at the most there is one path passing through the switch in the ascending path by
using l and l′, and only if o0 = on−2 and ∃i ∈ [s + 2, n − 1] | oi−2 6= oi−1; or o0 = on−2 and ∄i ∈
[s+ 2, n− 1] | oi−2 6= oi−1 and l 6= os. Hence,

Cf (〈s, o〉, l, l
′) =

1, if o0 = on−2 and ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

1, if o0 = on−2 and ∄i ∈ [s+ 2, n− 1] | oi−2 6= oi−1 and l 6= os

0, otherwise

Proof: A path passes through the switch 〈s, o〉 in the ascending phase by using the ports l and
l′ if the source node, h, belongs to the set N t

b(〈s, o〉, l), the destination node, h′, belongs to the set
NR

f (〈s, o〉, l′), and the identifier h′ is obtained by applying the perfect–shuffle function to h. Therefore,

Cf (〈s, o〉, l, l
′) = card((N t

b(〈s, o〉, l))
σ ∩NR

f (〈s, o〉, l′))

(N t
b(〈s, o〉, l))

σ ∩NR
f (〈s, o〉, l′) =

= ({ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1] and hs = l })σ ∩

{ (hn−1, . . . , h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1, hi = oi ∀i ∈ [0, s− 1] and hs = l′ − k }

then the perfect–shuffle function is applied over the source set N t
b(〈s, o〉, l)

(N t
b(〈s, o〉, l))

σ ∩NR
f (〈s, o〉, l′) =

= { (hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [s+ 2, n− 1], hs+1 = l and h0 = on−2 } ∩

{ (hn−1, . . . , h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1, hi = oi ∀i ∈ [0, s− 1] and hs = l′ − k }

= { (hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [s+ 2, n− 1], hs+1 = l, ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1,

hs = l′ − k, hi = oi ∀i ∈ [1, s− 1] and h0 = on−2 = o0 }

= { (on−3, . . . , l, l
′ − k, os−1, . . . , o1, on−2) : on−2 = o0 y ∃i ∈ [s+ 1, n− 1] | hi−2 6= oi−1 }

that is

(N t
b(〈s, o〉, l))

σ ∩NR
f (〈s, o〉, l′) = { (on−3, . . . , l, l

′ − k, os−1, . . . , o1, on−2) if on−2 = o0 and

(∃i ∈ [s+ 1, n− 1] | oi−1 6= oi−2 or l 6= os) }

As all digits of every node identifier are fixed, at the most there is one path in the ascending
phase that passes through the switch 〈s, o〉 by using l and l′, based on two conditions:

a) o0 = on−2.

b) ∃i ∈ [s+ 1, n− 1] | oi−2 6= oi−1.

7.1 Network Paths Analysis 49

As all hi of the interval [s− 1, n− 1] are known, they can be substituted in the last condition
b). Then it is observed, either, there exist a i ∈ [s + 2, n − 1] such as oi−2 6= oi−1, or l 6= os, that
means, if the first one is satisfied then it will not necessary to accomplish the second one, so l will
take an arbitrary value of the interval [0, k−1]. Otherwise, if the first condition is not verified, l 6= os,
there would be one path between l and l′ uniquely if l 6= os. 2

Proposition 1.41 The number of paths in the ascending phase passing through the switch 〈s, o〉,
1 ≤ s < n − 1, is k2 if o0 = on−2 and ∃i ∈ [s + 2, n − 1] | oi−2 6= oi−1; or k2 − k if o0 = on−2 and
∄i ∈ [s+ 2, n− 1] | oi−2 6= oi−1. Hence,

Cf (〈s, o〉) =

k2, if o0 = on−2 and ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

k2 − k, if o0 = on−2 and ∄i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

0, otherwise

Proof: When o0 = on−2 we know there are paths in the ascending phase passing through the switch
according to Proposition 1.40. Moreover, if there exists a i ∈ [s+ 2, n− 1] such as oi−2 6= oi−1, then
both l and l′ will take k values, being k×k = k2 paths possible. If l is not equal to os, then l will take
k − 1 values so only (k − 1)×k = k2 − k paths would be possible. 2

Proposition 1.42 There is no path passing through, in the ascending phase, the switches of the last
stage. Hence,

Cf (〈n− 1, o〉) = Cf (〈n− 1, o〉, l, l′) = 0

Proof: By the definition of the BMIN topology, there are no forward connections in the switches of
the last stage. 2

7.1.2 Turnaround phase of the paths

Some propositions related to the paths passing through the switch 〈s, o〉 in the turnaround phase,
0 ≤ s < n, are described below.

Proposition 1.43 There is no path passing through the switches of the first stage in the turnaround
phase. Hence,

T (〈0, o〉) = T (〈0, o〉, l, l′) = 0

Proof: A path is turned around in the switch 〈0, o〉 by using the input port l and the output port l′

(l 6= l′) if the source node, h, belongs to the set N t
b(〈0, o〉, l), the destination node, h′, belongs to the

set NR
b (〈0, o〉, l′) where l 6= l′, and the identifier h′ is obtained by applying the perfect–shuffle function

to h. Hence,

T (〈0, o〉) = card((N t
b(〈0, o〉, l))

σ ∩NR
b (〈0, o〉, l′))

(N t
b(〈0, o〉, l))

σ ∩NR
b (〈0, o〉, l′) = ({ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1] and h0 = l })σ ∩

{ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1] and h0 = l′ }

50 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Then, the perfect–shuffle function is applied over the source set N t
b(〈0, o〉, l)

(N t
b(〈0, o〉, l))

σ ∩NR
b (〈0, o〉, l′) =

= {(hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [2, n− 1], h1 = l, h0 = on−2 } ∩

{(hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1] and h0 = l′ }

= {(hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [2, n− 1], hi = oi−1 ∀i ∈ [1, n− 1], h1 = l, h0 = on−2, h0 = l′ }

= {(on−2, . . . , o2, l, l
′) if oi−1 = oi−2 ∀i ∈ [2, n− 1], l = o0 and l′ = on−2 }

According to the conditions that determine the digits of the set node identifiers we know that
l′ = on−2 = on−3 = on−4 = . . . = o1 = o0 = l, that is, l = l′. However, it is supposed that l 6= l′.
Therefore there is no node belonging to the set, which verifies such conditions, in other words, the
result set is empty. Therefore, it is demonstrated there is no path turning around in the switches of
the first stage. 2

Proposition 1.44 Given the ports l and l′ of the switch 〈s, o〉, where 1 ≤ s < n − 1, 0 ≤ l, l′ < k
and l 6= l′, at the most there is one path that turns around in the switch by using l and l′ only if
oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1] and o0 = on−2 and l = os. Hence,

T (〈s, o〉, l, l′) =

{

1, if oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1] and o0 = on−2 and l = os and l′ 6= l

0, otherwise

Proof: A path is turned around in the switch 〈s, o〉 by using the ports l and l′ if the source node, h,
belongs to the set N t

b(〈s, o〉, l), the destination node, h′, belongs to the set NR
b (〈s, o〉, l′), where l 6= l′,

and the identifier h′ is obtained by applying the perfect–shuffle function to h. Hence,

T (〈s, o〉, l, l′) = card((N t
b(〈s, o〉, l))

σ ∩NR
b (〈s, o〉, l′))

(N t
b(〈s, o〉, l))

σ ∩NR
b (〈s, o〉, l′) =

= ({(hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1] and hs = l })σ ∩

{(hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1] and hs = l′ }

Then the perfect–shuffle function is applied over the source set N t
b(〈s, o〉, l)

(N t
b(〈s, o〉, l))

σ ∩NR
b (〈s, o〉, l′) =

= { (hn−1, . . . , h0) : hi = oi−2 ∀i ∈ [s+ 2, n− 1], hs+1 = l and h0 = on−2 } ∩

{ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1] and hs = l′ }

= { (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi−2 ∀i ∈ [s+ 2, n− 1],

hs+1 = l, hs = l′, hi = oi ∀i ∈ [0, s− 1] and h0 = on−2 }

= { (on−2, . . . , os, l
′, os−1, . . . , o0) if oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1], o0 = on−2 and l = os}

Two restrictions have to be verified so that there would exist paths passing through a switch in
the turnaround phase. Firstly, oi−1 = oi−2 ∀i ∈ [s + 2, n − 1], and secondly, on−2 = o0. The unique
valid port is l = os, while there is no restriction on the output port. Therefore, every pairs (l,l′) has
only one path under these restrictions. 2

Proposition 1.45 Only if oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1] and o0 = on−2, at the most there are k − 1
paths passing through the switch 〈s, o〉, 1 ≤ s < n− 1, in the turnaround phase. Hence,

T (〈s, o〉) =

{

k − 1, if oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1] and o0 = on−2

0, otherwise

7.1 Network Paths Analysis 51

Proof: According to Proposition 1.44 all the paths that turn around the switch 〈s, o〉 use the same
input port, l = o0, and any of the remaining output ports. Since a port is never used as input and
output port in one connection, then there are k − 1 paths available to pass through the switch. 2

Proposition 1.46 Given the ports l and l′ of the switch 〈n− 1, o〉, where 0 ≤ l, l′ < k and l 6= l′, at
the most there is one path that passing through the switch in the turnaround phase by using the input
port l and the output port l′, only if l = o0. Hence,

T (〈n− 1, o〉, l, l′) =

{

1, if l = o0

0, otherwise

Proof: A path goes through the switch 〈n − 1, o〉 by using the ports l and l′ if the source node,
h, belongs to the set N t

b(〈n − 1, o〉, l), the destination node, h′, belongs to the set NR
b (〈n − 1, o〉, l′),

where l 6= l′, and the identifier h′ is obtained applying the perfect–shuffle function to h. Therefore,

T (〈n− 1, o〉, l, l′) = card((N t
b(〈n− 1, o〉, l))σ ∩NR

b (〈n− 1, o〉, l′))

(N t
b(〈n− 1, o〉, l))σ ∩NR

b (〈n− 1, o〉, l′) =

= ({ (hn−1, . . . , h0) : hn−1 = l })σ ∩ { (hn−1, . . . , h0) : hn−1 = l′ and hi = oi ∀i ∈ [0, n− 2] }

then the perfect–shuffle function is applied over the source set N t
b(〈n− 1, o〉, l)

(N t
b(〈n− 1, o〉, l))σ ∩NR

b (〈n− 1, o〉, l′) =

= ({(hn−1, . . . , h0) : h0 = l } ∩ { (hn−1, . . . , h0) : hn−1 = l′ and hi = oi ∀i ∈ [0, n− 2] }

= { (hn−1, . . . , h0) : hn−1 = l′, hi = oi ∀i ∈ [0, n− 2] and h0 = l }

= { (l′, on−2, . . . , o0) : if o0 = l}

As all the digits of the node identifier are fixed, at the most there is one path that turns around
in the switch 〈n− 1, o〉 by using l and l′. Moreover, the input port is l = o0. 2

Proposition 1.47 The number of paths that turn around in a switch of the last stage is k−1. Hence,

T (〈n− 1, o〉) = k − 1

Proof: According to Proposition 1.46 all the paths passing through the switch of the last stage in
the turnaround phase use the same input port, l = o0, but they must use one of the remaining k − 1
ports. Since there is a unique port that verifies l = o0, there exist k−1 paths in the turnaround phase
in the switch 〈n− 1, o〉. 2

7.1.3 Descending phase of the paths

Some propositions related to the paths passing through the switch 〈s, o〉 in the descending phase,
0 ≤ s < n, are described below.

Proposition 1.48 There is no path passing through, in descending phase, the switches of the last
stage. Hence,

Cb(〈n− 1, o〉) = Cb(〈n− 1, o〉, l, l′) = 0

52 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Proof: By the definition of the BMIN topology, there are no backward connections in the switches
of the last stage. 2

Proposition 1.49 Given the ports l and l′ of the switch 〈s, o〉, where 1 ≤ s < n− 1, k ≤ l < 2k and
0 ≤ l′ < k, at the most there is one path in the descending phase that passes through the switch by
using the ports l and l′, only if o0 6= on−2 or ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1. Hence,

Cb(〈s, o〉, l, l
′) =

{

1, if o0 6= on−2 or ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

0, otherwise

Proof: A path goes through the switch 〈s, o〉 in the descending phase by using the ports l and
l′ if the source node, h, belongs to the set N t

f (〈s, o〉, l), the destination node, h′, belongs to the
set NR

b (〈s, o〉, l′), and the node identifier h′ is obtained applying the perfect–shuffle function to h.
Therefore,

Cb(〈s, o〉, l, l
′) = card((N t

f (〈s, o〉, l))
σ ∩NR

b (〈s, o〉, l′))

(N t
f (〈s, o〉, l))

σ ∩NR
b (〈s, o〉, l′) =

= ({ (hn−1, . . . , h0) : ∃i ∈ [s+ 1, n− 1] | hi 6= oi−1})
σ ∩

{ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1] and hs = l′ }

Then the function perfect–shuffle is applied over the source set N t
f (〈s, o〉, l)

(N t
f (〈s, o〉, l))

σ ∩NR
b (〈s, o〉, l′) =

= { (hn−1, . . . , h0) : ∃i ∈ [s+ 2, n− 1] | hi 6= oi−2 or h0 6= on−2 } ∩

{ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1] and hs = l′ }

= { (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [s+ 1, n− 1], hi = oi ∀i ∈ [0, s− 1], hs = l′ and

∃i ∈ [s+ 2, n− 1] | hi 6= oi−2 or h0 6= on−2 }

= { (on−2, . . . , os, l
′, os−1, . . . , o0) if ∃i ∈ [s+ 2, n− 1] | oi−1 6= oi−2 or o0 6= on−2 }

All the node identifier digits that meet the conditions are fixed, so at the most there is one path
in descending phase that passes through the switch by using l and l′.

It must be verified that there exist a i ∈ [s+2, n− 1] such as oi−1 6= oi−2, or o0 6= on−2. Then,
l′ holds the same position as the digit hs, which is free of restrictions, so l′ would take any value of
the interval [0, k − 1]. 2

Proposition 1.50 Given the ports l and l′ of the switch 〈s, o〉, where 1 ≤ s < n− 1, k ≤ l < 2k and
0 ≤ l′ < k, there exists one path in the descending phase that passes through the switch by using the
ports l and l′ if and only if o0 6= on−2 or ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1 and l′ = l − k. Hence,

Cb(〈s, o〉, l, l
′) =

{

1, if o0 6= on−2 or∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1 and l′ = l − k

0, otherwise

Proof: According to Proposition 1.49, at the most there is one path passing through the switch 〈s, o〉
in the descending phase with the output port l′ only if o0 6= on−2 or ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1.
On the other hand, by the Proposition 1.12 it is known there exists a descending path between the
ports l and l′ only if l′ = l − k. 2

7.1 Network Paths Analysis 53

Proposition 1.51 The number of paths passing through the switch 〈s, o〉 in descending phase,
1 ≤ s < n− 1, is k at the most.

Cb(〈s, o〉) =

{

k, if o0 6= on−2 or ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

0, otherwise

Proof: According to Proposition 1.50, there is one path passing through the switch 〈s, o〉 in the
descending phase if either there exist a i ∈ [s+ 2, n− 1] such as oi−1 6= oi−2, or o0 6= on−2 is verified,
and also l′ = l − k.

The port l takes values in the interval [k, 2k − 1], while the port l′ = l − k does the same in
[0, k − 1] that coincides with the range of l′. So there are k available pairs (l, l′) that will be used by
the paths to pass through the switch 〈s, o〉 in the descending phase. 2

Proposition 1.52 Given the ports l and l′ of the switch 〈0, o〉, where k ≤ l < 2k and 0 ≤ l′ < k, at
the most there is one path in descending phase that passes through the switch by using l and l′, only
if ∃i ∈ [2, n− 1] | oi−1 6= oi−2 or ∄i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ 6= on−2. Hence,

Cb(〈0, o〉, l, l
′) =

1, if ∃i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ = l − k

1, if ∄i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ = l − k and l′ 6= on−2

0, otherwise

Proof: A path goes through the switch 〈0, o〉 in the descending phase by using the ports l and l′

if the source node, h, belongs to the set N t
f (〈0, o〉, l), the destination node, h′, belongs to the set

NR
b (〈0, o〉, l′) and the identifier h′ is obtained applying the perfect–shuffle function to h. Therefore,

Cb(〈0, o〉, l, l
′) = card((N t

f (〈0, o〉, l))
σ ∩NR

b (〈0, o〉, l′))

(N t
f (〈0, o〉, l))

σ ∩NR
b (〈0, o〉, l′) =

= ({ (hn−1, . . . , h0) : ∃i ∈ [1, n− 1] | hi 6= oi−1})
σ ∩

{ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1] and h0 = l′ }

Then the function perfect–shuffle is applied over the source set N t
f (〈0, o〉, l).

(N t
f (〈0, o〉, l))

σ ∩NR
b (〈0, o〉, l′) =

= { (hn−1, . . . , h0) : ∃i ∈ [2, n− 1] | hi 6= oi−2 or h0 6= on−2} ∩

{ (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1] and h0 = l′ }

= { (hn−1, . . . , h0) : hi = oi−1 ∀i ∈ [1, n− 1], hs = l′, ∃i ∈ [2, n− 1] | hi 6= oi−2 or h0 6= on−2 }

= { (on−2, . . . , o0, l
′) if ∃i ∈ [2, n− 1] | oi−1 6= oi−2 or l′ 6= on−2 }

All the node identifier digits that meet the conditions are fixed, so at the most there is one path
in descending phase that passes through the switch by using l and l′. It must be verified that there
exist a i ∈ [2, n − 1] such as oi−1 6= oi−2, or l′ 6= on−2. If the first condition is verified l′ will take a
value of the interval [0, k − 1]. Otherwise, l′ will be different from on−2. 2

Proposition 1.53 Given the ports l and l′ of the switch 〈0, o〉, where k ≤ l < 2k and 0 ≤ l′ < k at the
most there exists one path passing through the switch in the descending phase by using the input port
l and output port l′, only if ∃i ∈ [2, n− 1] | oi−1 6= oi−2 or ∄i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ 6= on−2

and l′ = l − k. Hence,

Cb(〈0, o〉, l, l
′) =

1, if ∃i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ = l − k

1, if ∄i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ = l − k and l′ 6= on−2

0, otherwise

54 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Proof: According to Proposition 1.52, at the most there exists one path in the descending phase
with output port l′ only if ∃i ∈ [2, n−1] | oi−1 6= oi−2 or ∄i ∈ [2, n−1] | oi−1 6= oi−2 and l′ 6= on−2. On
the other hand, by Proposition 1.12 it is known there exists a path in the descending phase between
the ports l and l′ only if l′ = l − k. 2

Proposition 1.54 The number of paths passing through the switch 〈0, o〉 in descending phase is k if
∃i ∈ [2, n− 1] | oi−2 6= oi−1; otherwise it is k − 1. Hence,

Cb(〈0, o〉) =

{

k, if ∃i ∈ [2, n− 1] | oi−2 6= oi−1

k − 1, otherwise

Proof: According to Proposition 1.52 there is one path that passes through the switch 〈0, o〉 in
descending phase if there exists an i ∈ [2, n−1] such as oi−1 6= oi−2, or if l′ 6= on−2 and also l′ = l−k.

The port l takes values in the interval [k, 2k − 1], while the port l′ = l − k does the same in
[0, k − 1] that coincides with the range of l′. So there are k available pairs (l, l′) that will be used by
the paths to pass through the switch 〈s, o〉 in the descending phase.

If ∃i ∈ [2, n− 1]|oi−1 6= oi−2, then there will be one path in the descending phase by every port
l′, so the total number of paths will be k. Otherwise, if l′ 6= on−2 then only k − 1 values will be valid
for l and therefore there will be k − 1 paths. 2

To sum up, Table 2 outlines the expressions obtained in the previous propositions.

7.2 Switch Classification

According to the expressions in Table 2, when the network topology is a N end nodes T–BMIN k–ary
n–tree multistage network, the generated traffic is based on the perfect–shuffle traffic pattern (σ) and
the paths are determined by the routing algorithm defined in Section A.7.1, six types of switches are
identified according to the connections required in the switches.

In the following we introduce the six types of switches, dividing them in three subgroups based
on the stage, where the switch is situated. Also, we show the connections for each type using a 4×4
switch as an example. We assume that its identifier 〈s, o〉 is such as os = 1.

7.2.1 First stage (s = 0)

There is no path passing through the switches in the first stage in the turnaround phase according
to Proposition 1.43. That means connections in these switches are established by the paths in the
ascending and descending phase. The condition ∃i ∈ [2, n − 1] | oi−1 6= oi−2 determines the number
of paths passing through the switch for both phases.

7.2.1.1 Type σa

Condition: ∃i ∈ [2, n− 1] | oi−1 6= oi−2

For this type, according to Proposition 1.39 it is known there are k paths in the ascending
phase, and k paths in the descending phase by the Proposition 1.54. Moreover, Propositions 1.38 and
1.53 determine which connections are taken based on the relationship between ports and switches.
Figure 17(a) illustrates these paths.

7.2 Switch Classification 55

Table 2: Number of paths passing through the switch 〈s, o〉 in then ascending, turnaround and
descending phases under perfect–shuffle traffic.

Cf (〈0, o〉, l, l
′)

0≤l<k, k≤l′<2k

=

1, if l′ − k = on−2 and ∃i ∈ [2, n− 1] | oi−2 6= oi−1

1, if l′ − k = on−2 and ∄i ∈ [2, n− 1] | oi−2 6= oi−1 and l 6= on−2

0, otherwise

Cf (〈0, o〉) =

{

k, if ∃i ∈ [2, n− 1] | oi−2 6= oi−1

k − 1, otherwise

Cf (〈s, o〉, l, l
′)

1≤s<n−1, 0≤l<k, k≤l′<2k

=

1, if o0 = on−2 and ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

1, if o0 = on−2 and ∄i ∈ [s+ 2, n− 1] | oi−2 6= oi−1 and l 6= os

0, otherwise

Cf (〈s, o〉)
1≤s<n−1

=

k2, if o0 = on−2 and ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

k2 − k, if o0 = on−2 and ∄i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

0, otherwise

Cf (〈n− 1, o〉, l, l′)
0≤l<k, k≤l′<2k

= Cf (〈n− 1, o〉) = 0

T (〈0, o〉, l, l′)
0≤l,l′<k, l 6=l′

= T (〈0, o〉) = 0

T (〈s, o〉, l, l′)
1≤s<n−1, 0≤l,l′<k, l 6=l′

=

{

1, if oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1] and o0 = on−2 and l = os

0, otherwise

T (〈s, o〉)
1≤s<n−1

=

{

k − 1, if oi−1 = oi−2 ∀i ∈ [s+ 2, n− 1] and o0 = on−2

0, otherwise

T (〈n− 1, o〉, l, l′)
0≤l,l′<k, l 6=l′

=

{

1, if l = o0

0, otherwise

T (〈n− 1, o〉) = k − 1

Cb(〈n− 1, o〉, l, l′)
k≤l<2k, 0≤l′<k

= Cb(〈n− 1, o〉) = 0

Cb(〈s, o〉, l, l
′)

1≤s<n−1, k≤l<2k, 0≤l′<k

=

{

1, if ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1 or o0 6= on−2 and l′ = l − k

0, otherwise

Cb(〈s, o〉)
1≤s<n−1

=

{

k, if ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1 or o0 6= on−2

0, otherwise

Cb(〈0, o〉, l, l
′)

1≤s<n−1, k≤l<2k,0≤l′<k

=

1, if ∃i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ = l − k

1, if ∄i ∈ [2, n− 1] | oi−1 6= oi−2 and l′ = l − k and l′ 6= on−2

0, otherwise

Cb(〈0, o〉) =

{

k, if ∃i ∈ [2, n− 1] | oi−2 6= oi−1

k − 1, otherwise

56 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

7.2.1.2 Type σb

Condition: ∄i ∈ [2, n− 1] | oi−1 6= oi−2

This type is similar to Type σa, but removing two connections:

• The connection whose input port on−2 and it is established by a path in the ascending phase.

• The connection whose output port is on−2 and it is established by a path in the descending
phase.

Figure 17(b) show a switch of Type σb.

0

3

4

7

(a) Type σa.

0

3

4

7

(b) Type σb.

Figure 17: Connections required for each type of switch in the first stage.

7.2.2 Intermediate stages (1 ≤ s < n− 1)

Because of Propositions 1.41, 1.45 and 1.51 that quantify the number of paths in the ascending,
turnaround and descending phase, respectively, passing through a switch in the intermediate stage,
we can extract the conditions that imply the existence of connections in these switches. Such conditions
are the following:

1. o0 = on−2

2. ∃i ∈ [s+2, n−1] | oi−2 6= oi−1, taking into account this confirms oi−1 = oi−2 ∀i ∈ [s+2, n−1],
because one is the negation of another.

So the existence of connections is given by analysing such conditions:

1. If o0 6= on−2, there are not paths neither in the ascending phase nor turnaround phase, but there
are paths in the descending phase.

2. If o0 = on−2 is verified then it will be necessary an extra checkout.

(a) If ∃i ∈ [s+ 2, n− 1] oi−2 6= oi−1 there are k2 paths in the ascending phase and k paths in
the descending phase. There is no paths in the turnaround phase.

(b) Otherwise, oi−2 = oi−1 ∀i ∈ [s+2, n−1] would be verified, therefore, there would be k2−k
paths in the ascending phase and k − 1 paths in the turnaround phase. However, there
would not be paths passing through the switch in the descending phase.

Overall, we have identified the following types of switches:

7.2 Switch Classification 57

7.2.2.1 Type σc

Conditions o0 = on−2 and ∃i ∈ [s+ 2, n− 1] | oi−2 6= oi−1

According to Proposition 1.40, there is one path in the ascending phase for every pairs of ports
l and l′, where 0 ≤ l < k and k ≤ l′ < 2k, that is, k2 different pairs are available (Proposition 1.41).
However, according to Proposition 1.51 there are k paths passing through the switch in the descending
phase, and the required connections are determined by Proposition 1.50.

Figure 18(a) illustrates the established connections by the switch belonging to this type for the
example switch.

7.2.2.2 Type σd

Conditions o0 = on−2 and oi−2 = oi−1 ∀i ∈ [s+ 2, n− 1]

According to Proposition 1.41, there are k2 − k paths in the ascending phase existing one path
between every pairs of ports (l, l′), where 0 ≤ l < k, l 6= os and k ≤ l′ < 2k. Additionally, the
Proposition 1.45 states there are k − 1 paths in the turnaround phase by using the input port l = os
and the output port one of the remaining ports l′′, 0 ≤ l′′ < k where l 6= l′′.

In the example switch, Figure 18(b) depicts the setup connections by a switch belonging to this
type.

7.2.2.3 Type σe

Conditions o0 6= on−2

According to Proposition 1.51, there are k paths in the descending phase, and the established
connections are determined based on Proposition 1.50.

Similarly to previous types, the setup connections are indicated in the example switch in the
Figure 18(c).

0

3

4

7

(a) Type σc.

0

3

4

7

(b) Type σd.

0

3

4

7

(c) Type σe.

Figure 18: Connections required for the switches in the intermediate stages.

7.2.3 Last stage (s = n− 1)

7.2.3.1 Type σf

In the last stage switches, it is known there are only paths in the turnaround phase according to
Propositions 1.42, 1.48 and 1.47. Specifically, there are a total of k − 1 paths in every switch.
Additionally, the Proposition 1.46 states the connections have the same input port o0 and, the output

58 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

port, is one the remaining ports.

Figure 19 illustrates the established connections by the switch belonging to this type for the
example switch.

0

3

4

7

Figure 19: Connections required for the switches in the last stage.

7.3 Switch Configuration

To find out the most appropriate configuration of T -switches in this case, in which perfect–shuffle
traffic pattern is considered, the methodology described in Section 2.2 is applied. However, in some
cases, the optimal configurations of T -switches are derived considering all the types of connections at
the same time instead considering separately each kind of connection. In these cases, the search of
the configuration is simplified to a function optimization problem.

7.3.1 Type σa configuration of switch

Proposition 1.55 Let Sσa be the set of configurations that minimize the use of the internal link
considering a T -switch of type σa, then

Sσa = Sb = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there are
k

2
connections using the internal link.

Proof: According to Proposition 1.29, all configurations in Sb are optimal considering backward
connections, and there are no backward connections using the internal link.

Let b be the number of pairs of ports (l, l′) ∈ Rb such that l, l′ belong to a configuration C. At
most there exist k/2 pairs of related ports such that card(C) = k, that is, 0 ≤ b ≤ k/2.

So, the number of backward connections that use the internal link depends on b. In a T -switch
of type σa, there exists a connection between each pair of ports (l, l′) ∈ Rb. Therefore, the total
number of connections is k. Each pair of ports, which are not related, implies that there are two
backward connections passing through the internal link. Consequently, there are 2(k2 − b) = k − 2b
backward connections using the internal link. In particular, the configurations belonging to Sσa,
considering all ports are in pairs (b = k/2) there are no connections using the internal link.

Since each pair (l, l′) ∈ Rb implies having one port connected to downwards stage (or endnode)
and another port connected to upwards stage, for all configuration in C, where B and F are subsets
of ports in C connecting to previous and next stage, respectively, then

card(B) ≥ b (25)

card(F) ≥ b (26)

7.3 Switch Configuration 59

On the other hand, every port ports connected to a previous stage establishes a forward
connection with the port on−2 + k. Thus, the number of forward connections using the internal
link is equal to the number of ports connecting to previous stage and not belonging to C, which
includes the port on−2 + k. That is to say, the number of forward connections using the internal link
is equal to the cardinal of F .

It is possible to prove that configurations in Sσa verify that card(B) = card(F) = k/2.
Therefore, the number of forward connections that use the internal link of T -switch, and also the
total number of connections, since there exist no backward connections using the internal link, is k/2.

In the following, we demonstrate by reductio ad absurdum that configurations belonging to Sσa

are uniquely optimal. Let us suppose that C′ minimizes the use of the internal link and C′ /∈ Sσa.
This means there exists a port l that is not related to another port l′.

C′ /∈ Sσa ⇒ ∃l ∈ C′ | ∀l′ ∈ C′, (l, l′) /∈ Rb

As there is at least one port l that is not matched (is single), according to the binary relation
Rb, then

0 ≤ b < k/2 (27)

Two cases are possible, depending on whether or not the port on−2 belongs to C′. If the port
on−2 belongs to C′, the number of connections using the internal link is k − 2b + card(F ′). By the
expression 26

k − 2b+ card(F ′) ≥ k − 2b+ b = k − b

and the expression 27,

k − b > k −
k

2
=

k

2

That is to say, the number of connections that use the internal link is greater than k/2, and
for this reason C′ does not minimize the use of the internal link, because there are k/2 connections
belonging to Sσa using the internal link. This is in contradict with the initial hypothesis: C′ minimizes
the use of the internal link.

On the other hand, if considering the port on−2 does not belong to C′, the number of connections
that use the internal link will be k− 2b+ card(B′). The same conclusion is reached by expression 25:
C′ is not optimal.

Therefore, the configurations belonging to Sσa minimize the number of connections that use
the internal link, and they are the unique ones. 2

Example 1.10 shows two optimal T -switch configurations of type σa.

Example 1.10 Let T1 and T2 be two configurations for a 8×8 T -switch, where

T1 =
{

Cα
1 , C

β
1 ∈ V | Cα

1 = {0, 1, 2, 3, 8, 9, 10, 11}, Cβ
1 = (Cα

1)
C
= {4, 5, 6, 7, 12, 13, 14, 15}

}

T2 =
{

Cα
2 , C

β
2 ∈ V | Cα

2 = {0, 2, 3, 4, 8, 10, 11, 12}, Cβ
2 = (Cα

2)
C
= {1, 5, 6, 7, 9, 13, 14, 15}

}

Both T1 and T2 are optimal configurations to backward connections for type σa configuration of
T -switch, since it is verified:

Cα
1 , Cβ

1 , Cα
2 , Cβ

2 ∈ Sσa

Figura 20 shows the connections of T1 and T2 configurations.

60 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

(a) T1

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

(b) T2

Figure 20: Possible optimal configurations for a 8×8 T -switch of type σa.

7.3.2 Type σb configuration of switch

Proposition 1.56 Let Sσb be the set of configurations that minimize the use of the internal link of
a T -switch of type σb, then

Sσb = Sb = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there exist
k

2
connections using the internal link.

Proof: According to Proposition 1.29, configurations of Sb are optimal considering the backward
connnections, and there are no backward connections using the internal link.

On the other hand, all the nodes connected to a previous stage (or terminal) establish a forward
connection to the port on−2 + k, except the port on−2. The number of forward connections using the
internal link is the number of ports connected to the previous stage, which do not belong to the
configuration Ci such that on−2 + k ∈ Ci. That is, the number of forward connections using the
internal link is equal to the cardinal of F i. Moreover, if on−2 /∈ Ci, the number of connections is
card(F i)− 1, since the port on−2 does not establish a forward connection.

It is possible to prove that configurations in Sσb verify card(B) = card(F) = k/2. Therefore,
the number of forward connections using the internal link is k/2, because the port on−2 belongs to
the same configuration as the port on−2 + k, since (on−2, on−2 + k) ∈ Rb.

Hence, the total number of connections using the internal link is k/2.

Next, we demonstrate by reductio ad absurdum that configurations belonging to Sσb are
uniquely optimal. Also it is considered b being the number of pairs of ports (l, l′) ∈ Rb, where
l, l′ belong to a configuration C such that 0 ≤ b ≤ k/2.

Let’s suppose that another configuration C′ minimizes the use of the internal link, while it
verifies C′ /∈ Sσb. This means that there exists a port l that is not related to another port l′.

C′ /∈ Sσb ⇒ ∃l ∈ C′ | ∀l′ ∈ C′, (l, l′) /∈ Rb

As there is at least one port l is not matched, then

0 ≤ b < k/2 (28)

To obtain the number of connections that use the internal link and belong to C′, two different
cases are considered: a) ports on−2 and on−2+k belong to the same configuration (on−2, on−2+k ∈ C′

7.3 Switch Configuration 61

or on−2, on−2+k ∈ (C′)C); b) such ports belong to different configurations (on−2 ∈ C′, on−2+k ∈ (C′)C

or on−2 ∈ (C′)C , on−2 + k ∈ C′).

If on−2 and on−2 + k belong to the same configuration, then

• The unique pair of ports (l, l′) ∈ Rb that does not establish any backward connection is
(on−2, on−2 + k). Since both ports belong to the same configuration, the number of backward
connections using the internal link is k − 2b.

• The number of forward connections using the internal link is

– card(F ′), if on−2 + k ∈ C′

– card(B′), if on−2 + k /∈ C′

Similar to Proposition 1.55 proof, it can be proved that C′ is not optimal in this case, and then
configurations belonging to Sσb are optimal.

If on−2 and on−2 + k do not belong to the same configuration, then

• The unique pair of ports (l, l′) ∈ Rb that does not establish any backward connection is
(on−2, on−2 + k). Since both ports belong to different configurations, the number of backward
connections using the internal link is k − 2b− 1.

• The number of forward connections that use the internal link is

– card(F ′)− 1, if on−2 + k ∈ C′

– card(B′)− 1, if on−2 + k /∈ C′

On the other hand, each pair of ports (l, l′) ∈ Rb involves there is a port connected to the
previous stage and another port connected to the next stage. In this case, on−2 and on−2 + k would
be in different configurations, so:

card(F ′)− 1 ≥ b if on−2 + k ∈ C′ (29)

card(B′)− 1 ≥ b if on−2 + k /∈ C′ (30)

If the port on−2 belongs to C′, the number of connections using the internal link will be
k − 2b− 1 + card(F)− 1. By the expression 29:

k − 2b− 1 + card(F)− 1 ≥ k − 2b− 1 + b = k − b− 1

and by the expression 28

k − b− 1 > k −
k

2
− 1 =

k

2
− 1

As we work with integers, it must be

k − b− 1 ≥
k

2

In this case, it is possible that configuration C′ would minimize the use of the internal link, but
in no case the number of connections using the internal link will be less than in the configurations
belonging to Sσb.

It is also possible to conclude that C′ can be optimal, but never better than a configuration
belonging to Sσb, considering that on−2 does not belong to C′, and according to expression 30.

62 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Consequently, configurations belonging to Sσb minimize the number of connections using the
internal link. 2

It must be noticed the set Sσb contents optimal configurations for a T -switch of type σb with
independence of the switch identifier, but there also exist other configurations that minimize the use
of the internal link, which depend on the switch identifier.

The configurations shown in Example 1.10 are equally optimal in this case.

7.3.3 Type σc configuration of switch

According to our methodology, the sets of optimal configurations are separately calculated for each
of the connections (i.e., forward and backward). From these sets, the configurations of T -switch are
derived taking into account such results.

7.3.3.1 Optimal configuration considering forward connections

Proposition 1.57 Let Sσc
f be the set of configurations that minimize the use of the internal link of

a T -switch of type σc considering the forward connections, then

Sσc
f = {C ∈ V | card(B) = card(F) = k/2}

and there exist
1

2
k2 connections using the internal link.

Proof: In this case, the port l, 0 ≤ l < k, establishes a forward connection to each port l′, k ≤ l′ < 2k.
That is, all the ports l behavior identically with independence of their identifier within the switch.

Therefore, the optimal value of p must be calculated to obtain the optimal configurations.

First, the value of CI(〈s, o〉) must be calculated.

CI(〈s, o〉) =
Cf (〈s, o〉)×CCIf (〈s, o〉)

k2
= 2p2 + k2 − 2kp

To obtain the value of p that minimizes CI(〈s, o〉) it is necessary to calculate the derivative of
CI(〈s, o〉) with respect to p.

C ′
I(〈s, o〉) =

∂

∂p
CI(〈s, o〉) = 4p− 2k

Then, the derivative C ′
I(〈s, o〉) is equal to zero to determine the critical points (e.g., maximum

and minimum).

C ′
I(〈s, o〉) = 0

4p− 2k = 0

p =
k

2

To know if p = k/2 is a critical point, the second derivative of CI(〈s, o〉) with respect to p must
be used at the point p = k/2. If it takes a negative value, or positive value, the function will have a
maximum, or minimum, at the point p = k/2, respectively. Otherwise, the point p = k/2 will be a
possible inflection point.

C ′′
I (〈s, o〉) =

∂

∂p
C ′

I(〈s, o〉) = 4

7.3 Switch Configuration 63

As C ′′
I (〈s, o〉) is always positive, the function CI(〈s, o〉) has a minimum at p = k/2. Then,

substituting the value of p in the function CI(〈s, o〉):

CI(〈s, o〉) = 2

(

k

2

)2

k + k2 − 2
k

2
k =

1

2
k2

That is to say, a configuration is optimal if p = q = k/2 and the number of paths passing

through the internal link of the T -switch is
1

2
k2. 2

Example 1.11 shows an optimal configuration for a T -switch of type σc, considering forward
connections.

Example 1.11 Let T be a configuration for a 8×8 T -switch, where

T =
{

Cα, Cβ ∈ V | Cα = {0, 1, 2, 3, 8, 9, 12, 13}, Cβ = (Cα)
C
= {4, 5, 6, 7, 10, 11, 14, 15}

}

T is an optimal configuration to forward connections for T -switches of type σc, since it is
verified:

Cα, Cβ ∈ Sσc
f

Figure 21 shows the connections of the T configuration.

α

β

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

Figure 21: Possible optimal configuration for a 8× 8 T -switch of type σc considering forward
connections.

7.3.3.2 Optimal configuration considering backward connections

Proposition 1.58 Let Sσc
b be the set of configurations that minimize the use of the internal link for

a T -switch of type σc considering backward connections, then

Sσc
b = Sb = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there are no backward connections using the internal link.

64 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Proof: According to Proposition 1.29, configurations in Sb are optimal considering backward
connections. Since there exist backward connections in a T -switch of type σc, which are established
between the pair of ports l, l′ such that (l, l′) ∈ Rb, the configurations of Sb are the uniquely optimal
configurations according to Proposition 1.30. 2

The configurations shown in the Example 1.10 are equally optimal in this case.

7.3.3.3 Optimal configuration considering all connections

Proposition 1.59 Let Sσc be the set of configurations that minimize the use of the internal link for
a T -switch of type σc, then

Sσc = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there exist
1

2
k2 connections using the internal link.

Proof: From definitions of sets Sσc
f and Sσc

b , it is proved that Sσc = Sσc
b , and configurations

belonging to Sσc are optimal, and there exist
1

2
k2 connections using the internal link. 2

The configurations shown in the Example 1.10 are equally optimal in this case.

7.3.4 Type σd configuration of switch

Proposition 1.60 Let Sσd be the set of configurations that minimize the use of the internal link for
a T -switch of type σd, then

Sσd = {C ∈ V | card(B) = card(F) = k/2}

and there exist
1

2
k2 connections using the internal link.

Proof: In this case, a port l, 0 ≤ l < k, l 6= os, establishes a forward connection with each port l′,
k ≤ l′ < 2k. The port os establishes a turnaround connection with the remaining ports connected to
switches at the previous stage.

In other words, every port l have identical behavior with independence of its identifier inside the
switch, except l = os. Again, it is possible to recognize the set of optimal configurations that minimize
the use of the internal link by tuning the value of p, but as the port os does not behave like other
ports, two different cases have been identified: a) when the port os is one of the p ports connected
to a previous–stage switch; b) when the port os is one of the q ports connected to a previous–stage
switch. Figure 22 highlights both cases.

7.3.4.1 The port os is one of the p backward ports

Firstly, the value of CI(〈s, o〉) must be obtained.

CI(〈s, o〉) = (p− 1)p+ q2 + q

= (p− 1)p+ (k − p)2 + (k − p)

= 2p2 − 2p(k + 1) + k2 + k

7.3 Switch Configuration 65

α

β

k k

p

os

q

q
p− 1

(a) os is one of the p (backward) ports.

α

β

k k

p

p

os

q

q − 1

(b) os is one of the q (backward) ports.

Figure 22: Identified cases for a T -switch of type σd.

To obtain the value of p that minimizes CI(〈s, o〉), it is necessary to realize the second derivative
of CI(〈s, o〉) with respect to p.

C ′
I(〈s, o〉) =

∂

∂p
CI(〈s, o〉) = 4p− 2(k + 1)

Then, the second derivative C ′
I(〈s, o〉) is equal to zero to determine the critical points.

C ′
I(〈s, o〉) = 0

4p− 2(k + 1) = 0

p =
k + 1

2

To know if p = k+1
2 is a critical point, the second derivative of CI(〈s, o〉) with respect to p must

be used at the point p = k+1
2 . If it takes a negative value, or positive value, the function will have a

maximum, or minimum, at the point p = k+1
2 , respectively. Otherwise, the point p = k+1

2 will be a
possible inflection point.

C ′′
I (〈s, o〉) =

∂

∂p
C ′

I(〈s, o〉) = 4

As C ′′
I (〈s, o〉) takes only positive values, the function CI(〈s, o〉) has a minimum at p = k+1

2 .
However, k is even, therefore, k+1

2 is not an integer number, so it is necessary to check out the values
of CI(〈s, o〉) at two nearby points of k+1

2 .

• If p =

⌊

k + 1

2

⌋

=
k

2
, then CI(〈s, o〉) = 2

(

k

2

)2

− 2

(

k

2

)

(k + 1) + k2 + k =
1

2
k2

• If p =

⌈

k + 1

2

⌉

=
k

2
+ 1, then: CI(〈s, o〉) = 2

(

k

2
+ 1

)2

− 2

(

k

2
+ 1

)

(k + 1) + k2 + k =
1

2
k2

Both p =
k

2
and p =

k

2
+ 1 allow to find out optimal configurations, being

1

2
k2 the number of

paths pass through the internal link of the switch.

7.3.4.2 The port os is one of the q backward ports

66 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

Firstly, the value of CI(〈s, o〉) must be obtained.

CI(〈s, o〉) = p2 + q(q − 1) + p =

= p2 + (k − p)(k − p− 1) + p =

= 2p2 + 2p(1− k) + k2 − k

To obtain the value of p that minimizes CI(〈s, o〉), it is necessary to realize the second derivative
of CI(〈s, o〉) with respect to p.

C ′
I(〈s, o〉) =

∂

∂p
CI(〈s, o〉) = 4p+ 2(1− k)

Then, the second derivative C ′
I(〈s, o〉) is equal to zero to determine the critical points.

C ′
I(〈s, o〉) = 0

4p+ 2(1− k) = 0

p =
k − 1

2

To know if p = k−1
2 is a critical point, the second derivative of CI(〈s, o〉) with respect to p

must be used at the point p = k−1
2 . If it takes a negative value, or positive, the function will have a

maximum, or minimum, at the point p = k−1
2 , respectively. Otherwise, the point p = k−1

2 may be an
inflection point.

C ′′
I (〈s, o〉) =

∂

∂p
C ′

I(〈s, o〉) = 4

As C ′′
I (〈s, o〉) is always positive, the function CI(〈s, o〉) has a minimum at p = k−1

2 . However,
k is even, consequently, k−1

2 is not an integer number, so it is necessary to check out the values of
CI(〈s, o〉) at two nearby points of k−1

2 .

• If p =

⌊

k − 1

2

⌋

=
k

2
− 1, then CI(〈s, o〉) = 2

(

k

2
− 1

)2

− 2

(

k

2
− 1

)

(1− k) + k2 − k =
1

2
k2

• If p =

⌈

k − 1

2

⌉

=
k

2
, then CI(〈s, o〉) = 2

(

k

2

)2

− 2

(

k

2

)

(1− k) + k2 − k =
1

2
k2

Both p =
k

2
− 1 and p =

k

2
allow to determine optimal configurations, being 1

2k
2 the number

of paths passing through the internal link of the switch.

7.3.4.3 Summing up

• p =
k

2
and p =

k

2
+ 1 allow to determine optimal configurations if os is one of the p backward

ports of the T -switch.

• p =
k

2
− 1 and p =

k

2
allow to determine optimal configurations if os is one of the q backward

ports of the T -switch.

Therefore, it is possible to find out optimal configurations if p =
k

2
with independence of the

identifier of the T -switch of type σd, and the number of paths passing through the internal link is
1
2k

2. 2

7.3 Switch Configuration 67

It must be noticed that the set Sσd includes optimal configurations for a T -switch of type σd
with independence of its switch identifier, but Sσd does not contain all the optimal configurations
because there exist other configurations that minimize the use of the internal link depending on the
switch identifier.

The configuration shown in the Example 1.11 are equally optimal in this case.

7.3.5 Type σe configuration of switch

Proposition 1.61 Let Sσe be the set of configurations that minimize the use of the internal link for
a T -switch of type σe, then

Sσe = Sb = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and there are no backward connections using the internal link.

Proof: According to Proposition 1.29, in a T -switch of type σe backward connections are only
established, so all the configurations of Sb are optimal. Moreover, since these connections exist
between all the pairs of ports l, l′ such that (l, l′) ∈ Rb, the configurations in Sb are the unique
optimal configurations according to the Proposition 1.30. 2

The configurations shown in the Example 1.10 are equally optimal in this case.

7.3.6 Type σf configuration of switch

Since turnaround connections are exclusively established in the last–stage switches, half the switch
ports are only used, that is, k ports. Moreover, as the number of ports of an internal switch is k,
an obvious and optimal configuration is that using only the ports of one of the internal switches to
connect to (n − 2)–stage switches. Two choices are possible: (p = k, q = 0) and (p = 0, q = k) are
optimal configurations; the internal link connecting the internal α and β switches, are never used. In
a more formal way:

Proposition 1.62 Let Sσf be the set of configurations that minimize the use of the internal link for
a T -switch of type σf , then

Sσf = {C ∈ V | B = ∅ o F = ∅}

and there are no connections using the internal link.

Proof: If B = ∅ then card(B) = 0, and according to Definition 1.8 and Proposition 1.2 (card(C) = k),
it is verified card(F) = k. This means that all the forward ports are connected to C, and then all the
backward ports are connected to CC . As to obtain a configuration T for a T -switch it is necessary to
use C and CC , all the backward links for a T -switch are derived from all the links in a single internal
switch.

Consequently, if F = ∅, then card(F) = 0, and according to Definition 1.8 and Proposition 1.2,
card(B) = k. Similar to the previous case, all the backward links of the T -switch are derived from a
single internal switch.

It is obvious that if all the backward links for a T -switch are obtained with a unique internal
switch, no turnaround connection will use the internal link existing in a T -switch. 2

68 7 APPLYING THE METHODOLOGY FOR PERFECT-SHUFFLE TRAFFIC

7.3.7 s–stage switch configuration, 0 ≤ s < n− 1

Proposition 1.63 Let Sσ be the set of configurations that minimize the use of the internal link for
a s–stage T -switch, where 0 ≤ s < n− 1, then

Sσ = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

Proof: According to propositions 1.55, 1.56, 1.59 and 1.61,

Sσa = Sσb = Sσc = Sσe = {C ∈ V | ∀l ∈ C, ∃l′ ∈ C | (l, l′) ∈ Rb}

and by Proposition 1.60,

Sσd = {C ∈ V | card(B) = card(F) = k/2}

It is possible to demonstrate that the sets Sσa, Sσb, Sσc, and Sσe are subsets of Sσd. Therefore,
this set provides configurations that optimize the use of the internal link for every switch 〈s, o〉, where
0 ≤ s < n − 1. Moreover, these configurations are the unique optimal in this case: there exist other
configurations that minimize the use of the internal link in an isolated way, but they are optimal for
all switches 〈s, o〉, where 0 ≤ s < n− 1. 2

7.3.8 Configuration of switch

69

8 Related Work

In this section we review existing proposals of high-radix switches in the literature, which are mainly
focused on solving the scaling problems from traditional switch designs.

The switch YARC is the switch high-radix used by the Cray BlackWidow [SAKD06].
BlackWidow uses a folded-Clos topology. YARC is a hierarchical switch with the internal organization
defined in [KDTG05], which states that increasing the level of the switch is the most efficient strategy
to increase the bandwidth of the switch. The authors claim that for a specific number of signals in
the chip is preferable to form more links (giving fewer signals per link) that implement fewer links at
the expense of allocating more signals to each link.

The paper makes clear that the traditional designs of switches with fewer ports can not be
adapted to the new switches with many ports, which refer as high-radix, because the traditional
centralized organization does not scale properly. The report proposes a new hierarchical switch
architecture that improves the performance of traditional switches with few number ports. The new
architecture distributes and simplifies the control logic and reduces the communication lines within
the chip. The result is a viable switch, but with a very low yield, due to the problem of head of
line blocking. Adding buffers in the crossing points at the crossbar can eliminate the HOL blocking
decoupling the input and output of the switch.

The folded-Clos topology doubles in cost to the butterfly multistage topology with the same
capacity and higher latency than a butterfly bidirectional multistage network. This is because in the
butterfly multistage packets are sent through intermediate stages of the network before being routed to
their final destination. The topology flattened butterfly [KDA07] is an alternative to the folded-Clos
topology. Improvements in the signal technology have allowed longer cable lengths. Based on the
conventional butterfly multistage topology, the switches of the intermediate stages are replaced by
high-radix switches and they are connected with new longer cables. As a result, it reduces the number
of jumps for intermediate switches, which decreases the latency. In addition, fewer switches means
less cost.

Overlooking the advantages of high-radix switches, Dragonfly [KDSA08] topology proposes to
increase the effective radix of the switch using a set of switches interconnected by a subnet. The set
operates as a virtual switch within a hierarchical network. The hierarchy has three levels: the lower
level which nodes connect to the virtual switches at the intermediate level, there is a local subnet
switches interconnecting the intermediate level, and finally there is a global subnet to interconnect
virtual switches.

The three topologies considered that high-radix switches are homogeneous elements. All exploit
the number of available ports, but none discusses the possible variation of network performance based
on which ports are used to connect the different components of the network.

The Partitioned Crossbar Input Queued (PCIQ) switch [MFD+06] is a more recent proposal
for the internal organization of high-radix switches. It is based on replacing the central crossbar by
several internal crossbars improving the readability of the buffers without increasing the hardware
cost. Each crossbar has a round-robin arbiter, which has a linear cost and logarithmic response time,
as the radix of the switch increases.

Moreover, the switch implements RECN [GFD+06] as congestion control mechanism. Thus, the
switch completely eliminates the HOL blocking at both switch and network levels, thus the maximum
productivity is not consistent with traffic. This architecture has a lower cost than the hierarchical
architecture proposed in [KDTG05].

Additionally, for instance, a high-radix switch based network is required in order to exploit
the computing power of a system made of Merrimac stream processors [DHE+03]. Also new
communication technologies like Proximity Communication (PxC) from Sun Microsystems are tied to
high-radix architectural designs [EGF+08].

70 8 RELATED WORK

Regarding the alternative for building high-radix switches using low-radix switches, the
Oracles’s Sun Blade 6048 Infiniband QDR Switched Network Express Module (NEM) [Sun10] has
already implemented this strategy, offering the ability to connect up to 12 dual-node blades in a
single shelf. Each NEM provides 12 connections from each of the 36-port Mellanox’s InfiniScale IV
switches. A total of 24 connections are used to communicate with the two compute nodes on each of
the dual-node server blades, with 9 ports used to connect the two switches together. The 30 remaining
ports (15 per switch chip) are used as links to either other NEMs, or to external switches.

To the best of our knowledge, there are currently no formal studies published on determination
of switch-level connection pattern.

This way to get high-radix switches requires a thorough study to find out the best switch-level
connection pattern that we have done in this report and we are presenting from Section 2.2.

REFERENCES 71

References

[aa89] H.J. Siegel at al. Using the multistage cube network topology in parallel supercomputers.
In Proceedings of the IEEE, vol. 77, pp. 1932–1953, December 1989.

[DeH90] André DeHon. Technical report: Fat–tree routing for transit. Technical report, 1990.

[DHE+03] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J-H A., N. Jayasena, U. J.
Kapasi, A. Das, J. Gummaraju, and I. Buck. Merrimac: Supercomputing with streams.
In SC’03, Phoenix, Arizona, November 2003.

[DYN03] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks. An
engineering approach. Morgan Kaufmann Publishers Inc., 2003.

[ea91] E. Bakker et al. Linear interval routing algorithms review 2., 1991.

[EGF+08] Hans Eberle, Pedro J. Garcia, José Flich, José Duato, Robert Drost, Nils Gura, David
Hopkins, and Wladek Olesinski. High-radix crossbar switches enabled by proximity
communication. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[GAG+03] M. Gusat, F. Abel, F. Gramsamer, R. Luijten, C. Minkenberg, and M. Verhappen.
Stability degree of switches with finite buffers and non-negligible round-trip
time. International Conference on Computer, Communication and Networking,
27(5–6):243–252, 2003.

[GFD+06] P. J. García, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven. Efficient, scalable
congestion management for interconnection networks. IEEE Micro, 26, 2006(5):52–66,
September 2006.

[GGG+07] Crispín Gómez, Francisco Gilabert, María E. Gómez, Pedro Lopez, and José Duato.
Deterministic versus adaptive routing in fat-trees. Los Alamitos, CA, USA, 2007. IEEE
Computer Society.

[GL73] L. Rodney Goke and G. J. Lipovski. Banyan networks for partitioning multiprocessor
systems. In ISCA ’73: Proceedings of the 1st annual symposium on Computer architecture,
pages 21–28, New York, NY, USA, 1973. ACM.

[GLD05] M. E. Gomez, P. Lopez, and J. Duato. A memory-effective routing strategy for
regular interconnection networks. In IPDPS ’05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05) - Papers, page
41.2, Washington, DC, USA, 2005. IEEE Computer Society.

[ITR10] International Technology Roadmap for Semiconductors: 2010 Update, 2010. www.itrs.

net/Links/2010ITRS/Home2010.htm.

[KDA07] John Kim, William J. Dally, and Dennis Abts. Flattened butterfly: a cost-efficient
topology for high-radix networks. In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture, pages 126–137, New York, NY, USA,
2007. ACM.

[KDSA08] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-driven,
highly-scalable Dragonfly topology. In ISCA ’08: Proceedings of the 35th Annual
International Symposium on Computer Architecture, pages 77–88, Washington, DC, USA,
2008. IEEE Computer Society.

[KDTG05] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. Microarchitecture of a
high-radix router. SIGARCH Comput. Archit. News, 33(2):420–431, 2005.

[KS83] C. Kruskal and M. Snir. The performance of multistage interconnection networks for
multiprocessors. IEEE Transactions on Computers, C-32(12):1091–1098, December 1983.

72 REFERENCES

[Lei85] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE Transactions on Computers, 34(10):892–901, 1985.

[Lei92] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann Publishers, 1992.

[LM88] Charles Leiserson and Bruce M. Maggs. Communication-efficient parallel algorithms for
distributed random-access machines. Algorithmica, 3:53–77, 1988.

[lWF80] Chuan lin Wu and Tse-Yun Feng. On a class of multistage interconnection networks.
IEEE Trans. Computers, 29(8):694–702, 1980.

[MAM+05] Cyriel Minkenberg, Francois Abel, Peter Muller, Raj Krishnamurthy, Mitchell Gusat, and
B. Roe Hemenway. Control path implementation for a low-latency optical HPC switch. In
Proceedings of the 13th Symposium on High Performance Interconnects, HOTI’05, pages
29–35, Washington, DC, USA, 2005. IEEE Computer Society.

[MFD+06] G. Mora, J. Flich, J. Duato, P. López, E. Baydal, and O. Lysne. Towards an efficient switch
architecture for high-radix switches. In ANCS ’06: Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications systems, pages 11–20,
New York, NY, USA, 2006. ACM.

[MG07] Cyriel Minkenberg and Mitchell Gusat. Speculative flow control for high-radix datacenter
interconnect routers. Parallel and Distributed Processing Symposium, International,
0:1–10, 2007.

[NGM97] L.M. Ni, Y. Gui, and S. Moore. Performance evaluation of switch-based wormhole
networks. 8(5):462–474, May 1997.

[Pat81] J.H. Patel. Performance of processor-memory interconnections for multiprocessors. IEEE
Transactions on Computers, C-30(10):771–780, October 1981.

[SAKD06] Steve Scott, Dennis Abts, John Kim, and William J. Dally. The BlackWidow high-radix
Clos network. SIGARCH Comput. Archit. News, 34(2):16–28, 2006.

[SJS08] Frank Olaf Sem-Jacobsen and Tor Skeie. Maintaining quality of service with dynamic
fault tolerance in fat-trees. In HiPC, pages 451–464, 2008.

[Sun10] Sun datacenter Infiniband switch 36, Sun datacenter Infiniband switch 72, Sun datacenter
Infiniband switch 648: Architecture and deployment, April 2010.

[top10] Top500 Supercomputer Site, 2010. www.top500.org.

[WPM03] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-driven design of router
microarchitectures in on-chip networks. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 36, Washington, DC, USA, 2003.
IEEE Computer Society.

73

A Multistage Interconnection Networks

This appendix introduces multistage interconnection networks and presents some of their basic aspects,
which will be used in the rest of this report. Fat–trees networks receive an special attention because
they have been chosen for carrying out this study, due to they are one of the most used interconnection
network in the supercomputers market.

A.1 Multistage interconnection networks

Multistage Interconnection Networks (MINS) connect input devices to output devices through a
number of switch stages, where each switch is a crossbar network. The number of stages and the
connections patterns between two adjacent stages determine the routing capability of the networks
(Figure 23). Other characteristics considered in MINs are the number of switches and the switch radix,
the number of stages, message average latency, path diversity, routing algorithm, or link direction (i.e.,
unidirectional, bidirectional) [KS83].

In practice, all the switches are identical, thus amortizing the design cost. When switches have
the same number of input and output ports, MINs also have the same number of input and output
ports. Since there is a one–to–one correspondence between inputs and outputs, the connections
between stages are also called permutations.

STAGE

0

STAGE

1

TERMINAL

0

STAGE

s-1

TERMINAL

N-1

... ...

.

.

.

Figure 23: A multistage network with N terminals and s stages.

Depending on the availability of paths to establish new connections, MINs have been
traditionally divided into three classes [DYN03]:

1. Blocking. A connection between a free input/output pair is not always possible because
of conflicts with the existing connections. Typically, there is a unique path between every
input/output pair, thus minimizing the number of switches and stages. However, it is also
possible to provide multiple paths to reduce conflicts and increase fault tolerance. These MINs
have been often implemented because of its simple design and easy control. These blocking

74 A MULTISTAGE INTERCONNECTION NETWORKS

networks are also known as multipath networks. Omega network is an example of blocking
network (Figure 24a).

2. Nonblocking. Any input port can be connected to any free output port without affecting the
existing connections. Nonblocking networks have the same functionality as a crossbar. They
require multiple paths between every input and output, which in turn leads to extra stages.
Therefore, all permutations are supported. However, they are expensive and some require more
complex control logic. The best–known example is the Clos network (Figure 24b).

3. Rearrangeable. Similarly to nonblocking networks, any input port can be connected to any free
output port. However, the existing connections may require rearrangement of paths. These
networks also require multiple paths between every input and output, but the number of paths
and the cost are smaller than in the case of nonblocking networks. The best-known example of
a rearrangeable network is the Benes̆ network (Figure 24c).

(a) (b)

(c)

Figure 24: MINs: (a) Omega 8×8, (b) 3–stage Clos, (c) Benĕs 8×8.

Other aspects that make the difference between MINs are the required number of stages and the
permutation used to connect two adjacent stages. Given a connection pattern, the number of stages
depends on the number of switch ports. Some commonly known permutations are perfect–shuffle,
bit–reversal or butterfly (Section A.3).

Many of the known MINs, such as Omega, flip, cube, butterfly, and baseline, belong to the
class of Delta networks [Pat81] and have been shown to be topologically and functionally equivalent
[lWF80]. A good survey of those MINs can be found in [aa89].

A.2 Preliminary definitions 75

A.2 Preliminary definitions

In this section some basic concepts of MINs are introduced to make easier the description below. The
notation used is based on that used in other studies about these networks, and it aims to provide
thoroughness to the study to be held later.

In what follows we take into account the following considerations:

• The input/output terminals are the computing nodes.

• All the switches have the same number of ports.

A.2.1 Notation

Figure 25: Assumed notation for a MIN with N terminals and k×k switches.

We have assumed the following notation (Figure 25):

• N is the total number of terminals (or processing nodes).

• k is the switch arity, or number of ports that connect to terminals/switches in the previous stage
and switches in the next stage (if available). Hence, the total number of ports of a k×k switch is
2k. The ports faced to the previous stage are numbered from 0 to k−1, and the ports connected
with the switches in the next stage are labeled from k to 2k − 1.

• Every switch port has an associated global identifier inside the stage, L = ln−1 . . . l0, 0 ≤ li < n,
apart from the internal identifier inside the switch. Both identifiers are related by the connection
pattern between stages.

• n is the total number of stages, where n = logk N .

• h is the terminal identifier (0 ≤ h < N). It consists of a string of n digits (hn−1 . . . h1h0),
0 ≤ hi < k. H is the set whose members are the terminals of the MIN, verifying card(H)=N ,
where card is the cardinality of sets.

76 A MULTISTAGE INTERCONNECTION NETWORKS

• 〈s, o〉 is a tuple that identifies uniquely a switch, where s refers to the stage (0 ≤ s < n), and
o = on−2, . . . , o1, o0 indicates the position of the switch inside the stage, where 0 ≤ oi < k and
0 ≤ i < n− 1.

A.3 Connection pattern

Several connection patterns have been proposed to interconnect two adjacent stages of the MIN and the
processing nodes with the first and/or the last stage. These patterns correspond to certain well–known
permutations. Some of those permutations are defined below.

• Perfect shuffle

The perfect k–shuffle permutation σk is defined by

σk(xn−1xn−2 . . . x1x0) = xn−2xn−3 . . . x1x0xn−1

It performs a cyclic shifting of the digits xi, 0 ≤ i < n, to the left for one position. Every xi

consists of k bits.

The inverse perfect shuffle does the opposite to the perfect shuffle permutation,

σk−1

(xn−1xn−2 . . . x1x0) = x0xn−1 . . . x1

• Digit reversal

The digit reversal permutation ρk is defined by

ρk(xn−1xn−2 . . . x1x0) = x0x1 . . . xn−2xn−1

This permutation is usually referred to as bit reversal. It performs a swapping between digits xi

and xn−1−i where 0 ≤ i < n. Every xi consists of k bits.

• Butterfly

The ith k–ary butterfly permutation βk
i where 0 ≤ i < n, is defined by

βk
i (xn−1xn−2 . . . x1x0) = xn−1 . . . xi+1x0xi−1 . . . x1xi

It interchanges the least significant digit with the ith digit. Every xi consists of k bits. Note
that βk

0 is also called identity permutation.

Additionally, the connection pattern is used to name the MINs. So, we will referred to butterfly
MINs, perfect–shuffle MINs and bit-reversal MINs using butterfly, perfect–shuffle and bit–reversal
permutations, respectively.

A.4 Unidirectional MINs

In an unidirectional MIN, the channels and switches are unidirectional. Half the terminals are located
at one side, and the another half at the opposite side. The MIN is in the middle. Communication
is allowed only in one direction. Figure 26 shows an unidirectional switch with k input ports and k
output ports.

All paths in an unidirectional MIN go across all the stages. So all paths have the same length.
Figure 27 illustrates the unidirectional MIN topology for N = 8 nodes built with 2×2 switches.

Banyan networks are a class of MINs with the property that there is a unique path between
any pair of source and destination [GL73]. A Delta network is a subclass of banyan networks, which

A.4 Unidirectional MINs 77

... ...

Figure 26: Unidirectional switch.

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

Stage

0

Stage

1

Stage

2

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

Figure 27: Unidirectional MIN built with 2×2 switches.

is constructed from identical k×k switches in n stages, where each stage contains N/k switches. Many
of the known MINs, such as Omega, flip, cube, butterfly, and baseline, belong to the class of Delta
networks [Pat81] and have been shown to be topologically and functionally equivalent [lWF80]. A
good survey of those MINs can be found in [aa89].

The most popular routing algorithm in unidirectional MINs is self–routing.

A.4.1 Self–routing algorithm

The self–routing algorithm is a deterministic routing algorithm for MIN networks. The routing decision
is based on the destination address. The paths are established in a distributed way by using routing
tags [Pat81].

The routing function determines the output port taking into account which digit is the least
significant one at the ith stage. In unidirectional MINs with k×k switches, if the value of the digit is
i (0 ≤ i < k), the packet will be forwarded by the output port k + i.

For a k×k switch, there are k output ports. If the value of the corresponding routing tag is
i (0 ≤ i < k), the corresponding packet will be forwarded via port i. For an n–stage MIN, the routing
tag is T = tn−1 . . . t1t0, where ti controls the switch at the ith stage.

78 A MULTISTAGE INTERCONNECTION NETWORKS

Figure 28 shows the paths followed by one packet from node 0010 to node 1010, and another
one from node 0111 to node 1101 in a N = 16 butterfly unidirectional MIN with 16×16 switches. The
routing tags are 0101 and 1011, respectively. In the first case, the packet is forwarded by the output
port 3 in the stages s0 and s2. However, it is routed by the output port 2 in the stages s1 and s3.

0 (0000)

1 (0001)

2 (0010)

3 (0011)

4 (0100)

5 (0101)

6 (0110)

7 (0111)

8 (1000)

9 (1001)

10 (1010)

11 (1011)

12 (1100)

14 (1101)

15 (1110)

16 (1111)

(0000) 0

(0001) 1

(0010) 2

(0011) 3

(0100) 4

(0101) 5

(0110) 6

(0111) 7

(1000) 8

(1001) 9

(1010) 10

(1011) 11

(1100) 12

(1101) 13

(1110) 14

(1111) 15

Figure 28: Paths selected by the self–routing algorithm in a N = 16 butterfly MIN.

A.5 Bidirectional MINs

Bidirectional MINs (BMINs) are composed of bidirectional switches and switch ports are connected
by bidirectional channels (Figure 29(a)). This means that packets can be transmitted simultaneously
in opposite directions between neighboring switches. A bidirectional channel is built by joining two
unidirectional channels, in opposite directions. In such a way, the bidirectional channel can transmit
two packets at the same time in opposite directions between neighboring switches. The bidirectional
switch performs three types of internal connections: forward, turnaround and backward connections.
Figures 29(b,c,d)) depict the three possible internal connections. As turnaround connections between
ports at the same side of a switch are possible, paths have different lengths.

... ...

(a) Bidirectional
switch.

... ...

(b) Forward
connection.

... ...

(c) Backward
connection.

... ...

(d) Turnaround
connection.

Figure 29: Internal connections in a bidirectional switch.

A.5 Bidirectional MINs 79

The network terminals are not directly connected to the switches placed at the stage j =
logk N − 1. Figure 30 shows a N = 8 BMIN built with 2×2 switches. Notice that switches of the last
stage are not connected to the terminals as it occurs in unidirectional MINs.

0 (000)

1 (001)

2 (010)

3 (011)

4 (100)

5 (101)

6 (110)

7 (111)

Stage

0

Stage

1

Stage

2

Figure 30: BMIN de N = 8 y k = 2.

Paths are established in BMINs by crossing stages in the forward direction, then establishing
a turnaround connection, and finally crossing stages in the backward direction to the destination
terminal. This is usually referred to as turnaround routing (Section A.5.1).

In a BMIN, the routing algorithm could select several minimal paths to send a packet from the
source node h to the destination node h′. Firstly, a path goes across stages in the forward direction.
Each switch can select any of its k output ports. However, once the turnaround connection is crossed,
a single path is available up to the destination node.

According to the definition of the turnaround routing algorithm in the Section A.5.1, the
turnaround connection is done in any switch at the stage t (t = FirstDifference(h, h′)). So, there
are kt switches where all the possible paths between h and h′ could do the turnaround connection.

Turnaround routing algorithm is adaptive in the forward phase because it selects any subpath
between the source node h and the kt switches placed at the stage t. This feature balances the load
in the network, and gives fault tolerant characteristics.

On the other hand, after doing the turnaround connection, there is an unique path to the
destination node h′. For this reason, the turnaround routing algorithm is deterministic in the
descending, or backward, phase, like self–routing is. If no fault tolerance policy is defined, when
a switch/channel fails, then the packets could not reach the destination node h′. In [SJS08], the
authors propose a strategy to provide fault tolerance in the descending phase in fat–trees.

A butterfly BMIN with turnaround routing can be viewed as a fat tree [Lei85]. In a fat tree,
processors are located at leaves, and internal vertices are switches (Section A.6).

80 A MULTISTAGE INTERCONNECTION NETWORKS

A.5.1 Turnaround–routing algorithm

To send a packet from a source node h to a destination node h′, it is first sent forward to the least
common ancestor of both nodes. Then, the packet is turnaround at stage t (the concrete switch does
not matter), and it is sent backward to the destination.

The existing path between a source–destination pair that is obtained by the turnaround routing
algorithm can be formalized as follows [NGM97]:

Definition 1.25 A turnaround routing path between any source and destination pair must meet the
following conditions:

• The path consists of a sequence of forward connections, one turnaround connection in the stage
s, and backward connections.

• The number of forward connections is equal to the number of backward connections.

• To prevents redundant communication from occurring, no connection is allowed to use the same
switch port as input and output port.

Definition 1.26 Given h = hn−1hn−2 . . . h0 and h′ = h′
n−1h

′
n−2 . . . h

′
0 two nodes, the

FirstDifference(h,h′) function returns the stage s, (0 ≤ s < n), where the turnaround connection
occurs.

FirstDifference(h, h′) = s if and only if hs 6= h′
s and hj = h′

j , ∀j ∈ [s+ 1, n− 1]

Note, the FirstDifference(h,h′) function returns the position where the first (leftmost) different
digit appears between h and h′.

The turnaround routing is deadlock free and shortest path routing [NGM97]. As mentioned,
in a BMIN there are multiple choices of the shortest path, which the turnaround routing may select,
between a source and a destination. Specifically, if the turnaround connection is done at the stage
s, there are ks valid paths of minimum length. After the packet is turnaround, there is only path to
destination, for this reason, the turnaround routing is said to be adaptive and deterministic in the
forward and backward direction, respectively. This feature makes possible to have load–balanced and
to design fault tolerant networks.

A.6 Fat–tree topology

A fat–tree is an indirect interconnection network based on a complete binary tree. Unlike the
traditional notion of a tree, where all branches are similar, fat–trees are more like real trees in that
they get thicker closer to the root [Lei85].

A binary tree retains the capacity of their channels while fat–tree increases the capacity of
the channels as it approaches the root (Figure 31). The processing nodes are located at the leaves
of the fat–tree. Each node of the fat–tree corresponds to a switch. Going upwards in the fat–tree,
the channels capability increases, but complexity and hardware cost do proportionally. The capacity
is determined by the amount of available hardware. This means that a fat–tree topology is also
parameterizable in the channel bandwidth.

Routing packets in a fat–tree is quite easy, since there is a unique minimum path between every
pair of computing nodes. A message going from node h to node h′ goes up the tree to their least
common ancestor and then back down according to the least significant bits of h′. Note that at any

A.6 Fat–tree topology 81

(a) Binary tree. (b) Fat–tree.

Figure 31: Binary tree and fat-tree.

node of the tree, there are several choices for the routing of a packet. In such cases, the routing
algorithm may select one of the channels to distribute the load minimizing the network congestion.

Fat–trees have many desirable properties. The universality theorem proposed by Leiserson
states that for any given amount of communications hardware, a fat–tree build from that amount
of hardware can simulate every other network built from the same amount of hardware, using only
slightly more time (a polylogarithmic factor greater) [Lei85].

The number of switch ports (or switch radix) in the fat–tree increases as going up the tree
to the root. This makes unfeasible the physical implementation of the switches. For this reason,
Leiserson proposed alternative implementations using switches of fixed radix [LM88]. In Figure 32,
the organization of a fat–tree is showed. It is possible to note how the channel capability increases
further from the leaves.

Outside connection

Computing

node

channels

switch

Figure 32: Organization of a fat–tree.

DeHon [DeH90] studied the implementation limitations such wiring, packing complexity and
fault tolerant schemes.

The fat–trees are currently the preferred topology for supercomputers 4 like: TianHe-1A at
NSC (China), Roadrunner at LANL (USA), and JUGENE at FZJ (Germany), among others.

4According to the November 2010 Top500 Supercomputing list at www.top500.org.

82 A MULTISTAGE INTERCONNECTION NETWORKS

A.6.1 k–ary n–tree topology

The k–ary n–tree network topology belongs to the family of fat–trees and it is derived from a concrete
class of MINs: the k–ary n–butterflies (or k–ary n-flies) [Lei92]. A k–ary n–fly MIN is obtained by
applying the βk

i permutation, 0 ≤ i < n, to obtain the connection patterns between stages.

The k–ary n–tree connect N nodes using nkn−1 switches. Two switches 〈s, on−2 . . . o0〉 and
〈s′, o′n−2 . . . o

′
0〉 are connected with a channel if s′ = s + 1 and oi = o′i ∀ i 6= s. Moreover,

there is a channel between the switch 〈0, on−2 . . . o0〉 and the processing node h = hn−1 . . . h0 if
oi = hi+1, 0 ≤ i < n− 1.

Figure 33 illustrates a 2–ary 4–tree MIN network for 16 processing nodes with 4 stages and 2×2
switches.

0 (0000)

1 (0001)

2 (0010)

3 (0011)

4 (0100)

5 (0101)

6 (0110)

7 (0111)

8 (1000)

9 (1001)

10 (1010)

11 (1011)

12 (1100)

14 (1101)

15 (1110)

16 (1111)

2,000

2,001

2,010

2,011

0,000

0,001

0,010

0,011

1,000

1,001

1,010

1,011

2,100

2,101

2,110

2,111

0,100

0,101

0,110

0,111

1,100

1,101

1,110

1,111

3,000

3,001

3,010

3,011

3,100

3,101

3,110

3,111

Figure 33: 2–ary 4–tree MIN network.

A.7 Load–balanced routing algorithm

The routing algorithm is the mechanism that determines the path that a message follows on the
network to reach its destination, from its source node. Usually, there are multiple paths that can
carry a message to its destination; among these paths we can find a set of minimal length paths. A
good routing strategy seems to be the one that just uses the minimal paths. There are also other

A.7 Load–balanced routing algorithm 83

aspects that are usually taken into account when designing routing algorithms, which we have already
mentioned led to complex and sophisticated design methodologies for these algorithms.

Taking into account this, the load–balanced routing algorithm concept is introduced. Based
on this definition, it would be possible to identify which routing algorithms distribute the generated
paths between the network elements in a balanced way.

Definition 1.27 Given an interconection network I = G(C,N), the routing algorithm R is said to
be balanced, or R fully distributes the paths generated in I, if all the switch channels in C belonging
to I are crossed by the same number of paths.

Definition 1.28 Given a multistage interconnection network I, the routing algorithm R is said to be
balanced, or R fully distributes the paths generated in I, if all the channels of the switches belonging
to a given stage, are crossed by the same number of paths.

For MIN networks there are adaptive routing algorithms that balance partially or fully the
paths generated. However, adaptive algorithms arise some difficulties (e.g., out–of–order delivery,
more complex implementation) that make deterministic routing algorithms be interesting for some
applications.

It is possible to design deterministic routing algorithms, which would balance the paths
generated. A simple strategy consists in assigning the output ports in each switch to the difference
paths passing through the switches by means of a function that spreads the paths (i.e., load network)
between their ports.

For example, let us suppose a k×k switch that belongs to a concrete stage in a BMIN. From
that switch it would be possible to arrive at m destination nodes: d0, d1, . . . , dm−1 (m is a multiple
of k). The following functions would distribute the destinations between the k output ports of the
switch:

• allocation of consecutive destinations to the same port. Let m′ = m/k be the number of
destination nodes assigned to each output port. Hence,

To the port l0 it assigns destinations d0, d1, . . . , dm′−1

To the port l1 it assigns destinations dm′ , dm′+1, . . . , d2m′−1

. . .

To the port lk−1 it assigns destinations d(k−1)m′ , d(k−1)m′+1, . . . , dkm′−1

• cyclic allocation of consecutive destinations to consecutive ports. Let m′ = m/k be the number
of destination nodes assigned to each output port. Hence,

To the port l0 it assigns destinations d0, dk, . . . , d(m′−1)k

To the port l1 it assigns destinations d1, dk+1, . . . , d(m′−1)k+1

. . .

To the port lk−1 it assigns destinations dk−1, d2k−1, . . . , dm′k−1

The second one, for example, corresponds to the proposal in [GGG+07] and it is defined in the
next section.

84 A MULTISTAGE INTERCONNECTION NETWORKS

A.7.1 DESTRO routing algorithm

As described in detail in Section A.2.1, and adapted to BMINs, the 2k ports of the switch 〈s, o〉 are
distributed in two disjoint groups. On one hand, the k ports that connect to switches that are located
in the previous stage s − 1, where 0 ≤ s < n, are labeled from 0 to k − 1 (Figures 34(a) and 34(b)).
On the other hand, the other k ports that connect to switches that are located in the stage s + 1,
where 0 ≤ s < n− 1, are labeled from k to 2k− 1. Switches belonging to the last stage n− 1 only use
half of the ports, and they are labeled from 0 to k − 1 (Figure 34(b)).

... ...

k0

k − 1 2k − 1

〈s, o〉

(a) If 0 ≤ s < n− 1.

<S,O>...

0

k − 1

〈s, o〉

(b) If s = n− 1.

Figure 34: Numbering scheme for switch ports.

In an informal way, the port l is obtained from the k–ary number, hs, of the destination node.
In switches with 2k ports, hs can represent two different port labels, according to the numbering
scheme that has been assumed: l = hs, where 0 ≤ hs < k; and l = hs + k, where k ≤ l < 2k. To
obtain the exact value of l, the routing function simply needs to know the direction of the path/route
of a message (i.e., in forward or backward direction). Hence,

R(〈s, o〉, h) =

{

l = hs + k, if the message goes forward

l = hs, if the message goes backward

In [GGG+07] the authors propose an implementation of the DESTRO deterministic routing
algorithm for fat–trees by means of Flexible Interval Routing, (FIR) [GLD05]. FIR is an extension of
Interval Routing, (IR) [ea91]. In IR, every port has two registers (First Interval and Last Interval)
that define the beginning and end of routing interval, respectively. To send a message through a port,
the destination address must be inside the routing interval. FIR adds an extra register (Mask Register)
per port for defining which bits of the destination address must be compared to the routing interval. In
order to guarantee deadlock freedom, FIR adds one more extra register (Routing Restrictions Register)
per port that establishes the priority between several ports.

Proposition 1.64 If the traffic pattern is uniform, DESTRO routing algorithm is balanced according
to the Definition 1.28.

Proof: When the traffic is uniformly distributed in the network, the probability of sending traffic
from the switch 〈s, o〉 to a destination node h, h ∈ {NR

b (〈s, o〉)∪NR
f (〈s, o〉)} (see Definitions 1.18 and

1.19), is constant.

All the ports l, 0 ≤ l < k, of the kn−1 switches at the stage s, 0 ≤ s < n, receive the same
number of paths in backward direction according to Definition 1.20, because

card(NR
b (〈s, o0〉, lj)) = · · · = card(NR

b (〈s, oi〉, lk)) = · · · = card(NR
b (〈s, o(kn−1)〉, lm))

∀lj , lk, lm ∈ [0, k − 1]

Similarly, all the ports l′, k ≤ l′ < 2k, of the previous kn−1 switches, receive the same number
of paths in forward direction according to Definition 1.21, because

card(NR
f (〈s, o0〉, l

′
j)) = · · · = card(NR

f (〈s, oi〉, l
′
k)) = · · · = card(NR

f (〈s, o(kn−1)〉, l
′
m))

∀l′j , l
′
k, l

′
m ∈ [k, k − 1]

A.7 Load–balanced routing algorithm 85

2

