
University of Castilla–La Mancha

A publication of

Department of Computing Systems

Building 3D torus using low–profile expansion
cards∗

by

F.J. Andújar, J.A. Villar, F.J. Alfaro, J.L. Sánchez, J. Duato

Technical Report #DIAB-11-02-3 February 2011

(*) This work has been jointly supported by the Spanish MEC, MICINN and European
Commision FEDER funds under grants “Consolider Ingenio–2010 CSD2006-00046” and
“TIN2009–14475–C04”, respectively; and by Junta de Comunidades de Castilla–La
Mancha under grants “PCC08–0078–9856”, “POII10–0289–3724” and Beca Predoctoral
de Investigación “07/096”.

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS
ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA

UNIVERSIDAD DE CASTILLA–LA MANCHA
CAMPUS UNIVERSITARIO s/n

02071, ALBACETE, SPAIN
Phone +34.967.599200, Fax +34.967.599224

2

Building 3D torus using low–profile expansion cards

Francisco J. Andújar, Juan A. Villar, Francisco J. Alfaro, José L. Sánchez

Dpto. de Sistemas Informáticos

Escuela Superior de Ingeniería Informática

Universidad de Castilla–La Mancha

02071 – Albacete, España

{fandujar, juanan, falfaro, jsanchez}@dsi.uclm.es

José Duato

Dpto. de Ingeniería de Sistemas y Computadores

Camino de Vera, s/n

Universidad Politécnica de Valencia

46022 – Valencia, España

jduato@gap.upv.es

February 2011

3

4

Contents

1 Abstract 7

2 Introduction 7

3 3DT torus topology model 9

3.1 Notation . 9

3.2 3DT torus topology definition . 10

3.3 3DT torus topology configuration . 10

4 Analysis of the 3DT torus only considering the topology 12

5 Analysis of the 3DT torus also considering routing and traffic 19

5.1 Informal Description . 19

5.2 Formal Study . 20

5.2.1 Useful definitions . 21

5.2.2 Sets NP
s and NP

d for the node 〈x, y, z〉 21

5.2.3 DP
s and DP

d values for the node 〈x, y, z〉 23

5.2.4 Paths that pass through the node 〈x, y, z〉 26

5.2.5 Evaluation of the port configurations 29

5.2.6 Analysis of the results . 35

6 Routing in 3DT torus 40

6.1 DOR routing algorithm adapted for 3DT torus topology 41

6.2 Analysing the of cycles in 3DT torus topologies 41

6.2.1 Types of traffic in the internal link 41

6.2.2 Types of cycles in 3DT torus topologies 44

6.3 Deadlock-avoidance in 3DT torus topologies 45

6.3.1 Virtual Channels . 46

5

6.3.2 The Bubble flow control mechanism 46

7 Performance evaluation of the topology 50

7.1 System Model . 50

7.2 Metrics for the performance evaluation 52

7.3 Evaluation of different 3DT torus configurations 52

7.3.1 Experiments . 52

7.3.2 Results . 53

7.3.3 Analysis of the results . 53

7.4 Comparison of the 3DT torus with the 2D torus 58

7.4.1 Experiments . 58

7.4.2 Results . 59

7.4.3 Analysis of the results . 61

8 Conclusions and Future Work 62

8.1 Conclusions . 62

8.2 Future work . 63

Bibliography 64

6

1 Abstract

Torus is a subclass of direct topologies that was defined to support n dimensions in
theory. Although recently a supercomputer has been built on a network with six
dimensions, the most common case is that only implementing three dimensions. In
the market, there are low–profile communication expansion cards that have a reduced
number of ports that is not enough to build tori of a certain number of dimensions.
In this report, we will deal with four–port expansion cards. By means of one of these
cards per node, a 2D torus topology could be built, but not a 3D torus topology.
However, two of these cards could be used per node to build a 3D torus topology. In
this case, two ports are used to interconnect both cards each other, and the other six
ports to connect to six neighbors in the 3D torus. Theoretically, there are several ways
of assigning the dimension and direction of the ports. This report presents a detailed
study of the possible port configurations, and under specific network conditions the
best of them is obtained.

2 Introduction

Nowadays, large supercomputers and clusters dominate the supercomputing market.
These high node computing systems usually use high performance interconnection
networks. The network topology plays a major role in determining the overall system
performance. There are many factors that may affect the choice of an appropriate
network topology. However, fat–tree [Lei85] and torus [DYN03] are the preferred
topologies for indirect and direct networks, respectively, for these systems.

Torus topology belongs to the n–cube k–ary family that consists of n dimensions
with k nodes in each dimension, with a total of kn nodes. In particular, a 3D torus is
a 3–cube k–ary topology. This topology has low radix and diameter, allowing an easy
implementation and reducing the latency of the communications. It is also important
that the scalability cost is linear. Moreover, 3D torus supports several routing
algorithms that increase path diversity so that the fault tolerance and load balance
become feasible. Additionally, the topology maps very well several well–known traffic
patterns generated by current scientific-purpose applications. Specifically, applications
that use 3D mathematical models fall inside this category. The 3D torus topology is one
of the most common topologies used in the largest supercomputers in the Top500 list
[DMS95]. Some examples are Cray’s XT and XE families and IBM’s Blue Gene family.
There are three Cray supercomputers (Jaguar [Inc09], Cielo [VRB+11], and Hopper
[Inc11]) in the top 10 of the current Top500 list (November 2011). In previous Top500
lists, some Blue Gene supercomputers were also at the top (Blue Gene/L [AAA+02],
Blue Gene/P [IBM08]).

To obtain a 3D torus, six ports (or links) per node are needed, two for each
dimension. In the market, there are low–profile expansion cards that have a variety
of characteristics. Usually these low–profile expansion cards are incorporated in each
node of a cluster. As today it is also usual that each node of the cluster is 1U (1.75

7

inches) tall, manufactures provide low–profile expansion cards with few communication
ports. In general, nD tori can be built using several low–expansion cards per node if
the number of ports of these cards is less than 2n. In these cases, there are multiple
ways of obtaining the 2n ports of every node from the ports of the internal cards.

We have focused on cards with a reduced number of ports, which can only be used
to build a few network topologies. For example, it is possible to build 2D torus with
four–port cards, but not a 3D torus. For applications using multidimensional models
(e.g., 3D models), the logical model has to be mapped into a 2D physical network
causing a reduction in the performance of the system. However, if two of these cards
are used on each node the ports could be used in such a way that any node will be
able to connect with its neighbors in a 3D torus. As shown in Figure 1, two ports
would be used to interconnect the two cards, and the remaining ports for inter–node
communication. We will call this new topology 3D Twin torus or just 3DT torus.

The important issue for the 3DT torus topology is that, in order to reduce the
latency, we need to avoid as much as possible the paths, which pass through the
node, use the two cards. If we have success, the cost of the communication would be
noticeably reduced. The six ports of the node are split in two groups, and every group is
assigned to one of the cards, as shown in Figure 1. The ports of the 3DT torus topology
have an assigned dimension (i.e., X, Y, Z) and direction (i.e., positive or negative),
which have to be established in the network deployment. There are several ways of
assigning the dimension and direction to the ports. We refer to each of them as port
configuration or simply configuration. However, to reduce the communication overhead
we must try to make the traffic uses only one of the cards. Every configuration has a
different performance level, even though uniform traffic pattern is used, and therefore
we have to study the behavior of every port configuration in order to choose the best
one.

Moreover, it is probable that deadlock appears in the 3DT torus network. This
problem occurs because the link interconnecting the two cards can be used for any
message in the network, independently of the dimension that the message is crossing.
This causes new cycles in the 3DT torus network that do not appear in a 3D torus
made directly with 6-port cards.

This report presents a detailed study of the behavior of these configurations and
determines which is the best of them. Since the study is dependent on several factors,
we limit the scope of this study considering a particular deterministic routing algorithm
and traffic pattern. From these initial hypotheses and using the notation introduced in
Section 3.1, all the possible configurations of the topology, which we called 3DT (3D
Twin) torus, are shown in Section 3.3. Section 5.1 describes informally the procedure
that drives to the final solution, whereas Section 5.2 covers the whole study in a more
formal way. Previously, in Section 4 we present a more simple study only considering
topological aspects, and compare the proposed 3DT torus topology with a 2D torus
topology with the same number of processing elements.

After the theoretical study, Section 6 presents the routing algorithm used in 3DT
torus and the developed techniques to avoid deadlock. Once the routing algorithm

8

is defined, in Section 7 we evaluate the different node configurations and compare the
performance of a 2D torus and 3DT torus using a simulator. Finally, Section 8 presents
the conclusions and the future work of this study.

3 3DT torus topology model

In this section we define the 3DT torus topology and show all the possible configurations
of its basic communication hardware. Previously, we introduce the notation to be used
in the rest of the document.

3.1 Notation

The following notation is used below:

• k: number of nodes in every dimension of the 3D torus. The same number of
nodes in each dimension is assumed.

• 〈x, y, z〉: node identifier, 0 ≤ x, y, z < k.

• X−, X+: ports corresponding to dimension X.

• Y −, Y +: ports corresponding to dimension Y.

• Z−, Z+: ports corresponding to dimension Z.

• P : set of ports of a node, P = {X−, X+, Y −, Y +, Z−, Z+}.

• P : port of a node, P ∈ P .

• PE0, PE1: processing elements of a node.

• NP
s (〈x, y, z〉): set of nodes that send messages to node 〈x, y, z〉 and reach it

through the port P .

• NP
d (〈x, y, z〉): set of nodes to which the node 〈x, y, z〉 sends messages from its

port P .

• DP
s (〈x, y, z〉): cardinal of the set NP

s (〈x, y, z〉).

• DP
d (〈x, y, z〉): cardinal of the set NP

d (〈x, y, z〉).

• RP→P ′(〈x, y, z〉): number of paths that pass through the node 〈x, y, z〉 from input
port P to output port P ′. If both P and P ′ belong to the same dimension,
sometimes we refer to the addition of RP→P ′(〈x, y, z〉) and RP ′→P (〈x, y, z〉) by an
expression, using only the letter that identifies the dimension, hiding the sign of
the direction in the dimension, and substituting the double arrow symbol by a
single arrow (RX↔X(〈x, y, z〉), RY↔Y (〈x, y, z〉) and RZ↔Z(〈x, y, z〉)).

9

• [a, b]n: interval that defines a set of values between 0 and n − 1. Definition 5.1
shows more precisely this concept.

• D, davg: Diameter and average distance of a network, respectively.

Although in some specific cases we have simplified the notation usually used, it
does not imply loss of accuracy.

3.2 3DT torus topology definition

A 3D Twin torus, or just 3DT torus, is a 3–cube k–ary (3D torus) topology, with
k ∈ N

∗ and k ≥ 2. Each node in this topology is a virtual node1 consisting basically of
the following main components:

• Hardware for communications: it consists of two four–port cards, offering a total
of eight ports. Two of these ports (one of each card) are used to interconnect
both cards to each other, and the six remaining ports are used to connect the
node to the three dimensions in the 3D torus (two ports for each dimension).

• Computing hardware: each internal four–port card is connected to a processing
element, and so there are two processing elements in each virtual node. Therefore,
there are a total of 2k3 processing elements in the network.

Fig. 1 shows a network fragment and a detail of a node. In short, every node has
two processing elements (PE0 and PE1) and two communication cards (Card0 and
Card1).

3.3 3DT torus topology configuration

As the six available ports on each virtual node belong to two different communication
cards, there are several alternatives to use the card ports to connect the node with its
neighbors, i.e. there are several ways of assigning ports to dimensions (Fig. 1 only
shows one of possible resultant port configurations).

The number of different configurations is the number of ways to combine three
ports from a set of six. Hence,

(

6

3

)

=
6!

3! 3!
= 20

1In this point, we use this term for better explaining how a node is formed in this topology.
However, in most of the paper we will use the term node to refer it.

10

X+

X-

Y+

Y-

Z+

Z-

PE0

PE1

Card 0

Card 1

Figure 1: Fragment of a 3DT torus and detail of the communications hardware circuit,
based on two 4-port cards.

Because of the symmetry between both cards, the 20 configurations may actually
be reduced to only 10 different configurations, which are shown in Table 1. In this
table, the different cases have been labelled from A to J, and the columns Card0 and
Card1 show the dimension and direction of the three ports of each card.

Table 1: All different port configurations for the 3DT torus topology.

Case Card 0 Card 1

A {X+, Y +, Z+} {X−, Y −, Z−}

B {X+, Y +, Z−} {X−, Y −, Z+}

C {X+, Y +, Y −} {X−, Z+, Z−}

D {X+, Y +, X−} {Y −, Z+, Z−}

E {X+, Y −, Z+} {X−, Y +, Z−}

F {X+, Y −, Z−} {X−, Y +, Z+}

G {X+, Y −, X−} {Y +, Z+, Z−}

H {X+, Z+, Z−} {X−, Y +, Y −}

I {X+, Z+, X−} {Y +, Y −, Z−}

J {X+, Z−, X−} {Y +, Y −, Z+}

Some of these configurations have similar behavior, but their performance may
vary depending on the conditions taken into account when they are analyzed. In the

11

following sections we present two studies in order to evaluate and compare the behavior
of all the configurations shown in Table 1. In the first case, the study is only conducted
from a topological viewpoint. To do this, we will consider two parameters characterizing
a topology: diameter and average distance. The second study also considers a routing
algorithm and a traffic pattern. In this case, a much more detailed analysis is required.

4 Analysis of the 3DT torus only considering the

topology

In order to have a first view of the behavior of the configurations, we can use some
topological parameters like the diameter and the average distance. These parameters
will allow us to compare the different configurations. Moreover, the values of these
parameters will be compared with the diameter and average distance of a 2D torus
network with the same number of processing elements and based on the same 4-port
cards. In what follows, this 2D torus topology will be referred to equivalent 2D torus
topology.

To perform this comparative study, the following considerations2 will be taken
into account:

• To simplify the calculations, k = 2w has been considered, with w > 0. Therefore,
there are 2×(2w)3 = 23w+1 nodes in the network. If we consider k odd, the final
conclusions of this study are the same, but the formal study is easier if k is even.

• Regarding the equivalent 2D torus topology:

– If w is odd, 3w+1 is even and it is possible to build a 2D torus with the same
number of nodes in each dimension. Specifically, the equivalent topology is
a 2

3w+1

2 ×2
3w+1

2 torus.

– If w is even, 3w + 1 is odd and the number of nodes in each dimension will
be different. In this case, the equivalent topology is a 2

3w

2 ×2
3w

2
+1 torus.

• To calculate the diameter and the average distance of the 3DT and 2D tori we will
use the expressions deduced and included in the Appendix A of this document.

• There are several minimal paths between two PEs that are separated by the
maximum distance. In this paper, we only explain the most simple and intuitive
ways to obtain these paths, although there are more possibilities.

• The average distance of 3DT torus has been obtained by simulation, because
obtaining this expression analytically is very complex. The simulator models the
topology explained in Section 3.2. From a source PE, the simulator sends a
message to every possible destination.

2These considerations are only taken into account for this first study.

12

Once a message has been injected in the network, the message is replicated when
crosses a internal card and it is sent to each port card, except the source port. The
messages stop replication when arrive to destination PE, the distance exceeds
the diameter or distance is greater than the double of distance between source
and destination node in a 3D torus topology made with 6–ports cards. In this
way, the simulator can get the minimal path between each pair of nodes and
calculate the average distance of the network.

Among the ten different configurations shown in Table 1, in terms of diameter
and average distance, really there are only two different configuration types: A first
class in which the configurations have the two ports of each dimension located on
different internal cards; and a second configuration class where the two ports of only
one dimension are separated into different internal cards. Configurations A, B, E and
F correspond to the first case, and configurations C, D, G, H, I and J correspond to
the second one. We will refer to the first set of configurations as SC0 and we will use
SC1 for referring to the other set of configurations. However, all the configurations
belonging to both sets have the same diameter and the difference in average distance
between the configurations in the two sets is negligible. Specifically, these values are:

D = 2w+1

davg ≈ 2w

These results and the values obtained for the equivalent 2D torus topology are
included in Table 2. In the following, we explain how the diameter is obtained for SC0
and SC1 sets. We use A and D as representative configurations of the sets SC0 and
SC1, respectively. However, the process can be applied to the other configurations of
the sets. In both cases, we consider the distance between the PEs in the nodes 〈0, 0, 0〉
and 〈k/2, k/2, k/2〉 to calculate the diameter of the 3DT torus.

Topology Dimensions D dav

3DT torus 2w×2w×2w 2w+1 2w

2D torus (w even) 2
3w

2 ×2
3w

2
+1 3×2

3w

2
−1 3×2

3w

2
−2

2D torus (w odd) 2
3w+1

2 ×2
3w+1

2 2
3w+1

2 2
3w+1

2
−1

Table 2: Diameter and average distance of the 3DT torus topology and its equivalent
2D torus topology.

Diameter of SC0 set: As discussed above, there are many minimal paths between
the PEs further away in the network. We present two ways to obtain these minimal
paths using configurations in SC0 set.

• Zigzagging across two dimension and crossing the ring of remaining
dimension. We indicate in a schematic way how the diameter is obtained:

13

a) First, we choose the dimension that will be crossed in last place.

b) Next, we consider a 2D plane composed of the other two dimensions. A path
between any pair of PEs separated by the largest distance can be established
zigzagging through these dimensions without crossing any internal link.
Thus, the distance is the same as in a 2D torus, i.e., 2 (k/2) = k links.

c) Finally, the path goes across the last dimension. Since each dimension is a
2k-ring3, the path crosses k links to reach the furthest PE.

Therefore, the diameter of the network is D = 2k.

Example 4.1 Given a 3DT torus with k = 4, the diameter is calculated
considering PEs in the nodes 〈0, 0, 0〉 and 〈2, 2, 2〉. Following the previous steps,
we have:

a) Dimension Z is chosen as the last one to be crossed.

b) Now, we consider the plane XY (Fig. 2). Two paths are drawn, each
one considers a different source communication card or PE. As shown in
the figure, minimal paths from node 〈0, 0〉 to node 〈2, 2〉 can be established
without crossing any internal link.

c) Finally, the path goes across the dimension Z. To move in this dimension it
is necessary to cross the internal link of the half of the nodes in the Z-ring.

The path between the PEs further away in the network goes across a
diagonal connecting them. A possible diagonal between the nodes 〈0, 0, 0〉 and
〈k/2, k/2, k/2〉 will cross the node 〈1, 1, 1〉, the node 〈2, 2, 2〉, the node 〈3, 3, 3〉,
and so on until the node 〈k/2, k/2, k/2〉.

As the furthest node in the network is at the same distance in all the directions,
we must choose a diagonal that allows to reach the next node in the diagonal
without crossing any internal link. Once in this node, the path crosses the internal
link to continue moving along the diagonal.

Fig. 3 shows some intermediate nodes of the path. Starting from PE0, a diagonal
would cross the dimension X in the negative direction, the dimension Y in the
positive direction, and finally, the dimension Z in the negative direction. The
path must cross 4 links (3 external and one internal links) to reach the next node
in the diagonal. As k/2 nodes have to be crossed along the diagonal, the diameter
is:

D = 4×
k

2
= 2k

3Note that in the case of configurations in the set SC0 the internal link must be used when crossing
a node.

14

x+ x-

x+x-

Y-

Y+

0

1
x+

x-

Y-

Y+

0

1

x+

x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x-

Y-

Y+

0

1

x+

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

x+x-

Y-

Y+

0

1

Z+

Z-

<0,3> <1,3> <2,3> <3,3>

<0,1> <1,1> <2,1> <3,1>

<0,0> <1,0> <2,0> <3,0>

<0,2> <1,2> <2,2> <3,2>

Figure 2: Plane XY of a 3DT torus, (k = 4, configuration A) and paths between the
furthest PEs in the plane.

Diameter of SC1 set: In this case, we can obtain the diameter in the simplest way
attending to the following steps:

a) The path starts crossing the dimension whose two ports are connected to the
same card as the source PE. Thus, the path crosses completely that dimension
without using any internal link. In total, the path crosses k/2 external links.

b) Next, the path crosses the dimension whose ports are not connected to the same
internal card. As the destination PE is at the same distance in both directions,
we choose the port connected to the current internal card, avoiding the use of
the internal link. Thus, the path crosses k/2 external links and k/2− 1 internal
links.

15

<0,0,0>

y+ z+

x+

x-

y-z-

x-

<k-1,0,0>

y+ z+

x+

x-

y-z-

y+ z+

<k-1,1,0> x+

x-

y-z-

y+

<k-1,1,k-1>

z+

x+

y-z-

X

Y

Z

PE 0

PE 1

PE 0

PE 1

PE 0

PE 1

PE 0

PE 1

Figure 3: A possible diagonal path for configuration A.

c) After crossing the second dimension, the path is on an internal card connected
to the ports of the last dimension. The path crosses this dimension using k/2
external links.

d) When the destination node is reached, it is necessary to cross the internal link
to arrive at the PE located in the other card because it is the furthest PE from
the source PE.

Thus, the diameter of the network is :

D =
k

2
+

k

2
+

(

k

2
− 1

)

+
k

2
+ 1 = 2k

Fig. 4 shows two paths of this type for the configuration D. The path originating
at PE0 crosses the dimensions in order X − Y − Z, whereas the path originating at
PE1 crosses the dimensions in order Z − Y −X.

16

<k/2,k/2,k/2>

<k/2,k/2,0>

<0,0,k/2>

<k/2,0,0><0,0,0>

<0,k/2,k/2>

k/2 external
 links
k/2 -1 internal
 links

k/2 external
 links

k/2 external
 links

1 internal
 link

PE 1

PE 0

PE 1

PE 0

PE 1

PE 0

PE 1

PE 0

PE 1

PE 0

PE 1

PE 0

k/2 external
 links

k/2 external
 links

k/2 external
 links

k/2 -1 internal
 links

Figure 4: Paths between furthest PEs for the configuration D.

17

In summary, the configurations in both sets, SC0 and SC1, have the same
diameter, i.e., 2k . If k = 2w, then the diameter is, in both cases:

D = 2×2w = 2w+1

Torus 2D / Torus 3DT comparative: Finally, we compare D and davg values
for the 3DT torus topology with those obtained for the equivalent 2D torus topology.
Since in all cases D = 2×davg, we only compare one of these parameters. Specifically,
diameter was chosen for this study. Let us assume the diameter in the 2D torus is
greater than in the 3DT torus.

• If w is odd:

D2D > D3DT

2
3w+1

2 > 2w+1

3w + 1

2
> w + 1

3w + 1 > 2w + 2

w > 1

• If w is even:

D2D > D3DT

3×2
3w

2
−1 > 2w+1

log2 3 +
3w

2
− 1 > w + 1

3w

2
> w + 2− log2 3

3w > 2w + 4− 2 log2 3

w > 4− 2 log2 3 ≈ 0.830

That is, for w ≥ 2 (k ≥ 4, 64 or more PEs), whether w is even or odd, the
3DT torus topology with two internal cards per node has smaller diameter and average
distance than the 2D torus topology with one internal card per node.

18

5 Analysis of the 3DT torus also considering routing

and traffic

In this second study we introduce the routing mechanism and the network workload.

• Routing algorithm is deterministic, dimension order routing (DOR) [DYN03]. In
the case of k is even and when the shortest distance between a source–destination
pair of nodes is the same through positive and negative directions, then the
positive link is chosen.

• The traffic pattern is uniform. Based on the statistical characteristics of the
traffic pattern, in this case the network load can be expressed either in terms of
the number of paths or the number of messages because the conclusions are the
same. Therefore, we develop the study in terms of paths instead messages.

5.1 Informal Description

This section briefly describes in an informal way the methodology used to obtain the
optimal ports configuration of the communication cards included in any node of the
3DT torus. Note that we consider the best configuration that minimizes the number
of paths that go across a node by using the two cards (i.e. paths using the internal
link that connects the two cards).

The number of paths that pass through the node 〈x, y, z〉, 0 ≤ x, y, z < k, can be
calculated by the Cartesian product of all the possible source-destination node pairs
whose paths include such a node. For example, the number of paths that pass through
the node 〈x, y, z〉 using the port X− as input port and the port Y + as output port,
is the result of multiplying the number of nodes that send messages to node 〈x, y, z〉
reaching it through the port X− and the number of nodes to which the node 〈x, y, z〉
sends messages from its port Y +. Hence, using the notation introduced in Section 3.1:

RX−→Y +(〈x, y, z〉) = DX−

s (〈x, y, z〉)×DY +

d (〈x, y, z〉)

As we will shown below, this expression can be applied only when the input port
and the output port do not belong to the same dimension. Otherwise, it is necessary
to apply a more complex procedure to calculate the correct number of paths.

In any case, if the paths using the ports of a node and the configuration of the
two cards are both known, then the number of paths that pass through the internal
link that connects the two cards can be calculated. Thus, the basic procedure consists
in determining all the possible configurations and selecting that which minimizes the
number of paths that pass through the two cards.

19

Note that routing will be considered at node level, but not at processing element
level. If routing at processing element level is considered, the injection of messages
from the processing elements would imply to multiply by two the number of paths
passing through the internal link. However, the final result would be the same because
all the expressions would be multiplied by the same factor.

For a given node, only paths passing through it will be considered, and paths
with origin or destination at that node will be not taken into account. Under uniform
traffic, each processing element sends and receives the same amount of messages by
each port. Thus, messages from PE0 or messages from PE1 must use the internal link
to get any port P . In any case, the number of messages using the internal link will be
the same whatever the chosen configuration. Therefore, paths starting or finishing in
that node will not affect the results obtained for a given configuration.n.

Summing up, the methodology we will use consists of several steps:

A. To obtain the sets NP
s (〈x, y, z〉) and NP

d (〈x, y, z〉), where 0 ≤ x, y, z < k and
P ∈ P .

B. To obtain their cardinals DP
s (〈x, y, z〉) and DP

d (〈x, y, z〉), where 0 ≤ x, y, z < k
and P ∈ P .

C. For each of the ten configurations in Table 1, to calculate the number of paths
RP→P ′(〈x, y, z〉) that cross the node 〈x, y, z〉 using the link that interconnects the
two cards, where 0 ≤ x, y, z < k, P 6= P ′ and P, P ′ ∈ P .

D. Finally, to search for the optimal configurations.

Note that in all calculations involving the above steps, we will distinguish the
case of odd k and even k because the results are different for both cases.

5.2 Formal Study

This section develops a detailed study that has been conducted to determine the best
way to use the ports of the two communication cards, whose union can establish
connections with neighboring nodes to form a 3DT torus. The study is presented
according to the steps indicated in Section 5.1.

20

5.2.1 Useful definitions

Firstly, we include a definition to simplify some parts of the study.

Definition 5.1 The notation [a, b]n, with b = a+m; a, b ∈ Z and n,m ∈ N, defines a
set of nodes whose members are {(a) mod n, (a+1) mod n, . . . , (a+m−1) mod n, (a+
m) mod n}

We define the operation module, a mod k, where a ∈ Z and k ≥ 2, as the remainder
of integer division: a mod k = (a + k) mod k. As an example, (−3) mod 7 = 4 and
(−1) mod 7 = 6.

Proposition 5.1 The cardinal of the set that is defined by the interval [a, b]n is b−a+1.

Proof: By definition, we know the interval [a, b]n defines a set with the following
values: a, a+ 1, a+ 2, . . . , a+m− 1, a+m. Because b = a+m ⇒ m = b− a and the
cardinal of the set defined by the interval [a, b]n is m+ 1 = b− a+ 1. ✷

5.2.2 Sets NP
s and NP

d for the node 〈x, y, z〉

Based on any 3D torus topology and the DOR routing algorithm, it is easy to determine
the nodes that belong to the sets NP

s and NP
d . Next, we indicate the members of these

sets using set terminology. We distinguish between odd and even k values. Thus, if k
is odd the number of reachable nodes from a specific node that are located in the same
dimension is k−1

2
regardless the direction. However, if k is even the result changes in

function of the direction because the distance between some nodes is the same in both
directions. The load of the links depends on the direction that is chosen in those cases.
As mentioned above, in this study we take always the positive direction.

Definition 5.2 Let NX−

s (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port X− (0 ≤ x, y, z < k), whose members are defined as follows:

NX−

s (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ ∈

{

[

x− k−1

2
, x− 1

]k
if k is odd

[

x− k
2
, x− 1

]k
if k is even

, y′ = y, z′ = z}

Definition 5.3 Let NX+

s (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port X+ (0 ≤ x, y, z < k), whose members are defined as follows:

NX+

s (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ ∈

{

[

x+ 1, x+ k−1

2

]k
if k is odd

[

x+ 1, x+ (k
2
− 1)

]k
if k is even

, y′ = y, z′ = z}

21

Definition 5.4 Let NY −

s (〈x, y, z〉) be a set of nodes that send messages to node 〈x, y, z〉
by using its port Y − (0 ≤ x, y, z < k), whose members are defined as follows:

NY −

s (〈x, y, z〉) = { 〈x′, y′, z′〉 : 0 ≤ x′ < k, y′ ∈

{

[

y − k−1

2
, y − 1

]k
if k is odd

[

y − k
2
, y − 1

]k
if k is even

, z′ = z}

Definition 5.5 Let NY +

s (〈x, y, z〉) be a set of nodes that send messages to node 〈x, y, z〉
by using its port Y + (0 ≤ x, y, z < k), whose members are defined as follows:

NY +

s (〈x, y, z〉) = { 〈x′, y′, z′〉 : 0 ≤ x′ < k, y′ ∈

{

[

y + 1, y + k−1

2

]k
if k is odd

[

y + 1, y + (k
2
− 1)

]k
if k is even

, z′ = z}

Definition 5.6 Let NZ−

s (〈x, y, z〉) be a set of nodes that send messages to node 〈x, y, z〉
by using its port Z− (0 ≤ x, y, z < k), whose members are defined as follows:

NZ−

s (〈x, y, z〉) = { 〈x′, y′, z′〉 : 0 ≤ x′, y′ < k, z′ ∈

{

[

z − k−1

2
, z − 1

]k
if k is odd

[

z − k
2
, z − 1

]k
if k is even

}

Definition 5.7 Let NZ+

s (〈x, y, z〉) be a set of nodes that send messages to node 〈x, y, z〉
by using its port Z+ (0 ≤ x, y, z < k), whose members are defined as follows:

NZ+

s (〈x, y, z〉) = { 〈x′, y′, z′〉 : 0 ≤ x′, y′ < k, z′ ∈

{

[

z + 1, z + k−1

2

]k
if k is odd

[

z + 1, z + (k
2
− 1)

]k
if k is even

}

Definition 5.8 Let NX−

d (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port X− (0 ≤ x, y, z < k), whose members are defined as follows:

NX−

d (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ ∈

{

[

x− k−1

2
, x− 1

]k
if k is odd

[

x− (k
2
− 1), x− 1

]k
if k is even

, 0 ≤ y′, z′ < k}

Definition 5.9 Let NX+

d (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port X+ (0 ≤ x, y, z < k), whose members are defined as follows:

NX+

d (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ ∈

{

[

x+ 1, x+ k−1

2

]k
if k is odd

[

x+ 1, x+ k
2

]k
if k is even

, 0 ≤ y′, z′ < k}

22

Definition 5.10 Let NY −

d (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port Y − (0 ≤ x, y, z < k), whose members are defined as follows:

NY −

d (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ = x, y′ ∈

{

[

y − k−1

2
, y − 1

]k
if k is odd

[

y − (k
2
− 1), y − 1

]k
if k is even

, 0 ≤ z′ < k}

Definition 5.11 Let NY +

d (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port Y + (0 ≤ x, y, z < k), whose members are defined as follows:

NY +

d (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ = x, y′ ∈

{

[

y + 1, y + k−1

2

]k
if k is odd

[

y + 1, y + k
2

]k
if k is even

, 0 ≤ z′ < k}

Definition 5.12 Let NZ−

d (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port Z− (0 ≤ x, y, z < k), whose members are defined as follows:

NZ−

d (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ = x, y′ = y, z′ ∈

{

[

z − k−1

2
, z − 1

]k
if k is odd

[

z − (k
2
− 1), z − 1

]k
if k is even

}

Definition 5.13 Let NZ+

d (〈x, y, z〉) be a set of nodes that send messages to node
〈x, y, z〉 by using its port Z+ (0 ≤ x, y, z < k), whose members are defined as follows:

NZ+

d (〈x, y, z〉) = { 〈x′, y′, z′〉 : x′ = x, y′ = y, z′ ∈

{

[

z + 1, z + k−1

2

]k
if k is odd

[

z + 1, z + k
2

]k
if k is even

}

5.2.3 DP
s and DP

d values for the node 〈x, y, z〉

Applying Proposition 5.1 to the sets defined in the Section 5.2.2, the value of DP
s

and DP
d for the node 〈x, y, z〉 can be obtained. Remember that these values are the

cardinals of the sets NP
s and NP

d . Tables 3 and 4 include the values of DP
s and DP

d ,
respectively.

23

Table 3: Number of nodes that send messages to node 〈x, y, z〉.

DX−

s (〈x, y, z〉) =

k − 1

2
if k is odd

k

2
if k is even

DX+

s (〈x, y, z〉) =

k − 1

2
if k is odd

k

2
− 1 if k is even

DY −

s (〈x, y, z〉) =

k − 1

2
k if k is odd

k2

2
if k is even

DY +

s (〈x, y, z〉) =

k − 1

2
k if k is odd

(

k

2
− 1

)

k if k is even

DZ−

s (〈x, y, z〉) =

k − 1

2
k2 if k is odd

k3

2
if k is even

DZ+

s (〈x, y, z〉) =

k − 1

2
k2 if k is odd

(

k

2
− 1

)

k2 if k is even

24

Table 4: Number of nodes to which the node 〈x, y, z〉 sends messages.

DX−

d (〈x, y, z〉) =

k − 1

2
k2 if k is odd

(

k

2
− 1

)

k2 if k is even

DX+

d (〈x, y, z〉) =

k − 1

2
k2 if k is odd

k3

2
if k is even

DY −

d (〈x, y, z〉) =

k − 1

2
k if k is odd

(

k

2
− 1

)

k if k is even

DY +

d (〈x, y, z〉) =

k − 1

2
k if k is odd

k2

2
if k is even

DZ−

d (〈x, y, z〉) =

k − 1

2
if k is odd

k

2
− 1 if k is even

DZ+

d (〈x, y, z〉) =

k − 1

2
if k is odd

k

2
if k is even

25

x

(x-1)mod k (x+1)mod k
X+-X

(x- (k-1)/2 +1)mod k

(x-(k-1)/2)mod k

. . .

. . .

(x+(k-1)/2)mod k

(x+(k-1)/2 -1)mod k

Figure 5: Paths that pass through a node in the dimension X.

5.2.4 Paths that pass through the node 〈x, y, z〉

In this section we calculate the number of paths that pass through the node 〈x, y, z〉
for each input–output pair of ports. To obtain this value we do a simple multiplication
as we noted in Section 5.1, using the expressions obtained in Section 5.2.3. However, in
some cases, we must take into account other considerations. So, there are two situations
to be considered:

• When the input and output ports belong to the same dimension (Proposition 5.2).

• When the input and output ports belong to different dimensions
(Proposition 5.3).

Proposition 5.2 Given a node 〈x, y, z〉, the paths that cross this node from the input
port P to the output port P ′, where P 6= P ′ and they both belong to the same dimension,
that is, P, P ′ ∈ {X+, X−} or P, P ′ ∈ {Y +, Y −} or P, P ′ ∈ {Z+, Z−} are:

RX↔X(〈x, y, z〉) = RY↔Y (〈x, y, z〉) = RZ↔Z(〈x, y, z〉) =

(k − 1)(k − 3)

4
k2 if k is odd

(k − 2)2

4
k2 if k is even

Proof: We firstly demonstrate the property when the paths are bound to the X
dimension. A similar procedure for demonstrating the property for Y and Z dimensions
will be performed.

26

Figure 5 shows a subset of the 3D torus nodes, which belong to the X dimension.
For simplicity, we use only the digits corresponding to the X dimension to identify
each node.

In the following we are going to distinguish the both cases: k is odd and k is
even.

k is odd

Taking into account uniquely the nodes in the X dimension, that is, considering the
sub–path that belongs to the X dimension, we can see in Figure 5 that

• there is no path from the node (x− k−1

2
)mod k that goes across x from the input

port X− to the output port X+.

• there is only one path from the node (x− k−1

2
+1)mod k that passes through the

node x from the input port X− to the output port X+.

• there are two paths from the node (x− k−1

2
+2)mod k that pass through the node

x from the input port X− to the output port X+.

• . . .

• there are k−1

2
− 1 paths from the node (x − 1)mod k that go across the node x

from the input port X− to the output port X+.

Thus, there is a total number of

k−1

2
−1

∑

i=1

i paths that pass through the node x from

the input port X− to the output port X+. After assuming that these paths have the
source and destination nodes in the same dimension, X, and as k is odd, then there
is the same number of paths when the input port is X+ and the output port is X−.
However, the paths that pass through a node in the X dimension could also change to
the other two dimensions. Therefore, because the destination node could be any of the
k2 nodes which can be reached from Y and Z dimensions.

Hence, the total number of paths passing through the node 〈x, y, z〉, entering and
leaving by any pair of ports in the X dimension is given by

RX↔X(〈x, y, z〉) = RX−→X+(〈x, y, z〉) +RX+→X−(〈x, y, z〉) = 2

k−1

2
−1

∑

i=1

ik2 =

= 2
(k−1

2
− 1)(k−1

2
)

2
k2 =

k − 3

2

k − 1

2
k2 =

(k − 1)(k − 3)

4
k2

27

k is even

By similar reasoning, the number of paths that pass through the node 〈x, y, z〉 by using
any pair of ports in the dimension X when k is even, could be obtained. However, the
number of paths passing through the node 〈x, y, z〉 from the input port X− to the
output port X+ is not equal to the number of paths crossing from the input port X+

to the output port X−.

Thus, if k is even, we obtain the following expression:

RX↔X(〈x, y, z〉) = RX−→X+(〈x, y, z〉) +RX+→X−(〈x, y, z〉) =

k

2
−1
∑

i=1

ik2 +

k

2
−2
∑

i=1

ik2

Therefore, the number of paths that pass through the node 〈x, y, z〉 by using whatever
pair of ports in the X dimension is given by:

RX↔X(〈x, y, z〉) =

k

2
−1
∑

i=1

i+

k

2
−2
∑

i=1

i

 k2 =

2

k

2
−2
∑

i=1

i+

(

k

2
− 1

)

 k2 =

=

(

2

(

k
2
− 1
) (

k
2
− 2
)

2
+

(

k

2
− 1

)

)

k2

=

(

k

2
− 1

)(

k

2
− 2 + 1

)

k2 =

(

k

2
− 1

)2

k2 =
(k − 2)2

4
k2

As we stated, the dimensions Y and Z have a similar treatment. For the paths
traveling along the dimension Y , the calculations are performed in the same way as
for the dimension X. Moreover, given a path passing through the node 〈x, y, z〉 in the
dimension Y , its source node can be any of the nodes in the dimension X that can
send messages to the node 〈x, y, z〉. On the other hand, the path can continue to k
different nodes passing through the dimension Z.

Regarding Z dimension, if the path is finally traveling along the Z dimension,
its source node can be one of k2 nodes in the X and Y dimensions. Summing up,
RX↔X(〈x, y, z〉) = RY↔Y (〈x, y, z〉) = RZ↔Z(〈x, y, z〉). ✷

Proposition 5.3 The number of paths that pass through the node 〈x, y, z〉 from the
input port P to the output port P ′, where P, P ′ ∈ P , P 6= P ′ and they are located in
different dimension is

RP→P ′(〈x, y, z〉) =

{

0 if the direction P → P ′ is not permitted

DP
s (〈x, y, z〉)×DP ′

d (〈x, y, z〉) if the direction P → P ′ is permitted

Proof: If the routing algorithm does not permit the transition P → P ′, then none
of the paths will use P ′ after using P . Thus, no path passes through the node 〈x, y, z〉
from input port P to output port P ′.

28

For permitted P → P ′ transitions, the source node of the path that passes through
the node 〈x, y, z〉 from the input port P is any of the nodes that could reach the node
〈x, y, z〉 by the input port P , that is, any member of the set NP

s (〈x, y, z〉). Similarly,
the destination node of the path leaving the node 〈x, y, z〉 by the output port P ′, could
be any of the nodes which are reachable from the node 〈x, y, z〉 through P ′, that is, any
of the members of the set NP ′

d (〈x, y, z〉). Therefore, the total number of paths that go
across the node 〈x, y, z〉 from the input port P to the output port P ′, is obtained by
the following multiplication:

card(NP
s (〈x, y, z〉))× card(NP ′

d (〈x, y, z〉)) = DP
s (〈x, y, z〉)×DP ′

d (〈x, y, z〉)

✷

Applying Proposition 5.3 to any situation that involves a change of dimension
while the path is passing through the node 〈x, y, z〉, the number of paths that pass
through such a node for those situations can be calculated. Table 5 and Table 6 have
a summary of them.

5.2.5 Evaluation of the port configurations

For a given configuration, and after obtaining the number of paths that pass through
the node 〈x, y, z〉 considering all the pairs of ports, it is possible to calculate how many
paths go across the internal link. A path uses the internal link when it goes across a
node using an input port P and an output port P ′ if one of these ports belongs to one
card and the other one belongs to the other card.

For instance, configuration A (TABLE 1) assigns the three ports of one card to
the links (X+, Y +, Z+), and the other card gets obviously the links (X−, Y −, Z−), as it
is shown in Fig. 1. In this configuration a path uses the two cards of a node for passing
through it if the pair of ports used by the path is one of the followings (it should be
noted that the first port is the input port and the second one is the output port):

(X+, X−) (X+, Y −) (X+, Z−) (Y +, Y −) (Y +, Z−) (Z+, Z−)

(X−, X+) (X−, Y +) (X−, Z+) (Y −, Y +) (Y −, Z+) (Z−, Z+)

Other combinations, which are allowed by the routing algorithm, involve passing
through the node using an input port and an output port, both belonging to the
same card. These configurations will not be considered because they do not produce
communication overhead for the purpose of this study. Such pairs of ports for the
configuration A are:

(X+, Y +) (X+, Z+) (Y +, Z+) (X−, Y −) (X−, Z−) (Y −, Z−)

In the following, we indicate for each configuration how to obtain the number of
paths that pass through the node 〈x, y, z〉 by using the internal link that connects the
two cards of the node. The final result for each configuration is shown avoiding the
specific calculations.

29

Table 5: Number of paths that pass through the node 〈x, y, z〉.

RX−→Y −(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

(k − 2)k2

4
if k is even

RX−→Y +(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

k3

4
if k is even

RX+→Y −(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

(k − 2)2

4
k if k is even

RX+→Y +(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

(k − 2)k2

4
if k is even

RX−→Z−(〈x, y, z〉) =

(k − 1)2

4
if k is odd

(k − 2)k

4
if k is even

RX−→Z+(〈x, y, z〉) =

(k − 1)2

4
if k is odd

k2

4
if k is even

30

Table 6: (Cont.) Number of paths that pass through the node 〈x, y, z〉.

RX+→Z−(〈x, y, z〉) =

(k − 1)2

4
if k is odd

(k − 2)2

4
if k is even

RX+→Z+(〈x, y, z〉) =

(k − 1)2

4
if k is odd

(k − 2)k

4
if k is even

RY −→Z−(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

(k − 2)k2

4
if k is even

RY −→Z+(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

k3

4
if k is even

RY +→Z−(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

(k − 2)2

4
k if k is even

RY +→Z+(〈x, y, z〉) =

(k − 1)2

4
k if k is odd

(k − 2)k2

4
if k is even

31

• Case A: {X+, Y +, Z+} | {X−, Y −, Z−}

RA(〈x, y, z〉) = RX↔X(〈x, y, z〉) +RY↔Y (〈x, y, z〉) +RZ↔Z(〈x, y, z〉) +

+ RX+→Y −(〈x, y, z〉) +RX−→Y +(〈x, y, z〉) +RX+→Z−(〈x, y, z〉) +

+ RX−→Z+(〈x, y, z〉) +RY +→Z−(〈x, y, z〉) +RY −→Z+(〈x, y, z〉) =

= · · · =

{

1

4
(3k4 − 8k3 + 3k2 + 2) if k is odd

1

4
(3k4 − 8k3 + 6k2 + 4k + 4) if k is even

• Case B: {X+, Y +, Z−} | {X−, Y −, Z+}

RB(〈x, y, z〉) = RX↔X(〈x, y, z〉) +RY↔Y (〈x, y, z〉) +RZ↔Z(〈x, y, z〉) +

+ RX+→Y −(〈x, y, z〉) +RX−→Y +(〈x, y, z〉) +RX+→Z+(〈x, y, z〉) +

+ RX−→Z−(〈x, y, z〉) +RY +→Z+(〈x, y, z〉) +RY −→Z−(〈x, y, z〉) =

= · · · =

{

1

4
(3k4 − 8k3 + 3k2 + 2) if k is odd

1

4
(3k4 − 8k3 + 6k2) if k is even

• Case C: {X+, Y +, Y −} | {X−, Z+, Z−}

RC(〈x, y, z〉) = RX↔X(〈x, y, z〉) +RX−→Y −(〈x, y, z〉)) +RX−→Y +(〈x, y, z〉) +

+ RX+→Z−(〈x, y, z〉) +RX+→Z+(〈x, y, z〉) +RY +→Z−(〈x, y, z〉) +

+ RY +→Z+(〈x, y, z〉) +RY −→Z−(〈x, y, z〉) +RY −→Z+(〈x, y, z〉) =

= · · · =

{

1

4
(k4 + 2k3 − 7k2 + 2k + 2) if k is odd

1

4
(k4 + 2k3 − 4k2 − 2k + 4) if k is even

• Case D: {X+, Y +, X−} | {Y −, Z+, Z−}

RD(〈x, y, z〉) = RY↔Y (〈x, y, z〉) +RX+→Y −(〈x, y, z〉) +RX−→Y −(〈x, y, z〉) +

+ RX−→Z−(〈x, y, z〉) +RX−→Z+(〈x, y, z〉) +RX+→Z−(〈x, y, z〉) +

+ RX+→Z+(〈x, y, z〉) +RY +→Z+(〈x, y, z〉) +RY +→Z−(〈x, y, z〉) =

= · · · =

{

1

4
(k4 − k2 − 4k + 4) if k is odd

1

4
(k4 − 4k2 + 4)/4) if k is even

32

• Case E: {X+, Y −, Z+} | {X−, Y +, Z−}

RE(〈x, y, z〉) = RX↔X(〈x, y, z〉) +RY↔Y (〈x, y, z〉) +RZ↔Z(〈x, y, z〉) +

+ RX+→Y +(〈x, y, z〉) +RX−→Y −(〈x, y, z〉) +RX+→Z−(〈x, y, z〉) +

+ RX−→Z+(〈x, y, z〉) +RY −→Z−(〈x, y, z〉) +RY +→Z+(〈x, y, z〉) =

= · · · =

{

1

4
(3k4 − 8k3 + 3k2 + 2) if k is odd

1

4
(3k4 − 8k3 + 6k2 − 4k + 4) if k is even

• Case F: {X+, Y −, Z−} | {X−, Y +, Z+}

RF (〈x, y, z〉) = RX↔X(〈x, y, z〉) +RY↔Y (〈x, y, z〉) +RZ↔Z(〈x, y, z〉) +

+ RX+→Y +(〈x, y, z〉) +RX−→Y −(〈x, y, z〉) +RX+→Z+(〈x, y, z〉) +

+ RX−→Z−(〈x, y, z〉) +RY −→Z+(〈x, y, z〉) +RY +→Z−(〈x, y, z〉) =

= · · · =

{

1

4
(3k4 − 8k3 + 3k2 + 2) if k is odd

1

4
(3k4 − 8k3 + 6k2) if k is even

• Case G: {X+, Y −, X−} | {Y +, Z+, Z−}

RG(〈x, y, z〉) = RY Y↔Y Y (〈x, y, z〉) +RX+→Y +(〈x, y, z〉) +RX−→Y +(〈x, y, z〉) +

+ RX−→Z−(〈x, y, z〉) +RX−→Z+(〈x, y, z〉) +RX+→Z−(〈x, y, z〉) +

+ RX+→Z+(〈x, y, z〉) +RY −→Z+(〈x, y, z〉) +RY −→Z−(〈x, y, z〉) =

= · · · =

{

1

4
(k4 − k2 − 4k + 4) if k is odd

1

4
(k4 + 4k2 − 8k + 4) if k is even

• Case H: {X+, Z+, Z−} | {X−, Y +, Y −}

RH(〈x, y, z〉) = RX↔X(〈x, y, z〉) +RX+→Y −(〈x, y, z〉) +RX+→Y +(〈x, y, z〉) +

+ RX−→Z−(〈x, y, z〉) +RX−→Z+(〈x, y, z〉) +RY +→Z−(〈x, y, z〉) +

+ RY +→Z+(〈x, y, z〉) +RY −→Z−(〈x, y, z〉) +RY −→Z+(〈x, y, z〉) =

= · · · =

{

1

4
(k4 + 2k3 − 7k2 + 2k + 2) if k is odd

1

4
(k4 + 2k3 − 8k2 + 6k) if k is even

33

• Case I: {X+, Z+, X−} | {Y +, Y −, Z−}

RI(〈x, y, z〉) = RZ↔Z(〈x, y, z〉) +RX+→Y −(〈x, y, z〉) +RX+→Y +(〈x, y, z〉) +

+ RX−→Y −(〈x, y, z〉) +RX−→Y +(〈x, y, z〉) +RX+→Z−(〈x, y, z〉) +

+ RX−→Z−(〈x, y, z〉) +RY +→Z+(〈x, y, z〉) +RY −→Z+(〈x, y, z〉) =

= · · · =

{

1

4
(k4 + 2k3 − 7k2 + 2k + 2) if k is odd

1

4
(k4 + 2k3 − 4k2 − 2k + 4) if k is even

• Case J: {X+, Z−, X−} | {Y +, Y −, Z+}

RJ(〈x, y, z〉) = RZ↔Z(〈x, y, z〉) +RX+→Y −(〈x, y, z〉) +RX+→Y +(〈x, y, z〉) +

+ RX−→Y −(〈x, y, z〉) +RX−→Y +(〈x, y, z〉) +RX+→Z+(〈x, y, z〉) +

+ RX−→Z+(〈x, y, z〉) +RY +→Z−(〈x, y, z〉) +RY −→Z−(〈x, y, z〉) =

= · · · =

{

1

4
(k4 + 2k3 − 7k2 + 2k + 2) if k is odd

1

4
(k4 + 2k3 − 8k2 + 6k) if k is even

Tables 7 and 8 summarize the previous results when k is odd and even,
respectively.

Table 7: Number of paths passing through a node using its two cards (k is odd).

Case Number of paths that pass through the two cards

A, B, E, F
1

4
(3k4 − 8k3 + 3k2 + 2)

C, H, I, J
1

4
(k4 + 2k3 − 7k2 + 2k + 2)

D, G
1

4
(k4 − k2 − 4k + 4)

34

Table 8: Number of paths passing through a node using its two cards (k is even).

Case Number of paths that pass through the two cards

A
1

4
(3k4 − 8k3 + 6k2 + 4k + 4)

B, F
1

4
(3k4 − 8k3 + 6k2)

C, I
1

4
(k4 + 2k3 − 4k2 − 2k + 4)

D
1

4
(k4 − 4k2 + 4)

E
1

4
(3k4 − 8k3 + 6k2 − 4k + 4)

G
1

4
(k4 + 4k2 − 8k + 4)

H, J
1

4
(k4 + 2k3 − 8k2 + 6k)

5.2.6 Analysis of the results

Figures 6 and 7 show a graphical representation of the expressions in tables 7 and
8. At a glance, we can see the differences between the port configurations and even
guess which ones are the best configurations. However, it is recommended to perform
a formal analysis to obtain fully accurate conclusions.

In the following we discuss this analysis for both cases: k is odd and k is even.

k is odd

If we observe Table 7 and Figure 6, it is possible to deduce that when k is odd the
configurations D and G are the optimal configurations. To check it, we compare
the expression of the configurations D and G with the expressions of the remaining
configurations. We consider separately the case k = 3 because of its obviousness.

35

2 4 6 8 10

k

0

2000

4000

6000

8000

N
u
m

b
e
r

o
f

p
a
th

s

Configuration

A, B, E, F
C, H, I, J
D, G

Figure 6: Number of paths that pass through a node through its two cards, for a few
odd values of k.

2 4 6 8 10 12

k

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

o
f

p
a
th

s

Configuration

A
B,F

C,I

D

E

G

H,J

Figure 7: Number of paths that pass through a node through its two cards, for a few
even values of k.

36

k = 3

If k = 3, the optimal configurations are A, B, E, and F . A simple substitution
for each case is enough to check it.

k ≥ 5

• RABEF (〈x, y, z〉) > RGD(〈x, y, z〉)

RABEF (〈x, y, z〉) > RGD(〈x, y, z〉)

RABEF (〈x, y, z〉)−RGD(〈x, y, z〉) > 0
1

4
(3k4 − 8k3 + 3k2 + 2)−

1

4
(k4 − k2 − 4k + 4) > 0

1

4
(2k4 + 8k3 − 4k2 − 4k + 2) > 0

2(k − 1)(k3 − 3k2 − k + 1) > 0

2(k − 1)(k − r1)(k − r2)(k − r3) > 0

where r1, r2 and r3 are constants and smaller than 4.

It should be noted that the inequality is true for k ≥ 5, therefore
RABEF (〈x, y, z〉) > RGD(〈x, y, z〉) is satisfied.

• RCHIJ(〈x, y, z〉) > RGD(〈x, y, z〉)

RCHIJ(〈x, y, z〉) > RGD(〈x, y, z〉)

RCHIJ(〈x, y, z〉)−RGD(〈x, y, z〉) > 0
1

4
(k4 + 2k3 − 7k2 + 2k + 2)−

1

4
(k4 − k2 − 4k + 4) > 0

1

4
(2k3 − 6k2 + 6k − 2) > 0

2(k − 1)3 > 0

which is true because k ≥ 5, and therefore RCHIJ(〈x, y, z〉) > RGD(〈x, y, z〉) is
also true for k ≥ 5.

37

k is even

Similarly, from Figure 7 we suspect that the optimal configuration in this case is D,
and we will also check it by comparing the mathematical expressions.

• RA(〈x, y, z〉) > RD(〈x, y, z〉)

RA(〈x, y, z〉) > RD(〈x, y, z〉)

RA(〈x, y, z〉)−RD(〈x, y, z〉) > 0
1

4
(3k4 − 8k3 + 6k2 + 4k + 4)−

1

4
(k4 − 4k2 + 4) > 0

1

4
(2k4 − 8k3 + 10k2 + 4k) > 0

2k(k3 − 4k2 + 5k + 2) > 0

The polynomial k3 − 4k2 + 5k + 2 has only one root among the real numbers,
k = −0.315. As k > −0.315 then it takes positive values. If k ≥ 2, then the
inequality is true. So, RA(〈x, y, z〉) > RD(〈x, y, z〉) is true for k ≥ 2.

• RBF (〈x, y, z〉) > RD(〈x, y, z〉).

RBF (〈x, y, z〉) > RD(〈x, y, z〉)

RBF (〈x, y, z〉)−RD(〈x, y, z〉) > 0
1

4
(3k4 − 8k3 + 6k2)−

1

4
(k4 − 4k2 + 4) > 0

1

4
(2k4 − 8k3 + 10k2 − 4) > 0

2(k − 1)(k3 − 3k2 + 2k + 2) > 0

The polynomial k3 − 3k2 + 2k + 2 has only one root among the real numbers,
k = −0.521. As k > −0.521 then it takes positive values. Also (k − 1) takes
positive values for k ≥ 2. Therefore, RBF (〈x, y, z〉) > RD(〈x, y, z〉) is true for
k ≥ 2.

• RCI(〈x, y, z〉) > RD(〈x, y, z〉).

RCI(〈x, y, z〉) > RD(〈x, y, z〉)

RCI(〈x, y, z〉)−RD(〈x, y, z〉) > 0
1

4
(k4 + 2k3 − 4k2 − 2k + 4)−

1

4
(k4 − 4k2 + 4) > 0

1

4
(2k3 − 2k) > 0

2k(k − 1)(k + 1) > 0

is true because k ≥ 2. Therefore, RCI(〈x, y, z〉) ≥ RD(〈x, y, z〉) is true for k ≥ 2.

38

• RE(〈x, y, z〉) ≥ RD(〈x, y, z〉).

RE(〈x, y, z〉) ≥ RD(〈x, y, z〉)

RE(〈x, y, z〉)−RD(〈x, y, z〉) ≥ 0
1

4
(3k4 − 8k3 + 6k2 − 4k + 4)−

1

4
(k4 − 4k2 + 4) ≥ 0

1

4
(2k4 − 8k3 + 10k2 − 4k) ≥ 0

2k(k − 2)(k − 1)2 ≥ 0

If k = 2 then 2k(k−2)(k−1)2 is equal to zero, so configuration E is equivalent to
the D. If k > 2 then the roots of the polynomial are positive, so the result of the
polynomial is always greater than zero. Therefore, RE(〈x, y, z〉) ≥ RD(〈x, y, z〉)
is true for k ≥ 2.

• RG(〈x, y, z〉) > RD(〈x, y, z〉) for k ≥ 2.

RG(〈x, y, z〉) > RD(〈x, y, z〉)

RG(〈x, y, z〉)−RD(〈x, y, z〉) > 0
1

4
(k4 + 4k2 − 8k + 4)−

1

4
(k4 − 4k2 + 4) > 0

1

4
(8k2 − 8k) > 0

8k(k − 1) > 0

is true because k ≥ 2. Therefore, RG(〈x, y, z〉) > RD(〈x, y, z〉) is true for k ≥ 2.

• RHJ(〈x, y, z〉) > RD(〈x, y, z〉) for k ≥ 2.

RHJ(〈x, y, z〉) > RD(〈x, y, z〉)

RHJ(〈x, y, z〉)−RD(〈x, y, z〉) > 0
1

4
(k4 + 2k3 − 8k2 + 6k)−

1

4
(k4 − 4k2 + 4) > 0

1

4
(2k3 − 4k2 + 6k − 4) > 0

2(k − 1)(k2 − k + 2) > 0

For k ≥ 2, the inequality has two positive solutions among the real numbers.
The polynomial k2−k+2 has no roots among the real numbers, however it takes
always positive values for all R. Therefore, RHJ(〈x, y, z〉) > RD(〈x, y, z〉) is true
for k ≥ 2.

Thus, the configuration D is the best one when k is even. It imposes the minimum
number of paths for the internal link that interconnects the two cards. Note that for
k = 2, the configurations E and D are equivalent.

39

It should be reminded that we took the positive direction when the distance
between the source and destination nodes is the same by the two directions. If such
a initial hypothesis changed, then this study would remain exactly the same, but the
optimal configuration would be G instead of D.

Finally, in summary, Fig. 8 shows the two configurations that offer the highest
performance level, considering both even k and odd k values.

Z+

X- X+

Y+

Y-

Z-

Card 0

Card 1

PE0

PE1

(a) (X+, Y +, X−)–(Y −, Z+, Z−) for odd and
even k values.

X+X-

Y+

Y-

Z+

Z-

Card 0

Card 1

PE0

PE1

(b) (X+, Y −, X−)–(Y +, Z+, Z−) for odd k

values.

Figure 8: The optimal configurations.

6 Routing in 3DT torus

The routing algorithm is the mechanism that determines the path selected by a message
to reach its destination. In many cases, some situations can difficult the routing, like
deadlock, livelock or starvation. Specifically, the deadlock is an inherent problem in
k-ary n-cubes. This problem is even more important in a 3DT torus because the
internal link is shared by all dimensions of the 3DT torus. The techniques used in the
common k-ary n-cubes need to be modify for avoiding the deadlock in a 3DT torus.

In this section a study of deadlock in 3DT torus is included. In first place,
we present the DOR routing algorithm (Dimension Order Routing) adapted for 3DT
topology in Section 6.1. Then, we study the cycles that appear in this topology (Section
6.2) and finally, we explain how remove these cycles and deadlock in Section 6.3.

40

6.1 DOR routing algorithm adapted for 3DT torus topology

DOR routing is commonly used in a k-ary n-cube because it is a very simple routing
algorithm. Basically, a message is routed by the n dimensions following an ascending
(or descending) strict order. If a node is identified by a n-tuple 〈xn−1, xn−1, . . . , x1, x0〉,
a message needing to use all the dimensions is first routed through dimension 0, after
that it is routed through dimension 1, and so on until reaching the dimension n− 1.

For a 3DT torus topology, each PE needs an identifier composed of three digits,
one digit for each dimension (X, Y and Z), and another digit to identify the PE inside
the node. First, a message crosses the three dimensions as needed. In this case, if
the message has reached the destination node, it checks if the message is destined to
the current PE or the neighbor PE, routing the message to the NIC or the internal
link, respectively. Finally, we check if the output link belongs to the current card.
Otherwise, the selected output port will be the internal link.

In Algorithm 1 we can see the pseudo-code of the DOR routing algorithm adapted
for the 3DT torus. The function ringDirection() (Algorithm 2) is used for DOR routing
to determine the output direction in any ring.

6.2 Analysing the of cycles in 3DT torus topologies

Most of the deterministic routing algorithms base their deadlock-freedom on the
channel dependency graph. A routing algorithm is deadlock free if there are no
cycles in its channel dependency graph [DS87]. However, when the number of nodes
in the network increases, the channel dependency graph size increases in proportion
of the number of channels, making difficult the elimination of cycles. Therefore, we
have studied the reason why these cycles appear in the 3DT torus topology to act
consequently and remove deadlock in the topology.

6.2.1 Types of traffic in the internal link

Unfortunately, in 3DT torus topologies new cycles appear on the network that are not
present in the traditional 3D torus topology. This is due to the use of the internal
link, which can be used by a message regardless of the dimension where it is traveling.
In some cases, the message uses the internal link as a part of a ring. In other cases,
the internal link is used for making a change between dimensions. Figure 9 shows the
ring of all the dimensions using the configuration D4. In this case, we can see how the
internal link is part of the Y -dimension ring.

4From now on, in the examples configuration D will be used because it is optimal if k ≥ 4 and so
the 3DT torus topology gets advantage over the 2D torus.

41

Algorithm 1 DOR routing algorithm for a 3DT torus.
Require: current node 〈xc, yc, zc, epc〉, destination node 〈xd, yd, zd, epd〉
Return: output port p
1: if xd 6= xc then
2: p = ringDirection(xc, xd)
3: else if yd 6= yc then
4: p = ringDirection(yc, yd)
5: else if zd 6= zc then
6: p = ringDirection(zc, zd)
7: else if epd 6= epc then
8: p = internal_link
9: else

10: p = NIC
11: end if
12: if p ∈ LINKS(epc) then
13: return p
14: else
15: return internal_link
16: end if

Algorithm 2 ringDirection() function.
Require: current digit d_cur, destination digit d_des
Return: output port (D+, D−) //The letter D can be any dimension (X, Y or Z)
1: aux = (d_des− d_cur)mod k
2: if aux > k/2 then
3: aux = aux− k
4: end if
5: if aux ≥ 0 then
6: return D+

7: else
8: return D−

9: end if

Specifically, if we analyses the use of the internal link, we can distinguish 3 cases
(Figure 10), depending on the destination of the message after using the internal link:

1.- The message uses the internal link to be injected in a d-dimension and the internal
link does not belong to the d-dimension ring. In Figure 10 we can see how a
message that arrives from a link of the X-dimension or the Y + link, must use
the internal link to be injected in the Z-dimension (red dotted line).

2.- The message uses the internal link as a part of the d-dimension ring. The message
can cross the d-dimension before using the internal channel or can be injected
from another dimension. In Figure 10 we can see a message that arrives from the
X-dimension, as well as a message that crosses the Y -dimension, must use the
internal link to exit the node from the Y − port (yellow dotted line).

42

3.- The destination of the message is the PE connected to the other card in the node.
In this case, the message can arrive at the node from any link of the current card
(blue dotted line).

X+X-

Z+Z-

Y-

Y+

PE0 PE1

 Z Ring

X Ring

Y Ring

Card0

Card1

Figure 9: Rings corresponding to each dimension in any node in the network.

X+X-

Z+Z-

Y-

Y+

PE1PE0

Z Ring

X Ring

Y Ring

[2]

[3][1]

Figure 10: Possible uses of the internal link.

43

6.2.2 Types of cycles in 3DT torus topologies

From the previous study of possible uses of the internal link, we have identified two
possible types of cycles in which the internal channel is involved:

A.- Several messages use the internal link as part of the ring of d-dimension. Without
mechanisms to avoid deadlock, it can appear in any ring of a k-ary n-cube. This
type of cycle is caused by the traffic of type 2. Example 6.1 shows in more detail
a situation in which a deadlock appears due to this reason.

B.- Several messages use along their paths several internal links to be injected in a
new dimension and also to reach the destination PE. This type of cycle appears
due to the type of traffic 1 and 3. Example 6.2 shows in more detail a situation
in which a deadlock appears due to this reason.

Example 6.1 Given a 3DT torus network, with two nodes in Y -dimension and the
nodes using the configuration D, and considering that:

• PE0 in the 〈x, 0, z〉 node sends a message to PE0 of the 〈x, 1, z〉 node, and vice
versa.

• PE1 in the 〈x, 0, z〉 node sends a message to PE1 of the 〈x, 1, z〉 node, and vice
versa.

there exist cycles and deadlock can appear in the network. In Figure 11 we can see
graphically this situation.

X+X-

Z+Z-

Y-

Y+

PE1PE0

Z+Z-

X+X-

Y+

Y-

PE1PE0

<x, 0, z> <x, 1, z>

Card0

Card1 Card0

Card1

Figure 11: Possible deadlock due to the use of the internal link as a part of the
Y -dimension ring.

44

Example 6.2 Given a 3DT torus network of any size and nodes using configuration
D, and considering that:

• PE1 in the 〈x, y, z〉 node sends a message to PE0 in the 〈x+ 1, y, z + 1〉 node.

• PE1 in the 〈x+ 1, y, z + 1〉 node sends a message to PE0 in the 〈x, y, z〉 node.

there exist cycles and deadlock can appear in the network. In Figure 12 we can see
graphically this situation.

X+X-

Z+Z-

Y-

Y+

PE1PE0

X+X-

Z+Z-

Y-

Y+

PE1
PE0

X+X-

Z+Z-

Y-

Y+

PE1
PE0

X+X-

Z+Z-

Y-

Y+

PE1
PE0

<x, y, z>

<x+1, y, z>

<x, y, z+1>

<x+1, y, z+1>

Card0

Card1

Card0

Card1

Card0

Card1

Card0

Card1

Figure 12: Possible deadlock due to the use of the internal link to change between
dimensions and to reach the destination PE.

6.3 Deadlock-avoidance in 3DT torus topologies

Once we know how the cycles are produced, now we proceed to their elimination.
Two of the commonly used techniques to avoid deadlock in k-ary n-cubes are the
use of virtual channels [DS87] and the bubble flow control mechanism [CBGV97].
Considering only the external links of the nodes we can use these techniques in the
same way that are used in traditional tori, but it is necessary to modify them for
avoiding deadlock. Sections 6.3.1 and 6.3.2 present the modifications realized to the
DOR routing algorithm to avoid deadlock, using virtual channels and the bubble flow
control mechanism, respectively.

45

6.3.1 Virtual Channels

As mentioned above, new cycles appear in the network because all the dimensions use
the internal link. To break these cycles, it is necessary to multiplex the internal link
using virtual channels and treat the data stream of each dimension separately. It is also
necessary to route messages destined to the neighbor PE using an exclusive virtual
channel, to avoid the cycles of type B. Thus, the nodes require the following virtual
channels:

• One virtual channel for the messages using an output port and internal link
belonging to different dimensions (traffic type 1). In the modified algorithm for
the configuration D we choose the virtual channel 0 for this traffic type.

• Two virtual channels for the messages using an output port and internal link
belonging to the same dimension (traffic type 2). To choose which virtual channel
is used for routing the message, we use the same criteria as in the external channel.
If the current dimension digit of the destination node is greater than the digit of
the current node, the first virtual channel is chosen. In other case, the second
virtual channel is selected. In the modified algorithm for the configuration D we
choose the virtual channels 1 and 2 for this traffic type.

• One virtual channel for the messages whose destination is the neighbor PE. The
virtual channel 3 has been chosen for this traffic type in the modified algorithm.

Using these virtual channels, there are no cycles in the channel dependency graph and
thus the network is deadlock-free. The total number of virtual channels depends on
the node configuration. If the links of all dimensions are separated, it is necessary to
use 3×2 + 1 = 7 virtual channels (configurations A, B, E and F), while the rest of
configurations only need 1+ 1×2+ 1 = 4 virtual channels (configurations C, D, G, H,
I and J).

Algorithm 3 and 4 show the modifications realized in the routing algorithm and
ringDirection() function, respectively, whereas Figure 13 (a) shows graphically the use
of virtual channels depending on the type of traffic, always considering the configuration
D.

6.3.2 The Bubble flow control mechanism

In this case, it is also necessary to multiplex the traffic in the internal link, although
fewer channels are required to ensure the deadlock freedom. Therefore, the internal
link requires the following virtual channels:

• One virtual channel for the messages using an output port and the internal link
belonging to different dimensions (traffic type 1). In this case, the access to
the internal channel is not considered as a change of dimension, so to apply the
bubble is not necessary. The change of dimension is realized when the message

46

Algorithm 3 Modifications in the routing algorithm to avoid deadlock using virtual
channels and and configuration D.
Require: current node 〈xc, yc, zc, epc〉, destination node 〈xd, yd, zd, epd〉
Return: output port p, virtual channel vc
1: if xd 6= xc then
2: p = ringDirection(xc, xd)
3: else if yd 6= yc then
4: p = ringDirection(yc, yd)
5: else if zd 6= zc then
6: p = ringDirection(zc, zd)
7: else if epd 6= epc then
8: p = internal_link
9: vc = 3 // type 3.

10: else
11: p = NIC
12: end if
13: if p /∈ LINKS(epc) then
14: if p 6= Y + and p 6= Y − then
15: vc = 0 // type 1.
16: else if vc = Up_Links then
17: vc = 1 // type 2.
18: else
19: vc = 2 // type 2.
20: end if
21: p = internal_link
22: end if

Algorithm 4 Modifications in the ringDirection() function to avoid deadlock using
virtual channels and and configuration D.
Require: current digit d_cur, destination digit d_des
Return: output port p, virtual channel vc
1: aux = (d_des− d_cur)mod k
2: if aux > k/2 then
3: aux = aux− k
4: end if
5: if aux ≥ 0 then
6: p = D+

7: else
8: p = D−

9: end if
10: if d_des > d_cur then
11: vc = Up_Links
12: else
13: vc = Low_Links
14: end if

47

is injected into an external port from internal link. In the modified algorithm for
the configuration D we choose the virtual channel 0 for this traffic type.

• One virtual channel for the message using an output port and internal link
belong to the same dimension (traffic type 2). In this case, the internal link is
considered as a part of the ring dimension, so it is necessary to apply the bubble
if the message is injected from another dimension. In the modified algorithm for
configuration D we choose the virtual channel 1 for this traffic type.

• One virtual channel for the messages whose destination is the neighbor PE. The
bubble is not necessary because the next destination of the message is the NIC
and the bubble only reduces the performance of the link. The virtual channel 2
has been chosen for this traffic type in the modified algorithm.

This mechanism ensures the deadlock freedom in the network. If the links of all
dimensions are separated, it is necessary to use 3×1 + 1 = 4 virtual channels (
configurations A, B, E and F), while the rest of configurations only need 1+1+1 = 3
virtual channels (configurationsC, D, G, H, I and J).

Algorithm 6 and 5 show the modifications realized in the routing algorithm and
ringDirection() function, respectively, whereas Figure 13 (b) shows graphically the use
of virtual channels depending on the type of traffic, always considering the configuration
D.

Algorithm 5 Modifications in the ringDirection() function to avoid deadlock using
the bubble flow control and the configuration D.
Require: current digit d_cur, destination digit d_des, input port pin
Return: output port pout, activating bubble bub
1: aux = (d_des− d_cur)mod k
2: if aux > k/2 then
3: aux = aux− k
4: end if
5: if aux ≥ 0 then
6: pout = D+

7: else
8: pout = D−

9: end if
10: if pin = D+ o pin = D− then
11: bub = false
12: else if (pout = Y + o pout = Y −) and pin = internal_link then
13: bub = false
14: else
15: bub = true
16: end if

48

Algorithm 6 Modifications in the routing algorithm to avoid deadlock using the
bubble flow control and the configuration D.
Require: current node 〈xc, yc, zc, epc〉, destination node 〈xd, yd, zd, epd〉
Return: output port p, virtual channel vc
1: if xd 6= xc then
2: p = ringDirection(xc, xd)
3: else if yd 6= yc then
4: p = ringDirection(yc, yd)
5: else if zd 6= zc then
6: p = ringDirection(zc, zd)
7: else if epd 6= epc then
8: p = internal_link
9: vc = 2 // type 3.

10: bub = false
11: else
12: p = NIC
13: bub = false
14: end if
15: if p /∈ LINKS(epc) then
16: if p 6= Y + and p 6= Y − then
17: vc = 0 // type 1.
18: bub = false
19: else
20: vc = 1 // type 2.
21: end if
22: p = internal_link
23: end if

X+X-

Z+Z-

Y-

Y+

PE1PE0

[1]

[2]

[3]

(a) Virtual Channels

X+X-

Z+Z-

Y-

Y+

PE1PE0

[1]

[2]

[3]

(b) Bubble flow control

Figure 13: Solutions to eliminate deadlock using the configuration D.

49

7 Performance evaluation of the topology

In this section we evaluate the 3DT torus topology. Two kinds of results are included:
On the one hand, we compare all the node configurations, not only for corroborating the
theoretical results of the study presented in previous sections, but mainly to evaluate
the performance differences among all the port configurations. On the other hand, we
also compare the performance of the 3DT torus network with the performance of the
equivalent 2D torus network.

The evaluation of the topologies has been realized using a network simulator. In
Section 7.1 we describe the features of the simulator used, while Section 7.2 includes
the set of metrics used for performance evaluation. Finally, we show the experiments
and the results obtained for the evaluation of different node configurations and the
comparison between the 2D and the 3DT torus in Sections 7.3 and 7.4, respectively.

7.1 System Model

As mentioned above, the evaluation of the port configurations of the 3DT torus
topology has been performed by simulation. To model the different topologies, we
have used a 5-port switch (4 ports for interconnecting switches and one port for
connecting the switch with its PE), whose features are the same, regardless of the
modeled topology. Depending on the topology and solution chosen to eliminate the
deadlock, the only differences between switches of different networks are the routing
algorithm, the organization of the virtual channels in the physical channels and if the
flow bubble mechanism is implemented or not.

Specifically, we have implemented an IQ (Input Queued) switch [KH98, MIM+97].
In this type of switches, there are only buffers in the input ports (Figure 14). These
buffers are used if a packet cannot be routed to the corresponding output port.

Figure 14: Scheme of an IQ switch.

The chosen switching technique for simulations is virtual cut–through, because it
is commonly used in the supercomputer area. Since PEs are not integrated in the
switch, the switch area destined to storage is less-restrictive than in other computation
systems. Furthermore, this switching technique is less sensitive to the network diameter
than other techniques, making it ideal for networks with a high number of nodes.

50

For the arbiter unit, we have modeled a two stages round-robin arbiter: in a first
step, the arbiter chooses an input port with packets that can pass through the crossbar;
then the arbiter chooses a virtual channel of this port (if it is necessary).

In the 2D torus, we have implemented the DOR routing algorithm, whereas in
the 3DT torus we have used the modified DOR algorithm described in Section 6. In
all the cases, the flow control is credit-based, but the use of the bubble flow control
mechanism depends on the solution chosen to eliminate the deadlock.

In all the cases, the size of physical channels is the same. In all the experiments,
the size of physical channels is 128 flits, and the size of the packets is 4 flits. The
number and size of virtual channels depend on the topology and the solution used to
remove the deadlock:

• Bubble flow control:

– 2D torus topology :

∗ 1 link to the PE with a single virtual channel of 128 flits.
∗ 4 interconnection links with a single virtual channel of 128 flits.

– 3DT torus topology :

∗ 1 link to the PE with a single virtual channel of 128 flits.
∗ 3 interconnection links with a single virtual channel of 128 flits.
∗ 1 interconnection link (internal link) with 4 virtual channels5 of 32 flits.

• Virtual Channels:

– 2D torus topology :

∗ 1 link to the PE with 4 virtual channels of 32 flits.
∗ 4 interconnection links with 4 virtual channels of 32 flits.

– 3DT torus topology (configurations C, D, G, H, I and J):

∗ 1 link to the PE with 4 virtual channels of 32 flits.
∗ 3 interconnection links with 4 virtual channels6 of 32 flits.
∗ 1 interconnection link (internal link) with 4 virtual channels of 32 flits.

– 3DT torus topology (configurations A, B, E and F):

∗ 1 link to the PE with 4 virtual channels of 32 flits.
∗ 3 interconnection links with 4 virtual channels of 32 flits.
∗ 1 interconnection link (internal link) with 8 virtual channels7 of 16 flits.

5Although it is only necessary to use 3 virtual channels, we use 4 virtual channels to make the
implementation easier. For the traffic type 1 we have used two virtual channels instead of just one,
choosing the destination virtual channel on the output port of the dimension in function of the output
port.

6Although only two virtual channels are needed, four have been chosen to make the implementation
easier.

7We have chosen eight virtual channels instead of seven to facilitate the implementation. The extra
virtual channel is used for the traffic destined to the neighbor PE.

51

Finally, we have modeled an uniform traffic pattern. In a network with N
processing elements, the destination of a message generated in a PE can be any of
the remaining N − 1 PEs, with equal probability.

7.2 Metrics for the performance evaluation

For the performance evaluation, we have considered the following metrics:

• Average throughput. Measured in packets/cycle, it indicates the productivity
of the network, i.e., the amount of information that the network can deliver per
unit time.

• Average network latency. This value represents the average of the delays
produced by the transmission of packets on the network measured in cycles. The
latency of a message measures the number of cycles that elapse since the message
is injected into a network switch from the NIC connected to the source PE until
it is received by the NIC connected to the destination PE.

• Average end-to-end latency. The end-to-end latency measures the number of
cycles that elapse since a message is generated by the NIC associated with the
source PE until it is received at the NIC associated with the destination PE.
This value represents the average end-to-end latency in the network.

7.3 Evaluation of different 3DT torus configurations

In this section we study, for a 3DT torus, the influence of the node configuration on
the network performance. In first place, we describe the realized experiments, followed
by the presentation of obtained results. Finally, we present a short analysis of these
results.

7.3.1 Experiments

To evaluate the performance of different configurations, we have performed a set of
tests, varying in each case the size of the network, the node configuration and the
solution used to avoid deadlock. Each test consists of 30 experiments and the results
presented in the next section are the average value of those 30 experiments. We take
into account the next consideration to make the tests:

• We study the following topologies:

– 3DT 4×4×2 torus, 64 PEs8.

8Each node in the network has 2 PEs.

52

– 3DT 4×4×4 torus, 128 PEs.
– 3DT 5×5×5 torus, 250 PEs.
– 3DT 6×6×6 torus, 432 PEs.

• Deadlock-avoidance mechanism:

– Bubble flow control.
– Virtual channel.

• We have tested the 10 node configurations studied (A-J).

7.3.2 Results

In this section we present graphically the results obtained in the experiments. Figure
15 shows, for a 3DT 4×4×2 torus, how productivity, network latency and end to end
latency evolve when increasing the injection rate of the PEs in the network, for each
configuration. The results of 128, 250 and 432 PEs are shown in Figures 16, 17 and
18, respectively.

7.3.3 Analysis of the results

Considering the presented results, the configuration D generally obtains the best
performance. Only in the 64-PEs torus there are others configurations that behave
similarly to the configuration D. Even so, as the size of the network is increased, the
performance differences between the configuration D and the rest of configurations
become more significant. These results are entirely consistent with the results of the
theoretical study presented in Section 5.

For example, whereas in the 128-PEs torus with the bubble flow control the
throughput of configuration D is 10% ∼ 23%9 (depending on the configuration) higher
than the rest of configurations, in the 250-PEs torus the throughput is 15% ∼ 33%
higher. The same happens with the network and the end-to-end latency: these are
reduced 5% ∼ 20% and 20% ∼ 40%, respectively, in 128-PEs torus, while the decrease
in the 250-PEs torus is 12% ∼ 28% and 30% ∼ 50%.

Note that in the 250-PEs torus (k = 5), the configuration G obtains similar
performance that configuration D. Again, this is consistent with the results of the
theoretical study, as both configurations are optimal if k is odd. We can see how the
rest of configurations are grouped in two sets with similar performance, as expected.

In the 3DT torus using virtual channels to avoid deadlock, the throughput is
reduced when network reaches the saturation point. This decrease is higher when the
network size increases. This problem is due to network congestion and is typical in

9The expression a% ∼ b% means that the percentages range from a% to b%. In this case, the
throughput ranges 10% to 23%.

53

these architectures [Bol92, Izu06]. The performance degradation causes the throughput
of 250-PE torus with node configuration D or G is the same that the throughput in
torus using the configuration C, H, I and J . Even so, the network and end-to-end
latencies are still 10% lower. In 432-PE torus, all the configurations are affected by
the negative impact of congestion, but configuration D and G are the most resistant
to performance degradation. This problem does not appear in the switches with the
bubble flow mechanism implemented.

Taking into account the previous results, which coincide with the results of the
theoretical study, for clarity reasons in the next tests of the 3DT torus topology we
only use the node configuration D.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

1

2

3

4

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

10000

20000

30000

40000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(a) Bubble Flow Control

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

1

2

3

4

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

100

200

300

400

500

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

5000

10000

15000

20000

25000

30000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(b) Virtual Channel

Figure 15: Network performance obtained for all the configurations of a 3DT 4×4×2
torus (64 PEs).

54

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

1

2

3

4

5

6

7
T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)
Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

200

400

600

800

1000

1200

1400

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

5000

10000

15000

20000

25000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(a) Bubble Flow Control

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

100

200

300

400

500

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

5000

10000

15000

20000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(b) Virtual Channel

Figure 16: Network performance obtained for all the configurations of a 3DT 4×4×4
torus (128 PEs).

55

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

1000

2000

3000

4000

5000

6000

7000

8000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(a) Bubble Flow Control

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

100

200

300

400

500

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Injection rate (messages/cycle/PE)

0

1000

2000

3000

4000

5000

6000

7000

8000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(b) Virtual Channel

Figure 17: Network performance obtained for all the configurations of a 3DT 5×5×5
torus (250 PEs).

56

0.2 0.6 0.10 0.14 0.18 0.22 0.26 0.30 0.34

Injection rate (messages/cycle/PE)

0

2

4

6

8

10

12

14

16

18
T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)
Configuration

A

B

C

D

E

F

G

H

I

J

0.2 0.6 0.10 0.14 0.18 0.22 0.26 0.30 0.34

Injection rate (messages/cycle/PE)

0

500

1000

1500

2000

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.2 0.6 0.10 0.14 0.18 0.22 0.26 0.30 0.34

Injection rate (messages/cycle/PE)

0

2000

4000

6000

8000

10000

12000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(a) Bubble Flow Control

0.2 0.6 0.10 0.14 0.18 0.22 0.26 0.30 0.34

Injection rate (messages/cycle/PE)

0

2

4

6

8

10

12

14

16

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Configuration

A

B

C

D

E

F

G

H

I

J

0.2 0.6 0.10 0.14 0.18 0.22 0.26 0.30 0.34

Injection rate (messages/cycle/PE)

0

100

200

300

400

500

600

700

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

0.2 0.6 0.10 0.14 0.18 0.22 0.26 0.30 0.34

Injection rate (messages/cycle/PE)

0

2000

4000

6000

8000

10000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Configuration

A

B

C

D

E

F

G

H

I

J

(b) Virtual Channel

Figure 18: Network performance obtained for all the configurations of a 3DT 6×6×6
torus (432 PEs).

57

7.4 Comparison of the 3DT torus with the 2D torus

In this section we compare the performance of 2D and 3DT torus topologies, for
networks with the same number of PEs. In first place, we describe the realized
experiments and present the obtained results, including a short analysis of these results.

7.4.1 Experiments

Just as in the node configuration evaluation, we have realized a set of tests consisting 30
different experiments for each test. We have taken into account the next considerations
to make the tests:

• The following topologies are compared:

– 64 PEs network:

∗ 2D 8×8 torus.
∗ 3DT 4×4×2 torus.

– 128 PEs network:

∗ 2D 16×8 torus.
∗ 3DT 4×4×4 torus.

– 256 (250) PEs network:

∗ 2D 16×16 torus.
∗ 3DT 8×4×4 torus.
∗ 3DT 5×5×5 (250 PEs) torus10.

– 432 (441) PEs network:

∗ 2D 24×18 torus.
∗ 2D 21×21 (441 PEs) torus11.
∗ 3DT 8×4×4 torus.

– 1024 PEs network:

∗ 2D 32×32 torus.
∗ 3DT 8×8×8 torus.

• All 3DT tori use the configuration D.

• Deadlock-avoidance mechanism:

– Bubble flow control.

– Virtual channel.

10This network size was chosen because it allows to build a 3DT torus with the same number of
nodes in all dimensions and the number of nodes is closer to 256 nodes.

11This network size allows to build a 2D torus with the same number of nodes in all dimensions
and the number of nodes is closer to 432 nodes.

58

7.4.2 Results

In this section we present graphically the results obtained in the experiments. Figure
19 shows the obtained results for the network with 64 PEs (left) and 128 PEs (right),
whereas Figure 20 shows the results of 256 PEs (left) and 432 PEs. Finally, Figure
21 shows the results of 1024 PEs torus. (right) networks.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection rate (messages/cycle/PE)

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Topology / deadlock

2D (8x8) / bub

2D (8x8) / vc

3DT (4x4x2) / bub

3DT (4x4x2) / vc

0.05 0.1 0.15 0.2 0.25 0.3

Injection rate (messages/cycle/PE)

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Topology / deadlock

2D (16x8) / bub

2D (16x8) / vc

3DT (4x4x4) / bub

3DT (4x4x4) / vc

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection rate (messages/cycle/PE)

0

100

200

300

400

500

600

700

800

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
) Topology / deadlock

2D (8x8) / bub

2D (8x8) / vc

3DT (4x4x2) / bub

3DT (4x4x2) / vc

0.05 0.1 0.15 0.2 0.25 0.3

Injection rate (messages/cycle/PE)

0

200

400

600

800

1000

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
) Topology / deadlock

2D (16x8) / bub

2D (16x8) / vc

3DT (4x4x4) / bub

3DT (4x4x4) / vc

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection rate (messages/cycle/PE)

0

5000

10000

15000

20000

25000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Topology / deadlock

2D (8x8) / bub

2D (8x8) / vc

3DT (4x4x2) / bub

3DT (4x4x2) / vc

0.05 0.1 0.15 0.2 0.25 0.3

Injection rate (messages/cycle/PE)

0

5000

10000

15000

20000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Topology / deadlock

2D (16x8) / bub

2D (16x8) / vc

3DT (4x4x4) / bub

3DT (4x4x4) / vc

Figure 19: Network performance obtained for 2D and 3DT torus with 64 and 128 PEs.

59

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3

Injection rate (messages/cycle/PE)

0

2

4

6

8

10

12

14

T
h
ro

u
g

h
p

u
t

(m
e
s
s
a
g

e
s
/c

y
c
le

)

Topología / deadlock

2D (16x16) / bub
2D (16x16) / vc
3DT (8x4x4) / bub
3DT (8x4x4) / vc
3DT (5x5x5) / bub
3DT (5x5x5) / vc

0.2 0.6 0.10 0.14 0.18 0.22

Injection rate (messages/cycle/PE)

0

5

10

15

T
h
ro

u
g

h
p

u
t

(m
e
s
s
a
g

e
s
/c

y
c
le

)

Topología / deadlock

2D (24x18) / bub
2D (24x18) / vc
2D (21x21) / bub
2D (21x21) / vc
3DT (6x6x6) / bub
3DT (6x6x6) / vc

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3

Injection rate (messages/cycle/PE)

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
) Topology / deadlock

2D (16x16) / bub

2D (16x16) / vc

3DT (8x4x4) / bub

3DT (8x4x4) / vc

3DT (5x5x5) / bub

3DT (5x5x5) / vc

0.2 0.6 0.10 0.14 0.18 0.22

Injection rate (messages/cycle/PE)

0

200

400

600

800

1000

1200

1400

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
) Topology / deadlock

2D (24x18) / bub

2D (24x18) / vc

2D (21x21) / bub

2D (21x21) / vc

3DT (6x6x6) / bub

3DT (6x6x6) / vc

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3

Injection rate (messages/cycle/PE)

0

2000

4000

6000

8000

10000

12000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Topology / deadlock

2D (16x16) / bub

2D (16x16) / vc

3DT (8x4x4) / bub

3DT (8x4x4) / vc

3DT (5x5x5) / bub

3DT (5x5x5) / vc

0.2 0.6 0.10 0.14 0.18 0.22

Injection rate (messages/cycle/PE)

0

2000

4000

6000

8000

10000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Topology / deadlock

2D (24x18) / bub

2D (24x18) / vc

2D (21x21) / bub

2D (21x21) / vc

3DT (6x6x6) / bub

3DT (6x6x6) / vc

Figure 20: Network performance obtained for 2D and 3DT torus with 256 and 432
PEs.

60

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection rate (messages/cycle/PE)

0

10

20

30

40
T
h
ro

u
g
h
p
u
t

(m
e
s
s
a
g
e
s
/c

y
c
le

)

Topology / deadlock

2D (32x32) / bub

2D (32x32) / vc

3DT (8x8x8) / bub

3DT (8x8x8) / vc

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection rate (messages/cycle/PE)

0

500

1000

1500

2000

A
v
e
ra

g
e
 n

e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
) Topology / deadlock

2D (32x32) / bub

2D (32x32) / vc

3DT (8x8x8) / bub

3DT (8x8x8) / vc

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection rate (messages/cycle/PE)

0

500

1000

1500

2000

2500

3000

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Topology / deadlock

2D (32x32) / bub

2D (32x32) / vc

3DT (8x8x8) / bub

3DT (8x8x8) / vc

Figure 21: Network performance obtained for 2D and 3DT torus with 1024 PEs.

7.4.3 Analysis of the results

As expected after the results of the theoretical study, the 3DT torus obtains better
performance than 2D torus in networks with more than 128 processing elements
(k ≥ 4). Only the performance of the 64-PEs 2D torus is higher than the equivalent
3DT torus. Moreover, the 8×4×4 3DT torus obtains worse results than its equivalent 2D
torus, but this happens because the number of nodes is not the same in all dimensions.
However, the 5×5×5 3DT torus, with the same size in the three dimensions, obtains
a higher throughput and smaller network and end-to-end latency than the 2D torus
whose number of nodes is approximately the same.

The 6×6×6 3DT torus also obtains worse network throughput than the equivalent
21×21 torus. This is due to the number of nodes is not exactly the same. However
the throughput per node in the 21×21 torus is almost the same as the throughput per
node in the 6×6×6 3DT torus. Although the network throughput is similar in both
cases, the network latency is 35% higher in the 2D torus.

Regarding the decrease of performance experimented in the topologies using
virtual channels to avoid deadlock, we can see how the decrease is higher in the 2D
torus topology. Despite using the same switch in both cases, the 3DT torus topology is
more resistant to the negative effect of congestion. Whereas the throughput decrease

61

in 2D torus is 50% ∼ 60%, it is only 10% ∼ 20% in the 3DT torus.

As a result, there are large differences between the throughput obtained in the
2D torus and the 3DT torus. The 2D torus only reaches 50% (256 PEs), 47% (432
PEs) and 40% (1024 PEs) of the throughput obtained by its equivalent 3DT torus.
These differences are shorter if the topology uses the bubble flow control mechanism,
the 3DT torus only gets 15% more throughput than its equivalent 2D torus.

Finally, the graphs show the network latency is smaller if the network using virtual
channels (up to 50% less), but using the bubble flow control mechanism the throughput
increases 20% and the end-to-end latency is decreased, although the differences between
the end-to-end latency become insignificant when the size of the network increases. As
discussed above, the congestion decreases the throughput in the network using virtual
channels, which obtain worse throughput and end-to-end latency than the network
using the bubble flow control mechanism.

8 Conclusions and Future Work

8.1 Conclusions

After analyzing the results obtained in Section 7, the most relevant conclusions are the
following:

• As expected from the result of theoretical study, the node configuration D
(and G if k is even) for the 3DT torus obtains the best performance in
networks larger than 128 PEs, although, due to the decrease of performance when
the switches use virtual channels to avoid deadlock, there are other configurations
that obtain similar performance than the configuration D. In any case, if the
switches use the bubble flow control mechanism, the configuration D gets the
highest performance.

• The 3DT torus topology obtains a higher performance than a 2D torus
topology with the same or similar size, larger than 128 PEs, and using the
same switch in both networks. Besides, the differences between the network
performance become greater when the network size increases.

• Using the bubble flow control mechanism, the network obtains a higher
throughput and a lower end-to-end latency, although the network latency
increases respect the network built with switches using virtual channels to avoid
deadlock.

• If switches use virtual channels for avoiding deadlock, the 3DT torus topology
is more resistant to performance degradation caused by congestion than
its equivalent 2D torus with the same number of PEs.

62

8.2 Future work

The work that we have presented in this document can be expanded in several ways.
In the following, we present the research lines that could be followed in the future:

• For modeling the traffic load, we have only used a uniform traffic pattern. It is
very interesting to study the performance of the 3DT torus and its configuration
using other traffic patterns, and especially, real traffic loads, generated by
scientific applications that perform their calculations on a 3D environment.

• It is also interesting to study how the different implementations of the 3DT
torus influence on other aspects of the network, as the switch area or the power
consumption.

• Another interesting idea is the development of adaptive routing algorithms that
would take into account the internal structure of the node and try to minimize
the use of the internal link.

• Extend the theoretical and simulation study presented here, but now for
n-dimensional torus. Using cards with 6 ports or more and using the same
approach as explained in this work, it is possible to build topologies with more
dimensions.

References

[AAA+02] N.R. Adiga, G. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto,
G. Bhanot, R. Bickford, M. Blumrich, and A. A. Bright. An overview of
the blue gene/l supercomputer. In Supercomputing 2002 Technical Papers,
2002.

[Bol92] Kevin Bolding. Non-uniformities introduced by virtual channel deadlock
prevention. Technical report, 1992.

[CBGV97] C. Carrion, R. Beivide, J.A. Gregorio, and F. Vallejo. A flow control
mechanism to avoid message deadlock in k-ary n-cube networks. In
High-Performance Computing, 1997. Proceedings. Fourth International
Conference on, pages 322–329, dec 1997.

[DMS95] J. J. Dongarra, H. W. Meuer, and E. Strohmaier. TOP500 supercomputer
sites. j-SUPERCOMPUTER, 11(2–3):133–163, June 1995.

[DS87] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. Computers, IEEE Transactions on, C-36(5):547
–553, may 1987.

63

[DYN03] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection
networks. An engineering approach. Morgan Kaufmann Publishers Inc.,
2003.

[IBM08] IBM Blue Gene Team. Overview of the ibm blue gene/p project. IBM
Journal of Research and Development, 52(1/2), 2008.

[Inc09] Cray Inc. Jaguar supercomputer. Cray XT5-HE. http://www.nccs.gov/

jaguar/, 2009.

[Inc11] Cray Inc. Hopper supercomputer. Cray XT5-He. http://www.nersc.gov/
users/computational-systems/hopper/, 2011.

[Izu06] Cruz Izu. Throughput fairness in k-ary n-cube networks. In Proceedings
of the 29th Australasian Computer Science Conference - Volume 48, ACSC
’06, pages 137–145, Darlinghurst, Australia, Australia, 2006. Australian
Computer Society, Inc.

[KH98] M. Karol and M. Hluchyj. Queuing in high-performance packet-switching.
IEEE Journal on Selected Areas, 1:1587–1597, 1998.

[Lei85] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Transactions on Computers, 34(10):892–901, 1985.

[MIM+97] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz.
The tiny tera: A packet switch core. IEEE Micro, 17:27–33, 1997.

[VRB+11] Courtenay Vaughan, Mahesh Rajan, Richard Barrett, Doug Doerfler,
and Kevin Pedretti. Investigating the impact of the Cielo Cray XE6
architecture on scientific application codes. In Proceedings of the 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops
and PhD Forum, IPDPSW’11, pages 1831–1837, Washington, DC, USA,
2011. IEEE Computer Society.

64

http://www.nccs.gov/jaguar/
http://www.nccs.gov/jaguar/
http://www.nersc.gov/users/computational-systems/hopper/
http://www.nersc.gov/users/computational-systems/hopper/

A Diameter and average distance of an n-dimensional

torus

We include in this appendix the calculation of the diameter and the average distance
for an n-dimensional torus. The case where the number of nodes in each dimension is
even has a special interest because of the initial hypotheses considered in this technical
report (Section 4).

Given an n-dimensional torus, with k0×k1×. . .×kn−1 nodes, ki nodes in dimension
i, 0 ≤ i < n, we compute the expressions that determine its diameter (D) and its
average distance (davg).

The largest, minimal path over all pairs of nodes is that crossing all dimensions,
and traveling the greatest distance in each dimension. In an n-dimensional torus, every
dimension is a bidirectional ring, so the diameter of a torus is:

D =

⌊

k0
2

⌋

+

⌊

k1
2

⌋

+ ... +

⌊

kn−1

2

⌋

if all ki are even, we have

D =
k0
2

+
k1
2

+ ... +
kn−1

2

and if ki = k, 0 ≤ i < n, then

D = n
k

2

Similarly, the average distance will be the addition of the average distance in
each dimension of the torus. As each dimension of the torus is a bidirectional ring of
ki nodes, and considering the special case where ki is even, for each node there are:

• One node at 0 hops (the node itself).

• Two nodes at 1 hop.

...

• Two nodes at ki/2− 1 hops.

• One node at ki/2 hops.

So, the average distance in the ring is:

davg_ring =
1

ki

(

(2× 1) + (2× 2) + · · ·+ (2×

(

ki
2
− 1

)

) +
ki
2

)

davg_ring =

ki
2
+ 2

ki

2
−1
∑

i=1

i

ki
=

ki
2
+ 2

(ki
2
− 1)ki

2

2
ki

=

ki
2
+

k2
i

4
−

ki
2

ki
=

k2
i

4
ki

=
ki
4

65

and the average distance in the torus is:

davg =
k0
4

+
k1
4

+ ... +
kn−1

4

and if ki = k, 0 ≤ i < n, then

davg = n
k

4

66

	Abstract
	Introduction
	3DT torus topology model
	Notation
	3DT torus topology definition
	3DT torus topology configuration

	Analysis of the 3DT torus only considering the topology
	Analysis of the 3DT torus also considering routing and traffic
	Informal Description
	Formal Study
	Useful definitions
	Sets NPs and NPd for the node "426830A x,y,z "526930B
	DPs and DPd values for the node "426830A x,y,z "526930B
	Paths that pass through the node "426830A x,y,z "526930B
	Evaluation of the port configurations
	Analysis of the results

	Routing in 3DT torus
	DOR routing algorithm adapted for 3DT torus topology
	Analysing the of cycles in 3DT torus topologies
	Types of traffic in the internal link
	Types of cycles in 3DT torus topologies

	Deadlock-avoidance in 3DT torus topologies
	Virtual Channels
	The Bubble flow control mechanism

	Performance evaluation of the topology
	System Model
	Metrics for the performance evaluation
	Evaluation of different 3DT torus configurations
	Experiments
	Results
	Analysis of the results

	Comparison of the 3DT torus with the 2D torus
	Experiments
	Results
	Analysis of the results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Diameter and average distance of an n-dimensional torus

