
University of Castilla-La Mancha

A publication of the

Department of Computer Science

Stochastic equivalence for performance evaluation

of concurrent systems in dtsiPBC

by

Igor V. Tarasyuk Hermenegilda Macià Valentı́n Valero

Technical Report #DIAB-14-01-1 January 2014

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS
ESCUELA SUPERIOR DE INGENIERÍA INFORMÁTICA

UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain

Phone +34.967.599200, Fax +34.967.599224

Stochastic equivalence for performance evaluation
of concurrent systems in dtsiPBC

Igor V. Tarasyuka,1,∗, Hermenegilda Maciàb,1, Valentı́n Valerob,1

aA.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences, 6, Acad. Lavrentiev ave., 630090 Novosibirsk,
Russian Federation

bHigh School of Information Engineering, University of Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain

Abstract

We propose an extension with immediate multiactions of discrete time stochastic Petri box calculus (dtsPBC), pre-
sented by I.V. Tarasyuk. The resulting algebra dtsiPBC is a discrete time analogue of stochastic Petri box calculus
(sPBC) with immediate multiactions, proposed by H. Macià, V. Valero and others within a continuous time domain.
The step operational semantics is constructed via labeled probabilistic transition systems. The denotational seman-
tics is defined on the basis of a subclass of labeled discrete time stochastic Petri nets with immediate transitions. A
consistency of the both semantics is demonstrated. In order to evaluate performance, the corresponding semi-Markov
chains and (reduced) discrete time Markov chains are analyzed. We define step stochastic bisimulation equivalence
of expressions and prove that it can be applied to reduce their transition systems and underlying semi-Markov chains
while preserving the functionality and performance characteristics. We explain how this equivalence may help to sim-
plify performance analysis of the algebraic processes. In a case study, a method of modeling, performance evaluation
and behaviour preserving reduction of concurrent systems is outlined and applied to the shared memory system.

Keywords: stochastic process algebra, Petri box calculus, discrete time, immediate multiaction, performance
evaluation, stochastic equivalence
2000 MSC: 60J20, 68Q60, 68Q85, 68Q55

1. Introduction

Algebraic process calculi like CSP [37], ACP [5] and CCS [58] are a well-known formal model for the specifi-
cation of computing systems and analysis of their behaviour. In such process algebras (PAs), systems and processes
are specified by formulas, and verification of their properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stochastic extensions of PAs were proposed such as MTIPP [34],
PEPA [36] and EMPA [10, 9, 6]. Stochastic process algebras (SPAs) do not just specify actions which can occur as
usual process algebras (qualitative features), but they associate some quantitative parameters with actions (quantitative
characteristics).

1.1. Petri box calculus

PAs specify concurrent systems in a compositional way via an expressive formal syntax. On the other hand, Petri
nets (PNs) provide a graphical representation of such systems and capture explicit asynchrony in their behaviour.
To combine advantages of both models, a semantics of algebraic formulas in terms of PNs is defined. Petri box

∗Corresponding author. Tel.: +7 3833306360; fax: +7 3833323494.
Email addresses: itar@iis.nsk.su (Igor V. Tarasyuk), Hermenegilda.Macia@uclm.es (Hermenegilda Macià),

Valentin.Valero@uclm.es (Valentı́n Valero)
URL: http://itar.iis.nsk.su (Igor V. Tarasyuk), http://www.dsi.uclm.es/personal/ValentinValero (Valentı́n Valero)

1Partially supported by Spanish government within the project “Modeling and formal analysis of contracts and Web services with distributed
resources”, grant TIN2012-36812-C02-02.

January 28, 2014

calculus (PBC) [11, 13, 12] is a flexible and expressive process algebra developed as a tool for specification of the
PNs structure and their interrelations. Its goal was also to propose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementary PNs. Formulas of PBC are combined not from single
(visible or invisible) actions and variables only, like in CCS, but from multisets of elementary actions and their
conjugates, called multiactions (basic formulas). The empty multiset of actions is interpreted as the silent multiaction
specifying some invisible activity. In contrast to CCS, synchronization is separated from parallelism (concurrent
constructs). Synchronization is a unary multi-way stepwise operation based on communication of actions and their
conjugates. This extends the CCS approach with conjugate matching labels. Synchronization in PBC is asynchronous,
unlike that in Synchronous CCS (SCCS) [58]. Other operations are sequence and choice (sequential constructs). The
calculus includes also restriction and relabeling (abstraction constructs). To specify infinite processes, refinement,
recursion and iteration operations were added (hierarchical constructs). Thus, unlike CCS, PBC has an additional
iteration construction to specify infiniteness when the semantic interpretation in finite PNs is possible. PBC has a
step operational semantics in terms of labeled transition systems. A denotational semantics of PBC was proposed
via a subclass of PNs equipped with an interface and considered up to isomorphism, called Petri boxes. For more
detailed comparison of PBC with other process algebras see [11, 12]. In the last years, several extensions of PBC with
a deterministic, a nondeterministic or a stochastic model of time were presented.

1.2. Time extensions of Petri box calculus
To specify systems with time constraints, such as real time systems, deterministic (fixed) or nondeterministic

(interval) time delays are used. A deterministic time model was considered in timed Petri box calculus (TPBC)
[54], whereas a nondeterministic one was accommodated in time Petri box calculus (tPBC) [43] and in arc time
Petri box calculus (atPBC) [63]. In tPBC each action has a time interval associated (the earliest and the latest firing
time), and an interleaving operational semantics is defined. The denotational semantics is then defined in terms of a
subclass of labeled time PNs (LtPNs), based on tPNs [57], and called time Petri boxes (ct-boxes). In contrast to tPBC,
multiactions of TPBC are not instantaneous, but have time durations. For the latter model a step operational semantics
is also considered, and a denotational semantics, using a subclass of labeled timed PNs (LTPNs), based on TPNs [66],
and called timed Petri boxes (T-boxes). In atPBC multiactions are associated with time delay intervals, and a step
operational semantics is defined. The denotational semantics is defined on a subclass of arc time PNs (atPNs), where
time restrictions are associated with the arcs, called arc time Petri boxes (at-boxes).

1.3. Stochastic extensions of Petri box calculus
The set of states for the systems with deterministic or nondeterministic delays often differs drastically from that for

the timeless systems, hence, the analysis results for untimed systems may be not valid for the time ones. To solve this
problem, stochastic delays are considered, which are the random variables with a (discrete or continuous) probability
distribution. If the random variables governing delays have an infinite support then the corresponding SPA can exhibit
all the same behaviour as its underlying untimed PA. A stochastic extension of PBC, called stochastic Petri box
calculus (sPBC), was proposed in [50]. In sPBC, multiactions have stochastic delays that follow negative exponential
distribution. Each multiaction is instantaneous and equipped with a rate that is a parameter of the corresponding
exponential distribution. The execution of a multiaction is possible only after the corresponding stochastic time delay.
Only a finite part of PBC was initially used for the stochastic enrichment, i.e. in its former version sPBC has neither
refinement nor recursion nor iteration operations. The calculus has an interleaving operational semantics defined
via transition systems labeled with multiactions and their rates. Its denotational semantics was defined in terms of
a subclass of labeled continuous time stochastic PNs (LCTSPNs), based on CTSPNs [55, 3], and called stochastic
Petri boxes (s-boxes). In [47], the iteration operator was added to sPBC. In sPBC with iteration, performance of the
processes is evaluated by analyzing their underlying continuous time Markov chains (CTMCs). In [48], a number of
new equivalence relations were proposed for regular terms of sPBC with iteration to choose later a suitable candidate
for a congruence. sPBC with iteration was enriched further with immediate multiactions in [49]. A denotational
semantics of such an sPBC extension (we call it generalized sPBC or gsPBC) was defined via a subclass of labeled
generalized SPNs (LGSPNs), based on GSPNs [55, 3, 4], and called generalized stochastic Petri boxes (gs-boxes).
The performance analysis in gsPBC is based on the underlying semi-Markov chains (SMCs).

PBC has a step operational semantics, whereas sPBC has interleaving one, hence, a stochastic extension of PBC
with a step semantics is needed to keep the concurrency degree of behavioural analysis at the same level as in PBC.

3

In [70], a discrete time stochastic extension dtsPBC of finite PBC was presented. A step operational semantics of
dtsPBC was constructed via labeled probabilistic transition systems. Its denotational semantics was defined in terms
of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs [60, 61], and called discrete time
stochastic Petri boxes (dts-boxes). A variety of stochastic equivalences were proposed to identify stochastic processes
with similar behaviour which are differentiated by the semantic equivalence. The interrelations of all the introduced
equivalences were studied. In [69, 71], we constructed an enrichment of dtsPBC with the iteration operator used to
specify infinite processes. The performance evaluation in dtsPBC with iteration is accomplished via the underlying
discrete time Markov chains (DTMCs) of the algebraic processes. Since dtsPBC has a discrete time semantics and
geometrically distributed delays in the process states, unlike sPBC with continuous time semantics and exponentially
distributed delays, the calculi apply two different approaches to the stochastic extension of PBC, in spite of some
similarity of their syntax and semantics inherited from PBC. The main advantage of dtsPBC is that concurrency
is treated like in PBC having step semantics, whereas in sPBC parallelism is simulated by interleaving, obliging
one to collect the information on causal independence of activities before constructing the semantics. In [72], we
presented the extension dtsiPBC of the latter calculus with immediate multiactions. Immediate multiactions increase
the specification capability: they can model logical conditions, instant probabilistic choices and activities whose
durations are negligible in comparison with those of others. They are also used to specify urgent activities and the ones
not relevant for performance evaluation. Thus, immediate multiactions can be considered as a kind of instantaneous
dynamic state adjustment and, in many cases, they result in a simpler and more clear system representation.

1.4. Equivalence relations

A notion of equivalence is important in theory of computing systems. Equivalences are applied both to compare
behaviour of systems and reduce their structure. There is a wide diversity of behavioural equivalences, and their
interrelations were well explored in the literature. The most well-known and widely used one is bisimulation. Stan-
dardly, the mentioned equivalences take into account only functional (qualitative) but not performance (quantitative)
aspects. Additionally, the equivalences are usually interleaving ones, i.e. they interpret concurrency as sequential
nondeterminism. To respect quantitative features of behaviour, probabilistic equivalences have additional requirement
on execution probabilities. Two equivalent processes must be able to execute the same sequences of actions, and for
every such sequence, its execution probabilities within both processes should coincide. In case of bisimulation equiv-
alence, the states from which similar future behaviours start are grouped into equivalence classes that form elements
of the aggregated state space. From every two bisimilar states, the same actions can be executed, and the subsequent
states resulting from execution of an action belong to the same equivalence class. In addition, for both states, the cu-
mulative probabilities to move to the same equivalence class by executing the same action coincide. A different kind
of quantitative relations are called Markovian equivalences, which take rate (the parameter of exponential distribution
that governs time delays) instead of probability. Note that the probabilistic equivalences can be seen as discrete time
analogues of the Markovian ones, since the latter are defined as the continuous time equivalences.

Interleaving probabilistic weak trace equivalence was introduced in [22] on labeled probabilistic transition sys-
tems. Interleaving probabilistic strong bisimulation equivalence was proposed in [46] on the same model. Interleaving
Markovian strong bisimulation equivalence was constructed in [34] for MTIPP, in [36] for PEPA and in [10, 9, 6] for
EMPA. Interleaving probabilistic equivalences were defined for probabilistic processes in [39, 28]. Some variants
of interleaving Markovian weak bisimulation equivalence were considered in [18] on Markovian process algebras,
in [19] on labeled CTSPNs and in [20] on GSPNs. In [7], a comparison of interleaving Markovian trace, test and
bisimulation equivalences was carried out on sequential and concurrent Markovian process calculi. Nevertheless, no
appropriate equivalence notion was defined for concurrent SPAs.

1.5. Our contributions

In this paper, we present dtsPBC with iteration extended with immediate multiactions, called discrete time stochas-
tic and immediate Petri box calculus (dtsiPBC), which is a discrete time analog of sPBC. The latter calculus has iter-
ation and immediate multiactions within the context of a continuous time domain. The step operational semantics is
constructed with the use of labeled probabilistic transition systems. The denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic and immediate PNs (LDTSPNs with immediate transitions, LDTSIPNs),
based on the extension of DTSPNs with transition labeling and immediate transitions, called dtsi-boxes. LDTSIPNs

4

possess some features of discrete time deterministic and stochastic PNs (DTDSPNs) [76] and discrete deterministic
and stochastic PNs (DDSPNs) [75], but in LDTSIPNs simultaneous transition firings are possible while in DTDSPNs
and DDSPNs only firings of single transitions are allowed. A consistency of both semantics is demonstrated. The
corresponding stochastic process, the underlying semi-Markov chain (SMC), is constructed and investigated, with
the purpose of performance evaluation, which is the same for both semantics. In addition, the alternative solution
methods are developed, based on the underlying discrete time Markov chain (DTMC) and its reduction (RDTMC) by
eliminating vanishing states. Further, we propose step stochastic bisimulation equivalence allowing one to identify
algebraic processes with similar behaviour that are however differentiated by the semantics of the calculus. We exam-
ine the interrelations of the proposed relation with other equivalences of the algebra. We describe how step stochastic
bisimulation equivalence can be used to reduce transition systems of expressions and their underlying SMCs while
preserving the qualitative and the quantitative behaviour. We prove that the mentioned equivalence guarantees iden-
tity of the stationary behaviour and the residence time properties. This implies coincidence of performance indices
based on steady-state probabilities of the modeled stochastic systems. The equivalences possessing the property can
be used to reduce the state space of a system and thus simplify its performance evaluation, what is usually a complex
problem due to the state space explosion. We present a case study of a system with two processors and a common
shared memory explaining how to model concurrent systems with the calculus and analyze their performance, as well
as in which way to reduce the systems while preserving their performance indices and making simpler the perfor-
mance evaluation. At last, we consider differences and similarities between dtsiPBC and other SPAs to determine the
advantages of our calculus.

The first results on this subject can be found in [72]. What concerns differences from our previous paper about
dtsiPBC [73], the present text is much more detailed and many new results have been added. In particular, all the used
notions (such as numbering and enumeration function) are formally defined, enhanced action rules (some precon-
ditions are excluded) are proposed, alternative performance analysis methods (based on the DTMCs and RDTMCs)
are developed, compact illustrative examples (of performance evaluation) are presented, step stochastic bisimulation
equivalence is introduced and checked for stationary behaviour preservation, reduction of the transition systems and
SMCs by it and the resulting simplification of performance evaluation are considered, generalized variant and reduc-
tions of the shared memory system are constructed, strong points of dtsiPBC with respect to other SPAs are detected.

If we compare dtsiPBC with the classical SPAs MTIPP, PEPA and EMPA, the first main difference between them
comes from PBC, since dtsiPBC is based on this calculus: all algebraic operations and a notion of multiaction are
inherited from PBC. The second main difference is discrete probabilities of activities induced by the discrete time
approach, whereas action rates are used in the standard SPAs with continuous time. As a consequence, dtsiPBC has a
non-interleaving step operational semantics. This is in contrast to the classical SPAs, where concurrency is modeled
by interleaving because of the continuous probability distributions of action delays and the race condition applied
when several actions can be executed in a state. The third main difference is immediate multiactions. The salient
point of dtsiPBC is a combination of immediate multiactions, discrete stochastic time and step semantics in an SPA.
Thus, the main contributions of the paper are the following.

• Powerful and expressive discrete time SPA with immediate activities dtsiPBC in its final form.

• Step operational semantics of dtsiPBC in terms of labeled probabilistic transition systems.

• Petri net denotational semantics of dtsiPBC based on discrete time stochastic and immediate Petri nets.

• Performance analysis via underlying semi-Markov chains and (reduced) discrete time Markov chains.

• Stochastic equivalence used for behaviour-preserving reduction that simplifies the performance evaluation.

• Extended case study illustrating how to apply the obtained theoretical results in practice.

1.6. Structure of the paper
The paper is organized as follows. In Section 2, the syntax of the extended calculus dtsiPBC is presented. In

Section 3, we construct the operational semantics of the algebra in terms of labeled probabilistic transition systems. In
Section 4, we propose the denotational semantics based on a subclass of LDTSIPNs. In Section 5, the corresponding
stochastic process is defined and analyzed. Step stochastic bisimulation equivalence is defined and investigated in

5

Section 6. In Section 7, we explain how to reduce transition systems and underlying SMCs of process expressions
modulo the equivalence. In Section 8, the introduced equivalence is applied to the stationary behaviour comparison to
verify the performance preservation. In Section 9, a shared memory system is presented as a case study. The difference
between dtsiPBC and other well-known or similar SPAs is considered in Section 10. The advantages of dtsiPBC are
explained in Section 11. Finally, Section 12 summarizes the results obtained and outlines the research perspectives.

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, we recall a definition of multiset that is an extension of
the set notion by allowing several identical elements.

Definition 2.1. Let X be a set. A finite multiset (bag) M over X is a mapping M : X → IN such that |{x ∈ X | M(x) >
0}| < ∞, i.e. it can contain a finite number of elements only.

We denote the set of all finite multisets over a set X by INX
f in. Let M,M′ ∈ INX

f in. The cardinality of M is defined
as |M| = ∑

x∈X M(x). We write x ∈ M if M(x) > 0 and M ⊆ M′ if ∀x ∈ X, M(x) ≤ M′(x). We define (M + M′)(x) =
M(x) + M′(x) and (M − M′)(x) = max{0,M(x) − M′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can be interpreted as a proper
set and denoted by M ⊆ X. The set of all subsets of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated actions
(conjugates) such that â , a and ˆ̂a = a. Let A = Act ∪ Âct be the set of all actions, and L = INAf in be the set of all
multiactions. Note that ∅ ∈ L, this corresponds to an internal activity, i.e. the execution of a multiaction that contains
no visible action names. The alphabet of α ∈ L is defined asA(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the probability of the multiaction α.
This probability is interpreted as that of independent execution of the stochastic multiaction at the next discrete time
moment. Such probabilities are used to calculate those to execute (possibly empty) sets of stochastic multiactions after
one time unit delay. The probabilities of stochastic multiactions are required not to be equal to 1 to avoid extra model
complexity due to assigning with them weights needed to make a choice when several stochastic multiactions with
probability 1 can be executed from a state. In this case, some problems appear with conflicts resolving. See [60, 61]
for the discussion on SPNs. This decision also allows us to avoid technical difficulties related to conditioning events
with probability 0. Another reason is that not allowing probability 1 for stochastic multiactions excludes a potential
source of periodicity (hence, non-ergodicity) in the underlying SMCs of the algebraic expressions. On the other hand,
there is no sense to allow zero probabilities of multiactions, since they would never be performed in this case. Let SL
be the set of all stochastic multiactions.

An immediate multiaction is a pair (α, l), where α ∈ L and l ∈ IN≥1 = {1, 2, . . .} is the non-zero weight of the
multiaction α. This weight is interpreted as a measure of importance (urgency, interest) or a bonus reward associated
with execution of the immediate multiaction at the current discrete time moment. Such weights are used to calculate
the probabilities to execute sets of immediate multiactions instantly. Immediate multiactions have a priority over
stochastic ones. One can assume that all immediate multiactions have priority 1, whereas all stochastic ones have
priority 0. This means that in a state where both kinds of multiactions can occur, immediate multiactions always occur
before stochastic ones. Stochastic and immediate multiactions cannot be executed together in some step (concurrent
execution), i.e. the steps consisting only of immediate multiactions or those including only stochastic multiactions are
allowed. Let IL be the set of all immediate multiactions.

Note that the same multiaction α ∈ L may have different probabilities and weights in the same specification. It is
easy to differentiate between probabilities and weights, hence, between stochastic and immediate multiactions, since
the probabilities of stochastic multiactions belong to the interval (0; 1), and the weights of immediate multiactions
are non-zero (positive) natural numbers from IN≥1. An activity is a stochastic or an immediate multiaction. Let
SIL = SL ∪ IL be the set of all activities. The alphabet of a multiset of activities Υ ∈ INSILf in is defined as
A(Υ) = ∪(α,κ)∈ΥA(α). For an activity (α, κ) ∈ SIL, we define its multiaction part as L(α, κ) = α and its probability
or weight part asΩ(α, κ) = κ. The multiaction part of a multiset of activitiesΥ ∈ INSILf in is defined asL(Υ) =

∑
(α,κ)∈Υ α.

Activities are combined into formulas (process expressions) by the following operations: sequential execution ;,
choice [], parallelism ∥, relabeling [f] of actions, restriction rs over a single action, synchronization sy on an action
and its conjugate, and iteration [∗ ∗] with three arguments: initialization, body and termination.

6

Sequential execution and choice have a standard interpretation, like in other process algebras, but parallelism does
not include synchronization, unlike the corresponding operation in CCS [58].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈ A, f (x̂) = f̂ (x). Relabeling
is extended to multiactions in the usual way: for α ∈ L, we define f (α) =

∑
x∈α f (x). Relabeling is extended to the

multisets of activities as follows: for Υ ∈ INSILf in , we define f (Υ) =
∑

(α,κ)∈Υ(f (α), κ).
Restriction over an elementary action a ∈ Act means that, for a given expression, any process behaviour containing

a or its conjugate â is not allowed.
Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act we have a ∈ α and â ∈ β, or â ∈ α

and a ∈ β. Then, synchronization of α and β by a is defined as α ⊕a β = γ, where

γ(x) =
{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require that α ⊕a β = α + β − {a, â}, i.e. we remove one exemplar of a and one exemplar of â from
the multiset sum α + β, since the synchronization of a and â produces ∅. Activities are synchronized with the use of
their multiaction parts, i.e. the synchronization by a of two activities, whose multiaction parts α and β possess the
properties mentioned above, results in the activity with the multiaction part α ⊕a β. We may synchronize activities of
the same type only: either both stochastic multiactions or both immediate ones, since immediate multiactions have a
priority over stochastic ones, hence, stochastic and immediate multiactions cannot be executed together (note also that
the execution of immediate multiactions takes no time, unlike that of stochastic ones). Synchronization by a means
that, for a given expression with a process behaviour containing two concurrent activities that can be synchronized by
a, there exists also the process behaviour that differs from the former only in that the two activities are replaced by the
result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more times, and,
finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expressions correspond to unmarked
LDTSIPNs (note that LDTSIPNs are marked by definition).

Definition 2.2. Let (α, κ) ∈ SIL and a ∈ Act. A static expression of dtsiPBC is defined as

E ::= (α, κ) | E; E | E[]E | E∥E | E[f] | E rs a | E sy a | [E ∗ E ∗ E].

Let S tatExpr denote the set of all static expressions of dtsiPBC.
To make the grammar above unambiguous, one can add parentheses in the productions with binary operations:

(E; E), (E[]E), (E∥E). However, we prefer the PBC approach and add them to resolve ambiguities only.
To avoid technical difficulties with the iteration operator, we should not allow any concurrency at the highest

level of the second argument of iteration. This is not a severe restriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction part. Later on, in Example 4.2, we shall demonstrate that
relaxing the restriction can result in nets which are not safe. Alternatively, we can use a different, safe, version of the
iteration operator, but its net translation has six arguments. See also [12] for discussion on this subject.

Definition 2.3. Let (α, κ) ∈ SIL and a ∈ Act. A regular static expression of dtsiPBC is defined as

E ::= (α, κ) | E; E | E[]E | E∥E | E[f] | E rs a | E sy a | [E ∗ D ∗ E],
where D ::= (α, κ) | D; E | D[]D | D[f] | D rs a | D sy a | [D ∗ D ∗ E].

Let RegS tatExpr denote the set of all regular static expressions of dtsiPBC.
Dynamic expressions specify the states of processes. As we shall see, the expressions correspond to LDTSIPNs

(which are marked by default). Dynamic expressions are obtained from static ones, by annotating them with upper or
lower bars which specify the active components of the system at the current moment of time. The dynamic expression
with upper bar (the overlined one) E denotes the initial, and that with lower bar (the underlined one) E denotes the
final state of the process specified by a static expression E. The underlying static expression of a dynamic one is
obtained by removing all upper and lower bars from it.

7

Definition 2.4. Let E ∈ S tatExpr and a ∈ Act. A dynamic expression of dtsiPBC is defined as

G ::= E | E | G; E | E; G | G[]E | E[]G | G∥G | G[f] | G rs a | G sy a | [G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsiPBC.
Note that if the underlying static expression of a dynamic one is not regular, the corresponding LDTSIPN can be

non-safe (though, it is 2-bounded in the worst case [12]).

Definition 2.5. A dynamic expression is regular if its underlying static expression is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsiPBC.

3. Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems.

3.1. Inaction rules
The inaction rules for dynamic expressions describe their structural transformations which do not change the

states of the specified processes. The goal of these syntactic transformations is to obtain the well-structured terminal
expressions called operative ones to which no inaction rules can be further applied. As we shall see, the application
of an inaction rule to a dynamic expression does not lead to any discrete time step or any transition firing in the
corresponding LDTSIPN, hence, its current marking remains unchanged.

Thus, an application of every inaction rule does not require any discrete time delay, i.e. the dynamic expression
transformation described by the rule is accomplished instantly.

First, in Table 1, we define inaction rules for regular dynamic expressions in the form of overlined and underlined
static ones. In this table, E, F,K ∈ RegS tatExpr and a ∈ Act.

Table 1: Inaction rules for overlined and underlined regular static expressions.

E; F ⇒ E; F E; F ⇒ E; F E; F ⇒ E; F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E∥F ⇒ E∥F
E∥F ⇒ E∥F E[f]⇒ E[f] E[f]⇒ E[f] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a [E ∗ F ∗ K]⇒ [E ∗ F ∗ K]

[E ∗ F ∗ K]⇒ [E ∗ F ∗ K] [E ∗ F ∗ K]⇒ [E ∗ F ∗ K] [E ∗ F ∗ K]⇒ [E ∗ F ∗ K] [E ∗ F ∗ K]⇒ [E ∗ F ∗ K]

Second, in Table 2, we propose inaction rules for regular dynamic expressions in the arbitrary form. In this table,
E, F ∈ RegS tatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Table 2: Inaction rules for arbitrary regular dynamic expressions.

G ⇒ G̃, ◦ ∈ {; , []}
G ◦ E ⇒ G̃ ◦ E

G ⇒ G̃, ◦ ∈ {; , []}
E ◦G ⇒ E ◦ G̃

G ⇒ G̃

G∥H ⇒ G̃∥H
H ⇒ H̃

G∥H ⇒ G∥H̃
G ⇒ G̃

G[f]⇒ G̃[f]

G ⇒ G̃, ◦ ∈ {rs,sy}
G ◦ a⇒ G̃ ◦ a

G ⇒ G̃

[G ∗ E ∗ F]⇒ [G̃ ∗ E ∗ F]

G ⇒ G̃

[E ∗G ∗ F]⇒ [E ∗ G̃ ∗ F]

G ⇒ G̃

[E ∗ F ∗G]⇒ [E ∗ F ∗ G̃]

8

Definition 3.1. A regular dynamic expression G is operative if no inaction rule can be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions of dtsiPBC.
Note that any dynamic expression can be always transformed into a (not necessarily unique) operative one by

using the inaction rules. In the following, we consider regular expressions only and omit the word “regular”.

Definition 3.2. Let ≈ = (⇒ ∪ ⇐)∗ be a structural equivalence of dynamic expressions in dtsiPBC. Thus, two dynamic
expressions G and G′ are structurally equivalent, denoted by G ≈ G′, if they can be reached from each other by
applying the inaction rules in a forward or backward direction.

3.2. Action and empty loop rules

The action rules are applied when some activities are executed. With these rules we capture the prioritization of
immediate multiactions with respect to stochastic ones. We also have the empty loop rule which is used to capture
a delay of one time unit in the same state when no immediate multiactions are executable. In this case, the empty
multiset of activities is executed. The action and empty loop rules will be used later to determine all multisets of
activities which can be executed from the structural equivalence class of every dynamic expression (i.e. from the state
of the corresponding process). This information together with that about probabilities or weights of the activities to
be executed from the process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (or immediate, otherwise) multiactions describe dynamic expression transforma-
tions due to execution of non-empty multisets of stochastic (or immediate) multiactions. The rules represent possible
state changes of the specified processes when some non-empty multisets of stochastic (or immediate) multiactions are
executed. As we shall see, the application of an action rule with stochastic (or immediate) multiactions to a dynamic
expression leads in the corresponding LDTSIPN to a discrete time step at which some stochastic transitions fire (or to
the instantaneous firing of some immediate transitions) and change of the current marking, unless there is a self-loop
produced by the iterative execution of a non-empty multiset, which must be one-element, i.e. the single stochastic (or
immediate) multiaction, since no concurrency is allowed at the highest level of the second argument of iteration.

The empty loop rule G
∅→ G with a pre-condition (rule El in Table 3) describes dynamic expression transforma-

tions due to execution of the empty multiset of activities at a discrete time step. The rule reflects a non-zero probability
to stay in the current state at the next time moment, which is an essential feature of discrete time stochastic processes.
As we shall see, the application of the empty loop rule to a dynamic expression leads to a discrete time step in the cor-
responding LDTSIPN at which no transitions fire and the current marking is not changed. This is a new rule that has
no prototype among inaction rules of PBC, since it represents a time delay, but no notion of time exists in PBC. The

PBC rule G
∅→ G from [13, 12] in our setting would correspond to the rule G ⇒ G describing the stay in the current

state when no time elapses. Since we do not need the latter rule to transform dynamic expressions into operative ones
and it can even destroy the definition of operative expressions, we do not introduce it in dtsiPBC.

Thus, an application of every action rule with stochastic multiactions or the empty loop rule requires one discrete
time unit delay, i.e. the execution of a (possibly empty) multiset of stochastic multiactions leading to the dynamic
expression transformation described by the rule is accomplished instantly after one time unit. An application of
every action rule with immediate multiactions does not take any time, i.e. the execution of a (non-empty) multiset of
immediate multiactions is accomplished instantly at the current moment of time.

Note that expressions of dtsiPBC can contain identical activities. To avoid technical difficulties, such as the proper
calculation of the state change probabilities for multiple transitions, we can always enumerate coinciding activities
from left to right in the syntax of expressions. The new activities resulted from synchronization will be annotated
with concatenation of numberings of the activities they come from, hence, the numbering should have a tree structure
to reflect the effect of multiple synchronizations. Now we define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 3.3. The numbering of expressions is defined as ι ::= n | (ι)(ι), where n ∈ IN.

Let Num denote the set of all numberings of expressions.

9

u(a)
1

u

u u

(b)

1 2

�
�

�

@
@
@

u

u u

(c)

1

�
�

�

@
@
@

u u

2 3

�
�

�

@
@
@

Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3)).

Example 3.1. The numbering 1 encodes the binary tree depicted in Figure 1(a) with the root labeled by 1. The
numbering (1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two leaves
labeled by 1 and 2. The numbering (1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one internal
node, which is the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from synchronizations in different orders should be considered up to permutation of
their numbering. In this way, we shall recognize different instances of the same activity. If we compare the contents
of different numberings, i.e. the sets of natural numbers in them, we shall be able to identify the mentioned instances.

The content of a numbering ι ∈ Num is

Cont(ι) =
{
{ι}, ι ∈ IN;
Cont(ι1) ∪Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions will become the proper sets. Suppose that
the identical activities are enumerated when needed to avoid ambiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the cartesian product X × X by X2. Let E ⊆ X2 be an equivalence relation on X.
Then the equivalence class (with respect to E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The
equivalence E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence class of G with respect to the
structural equivalence. G is an initial dynamic expression, denoted by init(G), if ∃E ∈ RegS tatExpr, G ∈ [E]≈. G is
a final dynamic expression, denoted by f inal(G), if ∃E ∈ RegS tatExpr, G ∈ [E]≈.

Definition 3.4. Let G ∈ OpRegDynExpr. We define the set of all non-empty sets of activities which can be potentially
executed from G, denoted by Can(G). Let (α, κ) ∈ SIL, E, F ∈ RegS tatExpr, G,H ∈ OpRegDynExpr and a ∈ Act.

1. If f inal(G) then Can(G) = ∅.
2. If G = (α, κ) then Can(G) = {{(α, κ)}}.
3. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}), Υ ∈ Can(G∥H), Υ ∈ Can(H∥G),

f (Υ) ∈ Can(G[f]), Υ ∈ Can(G rs a) (when a, â < A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

4. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G∥H).
5. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such that a ∈ α, â ∈ β then

(a) (Υ + {(α ⊕a β, κ · λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1);
(b) (Υ + {(α ⊕a β, κ + λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ IN≥1.

When we synchronize the same set of activities in different orders, we obtain several activities with the
same multiaction and probability or weight parts, but with different numberings having the same content.
Then we only consider a single one of the resulting activities to avoid introducing redundant ones.
For example, the synchronization of stochastic multiactions (α, ρ)1 and (β, χ)2 in different orders generates
the activities (α ⊕a β, ρ · χ)(1)(2) and (β ⊕a α, χ · ρ)(2)(1). Similarly, the synchronization of immediate
multiactions (α, l)1 and (β,m)2 in different orders generates the activities (α ⊕a β, l + m)(1)(2) and
(β ⊕a α,m + l)(2)(1). Since Cont((1)(2)) = {1, 2} = Cont((2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchronization will appear in a set from Can(G sy a).

10

Note that if Υ ∈ Can(G) then by definition of Can(G), ∀Ξ ⊆ Υ, Ξ , ∅ we have Ξ ∈ Can(G).
Let G ∈ OpRegDynExpr. Obviously, if there are only stochastic (or only immediate) multiactions in the sets from

Can(G) then these stochastic (or immediate) multiactions can be executed from G. Otherwise, besides stochastic
ones, there are also immediate multiactions in the sets from Can(G). By the note above, there are non-empty sets of
immediate multiactions in Can(G) as well, i.e. ∃Υ ∈ Can(G)Υ ∈ INILf in \{∅}. In this case, no stochastic multiactions can
be executed from G, even if Can(G) contains non-empty sets of stochastic multiactions, since immediate multiactions
have a priority over stochastic ones, and should be executed first.

Definition 3.5. Let G ∈ OpRegDynExpr. The set of all non-empty sets of activities which can be executed from G is

Now(G) =

 Can(G), (Can(G) ⊆ INSLf in \ {∅}) ∨ (Can(G) ⊆ INILf in \ {∅});
Can(G) ∩ INILf in , otherwise.

An expression G ∈ OpRegDynExpr is tangible, denoted by tang(G), if Now(G) ⊆ INSLf in \ {∅}. Otherwise, the
expression G is vanishing, denoted by vanish(G), and in this case Now(G) ⊆ INILf in \ {∅}.

Example 3.2. Let G = (({a}, 1)[]({b}, 2))∥({c}, 1
2) and G′ = (({a}, 1)[]({b}, 2))∥({c}, 1

2). Then G ≈ G′, but Can(G) =
{{({a}, 1)}, {({c}, 1

2)}, {({a}, 1), ({c}, 1
2)}}, Can(G′) = {{({b}, 2)}, {({c}, 1

2)}, {({b}, 2), ({c}, 1
2)}} and Now(G) = {{({a}, 1)}},

Now(G′) = {{({b}, 2)}}. Clearly, we have vanish(G) and vanish(G′). The executions like that of {({c}, 1
2)} (and all sets

including it) from H and H′ must be disabled using preconditions in the action rules, since immediate multiactions
have a priority over stochastic ones, hence, the former are always executed first.

Let H = ({a}, 1)[]({b}, 1
2) and H′ = ({a}, 1)[]({b}, 1

2). Then H ≈ H′, but Can(H) = Now(H) = {{({a}, 1)}} and
Can(H′) = Now(H′) = {{({b}, 1

2)}}. We have vanish(H), but tang(H′). To make the action rules correct under
structural equivalence, the executions like that of {({b}, 1

2)} from H′ must be disabled using preconditions in the action
rules, since immediate multiactions have a priority over stochastic ones, hence, the choices between them are always
resolved in favour of the former.

Now, in Table 3, we define the action and empty loop rules. In this table, (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL
and (α, κ) ∈ SIL. Further, E, F ∈ RegS tatExpr, G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈ Act.
Moreover, Γ,∆ ∈ INSLf in \ {∅}, Γ′ ∈ INSLf in , I, J ∈ INILf in \ {∅}, I′ ∈ INILf in and Υ ∈ INSILf in \ {∅}. The first rule in the table
is the empty loop rule El. The other rules are the action rules, describing transformations of dynamic expressions,
which are built using particular algebraic operations. If we cannot merge a rule with stochastic multiactions and a rule
with immediate multiactions for some operation then we get the coupled action rules. In such cases, the names of the
action rules with immediate multiactions have a suffix ‘i’.

Almost all the rules in Table 3 (excepting El, P2, P2i, Sy2 and Sy2i) resemble those of gsPBC [49], but the
former correspond to execution of sets of activities, not of single activities, as in the latter, and our rules have simpler
preconditions (if any), since all immediate multiactions in dtsiPBC have the same priority level, unlike those of
gsPBC. The preconditions in rules El, C, P1, I2 and I3 are needed to ensure that (possibly empty) sets of stochastic
multiactions are executed only from tangible operative dynamic expressions, such that all structurally equivalent to
them operative dynamic expressions are tangible as well. For example, if init(G) in rule C then G = F for some static
expression F and G[]E = F[]E ≈ F[]E. Hence, it should be guaranteed that tang(F[]E), which holds iff tang(E). The
case E[]G is treated similarly. Further, in rule P1, assuming that tang(G), it should be guaranteed that tang(G∥H) and
tang(H∥G), which holds iff tang(H). The preconditions in rules I2 and I3 are analogous to that in rule C.

Rule El corresponds to one discrete time unit delay while executing no activities and therefore it has no analogues
among the rules of gsPBC that adopts the continuous time model.

Rules P2 and P2i have no similar rules in gsPBC, since interleaving semantics of the algebra allows no simul-
taneous execution of activities. On the other hand, P2 and P2i have in PBC the analogous rule PAR that is used to
construct step semantics of the calculus, but the former two rules correspond to execution of sets of activities, unlike
that of multisets of multiactions in the latter rule.

Rules Sy2 and Sy2i differ from the corresponding synchronization rules in gsPBC, since the probability or the
weight of synchronization in the former rules and the rate or the weight of synchronization in the latter rules are
calculated in two distinct ways.

11

Table 3: Action and empty loop rules.

El
tang(G)

G
∅→ G

B (α, κ)
{(α,κ)}−→ (α, κ) S

G
Υ→ G̃

G; E
Υ→ G̃; E, E; G

Υ→ E; G̃

C
G
Γ→ G̃, ¬init(G) ∨ (init(G) ∧ tang(E))

G[]E
Γ→ G̃[]E, E[]G

Γ→ E[]G̃
Ci

G
I→ G̃

G[]E
I→ G̃[]E, E[]G

I→ E[]G̃
P1

G
Γ→ G̃, tang(H)

G∥H Γ→ G̃∥H, H∥G Γ→ H∥G̃

P1i
G

I→ G̃

G∥H I→ G̃∥H, H∥G I→ H∥G̃
P2

G
Γ→ G̃, H

∆→ H̃

G∥H Γ+∆−→ G̃∥H̃
P2i

G
I→ G̃, H

J→ H̃

G∥H I+J−→ G̃∥H̃

L
G
Υ→ G̃

G[f]
f (Υ)
−→ G̃[f]

Rs
G
Υ→ G̃, a, â < A(Υ)

G rs a
Υ→ G̃ rs a

I1
G
Υ→ G̃

[G ∗ E ∗ F]
Υ→ [G̃ ∗ E ∗ F]

I2
G
Γ→ G̃, ¬init(G) ∨ (init(G) ∧ tang(F))

[E ∗G ∗ F]
Γ→ [E ∗ G̃ ∗ F]

I2i
G

I→ G̃

[E ∗G ∗ F]
I→ [E ∗ G̃ ∗ F]

I3
G
Γ→ G̃, ¬init(G) ∨ (init(G) ∧ tang(F))

[E ∗ F ∗G]
Γ→ [E ∗ F ∗ G̃]

I3i
G

I→ G̃

[E ∗ F ∗G]
I→ [E ∗ F ∗ G̃]

Sy1
G
Υ→ G̃

G sy a
Υ→ G̃ sy a

Sy2
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,l)}+{(β,m)}
−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,l+m)}
−−−−−−−−−−−→ G̃ sy a

Rule Sy2 establishes that the synchronization of two stochastic multiactions is made by taking the product of their
probabilities, since we are considering that both must occur for the synchronization to happen, so this corresponds,
in some sense, to the probability of the independent event intersection, but the real situation is more complex, since
these stochastic multiactions can be also executed in parallel. Nevertheless, when scoping (the combined operation
consisting of synchronization followed by restriction over the same action [12]) is applied over a parallel execution, we
get as final result just the simple product of the probabilities, since no normalization is needed there. Multiplication is
an associative and commutative binary operation that is distributive over addition, i.e. it fulfills all practical conditions
imposed on the synchronization operator in [35]. Further, if both arguments of multiplication are from (0; 1) then
the result belongs to the same interval, hence, multiplication naturally maintains probabilistic compositionality in our
model. Our approach is similar to the multiplication of rates of the synchronized actions in MTIPP [34] in the case
when the rates are less than 1. Moreover, for the probabilities ρ and χ of two stochastic multiactions to be synchronized
we have ρ · χ < min{ρ, χ}, i.e. multiplication meets the performance requirement stating that the probability of the
resulting synchronized stochastic multiaction should be less than the probabilities of the two ones to be synchronized.
While performance evaluation, it is usually supposed that the execution of two components together require more
system resources and time than the execution of each single one. This resembles the bounded capacity assumption
from [35]. Thus, multiplication is easy to handle with and it satisfies the algebraic, probabilistic, time and performance
requirements. Therefore, we have chosen the product of the probabilities for the synchronization. See also [17, 16]
for a discussion about binary operations producing the rates of synchronization in the continuous time setting.

In rule Sy2i, we sum the weights of two synchronized immediate multiactions, since the weights can be interpreted
as the rewards [68], thus, we collect the rewards. Next, we express that the synchronized execution of immediate
multiactions has more importance than that of every single one. The weights of immediate multiactions can be
also seen as bonus rewards associated with transitions [8]. The rewards are summed during synchronized execution of
immediate multiactions, since in this case all the synchronized activities can be seen as “operated”. We prefer to collect
more rewards, thus, the transitions providing greater rewards will have a preference and they will be executed with a
greater probability. Since execution of immediate multiactions takes no time, we prefer to execute in a step as many

12

synchronized immediate multiactions as possible to get more significant progress in behaviour. Under behavioural
progress we understand an advance in executing activities, which does not always imply a progress in time, as in
the case when the activities are immediate multiactions. This aspect will be used later, while evaluating performance
via analysis of the embedded discrete time Markov chains (EDTMCs) of expressions. Since every state change in
EDTMC takes one unit of (local) time, greater advance in operation of the EDTMC allows one to calculate quicker
performance indices.

Example 3.3. In the following cases, the weights of immediate multiactions are interpreted as bonus rewards to be
summed while synchronous or parallel execution of the immediate multiactions specifying instant probabilistic choice.

• A customer in a shop considers which products to purchase. He will get a bonus (pay points) k when he decides
({a}, k) to buy the product A and, for the deciding ({â}, l) to buy the product B, he will have the bonus l. Thus,
on every decision to buy both products A and B (first A, and next time B; or first B, then A; or on the decision
{({a}, k), {â}, l)} to buy A and B together, in one visit to the shop, i.e. in parallel; or on the decision (∅, k + l) to
buy a kit with A and B, which corresponds to their synchronized composition), the customer will get a bonus
k + l, this is a standard and well-accepted practice.

• A cook in a fast-food restaurant plans his everyday work (cooking a two-component dinner dish of vegetables
and meat), that consists in the decision ({a}, k) to perform work A (boil vegetables), for which he will get a
payment k, and the decision ({â}, l) to perform work B (fry meat), with the payment l. The works A and B
are independent, and they can be even done together, since there are several (at least, two) free rings on the
electric cooker in the kitchen. Then, on every decision to perform both works A and B (first A, then B; or first
B, then A; or on the decision {({a}, k), {â}, l)} to perform A and B in parallel; or on the decision (∅, k + l) to do
a work including both A and B, for example, to warm up a frozen combined (two-in-one) product (consisting of
vegetables and meat), prepared by the cook ahead of time, which corresponds to the synchronized composition
of works A and B), the cook will get a payment k + l, this is logical and fair.

In the both situations above, more successful customer or cook spends less resources (strength, electricity, water, etc.)
to get his bonus or payment k+ l. Thus, the preferred and encouraged way of doing (the ideal behaviour or work) con-
sists in the parallel or the synchronized executing of actions. Since we prefer to collect more bonus rewards, clearly,
the decisions providing more rewards must have a preference and should be executed with a greater probability.

The standard approach while system modeling within dtsiPBC is to split the system operations into the probabilis-
tic decision, specified by an immediate multiaction, and the time-consuming work followed, that is specified by one
or more stochastic multiactions. It is more natural to interpret weights of immediate multiactions as bonus rewards,
subsequently used to determine the decision probabilities, since probabilities of stochastic multiactions are intended
to calculate the duration of work.

Observe also that we do not have self-synchronization, i.e. synchronization of an activity with itself, since all the
(enumerated) activities executed together are considered to be different. This allows us to avoid rather cumbersome
and unexpected behaviour, as well as many technical difficulties [12].

In Table 4, inaction rules, action rules (with stochastic or immediate multiactions) and empty loop rule are com-
pared according to the three questions about their application: whether it changes the current state, whether it leads to
a time progress, and whether it results in execution of some activities. Positive answers to the questions are denoted
by the plus sign while negative ones are specified by the minus sign. If both positive and negative answers can be
given to some of the questions in different cases then the plus-minus sign is written. The process states are considered
up to structural equivalence of the corresponding expressions, and time progress is not regarded as a state change.

3.3. Transition systems
Now we construct labeled probabilistic transition systems associated with dynamic expressions. The transition

systems are used to define the operational semantics of dynamic expressions.

Definition 3.6. The derivation set of a dynamic expression G, denoted by DR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

13

Table 4: Comparison of inaction, action and empty loop rules.

Rules State change Time progress Activities execution
Inaction rules − − −
Action rules ± + +

(stochastic multiactions)
Action rules ± − +

(immediate multiactions)
Empty loop rule − + −

• if [H]≈ ∈ DR(G) and ∃Υ, H
Υ→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all sets of activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s, ∃H̃, H
Υ→ H̃}. Note that

if Υ ∈ Exec(s) \ {∅} then ∃H ∈ s, Υ ∈ Now(H). The state s is tangible, if Exec(s) ⊆ INSLf in . For tangible states
we may have Exec(s) = {∅}. Otherwise, the state s is vanishing, and in this case Exec(s) ⊆ INILf in \ {∅}. The set of
all tangible states from DR(G) is denoted by DRT (G), and the set of all vanishing states from DR(G) is denoted by
DRV (G). Clearly, DR(G) = DRT (G) ⊎ DRV (G) (⊎ denotes disjoint union).

Note that if Υ ∈ Exec(s) then by rules P2, P2i and definition of Exec(s) ∀Ξ ⊆ Υ, Ξ , ∅ we have Ξ ∈ Exec(s).
Let Υ ∈ Exec(s) \ {∅}. The probability that the set of stochastic multiactions Υ is ready for execution in s or the

weight of the set of immediate multiactions Υ which is ready for execution in s is

PF(Υ, s) =


∏

(α,ρ)∈Υ
ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ)<Υ}

(1 − χ), s ∈ DRT (G);∑
(α,l)∈Υ

l, s ∈ DRV (G).

In the case Υ = ∅ and s ∈ DRT (G) we define

PF(∅, s) =


∏

{(β,χ)}∈Exec(s)

(1 − χ), Exec(s) , {∅};

1, Exec(s) = {∅}.
If s ∈ DRT (G) and Exec(s) , {∅} then PF(Υ, s) can be interpreted as a joint probability of independent events (in

a probability sense, i.e. the probability of intersection of these events is equal to the product of their probabilities).
Each such an event consists in the positive or negative decision to be executed of a particular stochastic multiaction.
Every executable stochastic multiaction decides probabilistically (using its probabilistic part) and independently (from
others), if it wants to be executed in s. If Υ is a set of all executable stochastic multiactions which have decided to
be executed in s and Υ ∈ Exec(s) then Υ is ready for execution in s. The multiplication in the definition is used
because it reflects the probability of the independent event intersection. Alternatively, when Υ , ∅, PF(Υ, s) can be
interpreted as the probability to execute exclusively the set of stochastic multiactions Υ in s, i.e. the probability of
intersection of two events calculated using the conditional probability formula in the form P(X ∩ Y) = P(X|Y)P(Y).
The event X consists in the execution of Υ in s. The event Y consists in the non-execution in s of all the executable
stochastic multiactions not belonging to Υ. Since the mentioned non-executions are obviously independent events,
the probability of Y is a product of the probabilities of the non-executions: P(Y) =

∏
{{(β,χ)}∈Exec(s)|(β,χ)<Υ}(1 − χ). The

conditioning of X by Y makes the executions of the stochastic multiactions from Υ independent, since all of them
can be executed in parallel in s by definition of Exec(s). Hence, the probability to execute Υ under condition that no
executable stochastic multiactions not belonging to Υ are executed in s is a product of probabilities of these stochastic
multiactions: P(X|Y) =

∏
(α,ρ)∈Υ ρ. Thus, the probability that Υ is executed and no executable stochastic multiactions

not belonging to Υ are executed in s is the probability of X conditioned by Y multiplied by the probability of Y:
P(X ∩ Y) = P(X|Y)P(Y) =

∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ)<Υ}(1 − χ). When Υ = ∅, PF(Υ, s) can be interpreted as the

14

probability not to execute in s any executable stochastic multiactions, thus, PF(∅, s) =
∏
{(β,χ)}∈Exec(s)(1 − χ). When

only the empty set of activities can be executed in s, i.e. Exec(s) = {∅}, we take PF(∅, s) = 1, since we stay in s in
this case. Note that for s ∈ DRT (G) we have PF(∅, s) ∈ (0; 1], hence, we can stay in s at the next time moment with a
certain positive probability.

If s ∈ DRV (G) then PF(Υ, s) can be interpreted as the overall (cumulative) weight of the immediate multiactions
from Υ, i.e. the sum of all their weights. The summation here is used since the weights can be seen as the rewards
which are collected [68]. In addition, this means that concurrent execution of the immediate multiactions has more
importance than that of every single one. The weights of immediate multiactions can be also interpreted as bonus
rewards of transitions [8]. The rewards are summed when immediate multiactions are executed in parallel, because
all of them “work” thereby. Since execution of immediate multiactions takes no time, we prefer to execute in a step
as many parallel immediate multiactions as possible to get more progress in behaviour. This aspect will be used later,
while evaluating performance on the basis of the EDTMCs of expressions. Note that this reasoning is the same as
that used to define the probability of synchronized immediate multiactions in the rule Sy2i. Another reason is that our
approach is analogous to the definition of the probability of conflicting immediate transitions in GSPNs [4]. The only
difference is that we have a step semantics and, for every set of immediate multiactions executed in parallel, we use
its cumulative weight. To get the analogy with GSPNs possessing interleaving semantics, we interpret the weights of
immediate transitions of GSPNs as the cumulative weights of the sets of immediate multiactions of dtsiPBC.

Note that the definition of PF(Υ, s) (as well as the definitions of other probability functions which we shall present)
is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). Besides Υ, some other sets of activities may be ready for execution in s, hence, a kind of
conditioning or normalization is needed to calculate the execution probability. The probability to execute the set of
activities Υ in s is

PT (Υ, s) =
PF(Υ, s)∑

Ξ∈Exec(s)

PF(Ξ, s)
.

If s ∈ DRT (G) then PT (Υ, s) can be interpreted as the conditional probability to execute Υ in s calculated using
the conditional probability formula in the form P(Z|W) = P(Z∩W)

P(W) . The event Z consists in the exclusive execution
of Υ in s, hence, P(Z) = PF(Υ, s). The event W consists in the exclusive execution of any set (including the empty
one) Ξ ∈ Exec(s) in s. Thus, W = ∪ jZ j, where ∀ j, Z j are mutually exclusive events and ∃i, Z = Zi (in a probability
sense, i.e. intersection of these events is the empty event). We have P(W) =

∑
j P(Z j) =

∑
Ξ∈Exec(s) PF(Ξ, s), because

summation reflects the probability of the mutually exclusive event union. Since Z ∩ W = Zi ∩ (∪ jZ j) = Zi = Z, we
have P(Z|W) = P(Z)

P(W) =
PF(Υ,s)∑

Ξ∈Exec(s) PF(Ξ,s) . PF(Υ, s) can be also seen as the potential probability to execute Υ in s, since
we have PF(Υ, s) = PT (Υ, s) only when all sets (including the empty one) consisting of the executable stochastic
multiactions can be executed in s. In this case, all the mentioned stochastic multiactions can be executed in parallel
in s and we have

∑
Ξ∈Exec(s) PF(Ξ, s) = 1, since this sum collects the products of all combinations of the probability

parts of the stochastic multiactions and the negations of these parts. But in general, for example, for two stochastic
multiactions (α, ρ) and (β, χ) executable in s, it may happen that they cannot be executed in s together, in parallel, i.e.
∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but {(α, ρ), (β, χ)} < Exec(s). Note that for s ∈ DRT (G) we have PT (∅, s) ∈ (0; 1], hence,
there is a non-zero probability to stay in the state s at the next time moment, and the residence time in s is at least 1
discrete time unit.

If s ∈ DRV (G) then PT (Υ, s) can be interpreted as the weight of the set of immediate multiactions Υ which is
ready for execution in s normalized by the weights of all the sets executable in s.

The advantage of our two-stage approach to definition of the probability to execute a set of activities is that the
resulting probability formula PT (Υ, s) is valid both for (sets of) stochastic and immediate multiactions. It allows one
to unify the notation used later while constructing the operational semantics and analyzing performance.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations of G is equal to 1.
More formally, ∀s ∈ DR(G),

∑
Υ∈Exec(s) PT (Υ, s) = 1. This, obviously, follows from the definition of PT (Υ, s), and

guarantees that it always defines a probability distribution.
The probability to move from s to s̃ by executing any set of activities is

15

PM(s, s̃) =
∑

{Υ|∃H∈s, ∃H̃∈s̃, H
Υ→H̃}

PT (Υ, s).

Since PM(s, s̃) is the probability to move from s to s̃ by executing any set of activities (including the empty one), we
use summation in the definition. Note that ∀s ∈ DR(G),

∑
{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H

Υ→H̃}
PM(s, s̃) =

∑
{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H

Υ→H̃}∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ→H̃}
PT (Υ, s) =

∑
Υ∈Exec(s) PT (Υ, s) = 1.

Example 3.4. Let E = ({a}, ρ)[]({a}, χ), where ρ, χ ∈ (0; 1). DR(E) consists of the equivalence classes s1 = [E]≈
and s2 = [E]≈. We have DRT (E) = {s1, s2}. The execution probabilities are calculated as follows. Since Exec(s1) =
{∅, {({a}, ρ)}, {({a}, χ)}}, we get PF({({a}, ρ)}, s1) = ρ(1 − χ), PF({({a}, χ)}, s1) = χ(1 − ρ) and PF(∅, s1) = (1 −
ρ)(1 − χ). Then

∑
Ξ∈Exec(s1) PF(Ξ, s1) = ρ(1 − χ) + χ(1 − ρ) + (1 − ρ)(1 − χ) = 1 − ρχ. Thus, PT ({({a}, ρ)}, s1) =

ρ(1−χ)
1−ρχ , PT ({({a}, χ)}, s1) = χ(1−ρ)

1−ρχ and PT (∅, s1) = PM(s1, s1) = (1−ρ)(1−χ)
1−ρχ . Further, Exec(s2) = {∅}, hence,∑

Ξ∈Exec(s2) PF(Ξ, s2) = PF(∅, s2) = 1 and PT (∅, s2) = PM(s2, s2) = 1
1 = 1. At last, PM(s1, s2) = PT ({({a}, ρ)}, s1) +

PT ({({a}, χ)}, s1) = ρ(1−χ)
1−ρχ +

χ(1−ρ)
1−ρχ =

ρ+χ−2ρχ
1−ρχ .

Let E′ = ({a}, l)[]({a},m), where l,m ∈ IN≥1. DR(E′) consists of the equivalence classes s′1 = [E′]≈ and s′2 = [E′]≈.
We have DRT (E′) = {s′2} and DRV (E′) = {s′1}. The execution probabilities are calculated as follows. Since Exec(s′1) =
{{({a}, l)}, {({a},m)}}, we get PF({({a}, l)}, s′1) = l and PF({({a},m)}, s′1) = m. Then

∑
Ξ∈Exec(s′1) PF(Ξ, s′1) = l+m. Thus,

PT ({({a}, l)}, s′1) = l
l+m and PT ({({a},m)}, s′1) = m

l+m . Further, Exec(s′2) = {∅}, hence,∑
Ξ∈Exec(s′2) PF(Ξ, s′2) = PF(∅, s′2) = 1 and PT (∅, s′2) = PM(s′2, s

′
2) = 1

1 = 1. At last, PM(s′1, s
′
2) = PT ({({a}, l)}, s′1) +

PT ({({a},m)}, s′1) = l
l+m +

m
l+m = 1.

Definition 3.7. Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadruple
TS (G) = (S G, LG,TG, sG), where

• the set of states is S G = DR(G);

• the set of labels is LG ⊆ 2SIL × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s, ∃H̃ ∈ s̃, H
Υ→ H̃};

• the initial state is sG = [G]≈.

The definition of TS (G) is correct, i.e. for every state, the sum of the probabilities of all the transitions starting
from it is 1. This is guaranteed by the note after the definition of PT (Υ, s). Thus, we have defined a generative model
of probabilistic processes [28]. The reason is that the sum of the probabilities of the transitions with all possible labels
should be equal to 1, not only of those with the same labels (up to enumeration of activities they include) as in the
reactive models, and we do not have a nested probabilistic choice as in the stratified models.

The transition system TS (G) associated with a dynamic expression G describes all the steps (concurrent execu-
tions) that occur at discrete time moments with some (one-step) probability and consist of sets of activities. Every step
consisting of stochastic multiactions or the empty step (i.e. that consisting of the empty set of activities) occurs in-
stantly after one discrete time unit delay. Each step consisting of immediate multiactions occurs instantly without any
delay. The step can change the current state. The states are the structural equivalence classes of dynamic expressions
obtained by application of action rules starting from the expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG

will be written as s
Υ→P s̃. It is interpreted as follows: the probability to change s to s̃ as a result of executing Υ is P.

Note that for tangible states, Υ can be the empty set, and its execution does not change the current state (i.e. the

equivalence class), since we have a loop transition s
∅→P s from a tangible state s to itself. This corresponds to the

application of the empty loop rule to expressions from the equivalence class. We have to keep track of such executions,
called empty loops, because they have non-zero probabilities. This follows from the definition of PF(∅, s) and the fact
that multiaction probabilities cannot be equal to 1 as they belong to the interval (0; 1). For vanishing states Υ cannot
be the empty set, since we must execute some immediate multiactions from them at the current moment.

16

The step probabilities belong to the interval (0; 1], being 1 in the case when we cannot leave a tangible state s

and there only exists one transition from it, the empty loop one s
∅→1 s, or if there is just a single transition from a

vanishing state to any other one.

We write s
Υ→ s̃ if ∃P, s

Υ→P s̃ and s→ s̃ if ∃Υ, s
Υ→ s̃.

The first equivalence we are going to introduce is isomorphism which is a coincidence of systems up to renaming
of their components or states.

Definition 3.8. Let TS (G) = (S G, LG,TG, sG) and TS (G′) = (S G′ , LG′ ,TG′ , sG′) be the transition systems of dynamic
expressions G and G′, respectively. A mapping β : S G → S G′ is an isomorphism between TS (G) and TS (G′), denoted
by β : TS (G) ≃ TS (G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ S G, ∀Υ, s
Υ→P s̃ ⇔ β(s)

Υ→P β(s̃).

Two transition systems TS (G) and TS (G′) are isomorphic, denoted by TS (G) ≃ TS (G′), if ∃β : TS (G) ≃ TS (G′).

Transition systems of static expressions can be defined as well. For E ∈ RegS tatExpr, let TS (E) = TS (E).

Definition 3.9. Two dynamic expressions G and G′ are equivalent with respect to transition systems, denoted by
G =ts G′, if TS (G) ≃ TS (G′).

Example 3.5. Consider the expression Stop = ({g}, 1
2) rs g specifying the special process that is only able to perform

empty loops with probability 1 and never terminates. We could actually use any arbitrary action from A and any
probability belonging to the interval (0; 1) in the definition of Stop. Note that Stop is analogous to the one used in the
examples of [48]. Then, for ρ, χ, θ, ϕ ∈ (0; 1) and l,m ∈ IN≥1, let

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop],

where ρ, χ, θ, ϕ ∈ (0; 1) and l,m ∈ IN≥1.
DR(E) consists of the equivalence classes

s1 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop]]≈.

We have DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}.
In Figure 2, the transition system TS (E) is presented. The tangible states are depicted in ovals and the vanishing

ones are depicted in boxes. For simplicity of the graphical representation, the singleton sets of activities are written
without braces.

4. Denotational semantics

In this section, we construct the denotational semantics in terms of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNs), called discrete time stochastic and immediate Petri boxes (dtsi-boxes).

17

TS(E)

�

�
	

�

�
	

�

�
	

?

�
�= @@R

�

�

�

�

- �

� �

s2

s4 s5

�

�
	

?

s1

({a},ρ),ρ

({b},χ),χ

({c},l),
l

l+m

({e},m),
m

l+m

({d},θ),
θ

({f},φ),
φ

s3

�� -

� �� �6 6

� �6

∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

Figure 2: The transition system of E for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop].

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochastic and immediate Petri nets (LDTSIPNs), a subclass of
DTSPNs [60, 61] (we do not allow the transition probabilities to be equal to 1) extended with transition labeling
and immediate transitions. LDTSIPNs resemble in part discrete time deterministic and stochastic PNs (DTDSPNs)
[76], as well as discrete deterministic and stochastic PNs (DDSPNs) [75]. DTDSPNs and DTSPNs are the extensions
of DTSPNs with deterministic transitions (having fixed delay that can be zero), inhibitor arcs priorites and guards.
In addition, while stochastic transitions of DTDSPNs, like those of DTSPNs, have geometrically distributed delays,
stochastic transitions of DTSPNs have discrete time phase distributed delays. At the same time, LDTSIPNs are not
subsumed by DTDSPNs or DTSPNs, since LDTSIPNs have a step semantics while DTDSPNs and DDSPNs have
interleaving one. LDTSIPNs are somewhat similar to labeled weighted DTSPNs (LWDTSPNs) from [21], but in
LWDTSPNs there are no immediate transitions, all (stochastic) transitions have weights, the transition probabilities
may be equal to 1 and only maximal fireable subsets of the enabled transitions are fired.

First, we present a formal definition of LDTSIPNs.

Definition 4.1. A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is a tuple
N = (PN ,TN ,WN ,ΩN , LN ,MN), where

• PN and TN = T sN ⊎ TiN are finite sets of places and stochastic and immediate transitions, respectively, such
that PN ∪ TN , ∅ and PN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN)→ IN is a function providing the weights of arcs between places and transitions;

• ΩN : TN → (0; 1) ∪ (IN≥1) is the transition probability and weight function associating stochastic transitions
with probabilities and immediate ones with weights;

• LN : TN → L is the transition labeling function assigning multiactions to transitions;

• MN ∈ INPN
f in is the initial marking.

The graphical representation of LDTSIPNs is like that for standard labeled PNs, but with probabilities or weights
written near the corresponding transitions. Square boxes of normal thickness depict stochastic transitions, and those
with thick borders represent immediate transitions. In the case the probabilities or the weights are not given in the
picture, they are considered to be of no importance in the corresponding examples, such as those used to describe the
stationary behaviour. The weights of arcs are depicted with them. The names of places and transitions are depicted
near them when needed. If the names are omitted but used, it is supposed that the places and transitions are numbered
from left to right and from top to down.

Now we consider the semantics of LDTSIPNs.

18

Let N be an LDTSIPN and t ∈ TN , U ∈ INTN
f in. The precondition •t and the postcondition t• of t are the multisets of

places defined as (•t)(p) = WN(p, t) and (t•)(p) = WN(t, p). The precondition •U and the postcondition U• of U are
the multisets of places defined as •U =

∑
t∈U
•t and U• =

∑
t∈U t•. Note that for U = ∅ we have •∅ = ∅ = ∅•.

Let N be an LDTSIPN and M, M̃ ∈ INPN
f in.

Immediate transitions have a priority over stochastic ones, thus, immediate transitions always fire first, if they can.
Suppose that all stochastic transitions have priority 0 and all immediate ones have priority 1. A transition t ∈ TN is
enabled in M if •t ⊆ M and one of the following holds:

1. t ∈ TiN or
2. ∀u ∈ TN ,

•u ⊆ M ⇒ u ∈ T sN .

In other words, a transition is enabled in a marking if it has enough tokens in its input places (i.e. in the places from
its precondition) and it is immediate one, otherwise, when it is stochastic one, there exists no immediate transition
with enough tokens in its input places. Let Ena(M) be the set of all transitions enabled in M. By definition, it
follows that Ena(M) ⊆ TiN or Ena(M) ⊆ T sN . A set of transitions U ⊆ Ena(M) is enabled in a marking M if
•U ⊆ M. Firings of transitions are atomic operations, and transitions may fire concurrently in steps. We assume that
all transitions participating in a step should differ, hence, only the sets (not multisets) of transitions may fire. Thus,
we do not allow self-concurrency, i.e. firing of transitions concurrently to themselves. This restriction is introduced
to avoid some technical difficulties while calculating probabilities for multisets of transitions as we shall see after the
following formal definitions. Moreover, we do not need to consider self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe LDTSIPNs (hence, no self-concurrency is possible).

The marking M is tangible, denoted by tang(M), if Ena(M) ⊆ T sN , in particular, if Ena(M) = ∅. Otherwise, the
marking M is vanishing, denoted by vanish(M), and in this case Ena(M) ⊆ TiN and Ena(M) , ∅. If tang(M) then a
stochastic transition t ∈ Ena(M) fires with probability ΩN(t) when no other stochastic transitions conflicting with it
are enabled.

Let U ⊆ Ena(M), U , ∅ and •U ⊆ M. The probability that the set of stochastic transitions U is ready for firing
in M or the weight of the set of immediate transitions U which is ready for firing in M is

PF(U,M) =


∏
t∈U
ΩN(t) ·

∏
u∈Ena(M)\U

(1 −ΩN(u)), tang(M);∑
t∈U
ΩN(t), vanish(M).

In the case U = ∅ and tang(M) we define

PF(∅,M) =


∏

u∈Ena(M)

(1 −ΩN(u)), Ena(M) , ∅;

1, Ena(M) = ∅.
Let U ⊆ Ena(M), U , ∅ and •U ⊆ M or U = ∅ and tang(M). Besides U, some other sets of transitions may be

ready for firing in M, hence, a kind of conditioning or normalization is needed to calculate the firing probability. The

concurrent firing of the transitions from U changes the marking M to M̃ = M− •U +U•, denoted by M
U→P M̃, where

P = PT (U,M) is the probability that the set of transitions U fires in M defined as

PT (U,M) =
PF(U,M)∑

{V |•V⊆M}
PF(V,M)

.

Note that in the case U = ∅ and tang(M) we have M = M̃.
The advantage of our two-stage approach to definition of the probability that a set of transitions fires is that the

resulting probability formula PT (U,M) is valid both for (sets of) stochastic and immediate transitions. It allows one
to unify the notation used later while constructing the denotational semantics and analyzing performance.

Note that for all markings of an LDTSIPN N, the sum of outgoing probabilities is equal to 1. More formally,
∀M ∈ INPN

f in,
∑
{U |•U⊆M} PT (U,M) = 1. This obviously follows from the definition of PT (U,M) and guarantees that it

defines a probability distribution.

19

We write M
U→ M̃ if ∃P, M

U→P M̃ and M → M̃ if ∃U, M
U→ M̃.

The probability to move from M to M̃ by firing any set of transitions is

PM(M, M̃) =
∑

{U |M U→M̃}

PT (U,M).

Since PM(M, M̃) is the probability for any (including the empty one) transition set to change marking M to M̃,
we use summation in the definition. Note that ∀M ∈ INPN

f in,
∑
{M̃|M→M̃} PM(M, M̃) =

∑
{M̃|M→M̃}

∑
{U |M U→M̃}

PT (U,M) =∑
{U |•U⊆M} PT (U,M) = 1.

Definition 4.2. Let N be an LDTSIPN.

• The reachability set of N, denoted by RS (N), is the minimal set of markings such that

– MN ∈ RS (N);

– if M ∈ RS (N) and M → M̃ then M̃ ∈ RS (N).

• The reachability graph of N, denoted by RG(N), is a directed labeled graph with the set of nodes RS (N) and

the arcs labeled with (U,P) between nodes M and M̃ iff M
U→P M̃.

The set of all tangible markings from RS (N) is denoted by RS T (N), and the set of all vanishing markings from
RS (N) is denoted by RS V (N). Obviously, RS (N) = RS T (N) ⊎ RS V (N).

4.2. Algebra of dtsi-boxes
Now we introduce discrete time stochastic and immediate Petri boxes and the algebraic operations to define a net

representation of dtsiPBC expressions.

Definition 4.3. A discrete time stochastic and immediate Petri box (dtsi-box) is a tuple N = (PN ,TN ,WN ,ΛN), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪ TN , ∅ and PN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN)→ IN is a function providing the weights of arcs between places and transitions;

• ΛN is the place and transition labeling function such that

– ΛN |PN : PN → {e, i, x} (it specifies entry, internal and exit places, respectively);

– ΛN |TN : TN → {ϱ | ϱ ⊆ 2SIL × SIL} (it associates transitions with the relabeling relations on activities).

Moreover, ∀t ∈ TN ,
•t , ∅ , t•. In addition, for the set of entry places of N, defined as ◦N = {p ∈ PN | ΛN(p) = e},

and for the set of exit places of N, defined as N◦ = {p ∈ PN | ΛN(p) = x}, the following condition holds: ◦N , ∅ ,
N◦, •(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN , ΛN(t) ∈ SIL, i.e. ΛN(t) is a constant relabeling that will be defined later. In case
of the constant relabeling, the shorthand notation (by an activity) for ΛN(t) will be used. A marked plain dtsi-box
is a pair (N,MN), where N is a plain dtsi-box and MN ∈ INPN

f in is its marking. We shall use the following notation:

N = (N, ◦N) and N = (N,N◦). Note that a marked plain dtsi-box (PN ,TN ,WN ,ΛN ,MN) could be interpreted as the
LDTSIPN (PN ,TN ,WN ,ΩN , LN ,MN), where functions ΩN and LN are defined as follows: ∀t ∈ TN , ΩN(t) = Ω(ΛN(t))
and LN(t) = L(ΛN(t)). Behaviour of the marked dtsi-boxes follows from the firing rule of LDTSIPNs. A plain dtsi-
box N is n-bounded (n ∈ IN) if N is so, i.e. ∀M ∈ RS (N), ∀p ∈ PN , M(p) ≤ n, and it is safe if it is 1-bounded. A
plain dtsi-box N is clean if ∀M ∈ RS (N), ◦N ⊆ M ⇒ M = ◦N and N◦ ⊆ M ⇒ M = N◦, i.e. if there are tokens in
all its entry (exit) places then no other places have tokens.

The structure of the plain dtsi-box corresponding to a static expression is constructed like in PBC [13, 12], i.e.
we use simultaneous refinement and relabeling meta-operator (net refinement) in addition to the operator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC and featuring transformational transition relabelings. Operator

20

(α, ρ)

�

��

�

��

?

?

N(α,ρ)ι

e

x

tι
̺[f]

�

��

�

��

?

?

Θ[f]

e

x

u[f] ̺rs a

�

��

�

��

?

?

Θrs a

e

x

urs a
̺sy a

�

��

�

��

?

?

Θsy a

e

x

usy a ̺id

�

��

�

��

?

?

Θ;

e

u1
;

̺id

�

��

?

?
x

u2
;

i

̺id

�

��

�

��

?

?

Θ‖

e

u1
‖

x

̺id

�

��

�

��

?

?

e

u2
‖

x

̺idu1
[]

̺id u2
[]

Θ[]

�

��

�

��

e

x

��	 @@R

S
Sw

�
�/

� �

� �

?

6

̺id

�

��

�

��

?

?

Θ[∗ ∗]

e

u1
[∗ ∗]

̺id

�

��

?

?
x

u3
[∗ ∗]

i
̺id u2

[∗ ∗]

(α, l)

�

��

�

��

?

?

N(α,l)ι

e

x

tι

Figure 3: The plain and operator dtsi-boxes.

dtsi-boxes specify n-ary functions from plain dtsi-boxes to plain dtsi-boxes (we have 1 ≤ n ≤ 3 in dtsiPBC). Thus,
as we shall see in Theorem 4.1, the resulting plain dtsi-boxes are safe and clean. In the definition of the denotational
semantics, we shall apply standard constructions used for PBC. Let Θ denote operator box and u denote transition
name from PBC setting.

The relabeling relations ϱ ⊆ 2SIL × SIL are defined as follows:

• ϱid = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL} is the identity relabeling keeping the interface as it is;

• ϱ(α,κ) = {(∅, (α, κ))} is the constant relabeling that can be identified with (α, κ) ∈ SIL itself;

• ϱ[f] = {({(α, κ)}, (f (α), κ)) | (α, κ) ∈ SIL};

• ϱrs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL, a, â < α};

• ϱsy a is the least relabeling relation containing ϱid such that if (Υ, (α, κ)), (Ξ, (β, λ)) ∈ ϱsy a, a ∈ α, â ∈ β then

– (Υ + Ξ, (α ⊕a β, κ · λ)) ∈ ϱsy a, if κ, λ ∈ (0; 1);

– (Υ + Ξ, (α ⊕a β, κ + λ)) ∈ ϱsy a, if κ, λ ∈ IN≥1.

The plain dtsi-boxes N(α,ρ)ι , N(α,l)ι , where ρ ∈ (0; 1) and l ∈ IN≥1, and operator dtsi-boxes are presented in Figure
3. The label i of internal places is usually omitted.

In the case of the iteration, a decision that we must take is the selection of the operator box that we shall use for it,
since we have two proposals in plain PBC for that purpose [12]. One of them provides us with a safe version with six
transitions in the operator box, but there is also a simpler version, which has only three transitions. In general, in PBC,
with the latter version we may generate 2-bounded nets, which only occurs when a parallel behavior appears at the
highest level of the body of the iteration. Nevertheless, in our case, and due to the syntactical restriction introduced
for regular terms, this particular situation cannot occur, so that the net obtained will be always safe.

To construct the semantic function that associates a plain dtsi-box with every static expression of dtsiPBC, we
introduce the enumeration function Enu : TN → Num, which associates the numberings with transitions of a plain
dtsi-box N in accordance with those of activities. In the case of synchronization, the function associates with the
resulting new transition the concatenation of the parenthesized numberings of the transitions it comes from.

Now we define the enumeration function Enu for every operator of dtsiPBC. Let Boxdtsi(E) = (PE ,TE ,WE ,ΛE)
be the plain dtsi-box corresponding to a static expression E, and EnuE : TE → Num be the enumeration function for
Boxdtsi(E). We shall use the analogous notation for static expressions F and K.

21

• Boxdtsi(E ◦ F) = Θ◦(Boxdtsi(E), Boxdtsi(F)), ◦ ∈ {; , [], ∥}. Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t) =
{

EnuE(t), t ∈ TE;
EnuF(t), t ∈ TF .

• Boxdtsi(E[f]) = Θ[f](Boxdtsi(E)). Since we only replace the labels of some multiactions by a bijection, we
preserve the initial numbering:

Enu(t) = EnuE(t), t ∈ TE .

• Boxdtsi(E rs a) = Θrs a(Boxdtsi(E)). Since we remove all transitions labeled with multiactions containing a or
â, this does not change the numbering of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â < L(ΛE(t)).

• Boxdtsi(E sy a) = Θsy a(Boxdtsi(E)). Note that ∀v,w ∈ TE , such that ΛE(v) = (α, κ), ΛE(w) = (β, λ) and
a ∈ α, â ∈ β, the new transition t resulting from synchronization of v and w has the label Λ(t) = (α ⊕a β, κ · λ),
if t is a stochastic transition, or Λ(t) = (α ⊕a β, κ + λ), if t is an immediate one, and the numbering
Enu(t) = (EnuE(v))(EnuE(w)). Thus, the enumeration function is defined as

Enu(t) =
{

EnuE(t), t ∈ TE;
(EnuE(v))(EnuE(w)), t results from synchronization of v and w.

According to the definition of ϱsy a, the synchronization is only possible when all the transitions in the set are
stochastic or when all of them are immediate. If we synchronize the same set of transitions in different orders,
we obtain several resulting transitions with the same label and probability or weight, but with the different
numberings having the same content. Then, we only consider a single transition from the resulting ones in the
plain dtsi-box to avoid introducing redundant transitions.

For example, if the transitions t and u are generated by synchronizing v and w in different orders, we have
Λ(t) = (α ⊕a β, κ · λ) = Λ(u) for stochastic transitions or Λ(t) = (α ⊕a β, κ + λ) = Λ(u) for immediate ones,
but Enu(t) = (EnuE(v))(EnuE(w)) , (EnuE(w))(EnuE(v)) = Enu(u), whereas Cont(Enu(t)) = Cont(Enu(v)) ∪
Cont(Enu(w)) = Cont(Enu(u)). Then only one transition t (or, symmetrically, u) will appear in Boxdtsi(E sy a).

• Boxdtsi([E ∗ F ∗ K]) = Θ[∗ ∗](Boxdtsi(E), Boxdtsi(F), Boxdtsi(K)). Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t) =


EnuE(t), t ∈ TE;
EnuF(t), t ∈ TF ;
EnuK(t), t ∈ TK .

Now we can formally define the denotational semantics as a homomorphism.

Definition 4.4. Let (α, κ) ∈ SIL, a ∈ Act and E, F,K ∈ RegS tatExpr. The denotational semantics of dtsiPBC is a
mapping Boxdtsi from RegS tatExpr into the domain of plain dtsi-boxes defined as follows:

1. Boxdtsi((α, κ)ι) = N(α,κ)ι ;
2. Boxdtsi(E ◦ F) = Θ◦(Boxdtsi(E), Boxdtsi(F)), ◦ ∈ {; , [], ∥};
3. Boxdtsi(E[f]) = Θ[f](Boxdtsi(E));
4. Boxdtsi(E ◦ a) = Θ◦a(Boxdtsi(E)), ◦ ∈ {rs,sy};
5. Boxdtsi([E ∗ F ∗ K]) = Θ[∗ ∗](Boxdtsi(E), Boxdtsi(F), Boxdtsi(K)).

22

The dtsi-boxes of static expressions can be defined as well. For E ∈ RegS tatExpr, let Boxdtsi(E) = Boxdtsi(E) and
Boxdtsi(E) = Boxdtsi(E).

Note that this definition is compositional in the sense that, for any arbitrary dynamic expression, we may de-
compose it in some inner dynamic and static expressions, for which we may apply the definition, thus obtaining the
corresponding plain dtsi-boxes, which can be joined according to the term structure (by definition of Boxdtsi), the
resulting plain box being marked in the places that were marked in the argument nets.

Theorem 4.1. For any static expression E, Boxdtsi(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC, combining both refinement and relabeling. Consequently, the
dtsi-boxes thus obtained will be safe and clean. �

Let ≃ denote isomorphism between transition systems and reachability graphs that binds their initial states. Note
that the names of transitions of the dtsi-box corresponding to a static expression could be identified with the enumer-
ated activities of the latter.

Theorem 4.2. For any static expression E,

TS (E) ≃ RG(Boxdtsi(E)).

Proof. As for the qualitative (functional) behaviour, we have the same isomorphism as in PBC.
The quantitative behaviour is the same by the following reasons. First, the activities of an expression have the

probability or weight parts coinciding with the probabilities or weights of the transitions belonging to the correspond-
ing dtsi-box. Second, we use analogous probability or weight functions to construct the corresponding transition
systems and reachability graphs. �

Example 4.1. Let E be from Example 3.5. In Figure 4, the marked dtsi-box N = Boxdtsi(E) and its reachability graph
RG(N) are presented. It is easy to see that TS (E) and RG(N) are isomorphic.

The following example demonstrates that without the syntactic restriction on regularity of expressions the corre-
sponding marked dtsi-boxes may be not safe.

Example 4.2. Let E = [(({a}, 1
2) ∗ (({b}, 1

2)∥({c}, 1
2)) ∗ ({d}, 1

2)]. In Figure 5, the marked dtsi-box N = Boxdtsi(E)
and its reachability graph RG(N) are presented. In the marking (0, 1, 1, 2, 0, 0) there are 2 tokens in the place p4.
Symmetrically, in the marking (0, 1, 1, 0, 2, 0) there are 2 tokens in the place p5. Thus, allowing concurrency in the
second argument of iteration in the expression E can lead to non-safeness of the corresponding marked dtsi-box
N, though, it is 2-bounded in the worst case [12]. The origin of the problem is that N has a self-loop with two
subnets which can function independently. Therefore, we have decided to consider regular expressions only, since the
alternative, which is a safe version of the iteration operator with six arguments in the corresponding dtsi-box, like
that from [12], is rather cumbersome and has too intricate Petri net interpretation. Our motivation was to keep the
algebraic and Petri net specifications as simple as possible.

5. Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions and dtsi-boxes can be con-
structed and then used for performance evaluation.

23

RG(N)

�
 �	
�
 �	�
 �	

?

�
�= @@R

�

�

�

�

- �

� �

010000

000100 000010

�
 �	
?

100000

t1,ρ

t2,χ

t3, l
l+m

t4, m
l+m

t5,θ t6,φ

001000

�� -

� �� �6 6

� �6
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

({a},ρ)

�
��u
?

e

N

({d},θ) ({f},φ)

�
�� �
��
? ?

({c},l)

�
��x

�
��?

({e},m)

��	
ZZ~

? ?

({b},χ)

�
��
?

?

	 �

'

&

!

- �

t1

t2

t3 t4

t5 t6

p1

p2

p3

p4 p5

p6

Figure 4: The marked dtsi-box N = Boxdtsi(E) for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop] and its reachability graph.

({a}, 1
2
)

�
��u
?

e

N

({b}, 1
2
) ({c}, 1

2
)

�
�� �
��
? ?
�
�� �
��

J
Ĵ

�
��

�
��x

? ?

({d},1
2
)

?

JĴ ��/

����*
HHHHY

�

�

�- �

6 6

#

"

!- �

p1

p2 p3

p4 p5

p6

t1

t2 t3

t4

RG(N)�
 �	�
 �	�
 �	�
 �	
�
 �	

?

?

�
�= @@R

�

�

�

�

- �

� �

100000

011110

011200 011020

011001

t1, 1
2

t2, 1
2

t3, 1
2

t3, 1
5

t2, 1
5

t4, 1
5

�� -

� �� �6 6

��- ���

�� -

∅, 1
5 {t2,t3}, 1

5

∅, 1
2

∅, 1
2

∅, 1
2

∅,1

Figure 5: The marked dtsi-box N = Boxdtsi(E) for E = [(({a}, 1
2) ∗ (({b}, 1

2)∥({c}, 1
2)) ∗ ({d}, 1

2)] and its reachability graph.

24

5.1. Analysis of the underlying stochastic process

For a dynamic expression G, a discrete random variable is associated with every tangible state s ∈ DRT (G). The
variable captures a residence time in the state. One can interpret staying in a state at the next discrete time moment as
a failure and leaving it as a success of some trial series. It is easy to see that the random variables are geometrically
distributed with the parameter 1−PM(s, s), since the probability to stay in s for k−1 time moments and leave it at the
moment k ≥ 1 is PM(s, s)k−1(1−PM(s, s)) (the residence time is k in this case, and this formula defines the probability
mass function (PMF) of residence time in s). Hence, the probability distribution function (PDF) of residence time in
s is 1−PM(s, s)k−1 (k ≥ 1) (the probability that the residence time in s is less than k). The mean value formula for the
geometrical distribution allows us to calculate the average sojourn time in s as 1

1−PM(s,s) . Clearly, the average sojourn
time in a vanishing state is zero. Let s ∈ DR(G).

The average sojourn time in the state s is

SJ(s) =
{ 1

1−PM(s,s) , s ∈ DRT (G);
0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ, has the elements SJ(s), s ∈ DR(G).
The sojourn time variance in the state s is

VAR(s) =
{ PM(s,s)

(1−PM(s,s))2 , s ∈ DRT (G);
0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by VAR, has the elements VAR(s), s ∈ DR(G).
To evaluate performance of the system specified by a dynamic expression G, we should investigate the stochastic

process associated with it. The process is the underlying semi-Markov chain (SMC) [68], denoted by SMC(G), which
can be analyzed by extracting from it the embedded (absorbing) discrete time Markov chain (EDTMC) corresponding
to G, denoted by EDTMC(G). The construction of the latter is analogous to that applied in the context of generalized
stochastic PNs (GSPNs) in [55, 3, 4], and also in the framework of discrete time deterministic and stochastic PNs
(DTDSPNs) in [76], as well as within discrete deterministic and stochastic PNs (DDSPNs) [75]. EDTMC(G) only
describes the state changes of SMC(G) while ignoring its time characteristics. Thus, to construct the EDTMC, we
should abstract from all time aspects of behaviour of the SMC, i.e. from the sojourn time in its states. The (local)
sojourn time in every state of the EDTMC is equal to one discrete time unit. It is well-known that every SMC is fully
described by the EDTMC and the state sojourn time distributions (the latter can be specified by the vector of PDFs of
residence time in the states) [32].

Let G be a dynamic expression and s, s̃ ∈ DR(G). The transition system TS (G) can have self-loops going from a
state to itself which have a non-zero probability. Obviously, the current state remains unchanged in this case.
Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

PM(s, s)k.

Let s→ s̃ and s , s̃. The probability to move from s to s̃ by executing any set of activities after possible self-loops is

PM∗(s, s̃) =
{

PM(s, s̃)
∑∞

k=0 PM(s, s)k =
PM(s,s̃)

1−PM(s,s) , s→ s;
PM(s, s̃), otherwise;

}
= SL(s)PM(s, s̃), where

SL(s) =
{ 1

1−PM(s,s) , s→ s;
1, otherwise;

is the self-loops abstraction factor. The self-loops abstraction vector of G, denoted by SL, has the elements SL(s), s ∈
DR(G). The value k = 0 in the summation above corresponds to the case when no self-loops occur. Note that
∀s ∈ DRT (G), SL(s) = 1

1−PM(s,s) = SJ(s), hence, ∀s ∈ DRT (G), PM∗(s, s̃) = SJ(s)PM(s, s̃), since we always have

the empty loop (which is a self-loop) s
∅→ s from every tangible state s. Empty loops are not possible from vanishing

states, hence, ∀s ∈ DRV (G), PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) , when there are non-empty self-loops (produced by iteration) from

s, or PM∗(s, s̃) = PM(s, s̃), when there are no self-loops from s.

25

Note that after abstraction from the probabilities of transitions which do not change the states, the remaining
transition probabilities are normalized. In order to calculate transition probabilities PT (Υ, s), we had to normalize
PF(Υ, s). Then, to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we now have to normalize
PM(s, s̃). Thus, we have a two-stage normalization as a result.

Notice that PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G), such that s is not a terminal state, i.e.
there are transitions to different states after possible self-loops from it, we have∑
{s̃|s→s̃, s,s̃} PM∗(s, s̃) = 1

1−PM(s,s)
∑
{s̃|s→s̃, s,s̃} PM(s, s̃) = 1

1−PM(s,s) (1 − PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops or a state-changing step preceded and followed by self-
loops. In all these three cases our sequence begins or/and ends with the loops which do not change states. At the
same time, the overall probabilities of the evolutions can differ, since self-loops have positive probabilities. To avoid
inconsistency of definitions and too complex description, we consider sequences ending with a state-changing step. It
resembles in some sense a construction of branching bisimulation [27] taking self-loops instead of silent transitions.

Definition 5.1. Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain (EDTMC) of
G, denoted by EDTMC(G), has the state space DR(G), the initial state [G]≈ and the transitions s →→P s̃, if s → s̃ and
s , s̃, where P = PM∗(s, s̃).

The underlying SMC of G, denoted by SMC(G), has the EDTMC EDTMC(G) and the sojourn time in every
s ∈ DRT (G) is geometrically distributed with the parameter 1 − PM(s, s) while the sojourn time in every s ∈ DRV (G)
is equal to zero.

EDTMCs and underlying SMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let
EDTMC(E) = EDTMC(E) and SMC(E) = SMC(E).

Let G be a dynamic expression. The elements P∗i j (1 ≤ i, j ≤ n = |DR(G)|) of the (one-step) transition probability
matrix (TPM) P∗ for EDTMC(G) are defined as

P∗i j =

{
PM∗(si, s j), si → s j, si , s j;
0, otherwise.

The transient (k-step, k ∈ IN) PMF ψ∗[k] = (ψ∗[k](s1), . . . , ψ∗[k](sn)) for EDTMC(G) is a solution of the equation
system

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =
{

1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ∗(sn)) for EDTMC(G) is a solution of the equation system{

ψ∗(P∗ − I) = 0
ψ∗1T = 1 ,

where I is the identity matrix of size n and 0 is a row vector of n values 0, 1 is that of n values 1.
When EDTMC(G) has a single steady state, we have ψ∗ = limk→∞ ψ

∗[k].
The steady-state PMF for the underlying semi-Markov chain SMC(G) is calculated via multiplication of every

ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time SJ(si) in the state si, after which we normalize the resulting values.
Remember that for a vanishing state s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF φ = (φ(s1), . . . , φ(sn)) for SMC(G) is

26

φ(si) =


ψ∗(si)SJ(si)

n∑
j=1

ψ∗(s j)SJ(s j)
, si ∈ DRT (G);

0, si ∈ DRV (G).

Thus, to calculate φ, we apply abstracting from self-loops to get P∗ and then ψ∗, followed by weighting by SJ and
normalization. EDTMC(G) has no self-loops, unlike SMC(G), hence, the behaviour of EDTMC(G) stabilizes quicker
than that of SMC(G) (if each of them has a single steady state), since P∗ has only zero elements at the main diagonal.

Example 5.1. Let E be from Example 3.5. In Figure 6, the underlying SMC SMC(E) is presented. The average
sojourn time in the states of the underlying SMC is written next to them in bold font.

The average sojourn time vector of E is

SJ =
(

1
ρ
,

1
χ
, 0,

1
θ
,

1
ϕ

)
.

The sojourn time variance vector of E is

VAR =
(

1 − ρ
ρ2 ,

1 − χ
χ2 , 0,

1 − θ
θ2 ,

1 − ϕ
ϕ2

)
.

The TPM for EDTMC(E) is

P∗ =


0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m

l+m
0 1 0 0 0
0 1 0 0 0

 .
The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

1
3
,

1
3
,

l
3(l + m)

,
m

3(l + m)

)
.

The steady-state PMF ψ∗ weighted by SJ is(
0,

1
3χ
, 0,

l
3θ(l + m)

,
m

3ϕ(l + m)

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ∗SJT =
θϕ(l + m) + χ(ϕl + θm)

3χθϕ(l + m)
.

Thus, the steady-state PMF for SMC(E) is

φ =
1

θϕ(l + m) + χ(ϕl + θm)
(0, θϕ(l + m), 0, χϕl, χθm) .

In the case l = m and θ = ϕ we have

φ =
1

2(χ + θ)
(0, 2θ, 0, χ, χ).

Let G be a dynamic expression and s, s̃ ∈ DR(G), S , S̃ ⊆ DR(G). The following standard performance indices
(measures) can be calculated based on the steady-state PMF for SMC(G) [62, 40].

27

SMC (E)

�

�
	

�

�
	

�

�
	

?

�
�= @@R

�

�

�

�

- �

� �

s2

s4 s5

�

�
	

?

s1

1

1

l

l+m

m

l+m

1 1

s3

1

ρ

1

χ

0

1

θ

1

φ

Figure 6: The underlying SMC of E for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop].

• The average recurrence (return) time in the state s (the number of discrete time units required for this) is 1
φ(s) .

• The fraction of residence time in the state s is φ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the probability of the event determined by a
condition that is true for all states from S is

∑
s∈S φ(s).

• The relative fraction of residence time in the set of states S with respect to that in S̃ is
∑

s∈S φ(s)∑
s̃∈S̃ φ(s̃) .

• The rate of leaving the state s is φ(s)
SJ(s) .

• The steady-state probability to perform a step with an activity (α, κ) is
∑

s∈DR(G) φ(s)
∑
{Υ|(α,κ)∈Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is
∑

s∈DR(G) φ(s)r(s).

Let N = (PN ,TN ,WN ,ΩN , LN ,MN) be a LDTSIPN and M, M̃ ∈ INPN
f in. Then the average sojourn time SJ(M),

the sojourn time variance VAR(M), the probabilities PM∗(M, M̃), the transition relation M →→P M̃, the EDTMC
EDTMC(N), the underlying SMC SMC(N) and the steady-state PMF for it are defined like the corresponding notions
for dynamic expressions.

As we have mentioned earlier, every marked plain dtsi-box could be interpreted as the LDTSIPN. Therefore, we
can evaluate performance with the LDTSIPNs corresponding to dtsi-boxes and then transfer the results to the latter.

Let ≃ denote isomorphism between SMCs that binds their initial states.

Proposition 5.1. For any static expression E

SMC(E) ≃ SMC(Boxdtsi(E)).

Proof. By Theorem 4.2 and definitions of underlying SMCs for dynamic expressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, the average sojourn time in the states is the same since it is
defined via the analogous probability functions. Second, the transition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reachability graphs. �

Example 5.2. Let E be from Example 3.5. In Figure 7, the underlying SMC SMC(N) is presented. Clearly, SMC(E)
and SMC(N) are isomorphic. Thus, both the transient and steady-state PMFs for SMC(N) and SMC(E) coincide.

28

SMC (N)

�

�
	

�

�
	

�

�
	

?

�
�= @@R

�

�

�

�

- �

� �

010000

000100 000010

�

�
	

?

100000

1

1

l

l+m

m

l+m

1 1

001000

1

ρ

1

χ

0

1

θ

1

φ

Figure 7: The underlying SMC of N = Boxdtsi(E) for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop].

5.2. Alternative solution methods

Let us consider DTMCs of expressions based on the state change probabilities PM(s, s̃).

Definition 5.2. Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G, denoted by DTMC(G),
has the state space DR(G), the initial state [G]≈ and the transitions s→P s̃, where P = PM(s, s̃).

DTMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let DTMC(E) = DTMC(E).
Let G be a dynamic expression. The elements Pi j (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition probability

matrix (TPM) P for DTMC(G) are defined as

Pi j =

{
PM(si, s j), si → s j;
0, otherwise.

The steady-state PMF ψ for DTMC(G) is defined like the corresponding notion for EDTMC(G).
Let us determine a relationship between steady-state PMFs for DTMC(G) and EDTMC(G). The following theorem

proposes the equation that relates the mentioned steady-state PMFs.
First, we introduce some helpful notation. For a vector v = (v1, . . . , vn), let Diag(v) be a diagonal matrix of size n

with the elements Diagi j(v) (1 ≤ i, j ≤ n) defined as

Diagi j(v) =
{

vi, i = j;
0, otherwise. (1 ≤ i, j ≤ n).

Theorem 5.1. Let G be a dynamic expression and SL be its self-loops abstraction vector. Then the steady-state PMFs
ψ for DTMC(G) and ψ∗ for EDTMC(G) are related as follows: ∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G)

ψ∗(s̃)SL(s̃)
.

Proof. Let PSL be a vector with the elements

PSL(s) =
{

PM(s, s), s→ s;
0, otherwise.

By definition of PM∗(s, s̃), we have P∗ = Diag(SL)(P − Diag(PSL)). Further,

ψ∗(P∗ − I) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by Diag(SL)(P − Diag(PSL)) we obtain

29

ψ∗Diag(SL)(P − Diag(PSL)) = ψ∗ and ψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) + I).

Note that ∀s ∈ DR(G), we have

SL(s)PSL(s) + 1 =
{

SL(s)PM(s, s) + 1 = PM(s,s)
1−PM(s,s) + 1 = 1

1−PM(s,s) , s→ s;
SL(s) · 0 + 1 = 1, otherwise;

}
= SL(s).

Hence, Diag(SL)Diag(PSL) + I = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then for v = ψ∗Diag(SL) we have

vP = v and v(P − I) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing its elements by their sum, since we
should have ψ1T = 1 as a result:

ψ =
1

v1T v =
1

ψ∗Diag(SL)1T ψ
∗Diag(SL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check that ψ is a solution of the equation system{
ψ(P − I) = 0
ψ1T = 1 ,

hence, it is indeed the steady-state PMF for DTMC(G). �

The following proposition relates the steady-state PMFs for SMC(G) and DTMC(G).

Proposition 5.2. Let G be a dynamic expression, φ be the steady-state PMF for SMC(G) and ψ be the steady-state
PMF for DTMC(G). Then ∀s ∈ DR(G),

φ(s) =


ψ(s)∑

s̃∈DRT (G)

ψ(s̃)
, s ∈ DRT (G);

0, s ∈ DRV (G).

Proof. Let s ∈ DRT (G). Remember that ∀s ∈ DRT (G), SL(s) = SJ(s) and ∀s ∈ DRV (G), SJ(s) = 0. Then, by

Theorem 5.1, we have ψ(s)∑
s̃∈DRT (G) ψ(s̃) =

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗ (s̃)SL(s̃)∑
s̃∈DRT (G)

(
ψ∗ (s̃)SL(s̃)∑

s̄∈DR(G) ψ
∗(s̄)SL(s̄)

) = ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃) ·
∑

s̄∈DR(G) ψ
∗(s̄)SL(s̄)∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃) =

ψ∗(s)SL(s)∑
s̃∈DRT (G) ψ

∗(s̃)SL(s̃) =

ψ∗(s)SJ(s)∑
s̃∈DRT (G) ψ

∗(s̃)SJ(s̃) =
ψ∗(s)SJ(s)∑

s̃∈DR(G) ψ
∗(s̃)SJ(s̃) = φ(s). �

Thus, to calculate φ, one can only apply normalization to some elements of ψ (corresponding to the tangible states),
instead of abstracting from self-loops to get P∗ and then ψ∗, followed by weighting by SJ and normalization. Hence,
using DTMC(G) instead of EDTMC(G) allows one to avoid multistage analysis, but the payment for it is more time-
consuming numerical and more complex analytical calculation of ψ with respect to ψ∗. The reason is that DTMC(G)
has self-loops, unlike EDTMC(G), hence, the behaviour of DTMC(G) stabilizes slower than that of EDTMC(G) (if
each of them has a single steady state) and P is more dense matrix than P∗, since P may additionally have non-zero
elements at the main diagonal. Nevertheless, Proposition 5.2 is very important, since the relationship between φ and
ψ it discovers will be used in Proposition 5.3 to relate the steady-state PMFs for SMC(G) and the reduced DTMC(G),
as well as in Section 8 to prove preservation of the stationary behaviour by a stochastic equivalence.

30

Example 5.3. Let E be from Example 3.5. The TPM for DTMC(E) is

P =


1 − ρ ρ 0 0 0

0 1 − χ χ 0 0
0 0 0 l

l+m
m

l+m
0 θ 0 1 − θ 0
0 ϕ 0 0 1 − ϕ

 .
The steady-state PMF for DTMC(E) is

ψ =
1

θϕ(1 + χ)(l + m) + χ(ϕl + θm)
(0, θϕ(l + m), χθϕ(l + m), χϕl, χθm) .

Remember that DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. Hence,∑
s̃∈DRT (E)

ψ(s̃) = ψ(s1) + ψ(s2) + ψ(s4) + ψ(s5) =
θϕ(l + m) + χ(ϕl + θm)

θϕ(1 + χ)(l + m) + χ(ϕl + θm)
.

By Proposition 5.2, we have

φ(s1) = 0 · θϕ(1+χ)(l+m)+χ(ϕl+θm)
θϕ(l+m)+χ(ϕl+θm) = 0,

φ(s2) = θϕ(l+m)
θϕ(1+χ)(l+m)+χ(ϕl+θm) ·

θϕ(1+χ)(l+m)+χ(ϕl+θm)
θϕ(l+m)+χ(ϕl+θm) =

θϕ(l+m)
θϕ(l+m)+χ(ϕl+θm) ,

φ(s3) = 0,

φ(s4) = χϕl
θϕ(1+χ)(l+m)+χ(ϕl+θm) ·

θϕ(1+χ)(l+m)+χ(ϕl+θm)
θϕ(l+m)+χ(ϕl+θm) =

χϕl
θϕ(l+m)+χ(ϕl+θm) ,

φ(s5) = χθm
θϕ(1+χ)(l+m)+χ(ϕl+θm) ·

θϕ(1+χ)(l+m)+χ(ϕl+θm)
θϕ(l+m)+χ(ϕl+θm) =

χθm
θϕ(l+m)+χ(ϕl+θm) .

Thus, the steady-state PMF for SMC(E) is

φ =
1

θϕ(l + m) + χ(ϕl + θm)
(0, θϕ(l + m), 0, χϕl, χθm) .

This coincides with the result obtained in Example 5.1 with the use of ψ∗ and SJ.

Let us now consider the method from [56, 3, 4] that eliminates vanishing states from the EMC (EDTMC, in our
terminology) corresponding to the underlying SMC of every GSPN N. The TPM for the resulting reduced EDTMC
(REDTMC) has smaller size than that for the EDTMC. The method demonstrates that there exists a transformation
of the underlying SMC of N into a CTMC, whose states are the tangible markings of N. This CTMC, which is
essentially the reduced underlying SMC (RSMC) of N, is constructed on the basis of the REDTMC. The CTMC can
then be directly solved to get both the transient and the steady-state PMFs over the tangible markings of N.

This method can be easily transferred to dtsiPBC, hence, for every dynamic expression G, we can find a DTMC
(since the sojourn time in the tangible states from DR(G) is discrete and geometrically distributed) with the states
from DRT (G), which can be directly solved to find the transient and the steady-state PMFs over the tangible states.
We shall demonstrate that such a reduced DTMC (RDTMC) of G, denoted by RDTMC(G), can be constructed from
DTMC(G), using the method analogous to that designed in [56, 3, 4] in the framework of GSPNs to transform EDTMC
into REDTMC. Since the sojourn time in the vanishing states is zero, the state transitions of RDTMC(G) occur in the
moments of the global discrete time associated with SMC(G), unlike those of EDTMC(G), which happen only when
the current state changes to some different one, irrespective of the global time. Therefore, in our case, we can skip the
stages of constructing the REDTMC of G, denoted by REDTMC(G), from EDTMC(G), and recovering RSMC of G,
denoted by RSMC(G), (which is the sought-for DTMC) from REDTMC(G), since we have RSMC(G) = RDTMC(G).

Let G be a dynamic expression and P be the TPM for DTMC(G). We reorder the states from DR(G) such that the
first rows and columns of P will correspond to the states from DRV (G) and the last ones will correspond to the states
from DRT (G). Let |DR(G)| = n and |DRT (G)| = m. The resulting matrix can be decomposed as follows:

31

P =
(

C D
E F

)
.

The elements of the (n−m)× (n−m) submatrix C are the probabilities to move from vanishing to vanishing states,
and those of the (n−m)×m submatrix D are the probabilities to move from vanishing to tangible states. The elements
of the m × (n −m) submatrix E are the probabilities to move from tangible to vanishing states, and those of the m ×m
submatrix F are the probabilities to move from tangible to tangible states.

The TPM P⋄ for RDTMC(G) is the m × m matrix, calculated as

P⋄ = F + EGD,

where the elements of the matrix G are the probabilities to move from vanishing to vanishing states in any number of
state transitions, without traversal of the tangible states. Therefore,

G =
∞∑

k=0

Ck =

{ ∑l
k=0 Cl, ∃l ∈ IN, ∀k > l, Ck = 0, no loops among vanishing states;

(I − C)−1, limk→∞ Ck = 0, loops among vanishing states;

where 0 is the square matrix consisting only of zeros and I is the identity matrix, both of size n − m.
For 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n −m, let Fi j be the elements of the matrix F, Eik be those of E, Gkl be those of G

andDl j be those of D. By definition, the elements P⋄i j of the matrix P⋄ are calculated as

P⋄i j = Fi j +

n−m∑
k=1

n−m∑
l=1

EikGklDl j = Fi j +

n−m∑
k=1

Eik

n−m∑
l=1

GklDl j = Fi j +

n−m∑
l=1

Dl j

n−m∑
k=1

EikGkl,

i.e. P⋄i j (1 ≤ i, j ≤ m) is the total probability to move from the tangible state si to the tangible state s j in any number
of steps, without traversal of tangible states, but possibly going through vanishing states.

Let s, s̃ ∈ DRT (G) such that s = si, s̃ = s j. The probability to move from s to s̃ in any number of steps, without
traversal of tangible states is

PM⋄(s, s̃) = P⋄i j.

Definition 5.3. Let G be a dynamic expression and [G]≈ ∈ DRT (G). The reduced discrete time Markov chain
(RDTMC) of G, denoted by RDTMC(G), has the state space DRT (G), the initial state [G]≈ and the transitions s ↪→P s̃,
where P = PM⋄(s, s̃).

RDTMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let RDTMC(E) = RDTMC(E).
Let us now try to define RSMC(G) as a “restriction” of SMC(G) to its tangible states. Since the sojourn time in

the tangible states of SMC(G) is discrete and geometrically distributed, we can see that RSMC(G) is a DTMC with
the state space DRT (G), the initial state [G]≈ and the transitions whose probabilities collect all those in SMC(G) to
move from the tangible to the tangible states, directly or indirectly, namely, by going through its vanishing states only.
Thus, RSMC(G) has the transitions s ↪→P s̃, where P = PM⋄(s, s̃), hence, we get RSMC(G) = RDTMC(G).

Let DRT (G) = {s1, . . . , sm} and [G]≈ ∈ DRT (G). Then the transient (k-step, k ∈ IN) PMF
ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ⋄[k](sm)) for RDTMC(G) is a solution of the equation system

ψ⋄[k] = ψ⋄[0](P⋄)k,

where ψ⋄[0] = (ψ⋄[0](s1), . . . , ψ⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =
{

1, si = [G]≈;
0, otherwise.

Note also that ψ⋄[k + 1] = ψ⋄[k]P⋄ (k ∈ IN).
The steady-state PMF ψ⋄ = (ψ⋄(s1), . . . , ψ⋄(sm)) for RDTMC(G) is a solution of the equation system

32

{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1 ,

where I is the identity matrix of size m and 0 is a row vector of m values 0, 1 is that of m values 1.
When RDTMC(G) has a single steady state, we have ψ⋄ = limk→∞ ψ

⋄[k].
The zero sojourn time in the vanishing states guarantees that the state transitions of RDTMC(G) occur in the

moments of the global discrete time associated with SMC(G), i.e. every such state transition occurs after one time
unit delay. Hence, the sojourn time in the tangible states is the same for RDTMC(G) and SMC(G). The state transition
probabilities of RDTMC(G) are those to move from tangible to tangible states in any number of steps, without traversal
of the tangible states. Therefore, RDTMC(G) and SMC(G) have the same transient behaviour over the tangible states,
thus, the transient analysis of SMC(G) is possible to accomplish using RDTMC(G).

The following proposition relates the steady-state PMFs for SMC(G) and RDTMC(G). It proves that the steady-
state probabilities of the tangible states coincide for them.

Proposition 5.3. Let G be a dynamic expression, φ be the steady-state PMF for SMC(G) and ψ⋄ be the steady-state
PMF for RDTMC(G). Then ∀s ∈ DR(G),

φ(s) =
{
ψ⋄(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Proof. To make the proof more clear, we use the following unified notation. I denotes the identity matrices of any
size. 0 denotes square matrices and row vectors of any size and length of values 0. 1 denotes square matrices and row
vectors of any size and length of values 1.

Let P be the (reordered) TPM for DTMC(G) and ψ be the steady-state PMF for DTMC(G), i.e. ψ is a solution of
the equation system {

ψ(P − I) = 0
ψ1T = 1 .

Let |DR(G)| = n and |DRT (G)| = m. The decomposed P, P − I and ψ are

P =
(

C D
E F

)
, P − I =

(
C − I D

E F − I

)
and ψ = (ψV , ψT),

where ψV = (ψ1, . . . , ψn−m) is the subvector of ψ with the steady-state probabilities of vanishing states and ψT =

(ψn−m+1, . . . , ψn) is that with the steady-state probabilities of tangible states.
Then the equation system for ψ is decomposed as follows:

ψV (C − I) + ψT E = 0
ψVD + ψT (F − I) = 0
ψV1T + ψT 1T = 1

.

Further, let P⋄ be the TPM for RDTMC(G). Then ψ⋄ is a solution of the equation system{
ψ⋄(P⋄ − I) = 0
ψ⋄1T = 1 .

We have

P⋄ = F + EGD,

where the matrix G can have two different forms, depending on whether the loops among vanishing states exist, hence,
we consider the two following cases.

33

1. There exist no loops among vanishing states. We have ∃l ∈ IN, ∀k > l, Ck = 0 and G =
∑l

k=0 Cl.
Let us right-multiply the first equation of the decomposed equation system for ψ by G:

ψV (CG −G) + ψT EG = 0.

Taking into account that G =
∑l

k=0 Cl, we get

ψV

 l∑
k=1

Cl + Cl+1 − C0 −
l∑

k=1

Cl

 + ψT EG = 0.

Since Cl+1 = 0 and C0 = I, we obtain

−ψV + ψT EG = 0 and ψV = ψT EG.

Let us substitute ψV with ψT EG in the second equation of the decomposed equation system for ψ:

ψT EGD + ψT (F − I) = 0 and ψT (F + EGD − I) = 0.

Since F + EGD = P⋄, we have

ψT (P⋄ − I) = 0.

2. There exist loops among vanishing states. We have lim→∞ Ck = 0 and G = (I − C)−1.
Let us right-multiply the first equation of the decomposed equation system for ψ by G:

−ψV (I − C)G + ψT EG = 0.

Taking into account that G = (I − C)−1, we get

−ψV + ψT EG = 0 and ψV = ψT EG.

Let us substitute ψV with ψT EG in the second equation of the decomposed equation system for ψ:

ψT EGD + ψT (F − I) = 0 and ψT (F + EGD − I) = 0.

Since F + EGD = P⋄, we have

ψT (P⋄ − I) = 0.

The third equation ψV1T + ψT 1T = 1 of the decomposed equation system for ψ implies that if ψV has nonzero
elements then the sum of the elements of ψT is less than one. We normalize ψT by dividing its elements by their sum:

v =
1

ψT 1T ψT .

It is easy to check that v is a solution of the equation system{
v(P⋄ − I) = 0
v1T = 1 ,

hence, it is the steady-state PMF for RDTMC(G) and we have

ψ⋄ = v =
1

ψT 1T ψT .

Note that ∀s ∈ DRT (G), ψT (s) = ψ(s). Then the elements of ψ⋄ are calculated as follows: ∀s ∈ DRT (G),

ψ⋄(s) =
ψT (s)∑

s̃∈DRT (G) ψT (s̃)
=

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

.

34

By Proposition 5.2, ∀s ∈ DRT (G), φ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃) .

Therefore, ∀s ∈ DRT (G),

φ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
= ψ⋄(s).

⊓⊔
Thus, to calculate φ, one can just take all the elements of ψ⋄ as the steady-state probabilities of the tangible states,

instead of abstracting from self-loops to get P∗ and then ψ∗, followed by weighting by SJ and normalization. Hence,
using RDTMC(G) instead of EDTMC(G) allows one to avoid such a multistage analysis, but constructing P⋄ also
requires some efforts, including calculating matrix powers or inverse matrices. Note that RDTMC(G) has self-loops,
unlike EDTMC(G), hence, the behaviour of RDTMC(G) may stabilize slower than that of EDTMC(G) (if each of
them has a single steady state). On the other hand, P⋄ is smaller and denser matrix than P∗, since P⋄ has additional
non-zero elements not only at the main diagonal, but also many of them outside it. Therefore, mostly, we have less
time-consuming numerical calculation of ψ⋄ with respect to ψ∗. At the same time, the complexity of the analytical
calculation of ψ⋄ with respect to ψ∗ depends on the model structure, such as the number of vanishing states and loops
among them, but usually it is lower, since the matrix size reduction plays an important role in many cases.

Example 5.4. Let E be from Example 3.5. Remember that DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}. We reorder
the states from DR(E), by moving the vanishing states to the first positions, as follows: s3, s1, s2, s4, s5.

The (reordered) TPM for DTMC(E) is

P =


0 0 0 l

l+m
m

l+m
0 1 − ρ ρ 0 0
χ 0 1 − χ 0 0
0 0 θ 1 − θ 0
0 0 ϕ 0 1 − ϕ

 .
The result of the decomposing P are the matrices

C = 0, D =
(
0, 0,

l
l + m

,
m

l + m

)
, E =


0
χ
0
0

 , F =


1 − ρ ρ 0 0

0 1 − χ 0 0
0 θ 1 − θ 0
0 ϕ 0 1 − ϕ

 .
Since C1 = 0, we have ∀k > 0, Ck = 0, hence, l = 0 and there are no loops among vanishing states. Then

G =
l∑

k=0

Cl = C0 = I.

Further, the TPM for RDTMC(E) is

P⋄ = F + EGD = F + EID = F + ED =


1 − ρ ρ 0 0

0 1 − χ χl
l+m

χm
l+m

0 θ 1 − θ 0
0 ϕ 0 1 − ϕ

 .
In Figure 8, the reduced DTMC RDTMC(E) is presented.
Then the steady-state PMF for RDTMC(E) is

ψ⋄ =
1

θϕ(l + m) + χ(ϕl + θm)
(0, θϕ(l + m), χϕl, χθm) .

Note that ψ⋄ = (ψ⋄(s1), ψ⋄(s2), ψ⋄(s4), ψ⋄(s5)). By Proposition 5.3, we have

35

RDTMC (E)

�

�
	

�

�
	

�

�
	

�

�
	

?

�
�= @@R

�

�

�

�

- �

� �

s1

s2

s4 s5

ρ

θ φ

χl

l+m

χm

l+m

�� -

� �� �6 6

�� -1−χ

1−ρ

1−θ 1−φ

Figure 8: The reduced DTMC of E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({ f }, ϕ)))) ∗ Stop].

φ(s1) = 0,

φ(s2) = θϕ(l+m)
θϕ(l+m)+χ(ϕl+θm) ,

φ(s3) = 0,

φ(s4) = χϕl
θϕ(l+m)+χ(ϕl+θm) ,

φ(s5) = χθm
θϕ(l+m)+χ(ϕl+θm) .

Thus, the steady-state PMF for SMC(E) is

φ =
1

θϕ(l + m) + χ(ϕl + θm)
(0, θϕ(l + m), 0, χϕl, χθm) .

This coincides with the result obtained in Example 5.1 with the use of ψ∗ and SJ.

Note that our reduction of the underlying SMC by eliminating its vanishing states, resulting in the reduced DTMC,
resembles the reduction from [51] by removing instantaneous states of stochastically discontinuous Markov reward
chains. The latter are “limits” of continuous time Markov chains with state rewards and fast transitions when the rates
(speeds) of these transitions tend to infinity, making them immediate. By analogy with that work, we would consider
DTMCs extended with instantaneous states instead of SMCs with geometrically distributed or zero sojourn time in
the states. However, within dtsiPBC, we have decided to take SMCs as the underlying stochastic process to be able in
the perspective to consider not only geometrically distributed and zero residence time in the states, but arbitrary fixed
time delays as well.

6. Stochastic equivalences

Consider the expressions E = ({a}, 1
2) and E′ = ({a}, 1

3)1[]({a}, 1
3)2, for which E ,ts E′, since TS (E) has only one

transition from the initial to the final state (with probability 1
2) while TS (E′) has two such ones (with probabilities 1

4).
On the other hand, all the mentioned transitions are labeled by activities with the same multiaction part {a}. Moreover,
the overall probabilities of the mentioned transitions of TS (E) and TS (E′) coincide: 1

2 =
1
4 +

1
4 . Further, TS (E) (as

well as TS (E′)) has one empty loop transition from the initial state to itself with probability 1
2 and one empty loop

transition from the final state to itself with probability 1. The empty loop transitions are labeled by the empty set of
activities. For calculating the transition probabilities of TS (E′), take ρ = χ = 1

3 in Example 3.4. Unlike =ts, most of
the probabilistic and stochastic equivalences proposed in the literature do not differentiate between the processes such
as those specified by E and E′.

Since the semantic equivalence =ts is too discriminating in many cases, we need weaker equivalence notions.
These equivalences should possess the following necessary properties. First, any two equivalent processes must have
the same sequences of multisets of multiactions, which are the multiaction parts of the activities executed in steps
starting from the initial states of the processes. Second, for every such sequence, its execution probabilities within
both processes must coincide. Third, the desired equivalence should preserve the branching structure of computations,

36

i.e. the points of choice of an external observer between several extensions of a particular computation should be taken
into account. In this section, we define one such notion: step stochastic bisimulation equivalence.

6.1. Step stochastic bisimulation equivalence
Bisimulation equivalences respect the particular points of choice in the behavior of a system. To define stochastic

bisimulation equivalences, we have to consider a bisimulation as an equivalence relation that partitions the states of
the union of the transition systems TS (G) and TS (G′) of two dynamic expressions G and G′ to be compared. For
G and G′ to be bisimulation equivalent, the initial states of their transition systems, [G]≈ and [G′]≈, are to be related
by a bisimulation having the following transfer property: two states are related if in each of them the same multisets
of multiactions can occur, and the resulting states belong to the same equivalence class. In addition, the sums of
probabilities for all such occurrences should be the same for both states.

Thus, we follow the approaches of [39, 46, 34, 36, 10, 7], but we implement step semantics instead of interleaving
one considered in these papers. Recall also that we use the generative probabilistic transition systems, like in [39],
in contrast to the reactive model, treated in [46], and we take transition probabilities instead of transition rates from
[34, 36, 10, 7]. Thus, step stochastic bisimulation equivalence that we define further is (in the probabilistic sense)
comparable only with interleaving probabilistic bisimulation one from [39], and our equivalence is obviously stronger.

In the definition below, we consider L(Υ) ∈ INLf in for Υ ∈ INSILf in , i.e. (possibly empty) multisets of multiactions.
The multiactions can be empty, then L(Υ) contains the elements ∅, and it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈ DR(G) and A ∈ INLf in, we write s
A→P H ,

where P = PMA(s,H) is the overall probability to move from s into the set of statesH via steps with the multiaction
part A defined as

PMA(s,H) =
∑

{Υ|∃s̃∈H , s
Υ→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A→ H if ∃P, s

A→P H . Further, we write s →P H if ∃A, s
A→ H , where P = PM(s,H) is the overall

probability to move from s into the set of statesH via any steps defined as

PM(s,H) =
∑

{Υ|∃s̃∈H , s
Υ→s̃}

PT (Υ, s).

To introduce a stochastic bisimulation between dynamic expressions G and G′, we should consider the “compos-
ite” set of states DR(G) ∪ DR(G′), since we have to identify the probabilities to come from any two equivalent states
into the same “composite” equivalence class (with respect to the stochastic bisimulation). Note that, for G , G′, transi-
tions starting from the states of DR(G) (or DR(G′)) always lead to those from the same set, since DR(G)∩DR(G′) = ∅,
and this allows us to “mix” the sets of states in the definition of stochastic bisimulation.

Definition 6.1. Let G and G′ be dynamic expressions. An equivalence relation R ⊆ (DR(G) ∪ DR(G′))2 is a step
stochastic bisimulation between G and G′, denoted by R : G↔ssG

′, if:

1. ([G]≈, [G′]≈) ∈ R.
2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in,

s1
A→P H ⇔ s2

A→P H .
Two dynamic expressions G and G′ are step stochastic bisimulation equivalent, denoted by G↔ssG

′, if ∃R : G↔ssG
′.

The following proposition states that every step stochastic bisimulation binds tangible states only with tangible
ones and the same is valid for vanishing states.

Proposition 6.1. Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R ⊆ (DRT (G) ∪ DRT (G′))2 ⊎ (DRV (G) ∪ DRV (G′))2.

37

Proof. By definition of transition systems of expressions, for every tangible state, there is an empty loop from it, and
no empty loop transitions are possible from vanishing states.

Further, R preserves empty loops. To verify this fact, first take A = ∅ in its definition to get ∀(s1, s2) ∈ R,
∀H ∈ (DR(G) ∪ DR(G′))/R, s1

∅→P H ⇔ s2
∅→P H , and then observe that the empty loop transition from a state

leads only to the same state. �

Let Rss(G,G′) =
∪{R | R : G↔ssG

′} be the union of all step stochastic bisimulations between G and G′. The
following proposition proves that Rss(G,G′) is also an equivalence and Rss(G,G′) : G↔ssG

′.

Proposition 6.2. Let G and G′ be dynamic expressions and G↔ssG
′. Then Rss(G,G′) is the largest step stochastic

bisimulation between G and G′.

Proof. See Appendix A.1. �

The algorithm for determining bisimulation of transition systems from [64] can be adapted for our framework.
This algorithm has time complexity O(m log n), where n is the number of states and m is the number of transitions.

6.2. Interrelations of the stochastic equivalences

Now we compare the discrimination power of the stochastic equivalences.

Theorem 6.1. For dynamic expressions G and G′ the following strict implications hold:

G ≈ G′ ⇒ G =ts G′ ⇒ G↔ssG
′.

Proof. Let us check the validity of the implications.

• The implication =ts⇒↔ss is proved as follows. Let β : G =ts G′. Then it is easy to see that R : G↔ssG
′, where

R = {(s, β(s)) | s ∈ DR(G)}.

• The implication ≈⇒=ts is valid, since the transition system of a dynamic formula is defined based on its struc-
tural equivalence class.

Let us see that that the implications are strict, i.e. the reverse ones do not work, by the following counterexamples.

(a) Let E = ({a}, 1
2) and E′ = ({a}, 1

3)1[]({a}, 1
3)2. Then E↔ssE

′, but E ,ts E′, since TS (E) has only one transition
from the initial to the final state while TS (E′) has two such ones.

(b) Let E = ({a}, 1
2); ({â}, 1

2) and E′ = (({a}, 1
2); ({â}, 1

2)) sy a. Then E =ts E′, but E 0 E′, since E and E′ cannot be
reached from each other by applying inaction rules. �

Example 6.1. In Figure 9, the marked dtsi-boxes corresponding to the dynamic expressions from equivalence exam-
ples of Theorem 6.1 are presented, i.e. N = Boxdtsi(E) and N′ = Boxdtsi(E′) for each picture (a)–(b).

7. Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsi-boxes). Reductions of graph-based models, like transition systems, reachability graphs
and SMCs, result in those with less states (the graph nodes). The goal of the reduction is to decrease the number of
states in the semantic representation of the modeled system while preserving its important qualitative and quantitative
properties. Thus, the reduction allows one to simplify the behaviour and performance analysis of systems.

An autobisimulation is a bisimulation between an expression and itself. For a dynamic expression G and a step
stochastic autobisimulation on it R : G↔ssG, letK ∈ DR(G)/R and s1, s2 ∈ K . We have ∀K̃ ∈ DR(G)/R, ∀A ∈ INLf in,

38

({a}, 1
2
)

�

��?

�

��u e

x

N(a)

? ↔ss

6=ts

({a}, 1
3
) ({a}, 1

3
)

�

��

�

��S

Sw
�

�	

��	
Z
Z~

x

u e

N
′

({a}, 1
2
)

�

��?

�

��u e

N(b)

?

=ts

6≈

({a}, 1
2
)

({â}, 1
2
)

�

��?

?

�

��u

�

��
x

e

N
′

?

?

(∅, 1
4
)

S
S
S
S
Sw

�

� �

� �

?

6

({â}, 1
2
)

�

��

?

�

��
x

?

Figure 9: Dtsi-boxes of the dynamic expressions from equivalence examples of Theorem 6.1.

s1
A→P K̃ ⇔ s2

A→P K̃ . The previous equality is valid for all s1, s2 ∈ K , hence, we can rewrite it asK A→P K̃ , where
P = PMA(K , K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K A→ K̃ if ∃P, K A→P K̃ and K → K̃ if ∃A, K A→ K̃ . The similar arguments allow us to write
K →P K̃ , where P = PM(K , K̃) = PM(s1, K̃) = PM(s2, K̃).

By Proposition 6.1, R ⊆ (DRT (G))2 ⊎ (DRV (G))2. Hence, ∀K ∈ DR(G)/R, all states from K are tangible, when
K ∈ DRT (G)/R, or all of them are vanishing, when K ∈ DRV (G)/R.

The average sojourn time in the equivalence class (with respect to R) of states K is

SJR(K) =
{ 1

1−PM(K ,K) , K ∈ DRT (G)/R;
0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R) of states of G, denoted by SJR,
has the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (with respect to R) of states K is

VARR(K) =
{ PM(K ,K)

(1−PM(K ,K))2 , K ∈ DRT (G)/R;
0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (with respect to R) of states of G, denoted by VARR,
has the elements VARR(K), K ∈ DR(G)/R.

Let Rss(G) =
∪{R | R : G↔ssG} be the union of all step stochastic autobisimulations on G. By Proposition 6.2,

Rss(G) is the largest step stochastic autobisimulation on G. Based on the equivalence classes with respect to Rss(G),
the quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying SMCs of expressions can be defined.
The mentioned equivalence classes become the quotient states. The average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotient transition between two such composite states represents all steps
(having the same multiaction part in case of the transition system quotient) from the first state to the second one.

Definition 7.1. Let G be a dynamic expression. The quotient (by↔ss) (labeled probabilistic) transition system of G
is a quadruple TS↔ss

(G) = (S↔ss
, L↔ss

,T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
⊆ INLf in × (0; 1];

• T↔ss
= {(K , (A, PMA(K , K̃)), K̃) | K , K̃ ∈ DR(G)/Rss(G), K

A→ K̃};

• s↔ss
= [[G]≈]Rss(G).

39

The transition (K , (A,P), K̃) ∈ T↔ss
will be written as K A→P K̃ .

The quotient (by↔ss) transition systems of static expressions can be defined as well. For E ∈ RegS tatExpr, let
TS↔ss

(E) = TS↔ss
(E).

The quotient (by↔ss) average sojourn time vector of G is defined as SJ↔ss
= SJRss(G).

The quotient (by↔ss) sojourn time variance vector of G is defined as VAR↔ss
= VARRss(G).

Let K → K̃ and K , K̃ . The probability to move from K to K̃ by executing any set of activities after possible
self-loops is

PM∗(K , K̃) =

 PM(K , K̃)
∑∞

k=0 PM(K ,K)k =
PM(K ,K̃)

1−PM(K ,K) , K → K ;
PM(K , K̃), otherwise.

The value k = 0 in the summation above corresponds to the case when no self-loops occur. Note that ∀K ∈
DRT (G)/Rss(G), PM∗(K , K̃) = SJ↔ss

(K)PM(K , K̃), since we always have the empty loop (which is a self-loop)

K ∅→ K from every equivalence class of tangible states K . Empty loops are not possible from equivalence classes
of vanishing states, hence, ∀K ∈ DRV (G)/Rss(G), PM∗(K , K̃) = PM(K ,K̃)

1−PM(K ,K) , when there are non-empty self-loops

(produced by iteration) from K , or PM∗(K , K̃) = PM(K , K̃), when there are no self-loops from K .

Definition 7.2. Let G be a dynamic expression. The quotient (by ↔ss) EDTMC of G, denoted by EDTMC↔ss
(G),

has the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →→P K̃ , if K → K̃ and K , K̃ ,
where P = PM∗(K , K̃). The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss

(G), has the EDTMC
EDTMC↔ss

(G) and the sojourn time in every K ∈ DRT (G)/Rss(G) is geometrically distributed with the parameter
1 − PM(K ,K) while the sojourn time in every K ∈ DRV (G)/Rss(G) is equal to zero.

The quotient (by ↔ss) underlying SMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let
SMC↔ss

(E) = SMC↔ss
(E).

The steady-state PMFs ψ∗↔ss
for EDTMC↔ss

(G) and φ↔ss
for SMC↔ss

(G) are defined like the corresponding notions
ψ∗ for EDTMC(G) and φ for SMC(G), respectively.

The quotients of both transition systems and underlying SMCs are the minimal reductions of these objects modulo
step stochastic bisimulations. The quotients can be used to simplify analysis of system properties which are preserved
by ↔ss, since less states should be examined for it. Such reduction method resembles that from [2] based on place
bisimulation equivalence for PNs, excepting that the former method merges states, while the latter one merges places.

Moreover, the algorithms which can be adapted for our framework exist for constructing the quotients of transition
systems by bisimulation [64] and those of (discrete or continuous time) Markov chains by ordinary lumping [24]. The
algorithms have time complexity O(m log n) and space complexity O(m + n) (the case of Markov chains), where n is
the number of states and m is the number of transitions. As mentioned in [74], the algorithm from [24] can be easily
adjusted to produce quotients of labeled probabilistic transition systems by the probabilistic bisimulation equivalence.
In [74], the symbolic partition refinement algorithm on state space of CTMCs was proposed. The algorithm can be
straightforwardly accommodated to DTMCs, interactive MCs, Markov reward models, Markov decision processes,
Kripke structures and labeled probabilistic transition systems. Such a symbolic lumping uses memory efficiently due
to compact representation of the state space partition. The symbolic lumping is time efficient, since fast algorithm of
the partition representation and refinement is applied.

Let us also consider quotient (by↔ss) DTMCs of expressions based on the state change probabilities PM(K , K̃).

Definition 7.3. Let G be a dynamic expression. The quotient (by ↔ss) DTMC of G, denoted by DTMC↔ss
(G), has

the state space DR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitions K →P K̃ , where P = PM(K , K̃).

The quotient (by↔ss) DTMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let
DTMC↔ss

(E) = DTMC↔ss
(E).

Eliminating equivalence classes (with respect to Rss(G)) of vanishing states from the quotient (by ↔ss) DTMCs
of expressions results in the reductions of such DTMCs.

40

Definition 7.4. The reduced quotient (by↔ss) DTMC of G, RDTMC↔ss
(G), is defined like RDTMC(G) in Section 5,

but it is constructed from DTMC↔ss
(G) instead of DTMC(G).

The reduced quotient (by ↔ss) DTMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let
RDTMC↔ss

(E) = RDTMC↔ss
(E).

The steady-state PMFs ψ↔ss
for DTMC↔ss

(G) and ψ⋄↔ss
for RDTMC↔ss

(G) are defined like the corresponding
notions ψ for DTMC(G) and ψ⋄ for RDTMC(G), respectively.

Obviously, the relationships between the steady-state PMFs ψ↔ss
and ψ∗↔ss

, φ↔ss
and ψ↔ss

, as well as φ↔ss
and

ψ⋄↔ss
, are the same as those determined between their “non-quotient” versions in Theorem 5.1, Proposition 5.2 and

Proposition 5.3, respectively.
The comprehensive quotient and reduction example will be presented in Section 9.

8. Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour of stochastic processes
in their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior, i.e.
expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness of behaviour,
since there can exist a deadlock within the body (the second argument) of iteration when the corresponding subprocess
does not reach its final state by some reasons. Consider the expression Stop = ({c}, 1

2) rs c specifying the non-
terminating process that performs only empty loops with probability 1. In particular, if the body of iteration contains
the Stop expression, then the iteration will be “breaked”. On the other hand, the iteration body can be left after a finite
number of its repeated executions and then the iteration termination is started. To avoid executing any activities after
the iteration body, we take Stop as the termination argument of iteration.

Like in the framework of SMCs, in LDTSIPNs the most common systems for performance analysis are ergodic
(recurrent non-null, aperiodic and irreducible) ones. For ergodic LDTSIPNs, the steady-state marking probabilities
exist and can be determined. In [60, 61], the following sufficient (but not necessary) conditions for ergodicity of
DTSPNs are stated: liveness (for each transition and any reachable marking there exist a sequence of markings from
it leading to the marking enabling that transition), boundedness (the number of tokens in every place is not greater
than some fixed number for any reachable marking) and nondeterminism (the transition probabilities are strictly less
than 1). Let the dtsi-box of a dynamic expression has no deadlocks in the body of some iteration operator it contains
and Stop is the termination argument of this operator. If all the states between the initial and final ones (including
both these states) of such an iteration body are tangible, then the three ergodicity conditions are satisfied: the subnet
corresponding to this iteration body is live, safe (1-bounded) and nondeterministic (since all markings of the live
subnet are tangible and non-terminal, the probabilities of transitions from them are strictly less than 1). Hence, for
the dtsi-box, its underlying SMC restricted to the states between the initial and final states of this iteration body is
ergodic. The isomorphism between SMCs of expressions and those of the corresponding dtsi-boxes, which is stated by
Proposition 5.1, guarantees that the underlying SMC of an expression with infinite behaviour is ergodic, if restricted
to the states in which such an iteration body is executed. Since the ergodicity condition above is not necessary, there
exist dynamic expressions with vanishing states traversed while executing their iteration bodies, which, nevertheless,
have ergodic underlying SMCs, as Example 5.1 demonstrated.

In this section, we consider the expressions such that their underlined SMCs contain one ergodic subset of states
to guarantee that a single steady state exists.

8.1. Steady state and equivalences

The following proposition demonstrates that, for two dynamic expressions related by↔ss, the steady-state prob-
abilities to come in an equivalence class coincide. One can also interpret the result stating that the mean recurrence
time for an equivalence class is the same for both expressions.

Proposition 8.1. Let G,G′ be dynamic expressions with R : G↔ssG
′ and φ be the steady-state PMF for SMC(G), φ′

be the steady-state PMF for SMC(G′). Then ∀H ∈ (DR(G) ∪ DR(G′))/R,

41

∑
s∈H∩DR(G)

φ(s) =
∑

s′∈H∩DR(G′)

φ′(s′).

Proof. See Appendix A.2. �

Let G be a dynamic expression and φ be the steady-state PMF for SMC(G), φ↔ss
be the steady-state PMF for

SMC↔ss
(G). By Proposition 8.1, we have ∀H ∈ DR(G)/Rss(G), φ↔ss

(H) =
∑

s∈H φ(s). Thus, for every equivalence
classH ∈ DR(G)/Rss(G), the value of φ↔ss

corresponding toH is the sum of all values of φ corresponding to the states
fromH . Hence, using SMC↔ss

(G) instead of SMC(G) simplifies the analytical solution, since we have less states, but
constructing the TPM for EDTMC↔ss

(G), denoted by P∗↔ss
, also requires some efforts, including determining Rss(G)

and calculating the probabilities to move from one equivalence class to other. The behaviour of EDTMC↔ss
(G)

stabilizes quicker than that of EDTMC(G) (if each of them has a single steady state), since P∗↔ss
is denser matrix

than P∗ (the TPM for EDTMC(G)) due to the fact that the former matrix is smaller and the transitions between the
equivalence classes “include” all the transitions between the states belonging to these equivalence classes.

By Proposition 8.1,↔ss preserves the quantitative properties of the stationary behaviour (the level of SMCs). Now
we intend to demonstrate that the qualitative properties of the stationary behaviour based on the multiaction labels are
preserved as well (the level of transition systems).

Definition 8.1. A derived step trace of a dynamic expression G is a chain Σ = A1 · · · An ∈ (INLf in)∗, where ∃s ∈

DR(G), s
Υ1→ s1

Υ2→ · · · Υn→ sn, L(Υi) = Ai (1 ≤ i ≤ n). Then the probability to execute the derived step trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn |s=s0
Υ1→s1

Υ2→···Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏
i=1

PT (Υi, si−1).

The following theorem demonstrates that, for two dynamic expressions related by↔ss, the steady-state probabil-
ities to come in an equivalence class and start a derived step trace from it coincide.

Theorem 8.1. Let G,G′ be dynamic expressions with R : G↔ssG
′ and φ be the steady-state PMF for SMC(G), φ′ be

the steady-state PMF for SMC(G′) and Σ be a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪ DR(G′))/R,∑
s∈H∩DR(G)

φ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

φ′(s′)PT (Σ, s′).

Proof. See Appendix A.3. �

We now present a result not concerning the steady-state probabilities, but revealing very important properties of
residence time in the equivalence classes. The following proposition demonstrates that, for two dynamic expressions
related by↔ss, the sojourn time averages in an equivalence class coincide, as well as the sojourn time variances in it.

Proposition 8.2. Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈ (DR(G) ∪ DR(G′))/R,

SJR∩(DR(G))2 (H ∩ DR(G)) = SJR∩(DR(G′))2 (H ∩ DR(G′)),

VARR∩(DR(G))2 (H ∩ DR(G)) = VARR∩(DR(G′))2 (H ∩ DR(G′)).

Proof. See Appendix A.4. �

Example 8.1. Let

E = [({a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]({c}, 1

3)2)) ∗ Stop],

E′ = [({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](({b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop].

42

We have E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]({c}, 1

3)2)) ∗ Stop]]≈,

s2 = [[({a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]({c}, 1

3)2)) ∗ Stop]]≈,

s3 = [[({a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]({c}, 1

3)2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](({b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈,

s′2 = [[({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](({b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈,

s′3 = [[({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](({b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈,

s′4 = [[({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](({b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈.

The steady-state PMFs φ for SMC(E) and φ′ for SMC(E′) are

φ =

(
0,

1
2
,

1
2

)
, φ′ =

(
0,

1
2
,

1
4
,

1
4

)
.

Consider the equivalence class (with respect to Rss(E, E′)) H = {s3, s′3, s
′
4}. One can see that the steady-state

probabilities for H coincide:
∑

s∈H∩DR(E) φ(s) = φ(s3) = 1
2 =

1
4 +

1
4 = φ′(s′3) + φ′(s′4) =

∑
s′∈H∩DR(E′) φ

′(s′).
Let Σ = {{c}}. The steady-state probabilities to come in the equivalence class H and start the derived step trace
Σ from it coincide as well: φ(s3)(PT ({({c}, 1

3)1}, s3) + PT ({({c}, 1
3)2}, s3)) = 1

2

(
1
4 +

1
4

)
= 1

4 =
1
4 ·

1
2 +

1
4 ·

1
2 =

φ′(s′3)PT ({({c}, 1
2)1}, s′3) + φ′(s′4)PT ({({c}, 1

2)2}, s′4).
Further, the sojourn time averages in the equivalence class H coincide: SJRss(E,E′)∩(DR(E))2 (H ∩ DR(G)) =

SJRss(E,E′)∩(DR(E))2 ({s3}) = 1
1−PM({s3},{s3}) =

1
1−PM(s3,s3) =

1
1− 1

2
= 2 = 1

1− 1
2
= 1

1−PM(s′3,s
′
3) =

1
1−PM(s′4,s

′
4) =

1
1−PM({s′3,s′4},{s′3,s′4})

=

SJRss(E,E′)∩(DR(E′))2 ({s′3, s′4}) = SJRss(E,E′)∩(DR(E′))2 (H ∩ DR(G′)).
At last, the sojourn time variances in the equivalence classH coincide: VARRss(E,E′)∩(DR(E))2 (H ∩ DR(G)) =

VARRss(E,E′)∩(DR(E))2 ({s3}) = PM({s3},{s3})
(1−PM({s3},{s3}))2 =

PM(s3,s3)
(1−PM(s3,s3))2 =

1
2

(1− 1
2)2 = 2 =

1
2

(1− 1
2)2 =

PM(s′3,s
′
3)

(1−PM(s′3,s
′
3))2 =

PM(s′4,s
′
4)

(1−PM(s′4,s
′
4))2 =

PM({s′3,s′4},{s′3,s′4})
(1−PM({s′3,s′4},{s′3,s′4}))2 = VARRss(E,E′)∩(DR(E′))2 ({s′3, s′4}) = VARRss(E,E′)∩(DR(E′))2 (H ∩ DR(G′)).

In Figure 10, the marked dtsi-boxes corresponding to the dynamic expressions above are presented, i.e.
N = Boxdtsi(E) and N′ = Boxdtsi(E′).

8.2. Preservation of performance and simplification of its analysis
Many performance indices are based on the steady-state probabilities to come in a set of similar states or, after

coming in it, to start a derived step trace from this set. The similarity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence classes. Proposition 8.1, Theorem 8.1 and Proposition 8.2 guar-
antee coincidence of the mentioned indices for the expressions related by ↔ss. Thus, ↔ss (hence, all the stronger
equivalences we have considered) preserves performance of stochastic systems modeled by expressions of dtsiPBC.

In addition, it is easier to evaluate performance using an SMC with less states, since in this case the size of the
transition probability matrix will be smaller, and we shall solve systems of less equations to calculate steady-state
probabilities. The reasoning above validates the following method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsiPBC.
2. The transition system of the expression is constructed.
3. After treating the transition system for self-similarity, a step stochastic autobisimulation equivalence for the

expression is determined.
4. The quotient underlying SMC is constructed from the quotient transition system.

43

({a}, 1
2
)

�
��u
?

e

N

({c}, 1
3
)1 ({c}, 1

3
)2

({b}, 1
2
)

�
��x

({a}, 1
2
)

�
��u
?

e

N
′

({c}, 1
2
)1 ({c}, 1

2
)2

�
�� �
��
? ?

({b}, 1
3
)1

�
��x

?

({b}, 1
3
)2

��	
ZZ~

? ?

�
��

!

#

"	 � 	 �

↔ss

6=ts

- ��
��?
?

��	
ZZ~
�
��?

- �

!

#

"
Figure 10: ↔ss preserves steady-state behaviour and sojourn time properties in the equivalence classes.

5. Stationary probabilities and performance indices are calculated using the SMC.

The limitation of the method above is its applicability only to the expressions such that their corresponding SMCs
contain one irreducible subset of states, i.e. the existence of exactly one stationary state is required. If an SMC contains
several irreducible subsets of states then several steady states may exist which depend on the initial PMF. There is an
analytical method to determine the stable states for SMCs of this kind as well [44]. Note that, for every expression, the
underlying SMC has by definition only one initial PMF (that at the time moment 0), hence, the stationary state will be
only one in this case too. The general steady-state probability is calculated as a sum of the stationary probabilities of
the irreducible subsets of states weighted by the probabilities to enter these subsets starting from the initial state and
walking through some transient states. It is worth to apply the method only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can further reduce the quotient underlying SMC, using the algo-
rithm from [56, 3, 4] that eliminates vanishing states from the corresponding EDTMC and thereby decreases the size
of its TPM. For SMCs reduction we can also apply an analogue of the deterministic barrier partitioning method from
[30] for semi-Markov processes (SMPs), which allows one to perform quicker the first passage-time analysis. Another
option is the method of stochastic state classes from [38] for generalized SMPs (GSMPs) reduction, allowing one to
simplify transient performance analysis (based on the transient probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow us to simplify the steps 4 and 5 of the method above
by constructing the reduced quotient DTMC (instead of the quotient underlying SMC) from the quotient transition
system, followed by calculating the stationary probabilities of the quotient underlying SMC using this DTMC, and
then obtaining the performance indices. We first merge the equivalent states in transition systems and only then
eliminate the vanishing states in Markov chains. The reason is that transition systems, being a higher-level formalism
than Markov chains, describe both functional (qualitative) and performance (quantitative) aspects of behaviour while
Markov chains represent only performance ones. Thus, eliminating vanishing states first would destroy the functional
behaviour (which is respected by the equivalence used for quotiening), since the steps with different multiaction parts
may lead to or start from different vanishing states.

Figure 11 presents the main stages of the standard and alternative equivalence-based simplification of performance
evaluation described above.

9. Shared memory system

In this section with a case study of the shared memory system we show how steady-state distribution can be used
for performance evaluation. The example also illustrates the method of performance analysis simplification above.

44

E TS(E) TS↔
ss

(E) SMC↔
ss

(E)

RDTMC↔
ss

(E)

ϕ↔
ss

ψ⋄

↔
ss

- - -

-
6A

A
AU

- Performance-

Figure 11: Equivalence-based simplification of performance evaluation.

-

�

�

-

Processor 1 Processor 2Memory

Figure 12: The diagram of the shared memory system.

9.1. The standard system

Consider a model of two processors accessing a common shared memory described in [56, 3, 4] in the continuous
time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic setting of dtsiPBC,
where concurrent execution of activities is possible, while no two transitions of a GSPN may fire simultaneously (in
parallel). The model works as follows. After activation of the system (turning the computer on), two processors are
active, and the common memory is available. Each processor can request an access to the memory after which the
instantaneous decision is made. When the decision is made in favour of a processor, it starts acquisition of the memory
and another processor should wait until the former one ends its memory operations, and the system returns to the state
with both active processors and the available common memory. The diagram of the system is depicted in Figure 12.

Let us explain the meaning of actions from the syntax of dtsiPBC expressions which will specify the system
modules. The action a corresponds to the system activation. The actions ri (1 ≤ i ≤ 2) represent the common
memory request of processor i. The instantaneous actions di correspond to the decision on the memory allocation in
favour of the processor i. The actions mi represent the common memory access of processor i. The other actions are
used for communication purposes only via synchronization, and we abstract from them later using restriction. For
a1, . . . , an ∈ Act (n ∈ IN), we shall abbreviate sy a1 · · · sy an rs a1 · · · rs an to sr (a1, . . . , an).

The static expression of the first processor is

E1 = [({x1},
1
2

) ∗ (({r1},
1
2

); ({d1, y1}, 1); ({m1, z1},
1
2

)) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1
2

) ∗ (({r2},
1
2

); ({d2, y2}, 1); ({m2, z2},
1
2

)) ∗ Stop].

The static expression of the shared memory is

E3 = [({a, x̂1, x̂2},
1
2

) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2

))[](({ŷ2}, 1); ({ẑ2},
1
2

))) ∗ Stop].

The static expression of the shared memory system with two processors is

E = (E1∥E2∥E3) sr (x1, x2, y1, y2, z1, z2).

Let us illustrate an effect of synchronization. As result of the synchronization of immediate multiactions ({di, yi}, 1)
and ({ŷi}, 1) we obtain ({di}, 2) (1 ≤ i ≤ 2). The synchronization of stochastic multiactions ({mi, zi}, 1

2) and ({ẑi}, 1
2)

produces ({mi}, 1
4) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2}, 1

2) with ({x1}, 1
2) is ({a, x̂2}, 1

4), and that

45

of synchronization of ({a, x̂1, x̂2}, 1
2) with ({x2}, 1

2) is ({a, x̂1}, 1
4). After applying synchronization to ({a, x̂2}, 1

4) and
({x2}, 1

2), as well as to ({a, x̂1}, 1
4) and ({x1}, 1

2), we obtain the same activity ({a}, 1
8).

DR(E) consists of the equivalence classes

s1 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s2 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s3 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s4 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s5 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s6 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s7 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s8 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s9 = [([({x1}, 1
2) ∗ (({r1}, 1

2); ({d1, y1}, 1); ({m1, z1}, 1
2)) ∗ Stop]∥

[({x2}, 1
2) ∗ (({r2}, 1

2); ({d2, y2}, 1); ({m2, z2}, 1
2)) ∗ Stop]∥

[({a, x̂1, x̂2}, 1
2) ∗ ((({ŷ1}, 1); ({ẑ1}, 1

2))[](({ŷ2}, 1); ({ẑ2}, 1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈.

We have DRT (E) = {s1, s2, s5, s7, s8, s9} and DRV (E) = {s3, s4, s6}.

46

�
�

�
�s1

�
�

�
�s2

�
�

�
�s5

�
�

�
�s8

�
�

�
�s7

�
�

�
�s9

?

?

?

?

?

?

TS(E)

�������������������1

�
�
�
�
�
���

- �

� -

({a}, 1
8
), 1

8

({r1}, 1
2
), 1

4
({r2}, 1

2
), 1

4

{({r1}, 1
2
),({r2}, 1

2
)}, 1

4

({d1},2),1 ({d2},2),1

({r2}, 1
2
), 3

8
({r1}, 1

2
), 3

8

{({r1},
1
2
),

({m2}, 1
4
)}, 1

8

{({r2}, 1
2
),

({m1}, 1
4
)}, 1

8

({m1}, 1
4
), 1

8
({m2}, 1

4
), 1

8

({d1},2), 1
2

({d2},2), 1
2

!!!!!!!!!!!!!!

�

aaaaaaaaaaaaaa
J

J
J

J
J

J
J

J
J]

({m1}, 1
4
), 1

4
({m2}, 1

4
), 1

4

@
@

@
@

@
@@I

PPPPPPPPPPPPPPPPPPPi
s3 s4

s6

-��

-�� ���

���

� �6

� �6
∅, 3

8

∅, 3
4

∅, 3
8

∅, 3
4

∅, 7
8

∅, 1
4

Figure 13: The transition system of the shared memory system.

The states are interpreted as follows: s1 is the initial state, s2: the system is activated and the memory is not requested,
s3: the memory is requested by the first processor, s4: the memory is requested by the second processor, s5: the
memory is allocated to the first processor, s6: the memory is requested by two processors, s7: the memory is allocated
to the second processor, s8: the memory is allocated to the first processor and the memory is requested by the second
processor, s9: the memory is allocated to the second processor and the memory is requested by the first processor.

In Figure 13, the transition system TS (E) is presented. In Figure 14, the underlying SMC SMC(E) is depicted.
The average sojourn time vector of E is

SJ =
(
8,

4
3
, 0, 0,

8
5
, 0,

8
5
, 4, 4

)
.

The sojourn time variance vector of E is

VAR =
(
56,

4
9
, 0, 0,

24
25
, 0,

24
25
, 12, 12

)
.

The TPM for EDTMC(E) is

P∗ =



0 1 0 0 0 0 0 0 0
0 0 1

3
1
3 0 1

3 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1

5 0 1
5 0 0 0 3

5 0
0 0 0 0 0 0 0 1

2
1
2

0 1
5

1
5 0 0 0 0 0 3

5
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0


.

In Table 5, the transient and the steady-state probabilities ψ∗i [k] (i ∈ {1, 2, 3, 5, 6, 8}) for the EDTMC of the shared
memory system at the time moments k ∈ {0, 5, 10, . . . , 50} and k = ∞ are presented, and in Figure 15, the alteration
diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for
the states s1, s2, s3, s5, s6, s8 only, since the corresponding values coincide for s3, s4, as well as for s5, s7, and for s8, s9.

The steady-state PMF for EDTMC(E) is

47

�
�

�
�s1

�
�

�
�s2

�
�

�
�s5

�
�

�
�s8

�
�

�
�s7

�
�

�
�s9

?

?

?

?

?

?

SMC (E)

�������������������1

�
�
�
�
�
���

- �

� -

1

1

3

1

3

1

3

1 1

3

5

3

5

1

5

1

5

1

5

1

5

1

2

1

2

!!!!!!!!!!!!!!

�

aaaaaaaaaaaaaa
J

J
J

J
J

J
J

J
J]

1 1

@
@

@
@

@
@@I

PPPPPPPPPPPPPPPPPPPi
s3 s4

s6

0

8

5

4

0

8

5

4

8

4

3

0

Figure 14: The underlying SMC of the shared memory system.

Table 5: Transient and steady-state probabilities for the EDTMC of the shared memory system.

k 0 5 10 15 20 25 30 35 40 45 50 ∞
ψ∗1[k] 1 0 0 0 0 0 0 0 0 0 0 0
ψ∗2[k] 0 0 0.0754 0.0859 0.0677 0.0641 0.0680 0.0691 0.0683 0.0680 0.0681 0.0682
ψ∗3[k] 0 0.2444 0.2316 0.1570 0.1554 0.1726 0.1741 0.1702 0.1696 0.1705 0.1707 0.1705
ψ∗5[k] 0 0.2333 0.0982 0.1516 0.1859 0.1758 0.1672 0.1690 0.1711 0.1708 0.1703 0.1705
ψ∗6[k] 0 0.0444 0.0323 0.0179 0.0202 0.0237 0.0234 0.0226 0.0226 0.0228 0.0228 0.0227
ψ∗8[k] 0 0 0.1163 0.1395 0.1147 0.1077 0.1130 0.1150 0.1139 0.1133 0.1136 0.1136

48

æ

ææà

à

àà

à

à

àà

à

à
à
à

à
àà
à
àà
à
àààààààààààààààààààààààààààààààà

ìì

ì

ì

ìì

ì

ì

ì

ì

ì

ì
ì

ì

ìì

ì

ì
ì
ì
ì
ììì

ììììììììììììììììììììììììììì

òòò

ò

ò

òò

ò

ò

ò

ò

ò

ò
ò

ò

òò

ò

ò
ò
ò
ò
òòò

òòòòòòòòòòòòòòòòòòòòòòòòòò

ôô

ô

ôô

ô

ô
ôô
ô
ôôô

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ççç

ç
ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

çç
ç
çç
ç
ççççççççççççççççççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ8
*@kD

ô Ψ6
*@kD

ò Ψ5
*@kD

ì Ψ3
*@kD

à Ψ2
*@kD

æ Ψ1
*@kD

Figure 15: Transient probabilities alteration diagram for the EDTMC of the shared memory system.

ψ∗ =

(
0,

3
44
,

15
88
,

15
88
,

15
88
,

1
44
,

15
88
,

5
44
,

5
44

)
.

The steady-state PMF ψ∗ weighted by SJ is(
0,

1
11
, 0, 0,

3
11
, 0,

3
11
,

5
11
,

5
11

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ∗SJT =
17
11
.

Thus, the steady-state PMF for SMC(E) is

φ =

(
0,

1
17
, 0, 0,

3
17
, 0,

3
17
,

5
17
,

5
17

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state s2, where no processor requests the memory, called the average system
run-through, is 1

φ2
= 17.

• The common memory is available only in the states s2, s3, s4, s6. The steady-state probability that the memory
is available is φ2 +φ3 +φ4 +φ6 =

1
17 + 0+ 0+ 0 = 1

17 . Then the steady-state probability that the memory is used
(i.e. not available), called the shared memory utilization, is 1 − 1

17 =
16
17 .

• After activation of the system, we leave the state s1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception of s2. Thus, the rate with which the shared memory necessity
emerges coincides with the rate of leaving s2, calculated as φ2

SJ2
= 1

17 ·
3
4 =

3
68 .

49

({m2,z2},
1

2
)

({d2,y2},1)

�

�
��u e

({r2},
1

2
)

�
��
?

?

�
��

?

�
��
x

�
��

�

�

�

({m1,z1},
1

2
)

�
��
({d1,y1},1)

�
��
x

({r1},
1

2
)

�
��
?

?

	

�
��u e

�
��

?

�

�

-

({x1},
1

2
)

?

?

?

?

?

?

({x2},
1

2
)

?

?

N1 N2

({a,x̂1,x̂2},
1

2
)

({ẑ1},
1

2
) ({ẑ2},

1

2
)

({ŷ1},1) ({ŷ2},1)

�
��?

��	 @@R

	� ��

66

N3

�
��
x

�
��u
?

e

�
��?

?
�
��?

?

({a}, 1
8
)

�
��u
?

e

N

({m1},
1

4
) ({m2},

1

4
)

�
�� �
��
({d1},2)

�
��
x

({d2},2)

({r1},
1

2
)

�
��
?

?

	 �

�
��u e�
��u e

@@R ��	

�
��

?

({r2},
1

2
)

�
��
?

?

�
��

?

�
��
x�
��

x

�
��

�
�� �
����
 BBN

AAU ���

��
 BBN

AAU ���

?

�
�=

Z
Z~

��	 @@R

	�

�

�

�

�

- �

��

66

Figure 16: The marked dtsi-boxes of two processors, shared memory and the shared memory system.

• The common memory request of the first processor ({r1}, 1
2) is only possible from the states s2, s7. In each of

the states, the request probability is the sum of the execution probabilities for all sets of activities containing
({r1}, 1

2). The steady-state probability of the shared memory request from the first processor is
φ2

∑
{Υ|({r1}, 1

2)∈Υ} PT (Υ, s2) + φ7
∑
{Υ|({r1}, 1

2)∈Υ} PT (Υ, s7) = 1
17

(
1
4 +

1
4

)
+ 3

17

(
3
8 +

1
8

)
= 2

17 .

In Figure 16, the marked dtsi-boxes corresponding to the dynamic expressions of two processors, shared memory
and the shared memory system are presented, i.e. Ni = Boxdtsi(Ei) (1 ≤ i ≤ 3) and N = Boxdtsi(E).

9.2. The abstract system and its reduction
Let us consider a modification of the shared memory system with abstraction from identifiers of the processors,

i.e. such that they are indistinguishable. For example, we can just see that a processor requires memory or the
memory is allocated to it but cannot observe which processor is it. We call this system the abstract shared memory
one. To implement the abstraction, we replace the actions ri, di,mi (1 ≤ i ≤ 2) in the system specification by r, d,m,
respectively.

The static expression of the first processor is

F1 = [({x1},
1
2

) ∗ (({r}, 1
2

); ({d, y1}, 1); ({m, z1},
1
2

)) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1
2

) ∗ (({r}, 1
2

); ({d, y2}, 1); ({m, z2},
1
2

)) ∗ Stop].

The static expression of the shared memory is

F3 = [({a, x̂1, x̂2},
1
2

) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2

))[](({ŷ2}, 1); ({ẑ2},
1
2

))) ∗ Stop].

The static expression of the abstract shared memory system with two processors is

50

TS↔
ss

(F)

�
�

�
�K6 K5

K3

�
�

�
�K4

�
�

�
�K2

�
�

�
�K1

{a}, 1
8

{m}, 1
8

{d},1

{r}, 3
8

{{r},{r}},1
4

{r}, 1
2{d},1

{m}, 1
4

{{r},{m}}, 1
8

?

??

-

�

�J

J
J

J
J

J]J
J
J
J
J
Ĵ

�
�
�
�
�
�7

���

∅, 7
8

��-

∅, 3
8

���

∅, 1
4

��-

∅, 3
4

Figure 17: The quotient transition system of the abstract shared memory system.

F = (F1∥F2∥F3) sr (x1, x2, y1, y2, z1, z2).

DR(F) resembles DR(E), and TS (F) is similar to TS (E). We have SMC(F) = SMC(E). Thus, the average sojourn
time vectors of F and E, as well as the TPMs and the steady-state PMFs for EDTMC(F) and EDTMC(E), coincide.

The first and second performance indices are the same for the standard and the abstract systems. Let us consider
the following performance index which is a specific to the abstract system.

• The common memory request of a processor ({r}, 1
2) is only possible from the states s2, s5, s7. In each of the

states, the request probability is the sum of the execution probabilities for all sets of activities containing ({r}, 1
2).

The steady-state probability of the shared memory request from a processor is φ2
∑
{Υ|({r}, 1

2)∈Υ} PT (Υ, s2) +

φ5
∑
{Υ|({r}, 1

2)∈Υ} PT (Υ, s5) + φ7
∑
{Υ|({r}, 1

2)∈Υ} PT (Υ, s7) = 1
17

(
1
4 +

1
4 +

1
4

)
+ 3

17

(
3
8 +

1
8

)
+ 3

17

(
3
8 +

1
8

)
= 15

68 .

The marked dtsi-boxes corresponding to the dynamic expressions of the standard and the abstract two processors
and shared memory are similar, as well as the marked dtsi-boxes corresponding to the dynamic expression of the
standard and the abstract shared memory systems.

We have DR(F)/Rss(F) = {K1,K2,K3,K4,K5,K6}, where K1 = {s1} (the initial state), K2 = {s2} (the system is
activated and the memory is not requested), K3 = {s3, s4} (the memory is requested by one processor), K4 = {s5, s7}
(the memory is allocated to a processor), K5 = {s6} (the memory is requested by two processors), K6 = {s8, s9} (the
memory is allocated to a processor and the memory is requested by another processor).

We also have DRT (F)/Rss(F) = {K1,K2,K4,K6} and DRV (F)/Rss(F) = {K3,K5}.
In Figure 17, the quotient transition system TS↔ss

(F) is presented. In Figure 18, the quotient underlying SMC
SMC↔ss

(F) is depicted.
The quotient average sojourn time vector of F is

SJ′ =
(
8,

4
3
, 0,

8
5
, 0, 4

)
.

51

SMC↔
ss

(F)

�
�

�
�K6 K5

K3

�
�

�
�K4

�
�

�
�K2

�
�

�
�K1

1

1

5

1

3

5

1

3

2

3
1

1

1

5

?

??

-

�

�J

J
J

J
J

J]J
J
J
J
J
Ĵ

�
�
�
�
�
�7

8

5

4

8

4

3

0

0

Figure 18: The quotient underlying SMC of the abstract shared memory system.

The quotient sojourn time variance vector of F is

VAR′ =
(
56,

4
9
, 0,

24
25
, 0, 12

)
.

The TPM for EDTMC↔ss
(F) is

P′∗ =



0 1 0 0 0 0
0 0 2

3 0 1
3 0

0 0 0 1 0 0
0 1

5
1
5 0 0 3

5
0 0 0 0 0 1
0 0 1 0 0 0


.

In Table 6, the transient and the steady-state probabilities ψ′i
∗[k] (1 ≤ i ≤ 6) for the quotient EDTMC of the

abstract shared memory system at the time moments k ∈ {0, 5, 10, . . . , 50} and k = ∞ are presented, and in Figure 19,
the alteration diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF for EDTMC↔ss
(F) is

ψ′∗ =

(
0,

3
44
,

15
44
,

15
44
,

1
44
,

5
22

)
.

The steady-state PMF ψ′∗ weighted by SJ′ is(
0,

1
11
, 0,

6
11
, 0,

10
11

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

52

Table 6: Transient and steady-state probabilities for the quotient EDTMC of the abstract shared memory system.

k 0 5 10 15 20 25 30 35 40 45 50 ∞
ψ′1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′2
∗[k] 0 0 0.0754 0.0859 0.0677 0.0641 0.0680 0.0691 0.0683 0.0680 0.0681 0.0682

ψ′3
∗[k] 0 0.4889 0.4633 0.3140 0.3108 0.3452 0.3482 0.3404 0.3392 0.3409 0.3413 0.3409

ψ′4
∗[k] 0 0.4667 0.1964 0.3031 0.3719 0.3517 0.3344 0.3380 0.3422 0.3417 0.3407 0.3409

ψ′5
∗[k] 0 0.0444 0.0323 0.0179 0.0202 0.0237 0.0234 0.0226 0.0226 0.0228 0.0228 0.0227

ψ′6
∗[k] 0 0 0.2325 0.2791 0.2294 0.2154 0.2260 0.2299 0.2277 0.2267 0.2271 0.2273

æ

ææà

à

àà

à

à

àà

à

à
à
à

à
àà
à
àà
à
àààààààààààààààààààààààààààààààà

ìì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ì
ì
ì

ì
ìì
ì
ìì
ì
ìììììììììììììììììììììììì

òòò

ò

ò

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

òò

ò

ò
ò
ò

ò
òò
ò
òò
ò
òòòòòòòòòòòòòòòòòòòòòòò

ôô

ô

ôô

ô

ô
ôô
ô
ôôô

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ççç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

çç

ç

ç
ç

ç

ç
çç
ç
çç
ç
ççççççççççççççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ6
¢*@kD

ô Ψ5
¢*@kD

ò Ψ4
¢*@kD

ì Ψ3
¢*@kD

à Ψ2
¢*@kD

æ Ψ1
¢*@kD

Figure 19: Transient probabilities alteration diagram for the quotient EDTMC of the abstract shared memory system.

53

ψ′∗SJ′T =
17
11
.

Thus, the steady-state PMF for SMC↔ss
(F) is

φ′ =

(
0,

1
17
, 0,

6
17
, 0,

10
17

)
.

Alternatively, from TS↔ss
(F), we can construct the reduced quotient DTMC of F, RDTMC↔ss

(F), and then cal-
culate φ′ using it.

Remember that DRT (F)/Rss(F) = {K1,K2,K4,K6} and DRV (F)/Rss(F) = {K3,K5}. We reorder the elements of
DR(F)/Rss(F), by moving the equivalence classes of vanishing states to the first positions: K3,K5,K1,K2,K4,K6.

The (reordered) TPM for DTMC↔ss
(F) is

P′ =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 7

8
1
8 0 0

1
2

1
4 0 1

4 0 0
1
8 0 0 1

8
3
8

3
8

1
4 0 0 0 0 3

4


.

The result of the decomposing P′ are the matrices

C′ =
(

0 0
0 0

)
, D′ =

(
0 0 1 0
0 0 0 1

)
, E′ =


0 0
1
2

1
4

1
8 0
1
4 0

 , F′ =


7
8

1
8 0 0

0 1
4 0 0

0 1
8

3
8

3
8

0 0 0 3
4

 .
Since C′1 = 0, we have ∀k > 0, C′k = 0, hence, l = 0 and there are no loops among vanishing states. Then

G′ =
l∑

k=0

C′l = C′0 = I.

Further, the TPM for RDTMC↔ss
(F) is

P′⋄ = F′ + E′G′D′ = F′ + E′ID′ = F′ + E′D′ =


7
8

1
8 0 0

0 1
4

1
2

1
4

0 1
8

1
2

3
8

0 0 1
4

3
4

 .
In Figure 20, the reduced quotient DTMC RDTMC↔ss

(F) is presented.
In Table 7, the transient and the steady-state probabilities ψ′i

⋄[k] (1 ≤ i ≤ 4) for the reduced quotient DTMC of the
abstract shared memory system at the time moments k ∈ {0, 5, 10, . . . , 50} and k = ∞ are presented, and in Figure 21,
the alteration diagram (evolution in time) for the transient probabilities is depicted.

Then the steady-state PMF for RDTMC↔ss
(F) is

ψ′⋄ =

(
0,

1
17
,

6
17
,

10
17

)
.

Note that ψ′⋄ = (ψ′⋄(K1), ψ′⋄(K2), ψ′⋄(K4), ψ′⋄(K6)). By the “quotient” analogue of Proposition 5.3, we have

φ′(K1) = 0, φ′(K2) = 1
17 , φ′(K3) = 0, φ′(K4) = 6

17 , φ′(K5) = 0, φ′(K6) = 10
17 .

Thus, the steady-state PMF for SMC↔ss
(F) is

54

RDTMC↔
ss

(F)

�
�

�
�K6

�
�

�
�K4

�
�

�
�K2

�
�

�
�K1

1

8

1

2

1

4

1

8

���

7

8

��-

1

2

���

1

4

��-

3

4

66

?

-�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�/

1

4

3

8

Figure 20: The reduced quotient DTMC of the abstract shared memory system.

Table 7: Transient and steady-state probabilities for the reduced quotient DTMC of the abstract shared memory system.

k 0 5 10 15 20 25 30 35 40 45 50 ∞
ψ′1
⋄[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0

ψ′2
⋄[k] 0 0.1244 0.0931 0.0764 0.0679 0.0635 0.0612 0.0600 0.0594 0.0591 0.0590 0.0588

ψ′3
⋄[k] 0 0.1726 0.2614 0.3060 0.3289 0.3406 0.3466 0.3497 0.3513 0.3521 0.3525 0.3529

ψ′4
⋄[k] 0 0.1901 0.3824 0.4826 0.5341 0.5605 0.5740 0.5810 0.5845 0.5863 0.5872 0.5882

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææææææææææà

à
ààà

ìì

ì

ì
ì
ì
ì
ì
ìì
ìì
ìì
ììì

ììììì
ìììììììììììììì

ììììììììììììììì

òò
ò

ò

ò

ò

ò

ò
ò
ò
ò
ò
ò
ò
òò
òò
òò
òòò

òòòòò
òòòòòòòòòòòòòò

òòòòòòòòò

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ò Ψ4
¢�@kD

ì Ψ3
¢�@kD

à Ψ2
¢�@kD

æ Ψ1
¢�@kD

Figure 21: Transient probabilities alteration diagram for the reduced quotient DTMC of the abstract shared memory system.

55

φ′ =

(
0,

1
17
, 0,

6
17
, 0,

10
17

)
.

This coincides with the result obtained with the use of ψ′∗ and SJ′.
We can now calculate the main performance indices.

• The average recurrence time in the stateK2, where no processor requests the memory, called the average system
run-through, is 1

φ′2
= 17

1 = 17.

• The common memory is available only in the states K2,K3,K5. The steady-state probability that the memory
is available is φ′2 + φ

′
3 + φ

′
5 =

1
17 + 0 + 0 = 1

17 . Then the steady-state probability that the memory is used (i.e.
not available), called the shared memory utilization, is 1 − 1

17 =
16
17 .

• After activation of the system, we leave the state K1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception ofK2. Thus, the rate with which the shared memory necessity
emerges coincides with the rate of leaving K2, calculated as φ′2

SJ′2
= 1

17 ·
3
4 =

3
68 .

• The common memory request of a processor {r} is only possible from the statesK2,K4. In each of the states, the
request probability is the sum of the execution probabilities for all multisets of multiactions containing {r}. The
steady-state probability of the shared memory request from a processor is φ′2

∑
{A,K̃ |{r}∈A, K2

A→K̃}
PMA(K2, K̃) +

φ′4
∑
{A,K̃ |{r}∈A, K4

A→K̃}
PMA(K4, K̃) = 1

17

(
1
2 +

1
4

)
+ 6

17

(
3
8 +

1
8

)
= 15

68 .

One can see that the performance indices are the same for the complete and the quotient abstract shared memory
systems. The coincidence of the first and second performance indices obviously illustrates the result of Proposition
8.1. The coincidence of the third performance index is due to Theorem 8.1: one should just apply its result to the
derived step traces {{r}}, {{r}, {r}}, {{r}, {m}} of the expression F and itself, and then sum the left and right parts of the
three resulting equalities.

9.3. The generalized system
Now we obtain the performance indices taking general values for all multiaction probabilities and weights. Let us

suppose that all the mentioned multiactions have the same generalized probability ρ ∈ (0; 1), and generalized weight
l ∈ IN≥1. The resulting specification K of the generalized shared memory system is defined as follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1∥K2∥K3) sr (x1, x2, y1, y2, z1, z2).

We have DRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} and DRV (K) = {s̃3, s̃4, s̃6}.
The states are interpreted as follows: s̃1 is the initial state, s̃2: the system is activated and the memory is not requested,
s̃3: the memory is requested by the first processor, s̃4: the memory is requested by the second processor, s̃5: the
memory is allocated to the first processor, s̃6: the memory is requested by two processors, s̃7: the memory is allocated
to the second processor, s̃8: the memory is allocated to the first processor and the memory is requested by the second
processor, s̃9: the memory is allocated to the second processor and the memory is requested by the first processor.

56

�
�

�
�s̃1

�
�

�
�s̃2

�
�

�
�s̃5

�
�

�
�s̃8

�
�

�
�s̃7

�
�

�
�s̃9

?

?

?

?

?

?

TS(K)

�������������������1

�
�
�
�
�
���

- �

� -

({a},ρ3),ρ3

({r1},ρ),

ρ(1−ρ)

({r2},ρ),

ρ(1−ρ)

{({r1},ρ),({r2},ρ)},ρ2

({d1},2l),1 ({d2},2l),1

({r2},ρ),

ρ(1−ρ2)

({r1},ρ),

ρ(1−ρ2)

{({r1},ρ),

({m2},ρ2)},ρ3

{({r2},ρ),

({m1},ρ2)},ρ3

({m1},ρ2),

ρ2(1−ρ)

({m2},ρ2),

ρ2(1−ρ)

({d1},2l), 1
2

({d2},2l), 1
2

!!!!!!!!!!!!!!

�

aaaaaaaaaaaaaa
J

J
J

J
J

J
J

J
J]

({m1},ρ2),ρ2 ({m2},ρ2),ρ2

@
@

@
@

@
@@I

PPPPPPPPPPPPPPPPPPPi
s̃3 s̃4

s̃6

-��

-�� ���

���

� �6

� �6
∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,

(1−ρ)(1−ρ2)

∅,1−ρ2

∅,1−ρ3

∅,
(1−ρ)2

Figure 22: The transition system of the generalized shared memory system.

�
�

�
�s̃1

�
�

�
�s̃2

�
�

�
�s̃5

�
�

�
�s̃8

�
�

�
�s̃7

�
�

�
�s̃9

?

?

?

?

?

?

SMC (K)

�������������������1

�
�
�
�
�
���

- �

� -

1
1−ρ

2−ρ

1−ρ

2−ρ

ρ

2−ρ

1 1

1−ρ
2

1+ρ−ρ2

1−ρ
2

1+ρ−ρ2

ρ
2

1+ρ−ρ2

ρ
2

1+ρ−ρ2

ρ(1−ρ)
1+ρ−ρ2

ρ(1−ρ)
1+ρ−ρ2

1
2

1
2

!!!!!!!!!!!!!!

�

aaaaaaaaaaaaaa
J

J
J

J
J

J
J

J
J]

1 1

@
@

@
@

@
@@I

PPPPPPPPPPPPPPPPPPPi
s̃3 s̃4

s̃6

0

1
ρ(1+ρ−ρ2)

1
ρ2

0

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ3

1
ρ(2−ρ)

0

Figure 23: The underlying SMC of the generalized shared memory system.

57

In Figure 22, the transition system TS (K) is presented. In Figure 23, the underlying SMC SMC(K) is depicted.
The average sojourn time vector of K is

S̃J =
(

1
ρ3 ,

1
ρ(2 − ρ)

, 0, 0,
1

ρ(1 + ρ − ρ2)
, 0,

1
ρ(1 + ρ − ρ2)

,
1
ρ2 ,

1
ρ2

)
.

The sojourn time variance vector of K is

ṼAR =
(

1 − ρ3

ρ6 ,
(1 − ρ)2

ρ2(2 − ρ)2 , 0, 0,
(1 − ρ)2(1 + ρ)
ρ2(1 + ρ − ρ2)2 , 0,

(1 − ρ)2(1 + ρ)
ρ2(1 + ρ − ρ2)2 ,

1 − ρ2

ρ4 ,
1 − ρ2

ρ4

)
.

The TPM for EDTMC(K) is

P̃∗ =



0 1 0 0 0 0 0 0 0
0 0 1−ρ

2−ρ
1−ρ
2−ρ 0 ρ

2−ρ 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 ρ(1−ρ)

1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0
0 0 0 0 0 0 0 1

2
1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0


.

The steady-state PMF for EDTMC(K) is

ψ̃∗ = 1
2(6+3ρ−9ρ2+2ρ3) (0, 2ρ(2 − 3ρ − ρ2), 2 + ρ − 3ρ2 + ρ3, 2 + ρ − 3ρ2 + ρ3, 2 + ρ − 3ρ2 + ρ3, 2ρ2(1 − ρ),

2 + ρ − 3ρ2 + ρ3, 2 − ρ − ρ2, 2 − ρ − ρ2).

The steady-state PMF ψ̃∗ weighted by S̃J is

1
2ρ2(6 + 3ρ − 9ρ2 + 2ρ3)

(0, 2ρ2(1 − ρ), 0, 0, ρ(2 − ρ), 0, ρ(2 − ρ), 2 − ρ − ρ2, 2 − ρ − ρ2).

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ̃∗S̃J
T
=

2 + ρ − ρ2 − ρ3

ρ2(6 + 3ρ − 9ρ2 + 2ρ3)
.

Thus, the steady-state PMF for SMC(K) is

φ̃ =
1

2(2 + ρ − ρ2 − ρ3)
(0, 2ρ2(1 − ρ), 0, 0, ρ(2 − ρ), 0, ρ(2 − ρ), 2 − ρ − ρ2, 2 − ρ − ρ2).

We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where no processor requests the memory, called the average system
run-through, is 1

φ̃2
=

2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6. The steady-state probability that the memory
is available is φ̃2 + φ̃3 + φ̃4 + φ̃6 =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0 + 0 + 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 . Then the steady-state probability that the

memory is used (i.e. not available), called the shared memory utilization, is 1 − ρ2(1−ρ)
2+ρ−ρ2−ρ3 =

2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state s̃1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception of s̃2. Thus, the rate with which the shared memory necessity
emerges coincides with the rate of leaving s̃2, calculated as φ̃2

S̃J2
=

ρ2(1−ρ)
2+ρ−ρ2−ρ3 · ρ(2−ρ)

1 =
ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

58

• The common memory request of the first processor ({r1}, ρ) is only possible from the states s̃2, s̃7. In each of the
states, the request probability is the sum of the execution probabilities for all sets of activities containing ({r1}, ρ).
The steady-state probability of the shared memory request from the first processor is φ̃2

∑
{Υ|({r1}, 1

2)∈Υ} PT (Υ, s̃2)+

φ̃7
∑
{Υ|({r1}, 1

2)∈Υ} PT (Υ, s̃7) = ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1 − ρ) + ρ(1 − ρ)) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1 − ρ2) + ρ3) = ρ2(2+3ρ−8ρ2+4ρ3)
2(2+ρ−ρ2−ρ3) .

9.4. The abstract generalized system and its reduction

Let us consider a modification of the generalized shared memory system with abstraction from identifiers of the
processors. We call this system the abstract generalized shared memory one.

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, l); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, l); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with two processors is

L = (L1∥L2∥L3) sr (x1, x2, y1, y2, z1, z2).

DR(L) resembles DR(K), and TS (L) is similar to TS (K). We have SMC(L) = SMC(K). Thus, the average sojourn
time vectors of L and K, as well as the TPMs and the steady-state PMFs for EDTMC(L) and EDTMC(K), coincide.

The first and second performance indices are the same for the generalized system and its abstract modification.
Let us consider the following performance index which is again specific to the abstract system.

• The common memory request of a processor ({r}, ρ) is only possible from the states s̃2, s̃5, s̃7. In each of the
states, the request probability is the sum of the execution probabilities for all sets of activities containing ({r}, ρ).
The steady-state probability of the shared memory request from a processor is φ̃2

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃2) +

φ̃5
∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃5) + φ̃7

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃7) = ρ2(1−ρ)

2+ρ−ρ2−ρ3 (ρ(1 − ρ) + ρ(1 − ρ) + ρ2) +
ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1 − ρ2) + ρ3) + ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1 − ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)

2+ρ−ρ2−ρ3 .

We have DR(L)/Rss(L) = {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where K̃1 = {s̃1} (the initial state), K̃2 = {s̃2} (the system is

activated and the memory is not requested), K̃3 = {s̃3, s̃4} (the memory is requested by one processor), K̃4 = {s̃5, s̃7}
(the memory is allocated to a processor), K̃5 = {s̃6} (the memory is requested by two processors), K̃6 = {s̃8, s̃9} (the
memory is allocated to a processor and the memory is requested by another processor).

We also have DRT (L)/Rss(L) = {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L) = {K̃3, K̃5}.
In Figure 24, the quotient transition system TS↔ss

(L) is presented. In Figure 25, the quotient underlying SMC
SMC↔ss

(L) is depicted.
The quotient average sojourn time vector of F is

S̃J
′
=

(
1
ρ3 ,

1
ρ(2 − ρ)

, 0,
1

ρ(1 + ρ − ρ2)
, 0,

1
ρ2

)
.

The quotient sojourn time variance vector of F is

ṼAR
′
=

(
1 − ρ3

ρ6 ,
(1 − ρ)2

ρ2(2 − ρ)2 , 0,
(1 − ρ)2(1 + ρ)
ρ2(1 + ρ − ρ2)2 , 0,

1 − ρ2

ρ4

)
.

The TPM for EDTMC↔ss
(L) is

59

TS↔
ss

(L)

�
�

�
�K̃6 K̃5

K̃3

�
�

�
�K̃4

�
�

�
�K̃2

�
�

�
�K̃1

{a},ρ3

{m},ρ2(1−ρ)

{d},1

{r},ρ(1−ρ2) {{r},{r}},ρ2

{r},2ρ(1−ρ){d},1

{m},ρ2

{{r},{m}},ρ3

?

??

-

�

�J

J
J

J
J

J]J
J
J
J
J
Ĵ

�
�
�
�
�
�7

���

∅,1−ρ3

��-

∅,
(1−ρ)(1−ρ2)

���

∅,
(1−ρ)2

��-

∅,1−ρ2

Figure 24: The quotient transition system of the abstract generalized shared memory system.

SMC↔
ss

(L)

�
�

�
�K̃6 K̃5

K̃3

�
�

�
�K̃4

�
�

�
�K̃2

�
�

�
�K̃1

1

ρ(1−ρ)
1+ρ−ρ2

1

1−ρ
2

1+ρ−ρ2

ρ

2−ρ

2(1−ρ)
2−ρ

1

1

ρ
2

1+ρ−ρ2

?

??

-

�

�J

J
J

J
J

J]J
J
J
J
J
Ĵ

�
�
�
�
�
�7

1
ρ(1+ρ−ρ2)

1
ρ2

1
ρ3

1
ρ(2−ρ)

0

0

Figure 25: The quotient underlying SMC of the abstract generalized shared memory system.

60

P̃′∗ =



0 1 0 0 0 0
0 0 2(1−ρ)

2−ρ 0 ρ
2−ρ 0

0 0 0 1 0 0
0 ρ(1−ρ)

1+ρ−ρ2
ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1
0 0 1 0 0 0


.

The steady-state PMF for EDTMC↔ss
(L) is

ψ̃′∗ =
1

6 + 3ρ − 9ρ2 + 2ρ3 (0, ρ(2 − 3ρ + ρ2), 2 + ρ − 3ρ2 + ρ3, 2 + ρ − 3ρ2 + ρ3, ρ2(1 − ρ), 2 − ρ − ρ2).

The steady-state PMF ψ̃′∗ weighted by S̃J
′

is

1
ρ2(6 + 3ρ − 9ρ2 + 2ρ3)

(0, ρ2(1 − ρ), 0, ρ(2 − ρ), 0, 2 − ρ − ρ2).

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ̃′∗S̃J
′T
=

2 + ρ − ρ2 − ρ3

ρ2(6 + 3ρ − 9ρ2 + 2ρ3)
.

Thus, the steady-state PMF for SMC↔ss
(L) is

φ̃′ =
1

2 + ρ − ρ2 − ρ3 (0, ρ2(1 − ρ), 0, ρ(2 − ρ), 0, 2 − ρ − ρ2).

Alternatively, from TS↔ss
(L), we can construct the reduced quotient DTMC of L, RDTMC↔ss

(L), and then calcu-
late φ̃′ using it.

Remember that DRT (L)/Rss(L) = {K̃1, K̃2, K̃4, K̃6} and DRV (L)/Rss(L) = {K̃3, K̃5}. We reorder the elements of

DR(L)/Rss(L), by moving the equivalence classes of vanishing states to the first positions: K̃3, K̃5, K̃1, K̃2, K̃4, K̃6.
The (reordered) TPM for DTMC↔ss

(L) is

P̃′ =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 − ρ3 ρ3 0 0

2ρ(1 − ρ) ρ2 0 (1 − ρ)2 0 0
ρ3 0 0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) ρ(1 − ρ2)
ρ2 0 0 0 0 1 − ρ2


.

The result of the decomposing P̃′ are the matrices

C̃′ =
(

0 0
0 0

)
, D̃′ =

(
0 0 1 0
0 0 0 1

)
, Ẽ′ =


0 0

2ρ(1 − ρ) ρ2

ρ3 0
ρ2 0

 ,

F̃′ =


1 − ρ3 ρ3 0 0

0 (1 − ρ)2 0 0
0 ρ2(1 − ρ) (1 − ρ)(1 − ρ2) ρ(1 − ρ2)
0 0 0 1 − ρ2

 .
Since C̃′1 = 0, we have ∀k > 0, C̃′k = 0, hence, l = 0 and there are no loops among vanishing states. Then

61

RDTMC↔
ss

(L)

�
�

�
�K̃6

�
�

�
�K̃4

�
�

�
�K̃2

�
�

�
�K̃1

ρ2(1− ρ)

2ρ(1− ρ)

ρ2 ρ3

���

1− ρ3

��-

1− ρ−

ρ2 + 2ρ3

���

(1 − ρ)2

��-

1− ρ2

66

?

-�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�/

ρ2ρ(1− ρ2)

Figure 26: The reduced quotient DTMC of the abstract generalized shared memory system.

G̃′ =
l∑

k=0

C̃′l = C̃′0 = I.

Further, the TPM for RDTMC↔ss
(L) is

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′ID̃′ = F̃′ + Ẽ′D̃′ =


1 − ρ3 ρ3 0 0

0 (1 − ρ)2 2ρ(1 − ρ) ρ2

0 ρ2(1 − ρ) 1 − ρ − ρ2 + 2ρ3 ρ(1 − ρ2)
0 0 ρ2 1 − ρ2

 .
In Figure 26, the reduced quotient DTMC RDTMC↔ss

(L) is presented.
Then the steady-state PMF for RDTMC↔ss

(L) is

ψ̃′⋄ =
1

2 + ρ − ρ2 − ρ3 (0, ρ2(1 − ρ), ρ(2 − ρ), 2 − ρ − ρ2).

Note that ψ̃′⋄ = (ψ̃′⋄(K̃1), ψ̃′⋄(K̃2), ψ̃′⋄(K̃4), ψ̃′⋄(K̃6)). By the “quotient” analogue of Proposition 5.3, we have

φ̃′(K̃1) = 0, φ̃′(K̃2) = ρ2(1−ρ)
2+ρ−ρ2−ρ3 , φ̃′(K̃3) = 0, φ̃′(K̃4) = ρ(2−ρ)

2+ρ−ρ2−ρ3 , φ̃′(K̃5) = 0, φ̃′(K̃6) = 2−ρ−ρ2

2+ρ−ρ2−ρ3 .

Thus, the steady-state PMF for SMC↔ss
(L) is

φ̃′ =
1

2 + ρ − ρ2 − ρ3 (0, ρ2(1 − ρ), 0, ρ(2 − ρ), 0, 2 − ρ − ρ2).

This coincides with the result obtained with the use of ψ̃′∗ and S̃J
′
.

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where no processor requests the memory, called the average system
run-through, is 1

φ̃′2
=

2+ρ−ρ2−ρ3

ρ2(1−ρ) .

62

• The common memory is available only in the states K̃2, K̃3, K̃5. The steady-state probability that the memory
is available is φ̃′2 + φ̃

′
3 + φ̃

′
5 =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0 + 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 . Then the steady-state probability that the memory

is used (i.e. not available), called the shared memory utilization, is 1 − ρ2(1−ρ)
2+ρ−ρ2−ρ3 =

2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state K̃1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception of K̃2. Thus, the rate with which the shared memory necessity
emerges coincides with the rate of leaving K̃2, calculated as φ̃′2

S̃J
′
2
=

ρ2(1−ρ)
2+ρ−ρ2−ρ3 · ρ(2−ρ)

1 =
ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of a processor {r} is only possible from the states K̃2, K̃4. In each of the states, the
request probability is the sum of the execution probabilities for all multisets of multiactions containing {r}. The
steady-state probability of the shared memory request from a processor is φ̃′2

∑
{A,K̃ |{r}∈A, K̃2

A→K̃}
PMA(K̃2, K̃) +

φ̃′4
∑
{A,K̃ |{r}∈A, K̃4

A→K̃}
PMA(K̃4, K̃) = ρ2(1−ρ)

2+ρ−ρ2−ρ3 (2ρ(1 − ρ) + ρ2) + ρ(2−ρ)
2+ρ−ρ2−ρ3 (ρ(1 − ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)

2+ρ−ρ2−ρ3 .

One can see that the performance indices are the same for the complete and the quotient abstract generalized
shared memory systems. The coincidence of the first and second performance indices obviously illustrates the result
of Proposition 8.1. The coincidence of the third performance index is due to Theorem 8.1: one should just apply its
result to the derived step traces {{r}}, {{r}, {r}}, {{r}, {m}} of the expression L and itself, and then sum the left and right
parts of the three resulting equalities.

Let us consider what is the effect of quantitative changes of the parameter ρ upon performance of the quotient
abstract generalized shared memory system in its steady state. Remember that ρ ∈ (0; 1) is the probability of every
multiaction of the system. The closer is ρ to 0, the less is the probability to execute some activities at every discrete
time step, hence, the system will most probably stand idle. The closer is ρ to 1, the greater is the probability to execute
some activities at every discrete time step, hence, the system will most probably operate.

Since φ̃′1 = φ̃′3 = φ̃′5 = 0, only φ̃′2 =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 , φ̃
′
4 =

ρ(2−ρ)
2+ρ−ρ2−ρ3 , φ̃

′
6 =

2−ρ−ρ2

2+ρ−ρ2−ρ3 depend on ρ. In Figure 27, the
graphs for φ̃′2, φ̃

′
4, φ̃

′
6 as functions of ρ are depicted. Notice that, however, we do not allow ρ = 0 or ρ = 1.

One can see that φ̃′2, φ̃
′
4 tend to 0 and φ̃′6 tends to 1 when ρ approaches 0. Thus, when ρ is closer to 0, the

probability that the memory is allocated to a processor and the memory is requested by another processor increases,
hence, we have more unsatisfied memory requests.

Further, φ̃′2, φ̃
′
6 tend to 0 and φ̃′4 tends to 1 when ρ approaches 1. Thus, when ρ is closer to 1, the probability that

the memory is allocated to a processor (and not requested by another one) increases, hence, we have less unsatisfied
memory requests.

The maximal value 0.0797 of φ̃′2 is reached when ρ = 0.7433. In this case, the probability that the system is
activated and the memory is not requested is maximal, i.e. the maximal shared memory availability is about 8%.

In Figure 28, the graph for the average system run-through, calculated as 1
φ̃′2

, as a function of ρ is depicted. One can
see that the run-through tends to∞ when ρ approaches 0 or 1. Its minimal value 12.5516 is reached when ρ = 0.7433.
To speed up operation of the system, one should take the parameter ρ closer to 0.7433.

The first graph in Figure 29 represents the shared memory utilization, calculated as 1− φ̃′2 − φ̃′3 − φ̃′5, as a function
of ρ. One can see that the utilization tends to 1 both when ρ approaches 0 and when ρ approaches 1. The minimal
value 0.9203 of the utilization is reached when ρ = 0.7433. Thus, the minimal shared memory utilization is about
92%. To increase the utilization, one should take the parameter ρ closer to 0 or 1.

The second graph in Figure 29 represents the rate with which the shared memory necessity emerges, calculated as
φ̃′2
S̃J
′
2
, as a function of ρ. One can see that the rate tends to 0 both when ρ approaches 0 and when ρ approaches 1. The

maximal value 0.0751 of the rate is reached when ρ = 0.7743. Thus, the maximal rate with which the shared memory
necessity emerges is about 1

13 . To decrease the mentioned rate, one should take the parameter ρ closer to 0 or 1.
The third graph in Figure 29 represents the steady-state probability of the shared memory request from a processor,

calculated as φ̃′2Σ̃
′
2 + φ̃

′
4Σ̃
′
4, where Σ̃′i =

∑
{A,K̃ |{r}∈A, K̃i

A→K̃}
PMA(K̃i, K̃), i ∈ {2, 4}, as a function of ρ. One can see that

the probability tends to 0 when ρ approaches 0 and it tends to 1 when ρ approaches 1. To increase the mentioned
probability, one should take the parameter ρ closer to 1.

63

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

j
�

6
¢

j
�

4
¢

j
�

2
¢

Figure 27: Steady-state probabilities φ̃′2, φ̃
′
4, φ̃

′
6 as functions of the parameter ρ.

0.2 0.4 0.6 0.8 1.0
Ρ

50

100

150

200

1

j
�

2
¢

Figure 28: Average system run-through 1
φ̃′2

as a function of the parameter ρ.

64

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0

j
�

2
¢
S
�

2
¢
+j
�

4
¢
S
�

4
¢

j
�

2
¢

SJ
�

2
¢

1-j
�

2
¢
-j
�

3
¢
-j
�

5
¢

Figure 29: Some performance indices as functions of the parameter ρ.

10. Related work

In this section, we consider in detail differences and similarities between dtsiPBC and other well-known or similar
SPAs for the purpose of subsequent determining the specific advantages of dtsiPBC.

10.1. Continuous time and interleaving semantics

Let us compare dtsiPBC with classical SPAs: Markovian Timed Processes for Performance Evaluation (MTIPP)
[34], Performance Evaluation Process Algebra (PEPA) [36] and Extended Markovian Process Algebra (EMPA) [10].

In MTIPP, every activity is a pair consisting of the action name (including the symbol τ for the internal, invisible
action) and the parameter of exponential distribution of the action delay (the rate). The operations are prefix, choice,
parallel composition including synchronization on the specified action set and recursion. It is possible to specify pro-
cesses by recursive equations as well. The interleaving semantics is defined on the basis of Markovian (i.e. extended
with the specification of rates) labeled transition systems. Note that we have the interleaving behaviour here because
the exponential PDF is a continuous one, and a simultaneous firing of any two activities has zero probability according
to the properties of continuous distributions. The continuous time Markov chains (CTMCs) can be derived from the
mentioned transition systems to analyze the performance.

In PEPA, activities are the pairs consisting of action types (including the unknown, unimportant type τ) and
activity rates. The rate is either the parameter of exponential distribution of the activity duration or it is unspecified,
denoted by ⊤. An activity with unspecified rate is passive by its action type. The set of operations includes prefix,
choice, cooperation, hiding and constants whose meaning is given by the defining equations including the recursive
ones. The cooperation is accomplished on the set of action types (the cooperation set) on which the components must
synchronize or cooperate. If the cooperation set is empty, the cooperation operator turns into the parallel combinator.
The semantics is interleaving, it is defined via the extension of labeled transition systems with a possibility to specify
activity rates. Based on the transition systems, the continuous time Markov processes (CTMPs) are generated which
are used for performance evaluation with the help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate. Actions can be external or internal (denoted by
τ) according to types. There are three kinds of actions according to rates: timed ones with exponentially distributed
durations (essentially, the actions from MTIPP and PEPA), immediate ones with priorities and weights (the actions
analogous to immediate transitions of generalized SPNs, GSPNs) and passive ones (similar to passive actions of
PEPA). Timed actions specify activities that are relevant for performance analysis. Immediate actions model logical
events and the activities that are irrelevant from the performance viewpoint or much faster than others. Passive
actions model activities waiting for the synchronization with timed or immediate ones, and express nondeterministic
choice. The set of operators consist of prefix, functional abstraction, functional relabeling, alternative composition

65

and parallel composition ones. Parallel composition includes synchronization on the set of action types like in TCSP
[37]. The syntax also includes recursive definitions given by means of constants. The semantics is interleaving
and based on the labeled transition systems enriched with the information on action rates. For the exponentially
timed kernel of the algebra (the sublanguage including only exponentially timed and passive actions), it is possible to
construct CTMCs from the transition systems of the process terms to analyze the performance.

In dtsiPBC, every activity is a pair consisting of the multiaction (not just an action, as in the classical SPAs) as
a first element. The second element is either the probability (not the rate, as in the classical SPAs) to execute the
multiaction independently (the activity is called a stochastic multiaction in this case) or the weight expressing how
important is the execution of this multiaction (the activity is called an immediate multiaction in this case). Immediate
multiactions in dtsiPBC are similar to immediate actions in EMPA, but all the immediate multiactions have the same
priority 1 (with the purpose to execute them always before stochastic multiactions, all having the same priority 0),
whereas the immediate actions in EMPA can have different priority levels. There are no immediate actions in MTIPP
and PEPA. Immediate actions are available only in iPEPA [33], where they are analogous to immediate multiactions in
dtsiPBC, and in a variant of TIPP [29] discussed while constructing the calculus PM-TIPP in [67], but there immediate
activities are used just to specify probabilistic branching and they cannot be synchronized.

dtsiPBC has the sequence operation in contrast to the prefix one in the classical SPAs. One can combine arbitrary
expressions with the sequence operator, i.e. it is more flexible than the prefix one, where the first argument should
be a single activity. The choice operation in dtsiPBC is analogous to that in MTIPP and PEPA, as well as to the
alternative composition in EMPA, in the sense that the choice is probabilistic, but a discrete probability function is
used in dtsiPBC, unlike continuous ones in the classical calculi. Concurrency and synchronization in dtsiPBC are
different operations (this feature is inherited from PBC), unlike the situation in the classical SPAs where parallel
composition (combinator) has a synchronization capability. Relabeling in dtsiPBC is analogous to that in EMPA, but
it is additionally extended to conjugated actions. The restriction operation in dtsiPBC differs from hiding in PEPA
and functional abstraction in EMPA, where the hidden actions are labeled with a symbol of “silent” action τ. In
dtsiPBC, restriction by an action means that, for a given expression, any process behaviour containing the action or its
conjugate is not allowed. The synchronization on an elementary action in dtsiPBC collects all the pairs consisting of
this elementary action and its conjugate which are contained in the multiactions from the synchronized activities. The
operation produces new activities such that the first element of every resulting activity is the union of the multiactions
from which all the mentioned pairs of conjugated actions are removed. The second element is either the product of
the probabilities of the synchronized stochastic multiactions or the sum of the weights of the synchronized immediate
multiactions. This differs from the way synchronization is applied in the classical SPAs where it is accomplished over
identical action names, and every resulting activity consist of the same action name and the rate calculated via some
expression (including sums, minimums and products) on the rates of the initial activities, such as the apparent rate in
PEPA. dtsiPBC has no recursion operation or recursive definitions, but it includes the iteration operation to specify
infinite looping behaviour with the explicitly defined start and termination.

dtsiPBC has a discrete time semantics, and time delays in the tangible states are geometrically distributed, unlike
the classical SPAs with continuous time semantics and exponentially distributed activity delays. As a consequence,
the semantics of dtsiPBC is the step one in contrast to the interleaving semantics of the classical SPAs. The per-
formance is investigated via the underlying semi-Markov chains (SMCs) and (reduced) DTMCs extracted from the
labeled probabilistic transition systems associated with expressions of dtsiPBC. In the classical SPAs, continuous time
Markov chains (CTMCs) are usually used for performance evaluation. In [26], a denotational semantics of PEPA has
been proposed via PEPA nets that are high-level CTSPNs with coloured tokens (coloured CTSPNs), from which the
underlying CTMCs can be retrieved. In [9, 6], a denotational semantics of EMPA based on GSPNs has been defined,
from which one can also extract the underlying SMCs and CTMCs (when both immediate and timed transitions are
present) or discrete time Markov chains (DTMCs) (but when there are only immediate transitions). dtsiPBC has a
denotational semantics in terms of LDTSIPNs from which the underlying SMCs and embedded DTMCs (EDTMCs)
can be derived.

10.2. Continuous time and non-interleaving semantics
Only a few non-interleaving SPAs were proposed among non-Markovian ones [42]. The semantics of all Marko-

vian calculi is interleaving and their action delays have exponential distribution, which is the only continuous proba-
bility distribution with memoryless (Markovian) property.

66

In [17], Generalized Stochastic Process Algebra (GSPA) was introduced. It has a true-concurrent denotational
semantics in terms of generalized stochastic event structures (GSESs) with non-Markovian stochastic delays of events.
In that paper, no operational semantics or performance evaluation methods for GSPA were presented. Later, in [41],
generalized semi-Markov processes (GSMPs) were extracted from GSESs to analyze performance.

In [65], Stochastic π-calculus (Sπ) with general continuous distributions of activity delays was defined. It has
a proved operational semantics with transitions labeled by encodings of their deduction trees. No well-established
underlying performance model for this version of Sπ was described.

In [15, 14], Generalized Semi-Markovian Process Algebra (GSMPA) was developed with ST-operational seman-
tics and non-Markovian action delays. The performance analysis in GSMPA is accomplished via GSMPs.

Again, the first fundamental difference between dtsiPBC and the calculi GSPA, Sπ and GSMPA is that dtsiPBC
is based on PBC, whereas GSPA is an extension of Process Algebra (PA) from [17], Sπ extends π-calculus [59]
and GSMPA is an enrichment of EMPA. Therefore, both GSPA and GSMPA have prefixing, choice (alternative
composition), parallel composition, renaming (relabeling) and hiding (abstraction) operations, but only GSMPA
permits constants. Unlike dtsiPBC, GSPA has neither iteration or recursion, GSMPA allows only recursive definitions,
whereas Sπ additionally has operations to specify mobility. Note also that GSPA, Sπ and GSMPA do not specify
instant events or activities while dtsiPBC has immediate multiactions.

The second significant difference is that geometrically distributed or zero delays are associated with process states
in dtsiPBC, unlike generally distributed delays assigned to events in GSPA or to activities in Sπ and GSMPA. As
a consequence, dtsiPBC has a discrete time operational semantics allowing for concurrent execution of activities
in steps. GSPA has no operational semantics while Sπ and GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleaving, since simultaneous occurrence of any two events has zero
probability according to the properties of continuous probability distributions. Therefore, interleaving transitions are
often annotated with an additional information to keep concurrency data. The transition labels in the operational
semantics of Sπ encode the action causality information and allow one to derive the enabling relations and the firing
distributions of concurrent transitions from the transition sequences. At the same time, abstracting from stochastic
delays leads to the classical early interleaving semantics of π-calculus. ST-operational semantics of GSMPA is based
on decorated transition systems governed by transition rules with rather complex preconditions. There are two types of
transitions: the choice (action beginning) and the termination (action ending) ones. The choice transitions are labeled
by weights of single actions chosen for execution while the termination transitions have no labels. Only single actions
can begin, but several actions can end in parallel. Thus, the choice transitions are the interleaving ones while the
termination transitions are the step ones. As a result, the decorated interleaving / step transition systems are obtained.
dtsiPBC has an SPNs-based denotational semantics. In comparison with event structures, PNs are more expressive
and visually tractable formalism capable of finitely specifying an infinite behaviour. Recursion in GSPA produces
infinite GSESs while dtsiPBC has iteration operation with a finite SPN semantics. Identification of infinite GSESs
that can be finitely represented in GSPA was left for a future research.

10.3. Discrete time
In [1], a class of compositional DTSPNs with generally distributed discrete time transition delays was proposed,

called dts-nets. The denotational semantics of a stochastic extension (we call it stochastic ACP or sACP) of a subset
of Algebra of Communicating Processes (ACP) [5] can be constructed via dts-nets. There are two types of transitions
in dts-nets: immediate (timeless) ones with zero delays and time ones, whose delays are random variables having
general discrete time distributions. The top-down synthesis of dts-nets consists in the substitution of their transitions
by blocks (dts-subnets) corresponding to the sequence, choice, parallelism and iteration operators. It was explained
how to calculate the throughput time of dts-nets using the service time (defined as holding time or delay) of their
transitions. For this, the notions of service distribution for the transitions and throughput distribution for the building
blocks were defined. Since the throughput time of the parallelism block was calculated as the maximal service time
for its two constituting transitions, the analogue of the step semantics approach was implemented.

In [52, 53], an SPA called Theory of Communicating Processes with discrete stochastic time (TCPdts) was in-
troduced. Its actions have a (deterministic) discrete real time delays (including zero time delays) or stochastic time
delays. The algebra generalizes real-time processes to discrete stochastic time ones by applying real-time properties
to stochastic time and imposing race condition to real time semantics. TCPdts has an interleaving operational se-
mantics in terms of stochastic transition systems. The performance is analyzed via discrete time probabilistic reward

67

Table 8: Classification of stochastic process algebras.

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions

Continuous No MTIPP (CTMC), PEPA (CTMP), GSPA (GSMP), Sπ, GSMPA (GSMP)
sPBC (CTMC)

Yes EMPA (SMC, CTMC), gsPBC (SMC) —
Discrete No TCPdts (DTMRC) dtsPBC (DTMC)

Yes — sACP, dtsiPBC (SMC, DTMC)

graphs which are essentially the reward transition systems with probabilistic states having finite number of outgo-
ing probabilistic transitions and timed states having a single outgoing timed transition. The mentioned graphs can
be transformed by unfolding or geometrization into discrete time Markov reward chains (DTMRCs) appropriate for
transient or stationary analysis.

The first difference between dtsiPBC and the algebras sACP and TCPdts is that dtsiPBC is based on PBC, but sACP
and TCPdts are the extensions of ACP. sACP has taken from ACP only sequence, choice, parallelism and iteration
operations, whereas dtsiPBC has additionally relabeling, restriction and synchronization ones, inherited from PBC.
In TCPdts, besides standard action prefixing, alternative, parallel composition, encapsulation (similar to restriction)
and recursive variables, there are also timed delay prefixing, dependent delays scope and the maximal time progress
operators, which are new both for ACP and dtsiPBC. TCPdts has no instant activities, unlike sACP and dtsiPBC.

The second difference is that zero or geometrically distributed delays are associated with process states in dtsiPBC,
unlike zero or generally distributed discrete time delays of actions in sACP and deterministic or generally distributed
stochastic delays of actions in TCPdts. Neither formal syntax nor operational semantics for sACP are defined and it
is not explained how to derive Markov chains from the algebraic expressions or the corresponding dts-nets to analyze
performance. It is not stated explicitly, which type of semantics (interleaving or step) is accommodated in sACP. In
spite of the discrete time approach, operational semantics of TCPdts is still interleaving, unlike that of dtsiPBC. In
addition, no denotational semantics was defined for TCPdts.

Table 8 summarizes the SPAs comparison above and that from Section 1 (the calculi sPBC, gsPBC and dtsPBC),
by classifying the SPAs according to the concept of time, the presence of immediate (multi)actions and the type of
operational semantics. The names of SPAs, whose denotational semantics is based on SPNs, are printed in bold font.
The underlying stochastic process (if defined) is specified in parentheses near the name of the corresponding SPA.

11. Discussion

Let us now discuss which advantages has dtsiPBC in comparison with the SPAs described in Section 10.

11.1. Analytical solution

An important aspect is the analytical tractability of the underlying stochastic process, used for performance eval-
uation in SPAs. The underlying CTMCs in MTIPP and PEPA, as well as SMCs in EMPA, are treated analytically,
but these continuous time SPAs have interleaving semantics. GSPA, Sπ and GSMPA are the continuous time mod-
els, for which a non-interleaving semantics is constructed, but for the underlying GSMPs in GSPA and GSMPA,
only simulation and numerical methods are applied, whereas no performance model for Sπ is defined. sACP and
TCPdts are the discrete time models with the associated analytical methods for the throughput calculation in sACP
or for the performance evaluation based on the underlying DTMRCs in TCPdts, but both models have interleaving
semantics. dtsiPBC is a discrete time model with a non-interleaving semantics, where analytical methods are applied
to the underlying SMCs. Hence, if an interleaving model is appropriate as a framework for the analytical solution
towards performance evaluation then one has a choice between the continuous time SPAs MTIPP, PEPA, EMPA and
the discrete time ones sACP, TCPdts. Otherwise, if one needs a non-interleaving model with the associated analytical
methods for performance evaluation and the discrete time approach is feasible then dtsiPBC is the right choice.

68

An existence of the analytical solution also permits to interpret quantitative values (rates, probabilities etc.) from
the system specifications as parameters, which can be adjusted to optimize the system performance, like in dtsPBC,
dtsiPBC and parametric probabilistic transition systems (i.e. DTMCs whose transition probabilities may be real-value
parameters) [45]. Note that DTMCs whose transition probabilities are parameters were introduced in [23]. CTMCs
with the transition rates treated as parameters were investigated in [31]. On the other hand, no parameters in formulas
of SPAs were considered in the literature so far. In dtsiPBC we can easily construct examples with more parameters
than we did in our case study. The performance indices will be then interpreted as functions of several variables.
The advantage of our approach is that, unlike of the method from [45], we should not impose to the parameters any
special conditions needed to guarantee that the real values, interpreted as the transition probabilities, always lie in the
interval [0; 1]. To be convinced of this fact, just remember that, as we have demonstrated, the probability functions
PF, PT, PM, PM∗, PM⋄ define probability distributions, hence, they always return probabilities belonging to (0; 1]
for any parameters from (0; 1).

11.2. Application area

From the application viewpoint, one considers what kind of systems are more appropriate to be modeled and
analyzed within SPAs. MTIPP and PEPA are well-suited for the interleaving continuous time systems such that the
activity rates or the average sojourn time in the states are known in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can be used to model the mentioned systems with the activity de-
lays of different duration order or the extended systems, in which purely probabilistic choices or urgent activities must
be implemented. GSPA and GSMPA fit well for modeling the continuous time systems with a capability to keep the
activity causality information, and with the known activity delay distributions, which cannot be approximated accu-
rately by exponential distribution, while Sπ can additionally model mobility in such systems. TCPdts is a good choice
for interleaving discrete time systems with deterministic (fixed) and generalized stochastic delays, whereas sACP is
capable to model non-interleaving systems as well, but it offers not enough performance analysis methods. dtsiPBC is
consistent for the step discrete time systems such that the independent execution probabilities of activities are known
and geometrical distribution approximates well the state residence time distributions. In addition, dtsiPBC can model
these systems featuring very scattered activity delays or even more complex systems with instant probabilistic choice
or urgency, hence, dtsiPBC can be taken as a non-interleaving discrete time counterpart of EMPA.

11.3. Concurrency interpretation

One can see that the stochastic process calculi proposed in the literature are based on interleaving, as a rule,
and parallelism is simulated by synchronous or asynchronous execution. As a semantic domain, the interleaving
formalism of transition systems is often used. Therefore, investigation of stochastic extensions for more expressive
and powerful algebraic calculi is an important issue. The development of step or “true concurrency” (such that
parallelism is considered as a causal independence) SPAs is an interesting and nontrivial problem, which has attracted
special attention last years. Nevertheless, not so many formal stochastic models were defined whose underlying
stochastic processes are based on DTMCs. As mentioned in [25], such models are more difficult to analyze, since a
lot of events can occur simultaneously in discrete time systems (the models have a step semantics) and the probability
of a set of events can be not easily related to the probability of the single ones. As observed in [38], even for stochastic
models with generally distributed time delays, some restrictions on the concurrency degree were imposed to simplify
their analysis techniques. In particular, the enabling restriction requires that no two generally distributed transitions
are enabled in any reachable marking. Hence, their activity periods do not intersect and no two such transitions can
fire simultaneously, this results in interleaving semantics of the model.

Stochastic models with discrete time and step semantics have the following important advantage over those having
just an interleaving semantics. The underlying Markov chains of parallel stochastic processes have the additional tran-
sitions corresponding to the simultaneous execution of concurrent (i.e. non-synchronized) activities. The transitions
of that kind allow one to bypass a lot of intermediate states, which otherwise should be visited when interleaving
semantics is accommodated. When step semantics is used, the intermediate states can be also visited with some
probability (this is an advantage, since some alternative system’s behaviour may start from these states), but this prob-
ability is not greater than the corresponding one in case of interleaving semantics. While in interleaving semantics,
only the empty or singleton (multi)sets of activities can be executed, in step semantics, generally, the (multi)sets of

69

activities with more than one element can be executed as well. Hence, in step semantics, there are more variants of
execution from each state than in the interleaving case and the executions probabilities, whose sum should be equal
to 1, are distributed among more possibilities. Therefore, the systems with parallel stochastic processes usually have
smaller average run-through. In case the underlying Markov chains of the processes are ergodic, they will take less
discrete time units to stabilize the behaviour, since their TPMs will be denser because of additional non-zero elements
outside the main diagonal. Hence, both the first passage-time performance indices based on the transient probabilities
and the steady-state performance indices based on the stationary probabilities can be computed quicker, resulting in
faster quantitative analysis of the systems. On the other hand, step semantics, induced by simultaneous firing several
transitions at each step, is natural for Petri nets and allows one to exploit full power of the model.

11.4. Advantages of dtsiPBC
Thus, the main advantages of dtsiPBC are the flexible multiaction labels, immediate multiactions, powerful op-

erations, as well as a step operational and a Petri net denotational semantics allowing for concurrent execution of
activities (transitions), together with an ability for analytical and parametric performance evaluation.

12. Conclusion

In this paper, we have proposed a discrete time stochastic extension dtsiPBC of a finite part of PBC enriched with
iteration and immediate multiactions. The calculus has the concurrent step operational semantics based on labeled
probabilistic transition systems and the denotational semantics in terms of a subclass of LDTSIPNs. A method of
performance evaluation in the framework of the calculus has been presented. Step stochastic bisimulation equiva-
lence of process expressions has been defined and its interrelations with other equivalences of the calculus have been
investigated. We have explained how to reduce transition systems and underlying SMCs of expressions with respect
to the introduced equivalence. We have proved that the mentioned equivalence guarantees identity of the stationary
behaviour and the sojourn time properties, and thus preserves performance measures. A case study of the shared
memory system has been presented as an example of modeling, performance evaluation and performance preserving
reduction within the calculus.

The advantage of our framework is twofold. First, one can specify in it concurrent composition and synchroniza-
tion of (multi)actions, whereas this is not possible in classical Markov chains. Second, algebraic formulas represent
processes in a more compact way than Petri nets and allow one to apply syntactic transformations and comparisons.
Process algebras are compositional by definition and their operations naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a complex model in the algebraic setting than in PNs. The com-
plexity of PNs generated for practical models in the literature demonstrates that it is not straightforward to construct
such PNs directly from the system specifications. dtsiPBC is well suited for the discrete time applications, such as
business processes, neural and transportation networks, computer and communication systems, whose discrete states
change with a global time tick, as well as for those, in which the distributed architecture or the concurrency level
should be preserved while modeling and analysis (remember that, in step semantics, we have additional transitions
due to concurrent executions).

Future work will consist in constructing a congruence for dtsiPBC, i.e. the equivalence that withstands application
of all operations of the algebra. The first possible candidate is a stronger version of↔ss defined via transition systems
equipped with two extra transitions skip and redo like those from [48]. We also plan to extend the calculus with
deterministically timed multiactions having a fixed time delay (including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calculus and to extend application area of the associated analysis
techniques. Moreover, recursion could be added to dtsiPBC to increase further specification power of the algebra.

Acknowledgements. The first author thanks Eike Best for the qualified consideration, encouraging discussions and
many valuable advices related to the subject of the paper.

References

[1] W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time stochastic Petri nets, Statistica Neerlandica 54 (2000) 237–255.
http://tmitwww.tm.tue.nl/staff/hreijers/H.A. Reijers Bestanden/Statistica.pdf.

70

[2] C. Autant, P. Schnoebelen, Place bisimulations in Petri nets, in: Proc. 13th ICATPN 1992, volume 616 of Lect. Notes Comp. Sci., Springer,
1992, pp. 45–61.

[3] G. Balbo, Introduction to stochastic Petri nets, in: Proc. 1st EEF/Euro Summer School of Trends in Comp. Sci. 2000, volume 2090 of Lect.
Notes Comp. Sci., Springer, 2001, pp. 84–155.

[4] G. Balbo, Introduction to generalized stochastic Petri nets, in: Proc. 7th SFM 2007, volume 4486 of Lect. Notes Comp. Sci., Springer, 2007,
pp. 83–131.

[5] J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction, Theor. Comput. Sci. 37 (1985) 77–121.
[6] M. Bernardo, Theory and application of extended Markovian process algebra, University of Bologna, Italy, 1999. Ph. D. thesis, 276 pages,

http://www.sti.uniurb.it/bernardo/documents/phdthesis.pdf.
[7] M. Bernardo, A survey of Markovian behavioral equivalences, in: Proc. 7th SFM 2007, volume 4486 of Lect. Notes Comp. Sci., Springer,

2007, pp. 180–219. http://www.sti.uniurb.it/bernardo/documents/sfm07pe.pdf.
[8] M. Bernardo, M. Bravetti, Reward based congruences: can we aggregate more?, in: Proc. PAPM-PROBMIV 2001, volume 2165 of Lect.

Notes Comp. Sci., Springer, 2001, pp. 136–151. http://www.cs.unibo.it/˜bravetti/papers/papm01b.ps.
[9] M. Bernardo, L. Donatiello, R. Gorrieri, A formal approach to the integration of performance aspects in the modeling and analysis of

concurrent systems, Information and Computation 144 (1998) 83–154. http://www.sti.uniurb.it/bernardo/documents/ic144.pdf.
[10] M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time,

Theor. Comput. Sci. 202 (1998) 1–54. http://www.sti.uniurb.it/bernardo/documents/tcs202.pdf.
[11] E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with multi-label communication, in: Advances in Petri Nets 1992,

volume 609 of Lect. Notes Comp. Sci., Springer, 1992, pp. 21–69.
[12] E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on Theor. Comput. Sci., Springer, 2001. 378 pages.
[13] E. Best, M. Koutny, A refined view of the box algebra, in: Proc. 16th ICATPN 1995, volume 935 of Lect. Notes Comp. Sci., Springer, 1995,

pp. 1–20. http://parsys.informatik.uni-oldenburg.de/˜best/publications/pn95.ps.gz.
[14] M. Bravetti, Specification and analysis of stochastic real-time systems, University of Bologna, Italy, 2002. Ph. D. thesis, 432 pages,

http://www.cs.unibo.it/˜bravetti/papers/phdthesis.ps.gz.
[15] M. Bravetti, M. Bernardo, R. Gorrieri, Towards performance evaluation with general distributions in process algebras, in: Proc. 9th CONCUR

1998, volume 1466 of Lect. Notes Comp. Sci., Springer, 1998, pp. 405–422. http://www.cs.unibo.it/˜bravetti/papers/concur98.ps.
[16] E. Brinksma, H. Hermanns, Process algebra and Markov chains, in: Proc. 1st EEF/Euro Summer School of Trends in Comp. Sci. 2000,

volume 2090 of Lect. Notes Comp. Sci., Springer, 2001, pp. 183–231.
[17] E. Brinksma, J.P. Katoen, R. Langerak, D. Latella, A stochastic causality-based process algebra, Comp. J. 38 (1995) 552–565. http://eprints.

eemcs.utwente.nl/6387/01/552.pdf.
[18] P. Buchholz, Markovian process algebra: composition and equivalence, in: Proc. 2nd Int. Workshop on Process Algebras and Performance

Modelling (PAPM) 1994, number 27 in Arbeitsberichte des IMMD, University of Erlangen, Germany, 1994, pp. 11–30.
[19] P. Buchholz, A notion of equivalence for stochastic Petri nets, in: Proc. 16th ICATPN 1995, volume 935 of Lect. Notes Comp. Sci., Springer,

1995, pp. 161–180.
[20] P. Buchholz, Iterative decomposition and aggregation of labeled GSPNs, in: Proc. 19th ICATPN 1998, volume 1420 of Lect. Notes Comp.

Sci., Springer, 1998, pp. 226–245.
[21] P. Buchholz, I.V. Tarasyuk, Net and algebraic approaches to probabilistic modeling, Joint Novosibirsk Computing Center and Institute of

Informatics Systems Bulletin, Series Computer Science 15 (2001) 31–64. Novosibirsk, Russia, http://itar.iis.nsk.su/files/itar/pages/
spnpancc.pdf.

[22] I. Christoff, Testing equivalence and fully abstract models of probabilistic processes, in: Proc. 1st CONCUR 1990, volume 458 of Lect. Notes
Comp. Sci., Springer, 1990, pp. 126–140.

[23] C. Daws, Symbolic and parametric model checking of discrete-time Markov chains, in: Proc. 1st ICTAC 2004, volume 3407 of Lect. Notes
Comp. Sci., Springer, 2004, pp. 280–294.

[24] S. Derisavi, H. Hermanns, W.H. Sanders, Optimal state-space lumping of Markov chains, Information Processing Letters 87 (2003) 309–315.
[25] J.M. Fourneau, Collaboration of discrete-time Markov chains: Tensor and product form, Performance Evaluation 67 (2010) 779–796.
[26] S. Gilmore, J. Hillston, L. Kloul, M. Ribaudo, PEPA nets: a structured performance modelling formalism, Performance Evaluation 54 (2003)

79–104. http://www.dcs.ed.ac.uk/pepa/pepanetsJournal.pdf.
[27] R.J. van Glabbeek, The linear time – branching time spectrum II: the semantics of sequential systems with silent moves. Extended abstract,

in: Proc. 4th CONCUR 1993, volume 715 of Lect. Notes Comp. Sci., Springer, 1993, pp. 66–81.
[28] R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic processes, Information and Computa-

tion 121 (1995) 59–80. http://boole.stanford.edu/pub/prob.ps.gz.
[29] N. Götz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system design: the integration of functional specification and performance

analysis using stochastic process algebras, in: Proc. 16th Performance 1993, volume 729 of Lect. Notes Comp. Sci., Springer, 1993, pp. 121–
146.

[30] M.C. Guenther, N.J. Dingle, J.T. Bradley, W.J. Knottenbelt, Passage-time computation and aggregation strategies for large semi-Markov
processes, Performance Evaluation 68 (2011) 221–236.

[31] T. Han, J.P. Katoen, A. Mereacre, Approximate parameter synthesis for probabilistic time-bounded reachability, in: Proc. 29th IEEE Real-
Time Systems Symposium (RTSS) 2008, IEEE Computer Society Press, New York, USA, 2008, pp. 173–182.

[32] B.R. Haverkort, Markovian models for performance and dependability evaluation, in: Proc. 1st EEF/Euro Summer School of Trends in Comp.
Sci. 2000, volume 2090 of Lect. Notes Comp. Sci., Springer, 2001, pp. 38–83. http://www-i2.informatik.rwth-aachen.de/Teaching/
Seminar/VOSS2005/have01.pdf.

[33] R.A. Hayden, J.T. Bradley, A. Clark, Performance specification and evaluation with unified stochastic probes and fluid analysis, IEEE Transac-
tions on Software Engineering 39 (2013) 97–118. http://pubs.doc.ic.ac.uk/fluid-unified-stochastic-probes/fluid-unified-stochastic-probes.pdf.

[34] H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences and axioms for MTIPP, in: Proc. 2nd Int. Workshop on Process Algebras and
Performance Modelling (PAPM) 1994, number 27 in Arbeitsberichte des IMMD, University of Erlangen, Germany, 1994, pp. 71–88.

71

[35] J. Hillston, The nature of synchronisation, in: Proc. 2nd Int. Workshop on Process Algebras and Performance Modelling (PAPM) 1994,
number 27 in Arbeitsberichte des IMMD, University of Erlangen, Germany, 1994, pp. 51–70. http://www.dcs.ed.ac.uk/pepa/
synchronisation.pdf.

[36] J. Hillston, A compositional approach to performance modelling, Cambridge University Press, UK, 1996. 158 pages,
http://www.dcs.ed.ac.uk/pepa/book.pdf.

[37] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK, 1985. http://www.usingcsp.com/cspbook.pdf.
[38] A. Horváth, M. Paolieri, L. Ridi, E. Vicario, Transient analysis of non-Markovian models using stochastic state classes, Performance Evalu-

ation 69 (2012) 315–335.
[39] C.C. Jou, S.A. Smolka, Equivalences, congruences and complete axiomatizations for probabilistic processes, in: Proc. 1st CONCUR 1990,

volume 458 of Lect. Notes Comp. Sci., Springer, 1990, pp. 367–383.
[40] J.P. Katoen, Quantinative and qualitative extensions of event structures, CTIT Ph. D.-thesis series 96-09, Centre for Telematics and Informa-

tion Technology, University of Twente, Enschede, The Netherlands, 1996. Ph. D. thesis, 303 pages.
[41] J.P. Katoen, E. Brinksma, D. Latella, R. Langerak, Stochastic simulation of event structures, in: Proc. 4th Int. Workshop on Process Algebra

and Performance Modelling (PAPM) 1996, CLUT Press, Torino, Italy, 1996, pp. 21–40. http://eprints.eemcs.utwente.nl/6487/01/
263 KLLB96b.pdf.

[42] J.P. Katoen, P.R. D’Argenio, General distributions in process algebra, in: Proc. 1st EEF/Euro Summer School of Trends in Comp. Sci. 2000,
volume 2090 of Lect. Notes Comp. Sci., Springer, 2001, pp. 375–429.

[43] M. Koutny, A compositional model of time Petri nets, in: Proc. 21st ICATPN 2000, volume 1825 of Lect. Notes Comp. Sci., Springer, 2000,
pp. 303–322.

[44] V.G. Kulkarni, Modeling and analysis of stochastic systems, Texts in Statistical Science, Chapman and Hall / CRC Press, 2009. 563 pages.
[45] R. Lanotte, A. Maggiolo-Schettini, A. Troina, Parametric probabilistic transition systems for system design and analysis, Formal Aspects of

Computing 19 (2007) 93–109.
[46] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and Computation 94 (1991) 1–28.
[47] H. Macià, V. Valero, D. Cazorla, F. Cuartero, Introducing the iteration in sPBC, in: Proc. 24th FORTE 2004, volume 3235 of Lect. Notes

Comp. Sci., Springer, 2004, pp. 292–308. http://www.info-ab.uclm.es/retics/publications/2004/forte04.pdf.
[48] H. Macià, V. Valero, F. Cuartero, D. de-Frutos, A congruence relation for sPBC, Formal Methods in System Design 32 (2008) 85–128.

Springer, The Netherlands.
[49] H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of Petri box calculus with immediate multiactions, Fundamenta

Informaticae 87 (2008) 367–406. IOS Press, Amsterdam, The Netherlands.
[50] H. Macià, V. Valero, D. de-Frutos, sPBC: a Markovian extension of finite Petri box calculus, in: Proc. 9th IEEE Int. Workshop on Petri

Nets and Performance Models (PNPM) 2001, IEEE Computer Society Press, Aachen, Germany, 2001, pp. 207–216. http://www.info-
ab.uclm.es/retics/publications/2001/pnpm01.ps.

[51] J. Markovski, A. Sokolova, N. Trčka, E.P. de Vink, Compositionality for Markov reward chains with fast and silent transitions, Performance
Evaluation 66 (2009) 435–452.

[52] J. Markovski, E.P. de Vink, Extending timed process algebra with discrete stochastic time, in: Proc. 12th AMAST 2008, volume 5140 of Lect.
Notes Comp. Sci., Springer, 2008, pp. 268–283.

[53] J. Markovski, E.P. de Vink, Performance evaluation of distributed systems based on a discrete real- and stochastic-time process algebra,
Fundamenta Informaticae 95 (2009) 157–186. IOS Press, Amsterdam, The Netherlands.

[54] O. Marroquı́n, D. de-Frutos, Extending the Petri box calculus with time, in: Proc. 22nd ICATPN 2001, volume 2075 of Lect. Notes Comp.
Sci., Springer, 2001, pp. 303–322.

[55] M.A. Marsan, Stochastic Petri nets: an elementary introduction, in: Advances in Petri Nets 1989, volume 424 of Lect. Notes Comp. Sci.,
Springer, 1990, pp. 1–29.

[56] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalized stochastic Petri nets, Wiley Series in Parallel
Computing, John Wiley and Sons, 1995. 316 pages, http://www.di.unito.it/˜greatspn/GSPN-Wiley.

[57] P.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications of a theoretical study, IEEE Transactions on Communi-
cations 24 (1976) 1036–1043.

[58] R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle River, NJ, USA, 1989. 260 pages.
[59] R.A.J. Milner, J. Parrow, D. Walker, A calculus of mobile processes (i and ii), Information and Computation 100 (1992) 1–77.
[60] M.K. Molloy, On the integration of the throughput and delay measures in distributed processing models, Report CSD-810-921, University of

California, Los Angeles, USA, 1981. Ph. D. thesis.
[61] M.K. Molloy, Discrete time stochastic Petri nets, IEEE Transactions on Software Engineering 11 (1985) 417–423.
[62] T.N. Mudge, H.B. Al-Sadoun, A semi-Markov model for the performance of multiple-bus systems, IEEE Transactions on Computers C-34

(1985) 934–942. http://www.eecs.umich.edu/˜tnm/papers/SemiMarkov.pdf.
[63] A. Niaouris, An algebra of Petri nets with arc-based time restrictions, in: Proc. 1st ICTAC 2004, volume 3407 of Lect. Notes Comp. Sci.,

Springer, 2005, pp. 447–462.
[64] R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987) 973–989.
[65] C. Priami, Stochastic π-calculus with general distributions, in: Proc. 4th Int. Workshop on Process Algebra and Performance Modelling

(PAPM) 1996, CLUT Press, Torino, Italy, 1996, pp. 41–57.
[66] C. Ramchandani, Perfomance evaluation of asynchronous concurrent systems by timed Petri nets, Massachusetts Institute of Technology,

Cambridge, USA, 1973. Ph. D. thesis.
[67] M. Rettelbach, Probabilistic branching in Markovian process algebras, The Computer Journal 38 (1995) 590–599.
[68] S.M. Ross, Stochastic processes, John Wiley and Sons, New York, USA, 1996. 528 pages, 2nd edition.
[69] I.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of the Novosibirsk Computing Center, Series Computer Science,

IIS Special Issue 24 (2006) 129–148. NCC Publisher, Novosibirsk, Russia, http://itar.iis.nsk.su/files/itar/pages/dtsitncc.pdf.
[70] I.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta Informaticae 76 (2007) 189–218. IOS Press, Amsterdam, The

72

Netherlands.
[71] I.V. Tarasyuk, Investigating equivalence relations in dtsPBC, Berichte aus dem Department für Informatik 5/08, Carl von Ossietzky Universität

Oldenburg, Germany, 2008. 57 pages, http://itar.iis.nsk.su/files/itar/pages/dtspbcit cov.pdf.
[72] I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus with immediate multiactions, Technical Report DIAB-10-03-1,

Department of Computer Systems, High School of Computer Science Engineering, University of Castilla-La Mancha, Albacete, Spain, 2010.
25 pages, http://itar.iis.nsk.su/files/itar/pages/dtsipbc.pdf.

[73] I.V. Tarasyuk, H. Macià, V. Valero, Discrete time stochastic Petri box calculus with immediate multiactions dtsiPBC, in: Proc. 6th Int.
Workshop on Practical Applications of Stochastic Modelling (PASM) 2012, London, UK, volume 296 of Electronic Notes in Theor. Comput.
Sci., Elsevier, 2013, pp. 229–252. http://itar.iis.nsk.su/files/itar/pages/dtsipbcentcs.pdf.

[74] R. Wimmer, S. Derisavi, H. Hermanns, Symbolic partition refinement with automatic balancing of time and space, Performance Evaluation
67 (2010) 816–836.

[75] R. Zijal, G. Ciardo, G. Hommel, Discrete deterministic and stochastic Petri nets, in: Proc. 9th ITG/GI Professional Meeting “Messung,
Modellierung und Bewertung von Rechen- und Kommunikationssystemen” (MMB) 1997, Freiberg, Germany, VDE-Verlag, Berlin, Germany,
1997, pp. 103–117. http://www.cs.ucr.edu/˜ciardo/pubs/1997MMB-DDSPN.pdf.

[76] A. Zimmermann, J. Freiheit, G. Hommel, Discrete time stochastic Petri nets for modeling and evaluation of real-time systems, in: Proc.
9th Int. Workshop on Parallel and Distributed Real Time Systems (WPDRTS) 2001, San Francisco, USA, pp. 282–286. http://pdv.cs.tu-
berlin.de/˜azi/texte/WPDRTS01.pdf.

Appendix A. Proofs

Appendix A.1. Proof of Proposition 6.2

Like it has been done for strong equivalence in Proposition 8.2.1 from [36], we shall prove the following fact about
step stochastic bisimulation. Let us have ∀ j ∈ J , R j : G↔ssG

′ for some index set J . Then the transitive closure of
the union of all relations R = (∪ j∈JR j)∗ is also an equivalence and R : G↔ssG

′.
Since ∀ j ∈ J , R j is an equivalence, by definition of R, we get that R is also an equivalence.
Let j ∈ J , then, by definition of R, (s1, s2) ∈ R j implies (s1, s2) ∈ R. Hence, ∀H jk ∈ (DR(G)∪DR(G′))/R j , ∃H ∈

(DR(G) ∪ DR(G′))/R, H jk ⊆ H . Moreover, ∃J ′, H = ∪k∈J ′H jk.
We denote R(n) = (∪ j∈JR j)n. Let (s1, s2) ∈ R, then, by definition of R, ∃n > 0, (s1, s2) ∈ R(n). We shall prove

that R : G↔ssG
′ by induction on n.

It is clear that ∀ j ∈ J , R j : G↔ssG
′ implies ∀ j ∈ J , ([G]≈, [G′]≈) ∈ R j and we have ([G]≈, [G′]≈) ∈ R by

definition of R.
It remains to prove that (s1, s2) ∈ R implies ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, PMA(s1,H) = PMA(s2,H).

• n = 1

In this case, (s1, s2) ∈ R implies ∃ j ∈ J , (s1, s2) ∈ R j. Since R j : G↔ssG
′, we get ∀H ∈ (DR(G) ∪

DR(G′))/R, ∀A ∈ INLf in,

PMA(s1,H) =
∑
k∈J ′

PMA(s1,H jk) =
∑
k∈J ′

PMA(s2,H jk) = PMA(s2,H).

• n→ n + 1

Suppose that ∀m ≤ n, (s1, s2) ∈ R(m) implies ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, PMA(s1,H) =
PMA(s2,H).

Then (s1, s2) ∈ R(n+1) implies ∃ j ∈ J , (s1, s2) ∈ R j◦R(n), i.e. ∃s3 ∈ (DR(G)∪DR(G′)), such that (s1, s3) ∈ R j

and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get PMA(s1,H) = PMA(s3,H). By the induction hypothesis, we get
PMA(s3,H) = PMA(s2,H). Thus, ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in,

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition, Rss(G,G′) is at least as large as the largest step stochastic bisimulation between G and G′. It fol-
lows from the proven above that Rss(G,G′) is an equivalence and Rss(G,G′) : G↔ssG

′, hence, it is the largest step
stochastic bisimulation between G and G′. �

73

Appendix A.2. Proof of Proposition 8.1
By Proposition 6.1, (DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G′))/R) ⊎ ((DRV (G) ∪ DRV (G′))/R). Hence, ∀H ∈

(DR(G)∪DR(G′))/R, all states fromH are tangible, whenH ∈ (DRT (G)∪DRT (G′))/R, or all of them are vanishing,
whenH ∈ (DRV (G) ∪ DRV (G′))/R.

By definition of the steady-state PMFs for SMCs, ∀s ∈ DRV (G), φ(s) = 0 and ∀s′ ∈ DRV (G′), φ′(s′) = 0. Thus,
∀H ∈ (DRV (G)∪DRV (G′))/R,

∑
s∈H∩DR(G) φ(s) =

∑
s∈H∩DRV (G) φ(s) = 0 =

∑
s′∈H∩DRV (G′) φ

′(s′) =
∑

s′∈H∩DR(G′) φ
′(s′).

By Proposition 5.2, ∀s ∈ DRT (G), φ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃) and ∀s′ ∈ DRT (G′), φ′(s′) = ψ′(s′)∑

s̃′∈DRT (G′) ψ′(s̃′) , where ψ and ψ′

are the steady-state PMFs for DTMC(G) and DTMC(G′), respectively. Thus, ∀H , H̃ ∈ (DRT (G) ∪ DRT (G′))/R,∑
s∈H∩DR(G) φ(s) =

∑
s∈H∩DRT (G) φ(s) =

∑
s∈H∩DRT (G)

(
ψ(s)∑

s̃∈DRT (G) ψ(s̃)

)
=

∑
s∈H∩DRT (G) ψ(s)∑

s̃∈DRT (G) ψ(s̃) =
∑

s∈H∩DRT (G) ψ(s)∑
H̃

∑
s̃∈H̃∩DRT (G) ψ(s̃) and∑

s′∈H∩DR(G′) φ
′(s′) =

∑
s′∈H∩DRT (G′) φ

′(s′) =
∑

s′∈H∩DRT (G′)

(
ψ′(s′)∑

s̃′∈DRT (G′) ψ′(s̃′)

)
=

∑
s′∈H∩DRT (G′) ψ

′(s′)∑
s̃′∈DRT (G′) ψ′(s̃′) =

∑
s′∈H∩DRT (G′) ψ

′(s′)∑
H̃

∑
s̃′∈H̃∩DRT (G′) ψ

′(s̃′) .

It remains to prove that ∀H ∈ (DRT (G) ∪ DRT (G′))/R,
∑

s∈H∩DRT (G) ψ(s) =
∑

s′∈H∩DRT (G′) ψ
′(s′). Since (DR(G) ∪

DR(G′))/R = ((DRT (G) ∪ DRT (G′))/R) ⊎ ((DRV (G) ∪ DRV (G′))/R), the previous equality is a consequence of the
following: ∀H ∈ (DR(G) ∪ DR(G′))/R,

∑
s∈H∩DR(G) ψ(s) =

∑
s′∈H∩DR(G′) ψ

′(s′). It is sufficient to prove the previous
statement for transient PMFs only, since ψ = limk→∞ ψ[k] and ψ′ = limk→∞ ψ

′[k]. We proceed by induction on k.

• k = 0

The only nonzero values of the initial PMFs of DTMC(G) and DTMC(G′) are ψ[0]([G]≈) and ψ[0]([G′]≈).
Let H0 be the equivalence class containing [G]≈ and [G′]≈. Then

∑
s∈H0∩DR(G) ψ[0](s) = ψ[0]([G]≈) = 1 =

ψ′[0]([G′]≈) =
∑

s′∈H0∩DR(G′) ψ
′[0](s′).

As for other equivalence classes, ∀H ∈ ((DR(G) ∪ DR(G′))/R) \ H0, we have
∑

s∈H∩DR(G) ψ[0](s) = 0 =∑
s′∈H∩DR(G′) ψ

′[0](s′).

• k → k + 1

LetH ∈ (DR(G)∪DR(G′))/R and s1, s2 ∈ H . We have ∀H̃ ∈ (DR(G)∪DR(G′))/R, ∀A ∈ INLf in, s1
A→P H̃ ⇔

s2
A→P H̃ . Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ , s1

Υ→s̃1}
PT (Υ, s1) =

∑
A∈INLf in

∑
{Υ|∃s̃1∈H̃ , s1

Υ→s̃1, L(Υ)=A}
PT (Υ, s1) =∑

A∈INLf in
PMA(s1, H̃) =

∑
A∈INLf in

PMA(s2, H̃) =
∑

A∈INLf in

∑
{Υ|∃s̃2∈H̃ , s2

Υ→s̃2, L(Υ)=A}
PT (Υ, s2) =∑

{Υ|∃s̃2∈H̃ , s2
Υ→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we have the previous equality for all s1, s2 ∈ H , we can denote

PM(H , H̃) = PM(s1, H̃) = PM(s2, H̃). Note that transitions from the states of DR(G) always lead to those
from the same set, hence, ∀s ∈ DR(G), PM(s, H̃) = PM(s, H̃ ∩ DR(G)). The same is true for DR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ[k](s) =
∑

s′∈H∩DR(G′) ψ
′[k](s′). Further,∑

s̃∈H̃∩DR(G) ψ[k + 1](s̃) =
∑

s̃∈H̃∩DR(G)
∑

s∈DR(G) ψ[k](s)PM(s, s̃) =
∑

s∈DR(G)
∑

s̃∈H̃∩DR(G) ψ[k](s)PM(s, s̃) =∑
s∈DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =

∑
H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H
∑

s∈H∩DR(G) ψ[k](s)
∑

s̃∈H̃∩DR(G)
∑
{Υ|s Υ→s̃}

PT (Υ, s) =
∑
H

∑
s∈H∩DR(G) ψ[k](s)

∑
{Υ|∃s̃∈H̃∩DR(G), s

Υ→s̃}
PT (Υ, s) =∑

H
∑

s∈H∩DR(G) ψ[k](s)PM(s, H̃) =
∑
H

∑
s∈H∩DR(G) ψ[k](s)PM(H , H̃) =∑

H PM(H , H̃)
∑

s∈H∩DR(G) ψ[k](s) =
∑
H PM(H , H̃)

∑
s′∈H∩DR(G′) ψ

′[k](s′) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)PM(H , H̃) =
∑
H

∑
s′∈H ′∩DR(G′) ψ

′[k](s′)PM(s′, H̃) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑
{Υ|∃s̃′∈H̃∩DR(G′), s′

Υ→s̃′}
PT (Υ, s′) =∑

H
∑

s′∈H∩DR(G′) ψ
′[k](s′)

∑
s̃′∈H̃∩DR(G′)

∑
{Υ|∃s̃′, s′

Υ→s̃′}
PT (Υ, s′) =∑

H
∑

s′∈H∩DR(G′) ψ
′[k](s′)

∑
s̃′∈H̃∩DR(G′) PM(s′, s̃′) =

∑
s′∈DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑
s′∈DR(G′)

∑
s̃′∈H̃∩DR(G′) ψ

′[k](s′)PM(s′, s̃′) =
∑

s̃′∈H̃∩DR(G′)
∑

s′∈DR(G′) ψ
′[k](s′)PM(s′, s̃′) =∑

s̃′∈H̃∩DR(G′) ψ
′[k + 1](s̃′). �

Appendix A.3. Proof of Theorem 8.1

LetH ∈ (DR(G) ∪ DR(G′))/R and s, s̄ ∈ H . We have ∀H̃ ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, s
A→P H̃ ⇔

s̄
A→P H̃ . The previous equality is valid for all s, s̄ ∈ H , hence, we can rewrite it as H A→P H̃ and denote

74

PMA(H , H̃) = PMA(s, H̃) = PMA(s̄, H̃). Note that transitions from the states of DR(G) always lead to those from
the same set, hence, ∀s ∈ DR(G), PMA(s, H̃) = PMA(s, H̃ ∩ DR(G)). The same is true for DR(G′).

Let Σ = A1 · · · An be a derived step trace of G and G′. Then ∃H0, . . . ,Hn ∈ (DR(G) ∪ DR(G′))/R, H0
A1→P1

H1
A2→P2 · · ·

An→Pn Hn. Now we intend to prove that the sum of probabilities of all the paths starting in every s0 ∈ H0
and going through the states fromH1, . . . ,Hn is equal to the product of P1, . . . ,Pn:

∑
{Υ1,...,Υn |s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

n∏
i=1

PT (Υi, si−1) =
n∏

i=1

PMAi (Hi−1,Hi).

We prove this equality by induction on the derived step trace length n.

• n = 1∑
{Υ1 |s0

Υ1→s1, L(Υ1)=A1, s1∈H1}
PT (Υ1, s0) = PMA1 (s0,H1) = PMA1 (H0,H1).

• n→ n + 1∑
{Υ1,...,Υn,Υn+1 |s0

Υ1→···Υn→sn
Υn+1→ sn+1, L(Υi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT (Υi, si−1) =∑

{Υn+1 |sn
Υn+1→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

∑
{Υ1,...,Υn |s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PT (Υn+1, sn) =∑

{Υ1,...,Υn |s0
Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

[∏n
i=1 PT (Υi, si−1)

∑
{Υn+1 |sn

Υn+1→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}
PT (Υn+1, sn)

]
=∑

{Υ1,...,Υn |s0
Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1 (sn,Hn+1) =∑

{Υ1,...,Υn |s0
Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1 (Hn,Hn+1) =

PMAn+1 (Hn,Hn+1)
∑
{Υ1,...,Υn |s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =

PMAn+1 (Hn,Hn+1)
∏n

i=1 PMAi (Hi−1,Hi) =
∏n+1

i=1 PMAi (Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have PT (A1 · · · An, s0) =
∑
{Υ1,...,Υn |s0

Υ1→···Υn→sn, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =∑

H1,...,Hn

∑
{Υ1,...,Υn |s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =

∑
H1,...,Hn

∏n
i=1 PMAi (Hi−1,Hi) =∑

H1,...,Hn

∑
{Υ1,...,Υn |s̄0

Υ1→···Υn→s̄n, L(Υi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) =∑

{Υ1,...,Υn |s̄0
Υ1→···Υn→s̄n, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) = PT (A1 · · · An, s̄0).

Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote PT (A1 · · · An,H0) = PT (A1 · · · An, s0) =
PT (A1 · · · An, s̄0).

By Proposition 8.1,
∑

s∈H∩DR(G) φ(s) =
∑

s′∈H∩DR(G′) φ
′(s′). Now we can complete the proof:∑

s∈H∩DR(G) φ(s)PT (Σ, s) =
∑

s∈H∩DR(G) φ(s)PT (Σ,H) = PT (Σ,H)
∑

s∈H∩DR(G) φ(s) =
PT (Σ,H)

∑
s′∈H∩DR(G′) φ

′(s′) =
∑

s′∈H∩DR(G′) φ
′(s′)PT (Σ,H) =

∑
s′∈H∩DR(G′) φ

′(s′)PT (Σ, s′). �

Appendix A.4. Proof of Proposition 8.2
Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, (DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G′))/R) ⊎ ((DRV (G) ∪ DRV (G′))/R). Hence,
∀H ∈ (DR(G) ∪ DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G) ∪ DRT (G′))/R, or all of them
are vanishing, whenH ∈ (DRV (G) ∪ DRV (G′))/R.

2. LetH ∈ (DR(G)∪DR(G′))/R and s1, s2 ∈ H . We have ∀H̃ ∈ (DR(G)∪DR(G′))/R, ∀A ∈ INLf in, s1
A→P H̃ ⇔

s2
A→P H̃ . Therefore, PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ , s1

Υ→s̃1}
PT (Υ, s1) =

∑
A∈INLf in

∑
{Υ|∃s̃1∈H̃ , s1

Υ→s̃1, L(Υ)=A}
PT (Υ, s1) =∑

A∈INLf in
PMA(s1, H̃) =

∑
A∈INLf in

PMA(s2, H̃) =
∑

A∈INLf in

∑
{Υ|∃s̃2∈H̃ , s2

Υ→s̃2, L(Υ)=A}
PT (Υ, s2) =∑

{Υ|∃s̃2∈H̃ , s2
Υ→s̃2}

PT (Υ, s2) = PM(s2, H̃). Since we have the previous equality for all s1, s2 ∈ H , we can denote

PM(H , H̃) = PM(s1, H̃) = PM(s2, H̃). The transitions from the states of DR(G) always lead to those from the

75

same set, hence, ∀s ∈ DR(G), PM(s, H̃) = PM(s, H̃ ∩ DR(G)). The same is true for DR(G′). Hence, for all
s ∈ H∩DR(G), we obtain PM(H , H̃) = PM(s, H̃) = PM(s, H̃ ∩DR(G)) = PM(H∩DR(G), H̃ ∩DR(G)). The
same is true for DR(G′). Finally, PM(H∩DR(G), H̃ ∩DR(G)) = PM(H , H̃) = PM(H∩DR(G′), H̃ ∩DR(G′)).

Let us now prove the proposition statement for the sojourn time averages.

• LetH ∈ (DRV (G) ∪ DRV (G′))/R.

Then we haveH ∩ DR(G) = H ∩ DRV (G) ∈ DRV (G)/R andH ∩ DR(G′) = H ∩ DRV (G′) ∈ DRV (G′)/R.
By definition of the average sojourn time in an equivalence class of states, we get SJR∩(DR(G))2 (H ∩ DR(G)) =
SJR∩(DR(G))2 (H ∩ DRV (G)) = 0 = SJR∩(DR(G′))2 (H ∩ DRV (G′)) = SJR∩(DR(G′))2 (H ∩ DR(G′)).

• LetH ∈ (DRT (G) ∪ DRT (G′))/R.

Then we haveH ∩ DR(G) = H ∩ DRT (G) ∈ DRT (G)/R andH ∩ DR(G′) = H ∩ DRT (G′) ∈ DRT (G′)/R.
By definition of the average sojourn time in an equivalence class of states, we get SJR∩(DR(G))2 (H ∩ DR(G)) =
SJR∩(DR(G))2 (H ∩ DRT (G)) = 1

1−PM(H∩DRT (G),H∩DRT (G)) =
1

1−PM(H∩DR(G),H∩DR(G)) =
1

1−PM(H ,H) =
1

1−PM(H∩DR(G′),H∩DR(G′)) =
1

1−PM(H∩DRT (G′),H∩DRT (G′)) = SJR∩(DR(G′))2 (H∩DRT (G′)) = SJR∩(DR(G′))2 (H∩DR(G′)).

Thus, ∀H ∈ (DR(G) ∪ DR(G′))/R we have SJR∩(DR(G))2 (H ∩ DR(G)) = SJR∩(DR(G′))2 (H ∩ DR(G′)).
The proposition statement for the sojourn time variances is proved similarly to that for the averages. �

76

