
University of Castilla–La Mancha

A publication of

Department of Computing Systems

N-dimensional Twin Torus Networks∗

by

F.J. Andújar, J.A. Villar, F.J. Alfaro, J.L. Sánchez, J. Duato

Technical Report #DIAB-13-10-1 October 2013

(*) This work has been jointly supported by the MINECO and European Commission
(FEDER funds) under the projects TIN2012-38341-C01 and TIN2012-38341-C04.
Francisco J. Andujar is also funded by the Spanish Ministry of Science and Innovation
MICINN under FPU grant AP2010-4680.

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS
ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA

UNIVERSIDAD DE CASTILLA–LA MANCHA
CAMPUS UNIVERSITARIO s/n

02071, ALBACETE, SPAIN
Phone +34.967.599200, Fax +34.967.599224

2

N-dimensional Twin Torus Networks

Francisco J. Andújar, Juan A. Villar, Francisco J. Alfaro, José L. Sánchez

Computing Systems Department

Faculty of Computer Science Engineering

University of Castilla-La Mancha

02071 – Albacete, Spain

{fandujar, juanan, falfaro, jsanchez}@dsi.uclm.es

José Duato

Department of Systems Data Processing and Computers

Polytechnic University of Valencia

46022 – Valencia, Spain

jduato@gap.upv.es

3

4

Contents

1 Introduction 7

2 The nDT torus topology 9

2.1 Notation . 9

2.2 nDT torus definition . 10

3 Analysis of the port configuration of the nDT torus. 11

3.1 Sets NP
s and NP

d for the node 〈o0 . . . on−1〉 12

3.1.1 DP
s and DP

d values for the node 〈o0 . . . on−1〉 13

3.2 Paths that pass through the node 〈o0 . . . on−1〉 15

3.3 Optimal port configuration in a nDT torus 17

3.3.1 Defining the optimal configuration CBest 18

3.3.2 Calculating the usage of the internal link considering CBest . . . 19

3.4 Some properties related to PATH(i) 21

3.5 Demonstrating that CBest is the optimal configuration 25

4 Routing in nDT torus 28

4.1 DOR routing algorithm adapted for nDT torus topology 28

4.2 Analysing the deadlock in nDT torus 30

4.3 Deadlock-avoidance in nDT torus topologies 32

5

6

Abstract

Torus topology is one of the most common topologies used in the largest
supercomputers. It is chosen for its attractive properties related to cost,
implementation or scalability. In the market, there are low–profile communication
expansion cards that have a reduced number of ports that is not enough to build
tori of a certain number of dimensions. For instance, by means of one four-port
card per node, a 2D torus topology could be built, but not a 3D torus topology.
However, two of these cards can be used per node to build a 3D torus topology
[4, 5] (3DT torus). Although there are several ways of assigning the dimension
and direction of the ports of the two cards for a 3DT torus in the previous
reference, it has been proved which is the optimal port configuration. This paper
extends and generalizes that previous work in order to obtain the optimal port
configuration when n dimensions are considered. Thus, the nDT torus topology
is defined and a detailed formal analysis leads to the optimal port configuration.
Moreover, some comments about routing algorithm in nDT torus are included.

1 Introduction

The high number of nodes in large supercomputers imposes severe requirements on the
interconnect system design, and therefore high–performance interconnection networks
are mandatory in large supercomputers and clusters dominating the supercomputing
market. In such systems, the network topology plays a major role in determining the
overall system performance. There are many factors that may affect the choice of an
appropriate network topology, but for this kind of systems, fat–tree [13] and torus [11]
are usually the preferred topologies for indirect and direct networks, respectively.

In a fat–tree network every node has equal access bandwidth to every node.
Therefore, this topology is very appropriate for running large scale applications which
generate a lot of communication among all the nodes. However, the more a system
grows, the more the fat–tree topology shows limits of cost, consumption, reliability
and, very important, scalability. In contrast, the 3D torus topology provides a reduced
hardware cost and an excellent scalability.

Torus topology belongs to the n–cube k–ary family that consists of n dimensions
with k nodes in each dimension, with a total of kn nodes. In particular, a 3D torus
is a 3–cube k–ary topology. This topology has low radix and diameter, allowing an
easy implementation and reducing the latency of the communications. In general, the
cabling of the 3D torus network is simpler, allowing shorter cables, and if expansions
are required, this topology can be added to with little re-cabling. Moreover, it is also
important that the scalability cost is linear. Finally, torus supports several routing
algorithms that increase path diversity so that the fault tolerance and load balance
become feasible. Additionally, the topology maps very well several well–known traffic
patterns generated by current scientific-purpose applications. In particular, torus
topology is the best for applications with high locality level, such as applications that
use 3D mathematical models.

7

The 3D torus topology is one of the most common topologies used in the largest
supercomputers in the Top500 list [10]. For example, the Gemini system interconnect
[3] employed in Titan [14] (actually, the second supercomputer at the Top500 list), the
supercomputers of Cray’s XT5 [8] family or the supercomputers of the Blue Gene/L
[1] family. Some of these systems were also at the top in previous Top500 list.

To obtain a 3D torus, six ports (or links) per node are needed, two for each
dimension. These six ports can be offered by a single switch or several low–profile
expansion cards. Usually these low–profile expansion cards are incorporated in each
node of a cluster. As today it is also usual that each node of the cluster is 1U (1.75
inches) tall, manufactures provide low–profile expansion cards with few communication
ports. For instance, it is possible to build 2D torus with four–port cards (one per node),
but not a 3D torus. However, two of these cards can be used per node to build a 3D
torus topology.

As shown in Figure 1, one port of each card would be used to interconnect the two
cards, and the remaining ports for inter–node communication. We called this topology
3D Twin torus or just 3DT torus. The 3DT torus topology offers a great advantage
respect to the 2D torus topology: using the same 4–port card, the 3DT torus offers a
lower distances between nodes. So, the network latency is reduced and the throughput
is increased, only changing the topology and without extra economic investment.

There are significant challenges in 3DT torus design. Two of them stand out
specially: port configuration and deadlock problem. The manner in which the ports of
the two cards are assigned to the dimensions and their directions has a great influence
on the communication performance. In order to reduce the latency, it is necessary to
avoid as much as possible the paths that pass through the node using the two cards. If
successful, the cost of the communication would be noticeably reduced. The six ports
of the node are split in two groups, and every group is assigned to one of the cards, as
shown in Figure 1. The ports of the 3DT torus topology have an assigned dimension
(i.e., d0, d1, d2) and direction (i.e., positive or negative), which have to be established
in the network deployment. There are several ways of assigning the dimension and
direction to the ports (port configurations), and each one has a different performance
level. In [4], we presented a detailed study of the behavior of all the port configurations,
and determined by means a formal analysis which is the best of them.

On the other hand, it is probable that deadlock appears in the 3DT torus network.
This problem occurs because the link interconnecting the two cards can be used for any
message in the network, independently of the dimension that the message is crossing.
This causes new cycles in the 3DT torus network that do not appear in a 3D torus
built directly with 6-port cards.

Recently, some networks used in large supercomputers build n-cube topologies
with more than three dimension. For instance, supercomputers of IBM’s Blue Gene/Q
family [7] uses a five dimensional torus network, while the proprietary network Tofu
[2] uses a six dimensional torus. Also, these networks are implemented in some of the
supercomputers at the Top500 list, like Fujitsu’s K-Computer [15] (Tofu) or Sequoia
[12], Juqueen and Vulcan (IBM’s Blue Gene/Q).

8

For this reason, we extend the work realized in [4, 5] in this paper, in order to
define the nDT torus topology and to obtain the optimal port configuration, when
n dimensions are considered instead of only three dimensions. We have focused our
attention on the first challenge described above and have presented in this work a
detailed formal analysis to obtain the optimal port configuration. Also, we have
included a brief analysis about the deadlock in the nDT topology and how to avoid it.

The rest of the paper is organized as follows: In Section 2 the nDT torus topology
is defined. Section 3 provides the formal analysis that leads to the optimal port
configuration in Section 3.3. Finally, in Section 4, we presented a brief description
of the routing algorithm implemented in the nDT torus.

2 The nDT torus topology

In this section we define the nDT torus topology. Previously, we introduce the notation
to be used in the rest of the document, which is commonly used to treat with general
torus topologies.

2.1 Notation

The following notation is used bellow:

• n: number of dimensions of the torus, where n ≥ 2.

• k: number of nodes in every dimension of the nD torus. Note that the same
number of nodes in each dimension is assumed and k ≥ 3.

• 〈o0o1 . . . oi . . . on−2on−1〉: nD torus node identifier, 0 ≤ i < n and 0 ≤ oi < k.

• di: a dimension of the nD torus, 0 ≤ i < n.

• d+i , d
−

i : ports of the dimension di, corresponding to the two directions.

• P : set of ports of a node, P = {d−0 , d
+
0 , . . . , d

−

i , d
+
i , . . . , , d

−

n−1, d
+
n−1}.

• P : port of a node, P ∈ P .

• d[i,j]: a subset of ports of P , including the ports from the dimension di to the
dimension dj, 0 ≤ i, j < n and i ≤ j. Note that if j < i, the subset would be an
empty set.

• PE0, PE1: processing elements of a node.

• 〈o0 . . . on−1|pe〉: processing element identifier in nDT torus, 0 ≤ i < n, 0 ≤ oi <
k, and pe is zero or one. Note that the left side of identifier (o0 . . . on−1) is the
torus node identifier, while the right side (pe) is the PE identifier.

9

• NP
s (〈o0 . . . on−1〉): set of nodes that send messages to node 〈o0 . . . on−1〉 and reach

it through the port P .

• NP
d (〈o0 . . . on−1〉): set of nodes to which the node 〈o0 . . . on−1〉 sends messages

from its port P .

• DP
s (〈o0 . . . on−1〉): cardinal of the set NP

s (〈o0 . . . on−1〉).

• DP
d (〈o0 . . . on−1〉): cardinal of the set NP

d (〈o0 . . . on−1〉).

• RP→P ′(〈o0 . . . on−1〉): number of paths that pass through the node 〈o0 . . . on−1〉
from its input port P to its output port P ′. If both P and P ′ belong to the
same dimension, sometimes we refer to the addition of RP→P ′(〈o0 . . . on−1〉) and
RP ′→P (〈o0 . . . on−1〉) by an expression, using only the identifier of the dimension,
hiding the sign of the direction, and substituting the double arrow symbol for a
single arrow (Rdi↔di(〈o0 . . . on−1〉)).

Also, P or P ′ can be a subset of ports. For example, the number of paths that
pass through the node 〈o0 . . . on−1〉 entering by ports of the dimensions d0, d1 and
d2 and leaving to output port d+n−1 is referred as Rd[0,2]→d+n−1

(〈o0 . . . on−1〉).

• PATH(i): number of paths that pass through the node 〈o0 . . . on−1〉 between any
two ports P and P ′, where P ∈ dj, P ′ ∈ dk, k = j + i and 0 ≤ i, j, k < n.

• [a, b]n: with b = a +m; a, b ∈ Z and n,m ∈ N, defines a set of integers whose
members are {(a) mod n, (a+1) mod n, . . . , (a+m− 1) mod n, (a+m) mod n},
where the operation module, a mod k, a ∈ Z and k > 0, is the remainder of
integer division: a mod k = (a+ k) mod k. It is easy to prove that the cardinal
of the set that is defined by the interval [a, b]n is b− a+ 1.

2.2 nDT torus definition

In this section we formally define the nD Twin torus topology.

Definition 2.1 A nD Twin torus, or just nDT torus, is a n–cube k–ary (nD torus)
topology, with k ∈ N

∗, k ≥ 2 and n ≥ 3, where each node is a virtual node1 consisting
basically of the following main components:

• Hardware for communications: it consists of two (n + 1)–port cards2, offering a
total of 2n+2 ports. Two of these ports (one of each card) are used to interconnect
both cards to each other, and the 2n remaining ports are used to connect the node
to the rest of dimensions, building a torus topology with n dimensions.

1In this point, we use this term for better explaining how a node is formed in this topology.
However, in most of the paper we will use the term node to refer it.

2When only one (n+ 1)–port card is used per node, a n0D torus (n0 = n+1

2
) is obtained

10

• Computing hardware: each internal (n+1)–port card is connected to a processing
element, and so there are two processing elements in each virtual node. Therefore,
there are a total of 2kn processing elements interconnected by the network.

Example 2.1 For building a 3DT torus (n = 3), each virtual node consists of two
4–port cards and two processing elements. The 3DT torus is obtained using the available
six ports after both cards are interconnected by means one port of each one (Figure 1).

Card 0

Card 1

d
_

2 d
_

1

d
_

0

d
+

0

d
+

2

d
+

1

PE0

PE1

Figure 1: Fragment of a 3DT torus and detail of the communications hardware circuit,
based on two 4-port cards.

3 Analysis of the port configuration of the nDT torus.

According to the nDT torus definition, there are multiple ways of assigning card ports
to dimensions and therefore different port configurations can be formed. Note that the
best configuration that minimizing the number of paths that go across a node using
the two cards. Thus, the objective of this paper is to find the optimal configuration,
where we consider as.

In order to determine the optimal configuration, for nDT torus, as was show in
the previous study for the specific case of 3DT torus [4], it is necessary to consider
the routing algorithm and the traffic pattern. In this study, we consider the routing
algorithm DOR (Dimension Order Routing) [11] and an uniform traffic pattern. To
simplify the analysis, we only consider odd values of k, because, given a node, there is
the same number of nodes in both directions of a dimension. A similar study can be
performed to even values of k. For the same reason explained in [4], the routing has
been considered at node level, not a processing element level.

11

This study has been performed based on the methodology explained in [4], but
it has been modified since the number of possible configurations for building a nDT
torus is too high3. In this case, the methodology consists of the following steps:

1. To define the sets NP
s (〈o0 . . . on−1〉) and NP

d (〈o0 . . . on−1〉) and obtain their
cardinals, DP

s (〈o0 . . . on−1〉) and DP
d (〈o0 . . . on−1〉), respectively, where 0 ≤ oi < k,

0 ≤ i < n and P ∈ P (Section 3.1).

2. To calculate the number of paths that pass through the node 〈o0 . . . on−1〉 using
the internal link4 for each input pair of ports (Section 3.2).

3. To define the configuration we consider the optimal configuration for a nDT torus
and to calculate the number of paths that cross the node using the internal link
(Section 3.3).

4. Finally, to demonstrate that any other configuration is not better than the one
previously defined (Section 3.5).

3.1 Sets NP
s and NP

d for the node 〈o0 . . . on−1〉

Based on any n-cube k-ary and the DOR routing algorithm, it is easy to determine the
nodes that belong to the sets NP

s and NP
d . Next, we indicate the members of these sets

using set terminology. Since k is odd, the number of reachable nodes from a specific
node that are located in the same dimension is k−1

2
, regardless the direction.

Definition 3.1 Let N
d−i
s (〈o0 . . . on−1〉) be a set of nodes that send messages to the node

〈o0 . . . on−1〉 and reach it through the port d−i (0 ≤ oi < k, 0 ≤ i < n). Hence:

N
d−i
s (〈o0 . . . on−1〉) = {〈o′0 . . . o

′

n−1〉 :

o′j ∈ [0, k − 1] if j < i

o′j ∈
[

oj −
k−1
2
, oj − 1

]k
if j = i

o′j = oj if j > i

, 0 ≤ j < n }

Definition 3.2 Let N
d+i
s (〈o0 . . . on−1〉) be a set of nodes that send messages to the node

〈o0 . . . on−1〉 and reach it through the port d+i (0 ≤ oi < k, 0 ≤ i < n). Hence:

N
d+i
s (〈o0 . . . on−1〉) = {〈o′0 . . . o

′

n−1〉 :

o′j ∈ [0, k − 1] if j < i

o′j ∈
[

oj + 1, oj +
k−1
2

]k
if j = i

o′j = oj if j > i

, 0 ≤ j < n }

3In the 3DT torus case, there are only ten different port configurations and this fact allows us to
analyze and compare all of them.

4Henceforth, we will use internal link to refer to the connection between the two cards in a node.

12

Example 3.1 Given a 3D torus (n = 3), where k = 5, the set of nodes that send
messages to the node 〈3, 1, 0〉 and reach it through its port d+0 is:

Nd+0
s (〈3, 1, 0〉) = {〈4, 1, 0〉, 〈0, 1, 0〉}

Figure 2 shows graphically this subset of nodes.

Definition 3.3 Let N
d−i
d (〈o0 . . . on−1〉) be a set of nodes to which the node 〈o0 . . . on−1〉

sends messages from its port d−i (0 ≤ oi < k, 0 ≤ i < n). Hence:

N
d−i
d (〈o0 . . . on−1〉) = {〈o′0 . . . o

′

n−1〉 :

o′j = oj if j < i

o′j ∈
[

oj −
k−1
2
, oj − 1

]k
if j = i

o′j ∈ [0, k − 1] if j > i

, 0 ≤ j < n }

Definition 3.4 Let N
d+i
d (〈o0 . . . on−1〉) be a set of nodes to which the node 〈o0 . . . on−1〉

sends messages from its port d+i (0 ≤ oi < k, 0 ≤ i < n). Hence:

N
d+i
d (〈o0 . . . on−1〉) = {〈o′0 . . . o

′

n−1〉 :

o′j = oj if j < i

o′j ∈
[

oj + 1, oj +
k−1
2

]k
if j = i

o′j ∈ [0, k − 1] if j > i

, 0 ≤ j < n }

Example 3.2 Given a 3D torus (n = 3), where k = 5, the set of nodes to which the
node 〈3, 1, 0〉 sends messages from its port d−1 is:

N
d−1
d (〈3, 1, 0〉) = {〈3, 0, 0〉, 〈3, 0, 1〉, 〈3, 0, 2〉, 〈3, 0, 3〉, 〈3, 0, 4〉,

〈3, 4, 0〉, 〈3, 4, 1〉, 〈3, 4, 2〉, 〈3, 4, 3〉, 〈3, 4, 4〉}

Figure 2 shows graphically this subset of nodes.

3.1.1 DP
s and DP

d values for the node 〈o0 . . . on−1〉

Applying the same criteria used in [4], we can calculate easily the values of DP
s and

DP
d . Basically, given a port, if we only consider one dimension di, the number of source

or destination nodes in this dimension is k−1
2

. If we consider all dimensions, this value
is multiplied by k raised to the number of dimensions that are routed before or after
di by DOR routing, for DP

s and DP
d , respectively. That is:

D
d−i
s (〈o0 . . . on−1〉) = D

d+i
s (〈o0 . . . on−1〉) =

k − 1

2
ki (1)

D
d−i
d (〈o0 . . . on−1〉) = D

d+i
d (〈o0 . . . on−1〉) =

k − 1

2
kn−1−i (2)

13

Y Z

X

<0,0,0>

Node <3,1,0>

Nodes that send messages

 to node <3,1,0>

Nodes that receives messages

 from node <3,1,0>

Channels from source nodes

 reach node <3,1,0>

Channels from node <3,1,0>

reaches destination nodes

<3,1,0>

<3,0,0>

<3,0,1>

<3,0,2>

<3,0,3>

<3,0,4>

<3,1,1>

<3,1,2>

<3,1,3>

<3,1,4>

<3,2,0>

<3,2,1>

<3,2,2>

<3,2,3>

<3,2,4>

<3,3,0>

<3,3,1>

<3,3,2>

<3,3,3>

<3,3,4>

<3,4,0>

<3,4,1>

<3,4,2>

<3,4,3>

<3,4,4>

<4,1,0>

<2,1,0>

<1,1,0>

<0,1,0>

Figure 2: Nodes that send messages to the node 〈3, 1, 0〉 and reach it through its port
d+0 and nodes to which the node 〈3, 1, 0〉 sends messages from its port d−1 .

Sometimes, we will refer to the number of source or destination nodes in one
dimension, regardless of the direction. In this case, we do not include the + or − sign
in the superscript of Ds or Dd.

Ddi
s (〈o0 . . . on−1〉) = D

d−i
s (〈o0 . . . on−1〉) +D

d+i
s (〈o0 . . . on−1〉) =

= 2×
k − 1

2
ki = (k − 1)ki (3)

Ddi
d (〈o0 . . . on−1〉) = D

d−i
d (〈o0 . . . on−1〉) +D

d+i
d (〈o0 . . . on−1〉) =

= 2×
k − 1

2
kn−1−i = (k − 1)kn−1−i (4)

In other cases we will need to calculate the number of source or destination nodes
for a subset of ports d[0,i].

Given a subset of ports d[0,i], where 0 < i < n, the subset of nodes that send

messages to the node 〈o0 . . . on−1〉 from this subset of ports, N
d[0,i]
s (〈o0 . . . on−1〉), is:

N
d[0,i]
s (〈o0 . . . on−1〉) = Nd0

s (〈o0 . . . on−1〉) ∪Nd1
s (〈o0 . . . on−1〉) ∪ . . .

∪ Ndi−1
s (〈o0 . . . on−1〉) ∪Ndi

s (〈o0 . . . on−1〉)

14

Then, the number of nodes that send messages to the node 〈o0 . . . on−1〉 from the
subset of ports d[0,i] is:

D
d[0,i]
s (〈o0 . . . on−1〉) = Dd0

s (〈o0 . . . on−1〉) +Dd1
s (〈o0 . . . on−1〉) + . . .

+ Ddi−1
s (〈o0 . . . on−1〉) +Ddi

s (〈o0 . . . on−1〉) =

= (k − 1)k0 + (k − 1)k1 + · · ·+ (k − 1)ki−1 + (k − 1)ki =

= (k − 1)
i
∑

j=0

kj =

(

i
∑

j=0

kj+1 −
i
∑

j=0

kj

)

= ki+1 − 1 (5)

In a similar way, we can calculate the number of nodes to which the node
〈o0 . . . on−1〉 sends messages from a subset of ports d[i,n−1] where 0 < i < n, i.e. the

cardinal of N
d[i,n−1]

d (〈o0 . . . on−1〉):

D
d[i,n−1]

d (〈o0 . . . on−1〉) = Ddi
d (〈o0 . . . on−1〉) +D

di+1

d (〈o0 . . . on−1〉) + . . .

+ D
dn−1

d (〈o0 . . . on−1〉) = kn−i − 1 (6)

For a subset of ports d[i,j], where 0 < i, j < n and i < j, the subset of nodes that

send messages to the node 〈o0 . . . on−1〉 from this subset of ports, N
d[i,j]
s (〈o0 . . . on−1〉),

is:
N

d[i,j]
s (〈o0 . . . on−1〉) = N

d[0,j]
s (〈o0 . . . on−1〉)−N

d[0,i−1]
s (〈o0 . . . on−1〉)

Then, the number of nodes that send messages to the node 〈o0 . . . on−1〉 from the
subset of ports d[i,j] is:

D
d[i,j]
s (〈o0 . . . on−1〉) = D

d[0,j]
s (〈o0 . . . on−1〉)−D

d[0,i−1]
s (〈o0 . . . on−1〉)

= (kj+1 − 1)− (k(i−1)+1 − 1) = kj+1 − ki (7)

On the other hand, the subset of nodes to which the node 〈o0 . . . on−1〉 sends
messages from the subset of ports d[i,j] is:

N
d[i,j]
d (〈o0 . . . on−1〉) = N

d[i,n−1]

d (〈o0 . . . on−1〉)−N
d[j+1,n−1]

d (〈o0 . . . on−1〉)

Then, the number of nodes to which the node 〈o0 . . . on−1〉 sends messages from
this subset of ports is:

D
d[i,j]
d (〈o0 . . . on−1〉) = D

d[i,n−1]

d (〈o0 . . . on−1〉)−D
d[j+1,n−1]

d (〈o0 . . . on−1〉)

= (kn−i − 1)− (kn−(j+1) − 1) = kn−i − kn−(j+1) (8)

3.2 Paths that pass through the node 〈o0 . . . on−1〉

In this section we calculate the number of paths that pass through the node 〈o0 . . . on−1〉
for each input–output pair of ports.

15

Proposition 3.1 Given a node 〈o0 . . . on−1〉, the paths that cross this node from its
input port P to its output port P ′, where P ∈ di and P ′ ∈ dj, 0 ≤ i, j < n are:

RP∈di→P ′∈dj(〈o0 . . . on−1〉) =

(k − 1)2

4
kn−1+i−j if i < j

(k − 1)(k − 3)

8
kn−1 if i = j

0 if i > j

Proof: If i < j, the routing algorithm DOR permits P → P ′ transitions. Then,
the source node of the path could be any member of the set NP

s (〈o0 . . . on−1〉), and
the destination node of the path could be any member of the set NP ′

d (〈o0 . . . on−1〉).
Therefore, the total number of paths that go across the node 〈o0 . . . on−1〉 from its input
port P to its output port P ′ is obtained by the following product:

RP∈di→P ′∈dj(〈o0 . . . on−1〉) = DP∈di
s ×D

P ′∈dj
d =

k − 1

2
ki×

k − 1

2
kn−1−j =

(k − 1)2

4
kn−1+i−j

On the other hand, for the case i = j, in [4] we show that the number of paths
that cross a node 〈o0 . . . on−1〉 from P to P ′, if both ports belong to the same dimension
di and we only consider the source or destination nodes that can be reached using di,
and k is odd, is:

RP∈di→P ′∈dj(〈o0 . . . on−1〉) =

k−1
2

−1
∑

i=1

i =
(k − 1)(k − 3)

8

If we consider the remaining n − 1 dimensions, the number of paths that cross
the node 〈o0 . . . on−1〉 from P ∈ di to P ′ ∈ dj, when i = j, is:

RP∈di→P ′∈dj(〈o0 . . . on−1〉) =
(k − 1)(k − 3)

8
kn−1

Remember that we are assuming that k is odd and k ≥ 3 and therefore
RP∈di→P ′∈dj(〈o0 . . . on−1〉) cannot be less than zero. Note that if k = 3,
RP∈di→P ′∈dj(〈o0 . . . on−1〉) = 0 and there are not paths between P and P ′ crossing
the node 〈o0 . . . on−1〉.

Finally, if i > j, the routing algorithm does not permit P → P ′ transitions and
there are not paths that cross the node from P to P ′. ✷

Sometimes, we need to calculate the number of paths that pass through the node
between the two ports of the same dimension.

Proposition 3.2 Given a node 〈o0 . . . on−1〉, the number of paths that cross this node
from the input port P to the output port P ′, where P 6= P ′ and they both belong to the
same dimension, that is, P, P ′ ∈ di are:

Rdi↔di(〈o0 . . . on−1〉) =
(k − 1)(k − 3)

4
kn−1

16

Proof: The demonstration is trivial in this case. From Proposition 3.1, we obtain:

Rdi↔di(〈o0 . . . on−1〉) = Rd+i →d−i
(〈o0 . . . on−1〉) +Rd−i →d+i

(〈o0 . . . on−1〉) =

= 2×
(k − 1)(k − 3)

8
kn−1 =

(k − 1)(k − 3)

4
kn−1

✷

Proposition 3.3 Given a node 〈o0 . . . on−1〉, the number of paths that cross this node
using the two ports P and P ′, where P ∈ dj, P ′ ∈ dk, k = j + i, 0 ≤ j, k < n and
i ≥ 0, is:

PATH(i) =

1
4
(k − 1)(k − 3)kn−1 if i = 0

1
4
(k − 1)2 kn−1−i if 0 < i < n

0 if i ≥ n

Proof: If i = 0, j = k and the two ports belong to the same dimension. The number
of paths is obtained from Proposition 3.2:

PATH(0) = Rdj↔dj(〈o0 . . . on−1〉) =
(k − 1)(k − 3)

4
kn−1

If 0 < i < n, PATH(i) is equal to RP∈dj→P ′∈dk(〈o0 . . . on−1〉). Then, from
Proposition 3.1:

PATH(i) =
(k − 1)2

4
kn−1+j−k =

(k − 1)2

4
kn−1+j−(j−i) =

(k − 1)2

4
kn−1−i

Finally, remember that k = i + j and 0 ≤ j < k < n. Then, if i ≥ n, either j or
k is out of range and it is not possible that there are paths between dj and dk. In this
case, PATH(i) = 0. ✷

3.3 Optimal port configuration in a nDT torus

As mentioned before, for a nDT torus, there are many ways to configure the ports
of the two cards and therefore the number of possible configurations becomes higher
and higher when the number of dimensions is increased. For example, in a 3DT
torus (two 4–port cards) there are only 10 configurations, whereas in a 5DT torus
(two 6–port cards) and a 7DT torus (two 8–port cards) there are 126 and 1716
configurations, respectively. Due to this, analyzing all configurations for finding the
best is an unaffordable problem.

Hence, we use another method which consists in presenting the configuration
we claim is the optimal and demonstrating that. This configuration is based on that

17

obtained for the particular case of the 3DT torus topology [4]. In that case, the X+,
X− and Y + (or Y − if k is odd) ports are connected to one card, and the ports Z+,
Z− and Y − (or Y + if k is odd) ports are connected to the other card. If we replace
X, Y and Z with d0, d1 and d2, respectively, we can see that the first ports, sorted
by dimension, are connected to one card, whereas the last ports are connected to the
other card. We can generalize this idea for a torus of any number of dimensions.

3.3.1 Defining the optimal configuration CBest

Definition 3.5 Given two cards with (n + 1)–ports each, the configuration CBest

allowing to build a nDT torus is defined as follows:

• If n is even:

– The ports corresponding to the first n
2

dimensions, i.e., the ports belonging
to dimensions from d0 to dn

2
−1, are connected to Card0.

– The ports corresponding to the last n
2

dimensions, i.e., the ports belonging
to dimensions from dn

2
to dn−1,are connected to Card1.

• If n is odd:

– The ports corresponding to the first n−1
2

dimensions, i.e., the ports belonging
to dimensions from d0 to dn−1

2
−1, are connected to Card0.

– The ports corresponding to the last n−1
2

dimensions, i.e., the ports belonging
to dimensions from dn−1

2
+1 to dn−1, are connected to Card1.

– The two ports of the dimension dn−1
2

are separated in the two cards. Since

k is odd, the number of paths that cross the internal link is the same,
independently in which card each port is connected. From now on, we assume
that the port d−n−1

2

is connected to Card0 and the port d+n−1
2

is connected to

Card1.

+

0d

... ...Card0

_

0d

PE0 PE1

Card1
n-1d
_

+
d n-1

n/2d
_

d
+
n/2

d
+

n/2-1

n/2-1d
_

a

a

(a) n is even.

+

0d

... ...Card0

_

0d

PE0 PE1

Card1
n-1d
_

+
d n-1

d
+
(n-1)/2(n-1)/2d

_

d
+

(n-1)/2-1

d
_

(n-1)/2-1

d
+

(n-1)/2+1

d
_

(n-1)/2+1

(b) n is odd.

Figure 3: Configuration CBest for a nDT torus

18

Figure 3 shows graphically the configuration CBest. Note that the idea is to place
the ports of the same dimension in the same card in order to avoid the crossing of the
internal link connecting both cards. In the case when n is odd, the central dimension
(dn−1

2
) is divided placing each one of the directions in a different card.

3.3.2 Calculating the usage of the internal link considering CBest

Given a node, using the configuration CBest, the internal link connecting both cards is
used in the following cases:

• If n is odd:

– When a path crosses the node using the dimension dn−1
2

.

• For all values of n:

– When a path enters in the node using a dimension whose ports are connected
to Card0 and leaves the node using a dimension whose ports are connected
to Card1.

– When the source PE is connected to the node, but the source PE and the
first dimensions crossed by the path are connected to different cards.

– When the destination PE is connected to the node, but the destination PE
and the last dimensions crossed by the path are connected to different cards.

Just as in [4], we do not consider paths whose source or destination is a PE of the
node. If a port P is connected to Card0, the paths from or to PE1 cross the internal
link, while if P is connected to Card1 the paths from or to PE0 cross the internal link.
In the two cases, the number of paths is the same. Then, the total number of paths
that start or end in the node and use the internal link is constant, independently the
configuration used. Moreover, the paths are considered at node level, not at PE level,
since considering the paths at PE level only multiplies by two the number of reachable
nodes from a port P .

Proposition 3.4 The number of paths that cross a node 〈o0 . . . on−1〉 using the internal
link considering the configuration CBest is:

RCBest
=

{

(k
n
2 − 1)2 if n is even

(k
n−1
2 − 1)(k

n+1
2 − 1) + (k−1)(k−3)

4
kn−1 if n is odd

19

Proof: We can distinguish the following cases:

• If n is even:

– d[0,n2−1] → d[n2 ,n−1]: the input port belongs to the first n
2

dimensions (from

d0 to dn
2
−1 in Card0) and the output port belongs to the last n

2
dimensions

(from dn
2
+1 to dn−1 in Card1). The number of paths that cross the internal

link is:
Rd[0, n2 −1]→d[n2 ,n−1]

(〈o0 . . . on−1〉) = D
d[0, n2 −1]
s ×D

d[n2 ,n−1]
d

Applying the expressions (5) and (6):

Rd[0, n2 −1]→d[n2 ,n−1]
(〈o0 . . . on−1〉) = (k

n
2 − 1)×(k

n
2 − 1) = (k

n
2 − 1)2

• If n is odd:

A) d[0,n−1
2

−1] → d+n−1
2

: the input port belongs to the first n−1
2

dimensions (from

d0 to dn−1
2

−1 in Card0) and the output port is d+n−1
2

(Card1). The number

of paths that cross the internal link is:

Rd
[0, n−1

2 −1]
→d+n−1

2

(〈o0 . . . on−1〉) = D
d
[0, n−1

2 −1]
s ×D

d+n−1
2

d

Applying the expressions (5) and (2):

Rd
[0, n−1

2 −1]
→d+n−1

2

(〈o0 . . . on−1〉) = (k
n−1
2 − 1)×

k − 1

2
kn−1−n−1

2 =

= (k
n−1
2 − 1)×

k − 1

2
k

n−1
2

B) d[0,n−1
2

−1] → d[n−1
2

+1,n−1]: the input port belongs to the first n−1
2

dimensions

(from d0 to dn−1
2

−1 in Card0) and the output port belongs to the last n−1
2

dimensions (from dn−1
2

+1 to dn−1 in Card1). The number of paths that cross
the internal link is:

Rd
[0, n−1

2 −1]
→d

[n−1
2 +1,n−1]

(〈o0 . . . on−1〉) = D
d
[0, n−1

2 −1]
s ×D

d
[n−1

2 +1,n−1]
d

Applying the expressions (5) and (6):

Rd
[0, n−1

2 −1]
→d

[n−1
2 +1,n−1]

(〈o0 . . . on−1〉) = (k
n−1
2 − 1)×(k

n−1
2 − 1) =

= (k
n−1
2 − 1)2

C) d−n−1
2

→ d[n−1
2

+1,n−1]: the input port is d−n−1
2

(Card0) and the output port

belongs to the last n−1
2

dimensions (from dn−1
2

+1 to dn−1 in Card1). The
number of paths that cross the internal link is:

Rd−n−1
2

→d
[n−1

2 +1,n−1]
(〈o0 . . . on−1〉) = D

d−n−1
2

s ×D
d
[n−1

2 +1,n−1]
d

20

Applying the expressions (1) and (6):

Rd−n−1
2

→d
[n−1

2 +1,n−1]
(〈o0 . . . on−1〉) =

k − 1

2
k

n−1
2 ×(k

n−1
2 − 1)

D) d−n−1
2

↔ d+n−1
2

: input and output ports are d−n−1
2

(Card0) and d+n−1
2

(Card1).

From Proposition 3.2, we obtain the number of paths that cross the internal
link:

Rdn−1
2

↔dn−1
2

(〈o0 . . . on−1〉) =
(k − 1)(k − 3)

4
kn−1

Therefore, the total number of paths using the internal link considering the
configuration CBest is:

RCBest
= Rd

[0, n−1
2 −1]

→d+n−1
2

(〈o0 . . . on−1〉) +Rd
[0, n−1

2 −1]
→d

[n−1
2 +1,n−1]

(〈o0 . . . on−1〉) +

+ Rd−n−1
2

→d
[n−1

2 +1,n−1]
(〈o0 . . . on−1〉) +Rdn−1

2
↔dn−1

2

(〈o0 . . . on−1〉) =

= (k
n−1
2 − 1)×

k − 1

2
k

n−1
2 + (k

n−1
2 − 1)2 +

+
k − 1

2
k

n−1
2 ×(k

n−1
2 − 1) +

(k − 1)(k − 3)

4
kn−1 =

= (k
n−1
2 − 1)×

(

k − 1

2
k

n−1
2 + (k

n−1
2 − 1) +

k − 1

2
k

n−1
2

)

+

+
(k − 1)(k − 3)

4
kn−1 =

= (k
n−1
2 − 1)(k

n+1
2 − 1) +

(k − 1)(k − 3)

4
kn−1 (9)

We do not simplify the term (k−1)(k−3)
4

kn−1 to facilitate the calculations in the
next section. ✷

3.4 Some properties related to PATH(i)

In this section, we show a set of properties related to PATH(i). These properties will
be used in the next section to demonstrate the configuration CBest minimizes the use
of the internal link.

Proposition 3.5 Given a node 〈o0 . . . on−1〉 of a nDT torus and two dimensions di
and di+k, where 0 ≤ i < i+k < n, and considering that the four ports of the dimensions
di and di+k are not connected to the same internal card, then:

• If the two ports of di are connected to the same card, and the two ports of di+k

are connected to the other card, there are 4×PATH(k) paths between the ports of
the dimension di and the ports of the dimension di+k crossing the internal link.

21

• In other case, there are 2×PATH(k) paths between the ports of the dimension di
and the ports of the dimension di+k crossing the internal link.

Proof: If the four ports of di and di+k are not connected to only one card, there are
four possible ways of connecting them to the two cards. The Figure 4 shows graphically
the number of paths that cross the internal link in each case.

a) The ports of di are separated in the two cards and the ports of di+k are also
separated in the two cards (Figure 4(a)).

b) The ports of di are separated in the two cards, but the ports of di+k are connected
to the same card (Figure 4(b)).

c) The ports of di+k are separated in the two cards, but the ports of di are connected
to the same card (Figure 4(c)).

d) The ports of di are connected to one card and the ports of di+k are connected to
the other card (Figure 4(d)).

PE0 PE1

PATH(k) PATH(k)

n-2 ports n-2 ports

d
_

i+k d+

i+k

d
_

i d+
i

(a) The ports of di and di+k are separated in
the two cards.

PE0 PE1

PATH(k)

PATH(k)

n-1 ports n-3 ports

d
_

i+k

d+

i+k
d

_

i

d+
i

(b) Only the ports of di are separated in the
two cards.

PE0 PE1

PATH(k)

PATH(k)

n-3 ports n-1 ports

d
_

i+k
d+

i+k

d
_

i

d+
i

(c) Only the ports of di+k are separated in the
two cards.

PE0 PE1

PATH(k)

PATH(k)

PATH(k)

PATH(k)

n-2 ports n-2 ports

d
_

i+k

d+

i+k

d
_

i

d+
i

(d) The ports of di are in the same card and
the ports of di+k are in the other card.

Figure 4: Number of paths using the internal link from dimension di to dimension di+k.

22

As can be seen, in the last case there are 4×PATH(k) paths crossing the node
using the internal link, and in the other three cases there are 2×PATH(k) paths
crossing the internal link. ✷

Proposition 3.6 Let 〈o0 . . . on−1〉 be a node of a nDT torus, built using a port
configuration C, n ≥ 4, n even and C 6= CBest. If no dimension has its ports separated
in the two cards, there are at least 8×PATH(1) paths crossing the node 〈o0 . . . on−1〉
using the internal link.

Proof: If n is even and no dimension has its ports separated in the two cards, the
ports of n/2 dimensions are connected to each card. In the configuration CBest the
dimensions are distributed as follow:

d0, d1, . . . , dn
2
−2, dn

2
−1 are conneted to Card0

dn
2
, dn

2
+1, . . . , dn−2, dn−1 are conneted to Card1

and therefore there are only two consecutive dimensions (dn
2
−1 and dn

2
) that are

connected to different cards. However, any other distribution of the dimensions causes
that there are at least two dimensions di and dj, such that the dimensions di+1 and dj+1

are connected to different cards than di and dj. This happens in C, due to C 6= CBest.
Then, from Proposition 3.5, there are at least 8×PATH(1) paths using the internal
link when crossing the node 〈o0 . . . on−1〉 configured with port configuration C.

✷

Proposition 3.7 Let 〈o0 . . . on−1〉 be a node of a nDT torus, built using a port
configuration C, n ≥ 4 and C 6= CBest. If there is one dimension or more whose
two ports are separated in the two cards, there are at least 6×PATH(1) paths using the
internal link for crossing the node.

Proof: Let ds be a dimension whose ports are separated in the two cards. Taking
into account the possible values of s, we distinguish the following cases:

• s = 0. From Proposition 3.5, there are 2×PATH(1) paths using the internal link
between ds = d0 and d1. Besides, depending on the distribution of the remaining
ports:

– If ds is the only dimension whose ports are separated, there are n − 1
consecutive dimensions to be distributed in two sets of n−1

2
dimensions.

Then, there is at least one dimension di, such that di is connected to Card0
and di+1 is connected to Card1 or vice versa. Therefore, from Proposition
3.5 there are other 4×PATH(1) paths using the internal link, and so we
have a total of 6×PATH(1) paths crossing the internal link.

– There is at least another dimension dr whose ports are separated in the two
cards:

23

∗ If r = 1, there are 2×PATH(1) paths using the internal link between
dr = d1 and d2. The remaining n− 2 dimensions are consecutive (from
d2 to dn−1) and whatever configuration has at least one dimension di
such that some of its ports are connected to different card than the
ports of di+1. Therefore, there are other 2×PATH(1) paths using the
internal link, and so we have a total of 6×PATH(1) paths crossing the
internal link.

∗ If 1 < r < n − 1 there are 2×PATH(1) paths using the internal link
between dr−1 and dr and other 2×PATH(1) paths between dr and dr+1.
Thus, we have a total of 6×PATH(1) paths crossing the internal link.

∗ If r = n − 1, there are at least 6×PATH(1) using the internal link,
considering the paths between dr−1 and dr, and the paths between two
consecutive dimensions of the remaining n− 2 dimensions, as it occurs
when r = 1.

• 0 < s < n − 1. From Proposition 3.5, there are 2×PATH(1) paths using the
internal link between ds−1 and ds and other 2×PATH(1) paths between ds and
ds+1. Then, we must distribute the remaining n−1 dimensions in two sets of n−1

2

dimensions. We consider two subsets of ports: the first set contains the ports of
s consecutive dimensions (from d0 to ds−1) and the second set contains the ports
of (n − 1) − s consecutive dimensions (from ds+1 to dn−1). Taking into account
the value of s we can distinguish the following cases:

– s < n−1
2

. In this case, (n− 1)− s is greater than n−1
2

, so there is at least one
dimension di, when s < i < n − 1, that some of its ports are connected to
different card than the ports of di+1. Therefore, from Proposition 3.5 there
are at least another 2×PATH(1) paths using the internal link.

– s > n−1
2

. In this case, s is greater than n−1
2

, so there is at least one dimension
di, when 0 ≤ i < s, that some of its ports are connected to different card
than the ports of di+1. Therefore, from Proposition 3.5 there are other
2×PATH(1) paths using the internal link.

– s = n−1
2

. In this case, the two subsets of ports contain n−1
2

dimensions. We
can distribute each subset on each card, but this is the same distribution
than CBest, and C 6= CBest. In any other distribution there are at least two
consecutive dimension whose ports are connected to different cards, adding
at least other 2×PATH(1) paths using the internal link from Proposition
3.5.

Hence, if 0 < s < n− 1 there are at least 6×PATH(1) paths using the internal
link.

• If s = n− 1, there are at least 6×PATH(1) paths using the internal link, for the
same reasons than when s = 0.

Then, for all possible values of s, there are at least 6×PATH(1) paths using the
internal link when crossing the node 〈o0 . . . on−1〉 using port configuration C. ✷

24

Proposition 3.8 Let 〈o0 . . . on−1〉 be a node of a nDT torus, built using a port
configuration C and n ≥ 4. If there is one dimension or more whose two ports are
separated in the two cards, there are at least 2×PATH(2) paths using the internal link
for crossing a node.

Proof: Let ds be a dimension whose ports are separated in the two cards. On one
hand, if 2 ≤ s ≤ n − 1, the dimension ds−2 always exists. On the other hand, the
dimension ds+2 always exists if 0 ≤ s ≤ n − 3. Since n ≥ 4, any value of s satisfies
at least one of the previous conditions. Hence, from Proposition 3.5 there are at least
2×PATH(2) paths using the internal link between ds−2 and ds or between ds and ds+2.
✷

3.5 Demonstrating that CBest is the optimal configuration

In order to demonstrate that CBest is the optimal configuration, we show that for any
other configuration the number of paths using the internal link is greater than for the
configuration CBest.

Theorem 3.1 Given a nDT torus, with n ≥ 3 and k ≥ 5, the configuration CBest

minimizes the number of paths that cross the internal link.

Proof: We distinguish three different cases:

3DT torus

We studied the use of the internal link in a 3DT torus in [4]. In this paper, we calculated
the number of paths that cross the internal link for all the different 10 configurations,
and we demonstrated that configuration CBest minimizes the use of the internal link,
except when k = 3.

nDT torus, when n is odd and n ≥ 5

We demonstrate that CBest is the optimal configuration by reductio ad absurdum. Let
Cα be a configuration that minimizes the use of the internal link and C 6= CBest. Then,
from Propositions 3.7 and 3.8, there are at least 6×PATH(1) and 2×PATH(2) paths
using the internal link. Moreover, because n is odd, there is at least one dimension
whose ports are separated in the two cards and there are at least PATH(0) paths using
the internal link. Hence, the minimum number of paths that cross the internal link in
Cα is:

RCα ≤ RCαmin
= PATH(0) + 6×PATH(1) + 2×PATH(2) =

=
(k − 1)(k − 3)

4
kn−1 + 6×

(k − 1)2

4
kn−2 + 2×

(k − 1)2

4
kn−3 =

=
(k − 1)(k − 3)

4
kn−1 + (6k + 2)×

(k − 1)2

4
kn−3

25

If Cα minimizes the use of the internal link, then:

RCα < RCBest

Therefore:

RCαmin
≤ RCα < RCBest

RCαmin
< RCBest

RCαmin
−RCBest

< 0

(k − 1)(k − 3)

4
kn−1 + (6k + 2)×

(k − 1)2

4
kn−3 −

−

(

(k
n−1
2 − 1)(k

n+1
2 − 1) +

(k − 1)(k − 3)

4
kn−1

)

< 0

(6k + 2)×
(k − 1)2

4
kn−3 − (k

n−1
2 − 1)(k

n+1
2 − 1) < 0

kn − 5kn−1 + kn−2 + kn−3

2
+ k

n+1
2 + k

n−1
2 − 1 < 0

(k3 − 5k2 + k + 1)
kn−3

2
+ (k + 1)k

n−1
2 < 1

((k − 5)k2 + k + 1)
kn−3

2
+ (k + 1)k

n−1
2 < 1

Since k ≥ 5, ((k − 5)k2 + k + 1)k
n−3

2
and (k + 1)k

n−1
2 are always positive. The

minimum value for this sum is obtained when k = 5 and n = 5. Then, the minimum
value is 225 that is greater than 1. Therefore, we reach a contradiction and the
configuration Cα does not minimize the use of the internal link.

nDT torus, when n is even and n ≥ 4

Let Cβ be a configuration that minimizes the use of the internal link and C 6= CBest.
Taking into account the number of dimensions whose ports are separated in the two
cards, we can distinguish two cases:

• Cβ1: There is no dimension whose ports are separated in the two cards.

From Proposition 3.6, there are at least 8×PATH(1) paths using the internal
link. Hence, the minimum number of paths that cross the internal link in Cβ1 is:

RCβ1
≤ RCβ1min

= 8×PATH(1) = 2×(k − 1)2kn−2

If Cβ1 minimizes the use of the internal link, then:

RCβ1
< RCBest

26

Therefore:

RCβ1min
≤ RCβ1

< RCBest

RCβ1min
< RCBest

RCβ1min
−RCBest

< 0

2×(k − 1)2kn−2 − (k
n
2 − 1)2 < 0

kn − 4kn−1 + 2kn−2 + 2k
n
2 − 1 < 0

(k2 − 4k + 2)kn−2 + 2k
n
2 − 1 < 0

((k − 4)k + 2)kn−2 + 2k
n
2 − 1 < 0

((k − 4)k + 2)kn−2 + 2k
n
2 < 1

Since k ≥ 5, ((k−4)k+2)kn−2 and 2k
n
2 are always positive. The minimum value

for this sum is obtained when k = 5 and n = 4. Then, the minimum value is 225
that is greater than 1. Therefore, we reach a contradiction and the configuration
Cβ1 does not minimize the use of the internal link.

• Cβ2: There are two or more dimensions whose ports are separated in

the two cards. From Propositions 3.7 and 3.8, there are at least 6×PATH(1)
and 2×PATH(2) paths using the internal link. Hence, the minimum number of
paths that cross the internal link in Cβ2 is:

RCβ2
≤ RCβ2min

= 6×PATH(1) + 2×PATH(2) =

= 6×
(k − 1)2

4
kn−2 + 2×

(k − 1)2

4
kn−3 =

= (6k + 2)×
(k − 1)2

4
kn−3

If Cβ2 minimizes the use of the internal link, then:

RCβ2
< RCBest

Therefore:

RCβ2min
≤ RCβ2

< RCBest

RCβ2min
< RCBest

RCβ2min
−RCBest

< 0

(6k + 2)×
(k − 1)2

4
kn−3 − (k

n
2 − 1)2 < 0

kn − 5kn−1 + kn−2 + kn−3

2
+ 2k

n
2 − 1 < 0

(k3 − 5k2 + k + 1)
kn−3

2
+ 2k

n
2 − 1 < 0

((k − 5)k2 + k + 1)
kn−3

2
+ 2k

n
2 − 1 < 0

((k − 5)k2 + k + 1)
kn−3

2
+ 2k

n
2 < 1

27

Since k ≥ 5, ((k − 5)k2 + k + 1)k
n−3

2
and 2k

n
2 are always positive. The minimum

value for this sum is obtained when k = 5 and n = 4. Then, the minimum
value is 65 that is greater than 1. Therefore, we reach a contradiction and the
configuration Cβ2 does not minimize the use of the internal link.

Neither Cα, nor Cβ1 nor Cβ2 minimize the use of internal link. Then, CBest

minimizes the number of paths crossing the internal link and CBest is the optimal
configuration when k ≥ 5. A similar study can be developed to demonstrate that
configuration CBest is the best configuration starting from the initial hypothesis that
k ≥ 3 instead k ≥ 5, but we have preferred to not show this study because is larger and
more tedious than the present study. In any case, configuration CBest is the optimal
configuration for nDT torus when k = 3, except when n = 3, as we were shown in [4].
✷

4 Routing in nDT torus

The routing algorithm is the mechanism that determines the path selected by a message
to reach its destination. In many cases, some situations can difficult the routing, like
deadlock, livelock or starvation. Specifically, the deadlock is an inherent problem in
k-ary n-cubes. This problem is even more important in a nDT torus because the
internal link is shared by all dimensions of the nDT torus.

In [4], we presented a study about how the deadlock appears in the 3DT torus
topology and explained how to avoid it using virtual channels [9] or the bubble flow
control mechanism [6]. Basically, in a nDT torus that uses the configuration CBest, the
deadlock occurs for the same reasons that in the 3DT torus. It is easy to extend the
DOR routing algorithm presented in [4] to route the packets and to avoid deadlock in
nDT torus.

In this section, we present the DOR routing algorithm (Dimension Order
Routing) adapted for nDT topology (Section 4.1). Then, we show a brief description of
deadlock in the nDT torus (Section 4.2) and finally, we explain how to avoid deadlock
in Section 4.3.

4.1 DOR routing algorithm adapted for nDT torus topology

DOR routing is commonly used in a k-ary n-cube because it is a very simple routing
algorithm. Basically, a message is routed by the n dimensions following an ascending
(or descending) strict order. If a node is identified by a n-tuple 〈o0 . . . on−1〉, a message
needing to use all the dimensions is first routed through dimension 0, after that it is
routed through dimension 1, and so on until reaching the dimension n− 1.

For a nDT torus topology, each PE needs an identifier composed of n digits,
one digit for each dimension, and another digit to identify the PE inside the node.

28

First, a message crosses the n dimensions as needed. In this case, if the message has
reached the destination node, it checks if the message is destined to the current PE or
the neighbor PE, routing the message to the NIC or the internal link, respectively.
Finally, we check if the output link belongs to the current card. Otherwise, the selected
output port will be the internal link.

In Algorithm 1 we can see the pseudo-code of the DOR routing algorithm adapted
for the nDT torus. The function ringDirection() (Algorithm 2) is used for DOR routing
to determine the output direction in any ring.

Algorithm 1 DOR routing algorithm for a nDT torus.
Require: current PE 〈o0 . . . on−1|pe〉, destination PE 〈o′0 . . . o

′
n−1|pe

′〉
Return: output port p
1: if o0 6= o′0 then

2: p = ringDirection(o0, o
′
0)

3: else if o1 6= o′1 then

4: p = ringDirection(o1, o
′
1)

5: . . .
6: else if on−1 6= on−1 then

7: p = ringDirection(on−1, o
′
n−1)

8: else if pe 6= pe′ then

9: p = internal_link
10: else

11: p = NIC
12: end if

13: if p ∈ LINKS(pe) then

14: return p
15: else

16: return internal_link
17: end if

Algorithm 2 ringDirection() function.
Require: current digit oi, destination digit o′i
Return: output port (d+i , d−i) // 0 ≤ i < n
1: aux = (o′i − oi)mod ki
2: if aux > ki/2 then

3: aux = aux− ki
4: end if

5: if aux ≥ 0 then

6: return d+i
7: else

8: return d−i
9: end if

29

4.2 Analysing the deadlock in nDT torus

Most of the deterministic routing algorithms base their deadlock-freedom on the
channel dependency graph. A routing algorithm is deadlock free if there are no cycles
in its channel dependency graph [9]. As it happens in the 3DT torus, new cycles appear
on the nDT torus network because a message can use the internal link regardless of
the dimension where it is traveling.

If we analyze in detail the use of the internal link, we can distinguish 3 cases
(Figure 5), depending on the destination of the message after using the internal link:

1.- The message uses the internal link to be injected in a dimension di, and i 6= n−1
2

when n is odd (di is not the dimension whose ports are separated in the two
cards). In Figure 5 we can see how a message that arrives from port d−0 and
another message that arrives from port d−n−1

2

, and both messages must use the

internal link to be injected in dimension dn−1
2

+1 (red dotted line).

2.- The destination of the message is the PE connected to the other card in the node.
In this case, the message can arrive at the node from any link of the current card
(blue dotted line).

3.- The message uses the internal link as a part of the dimension dn−1
2

. The message
can cross the dn−1

2
before using the internal link or can be injected from another

dimension. Note that when n is even, no dimension has its ports separated in the
two cards, and there are not messages if this type crossing the internal link. In
Figure 5 we can see a message that arrives from the port d+0 , as well as a message
that crosses the dimension dn−1

2
, must use the internal link to exit the node from

the d−n−1
2

port (yellow dotted line).

+

0d

... ...Card0

_

0d

PE0 PE1

Card1
n-1d
_

+
d n-1

[2]

[3]

[1]

d
+
(n-1)/2(n-1)/2d

_

d
+

(n-1)/2-1

d
_

(n-1)/2-1

d
+

(n-1)/2+1

d
_

(n-1)/2+1

Figure 5: Possible uses of the internal link.

30

Then, we have identified two possible types of cycles in which the internal link is
involved:

A.- Several messages use the internal link as part of the ring of dimension dn−1
2

.
Without mechanisms to avoid deadlock, it can appear in any ring of a k-ary
n-cube. This type of cycle is caused by the traffic of type 3. Example 4.1 shows
in more detail a situation in which a deadlock appears due to this reason.

B.- Several messages use along their paths several internal links to be injected in a
new dimension and also to reach the destination PE. This type of cycle appears
due to the type of traffic 1 and 2. Example 4.2 shows in more detail a situation
in which a deadlock appears due to this reason.

Example 4.1 Given a nDT torus network, with two nodes in dimension dn−1
2

and the

nodes using the configuration CBest, and considering that:

• The PE 〈o1, . . . , on−1
2

−1, 0, on−1
2

+1, . . . , on−1| 0〉 sends a message to the PE

〈o1, . . . on−1
2

−1, 1, on−1
2

+1, . . . , on−1| 0〉, and vice versa.

• The PE 〈o1, . . . , on−1
2

−1, 0, on−1
2

+1, . . . , on−1| 1〉 sends a message to the PE

〈o1, . . . , on−1
2

−1, 1, on−1
2

+1, . . . , on−1| 1〉, and vice versa.

there exist cycles and deadlock can appear in the network. In Figure 6 we can see
graphically this situation.

PE1PE0 PE1PE0

(n-1)/2d
_

(n-1)/2d
_

(n-1)/2d
+

(n-1)/2d
+

<o
0
,...,o ,0,o ,...,o >

n-1-1
(n-1)

2
+1

(n-1)

2

<o
0
,...,o ,1,o ,...,o >

n-1-1
(n-1)

2
+1

(n-1)

2

...+
(n-1)/2-1d

0d
_

...+
(n-1)/2-1d

0d
_

...
(n-1)/2+1d
_

+
d n-1

...
(n-1)/2+1d
_

+
d n-1

Card0

Card1 Card0

Card1

Figure 6: Possible deadlock due to the use of the internal link as a part of the
Y -dimension ring.

31

Example 4.2 Given a nDT torus network of any size and nodes using configuration
D, and considering that:

• The PE 〈o0, . . . , on−1| 1〉 sends a message to the PE 〈o0 + 1, . . . , on−1 + 1| 0〉.

• The PE 〈o0 + 1, . . . , on−1 + 1| 1〉 sends a message to the PE 〈o0, . . . , on−1| 0〉.

there exist cycles and deadlock can appear in the network. In Figure 7 we can see
graphically this situation.

EP1
EP0

EP1
EP0

EP1
EP0

EP1
EP0

(n-1)/2d
_

(n-1)/2d
+

0d
_

dn-1

_

0d+

+
dn-1

(n-1)/2d
_

(n-1)/2d
+

0d
_

dn-1

_

0d+

+
dn-1

(n-1)/2d
_

(n-1)/2d
+

0d
_

dn-1

_

0d+

+
dn-1

(n-1)/2d
_

(n-1)/2d
+

0d
_

dn-1

_

0d+

+
dn-1

,...,o ><o
0 n-1

,...,o ><o +1
0 n-1

,...,o +1><o
0 n-1

<o +1
0

,...,o +1>
n-1

Card0

Card1

Card0

Card1

Card0

Card1

Card0

Card1

Figure 7: Possible deadlock due to the use of the internal link to change between
dimensions and to reach the destination PE.

4.3 Deadlock-avoidance in nDT torus topologies

Once we know how the cycles are produced, now we proceed to their elimination. As
mentioned above, new cycles appear in the network because all the dimensions use the
internal link. To avoid deadlock, it is necessary to separate in different channels the
three types of messages that uses the internal link. Then, we need at least three virtual
channels. One virtual channel is used to route the messages destined to the neighbor
PE. A second virtual channel is used to route the messages whose input and output
ports belong to different dimension and different cards. Finally, when n is odd, a third
virtual channel is used for the messages that are traveling in dimension dn−1

2
if the

network employs the bubble flow control mechanism [6] to avoid deadlock. If virtual
channels [9] are employed, two virtual channels are necessary instead of one for this
type of messages.

32

Algorithm 3 Modified DOR to avoid deadlock using virtual channels and conf. CBest.
Require: current PE 〈o0 . . . on−1|pe〉, destination PE 〈o′0 . . . o

′
n−1|pe

′〉
Return: output port p, virtual channel vc
1: if o0 6= o′0 then

2: p = ringDirection(o0, o
′
0)

3: else if o1 6= o′1 then

4: p = ringDirection(o1, o
′
1)

5: . . .
6: else if on−1 6= on−1 then

7: p = ringDirection(on−1, o
′
n−1)

8: else if pe 6= pe′ then

9: p = internal_link
10: vc = 3 5// type 2.
11: else

12: p = NIC
13: end if

14: if p /∈ LINKS(pe) 6 then

15: if p /∈ dn−1
2

then

16: vc = 0 // type 1.
17: else if vc = Up_Links then

18: vc = 1 // type 3.
19: else

20: vc = 2 // type 3.
21: end if

22: p = internal_link
23: end if

So two, three or four virtual channels, depending on the chosen mechanism and
the number of dimensions, are required in internal link to avoid deadlock. Also, if the
nDT torus uses the configuration CBest, the number of required virtual channels are
always the same, independently the values of n and k. If we use another configuration
to build the nDT torus, new cycles always appear in the channel dependency graph,
increasing the number of virtual channels to avoid deadlock.

Adding the virtual channel selection implemented in both versions of DOR
algorithm for 3DT torus to the DOR algorithm presented in Section 4.1, we obtain a
routing algorithm that ensures the deadlock freedom in the network. We only show the
DOR algorithm that uses virtual channels to avoid deadlock, but we can implement in
a similar way the algorithm to avoid deadlock using the bubble flow control mechanism.

Algorithm 3 and 4 show the modifications realized in the routing algorithm and
ringDirection() function, respectively, when n is odd.

5If n is even, vc = Up_Links.
6If n is even, it is not necessary to check the port p. In this case, when p /∈ LINKS(pe),

vc = Low_Links.

33

Algorithm 4 Modified ringDirection() function to avoid deadlock using virtual
channels and configuration CBest.
Require: current digit oi, destination digit o′i
Return: output port (d+i , d−i), virtual channel vc // 0 ≤ i < n
1: aux = (oi − o′i)mod ki
2: if aux > k/2 then

3: aux = aux− ki
4: end if

5: if aux ≥ 0 then

6: p = d+i
7: else

8: p = d−i
9: end if

10: if o′i > oi then

11: vc = Up_Links
12: else

13: vc = Low_Links
14: end if

References

[1] N.R. Adiga, G. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto, G. Bhanot,
R. Bickford, M. Blumrich, and A. A. Bright. An overview of the Blue Gene/L
supercomputer. In Supercomputing 2002 Technical Papers, 2002.

[2] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu. The Tofu
interconnect. In High Performance Interconnects (HOTI), 2011 IEEE 19th Annual
Symposium on, pages 87–94, 2011.

[3] R. Alverson, D. Roweth, and L. Kaplan. The Gemini system interconnect. In High
Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on, pages
83–87, 2010.

[4] Francisco J. Andújar, Juan A. Villar, Francisco J. Alfaro, Jose L. Sánchez, and
José Duato. Building 3D torus using low–profile expansion cards. Technical Report
DIAB-11-02-3, Department of Computing Systems. University of Castilla-La
Mancha, 2011. http://www.dsi.uclm.es/descargas/thecnicalreports/

DIAB-11-02-3/diab-11-02-3.pdf.

[5] Francisco J. Andújar, Juan A. Villar, Francisco J. Alfaro, José L. Sánchez, and José
Duato. Building 3D torus using low-profile expansion cards. IEEE Transactions
on Computers, 2013.

[6] C. Carrion, R. Beivide, J.A. Gregorio, and F. Vallejo. A flow control mechanism
to avoid message deadlock in k-ary n-cube networks. In High-Performance
Computing, 1997. Proceedings. Fourth International Conference on, pages
322–329, dec 1997.

34

http://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-11-02-3/diab-11-02-3.pdf
http://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-11-02-3/diab-11-02-3.pdf

[7] Dong Chen, N.A. Eisley, P. Heidelberger, R.M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D.L. Satterfield, B. Steinmacher-Burow, and J.J.
Parker. The IBM Blue Gene/Q interconnection network and message unit. In
High Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, pages 1–10, 2011.

[8] Cray Inc. Cray XT specifications. http://www.cray.com/Products/XT/

Specifications.aspx, 2009.

[9] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. Computers, IEEE Transactions on, C-36(5):547–553,
may 1987.

[10] J. J. Dongarra, H. W. Meuer, and E. Strohmaier. TOP500 supercomputer sites.
j-SUPERCOMPUTER, 11(2–3):133–163, June 1995.

[11] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks. An
engineering approach. Morgan Kaufmann Publishers Inc., 2003.

[12] Lawrence Livermore National Laboratory. Sequoia supercomputer. https://asc.
llnl.gov/computing_resources/sequoia/, 2012.

[13] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Transactions on Computers, 34(10):892–901, 1985.

[14] Oak Ridge National Laboratory. Introducing Titan. Advancing the era of
accelerated computing. http://www.olcf.ornl.gov/titan/, 2012.

[15] M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, and T. Watanabe. The
K-Computer: Japanese next-generation supercomputer development project. In
Low Power Electronics and Design (ISLPED) 2011 International Symposium on,
pages 371–372, 2011.

35

http://www.cray.com/Products/XT/ Specifications.aspx
http://www.cray.com/Products/XT/ Specifications.aspx
https://asc.llnl.gov/computing_resources/sequoia/
https://asc.llnl.gov/computing_resources/sequoia/
http://www.olcf.ornl.gov/titan/

	Introduction
	The nDT torus topology
	Notation
	nDT torus definition

	Analysis of the port configuration of the nDT torus.
	Sets NPs and NPd for the node "426830A o0…on-1 "526930B
	DPs and DPd values for the node "426830A o0…on-1 "526930B

	Paths that pass through the node "426830A o0…on-1 "526930B
	Optimal port configuration in a nDT torus
	Defining the optimal configuration CBest
	Calculating the usage of the internal link considering CBest

	Some properties related to PATH(i)
	Demonstrating that CBest is the optimal configuration

	Routing in nDT torus
	DOR routing algorithm adapted for nDT torus topology
	Analysing the deadlock in nDT torus
	Deadlock-avoidance in nDT torus topologies

