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Abstract 
 

As far as a surveillance system is always integrated 
in an environment it has to adapt to possible changes 
that can occur in it. For this reason, it is not sufficient 
to install a series of sensors along the facilities to be 
guarded, as any modifications enormously increment 
the amount of data to be interpreted. Also, eventual 
failures or sabotages to the sensors produce the 
collapse of the system, which is not convenient at all in 
a potentially dangerous environment. Thus, the natural 
evolution of these systems is the integration in a 
compact system of intelligent platforms, which are able 
or not of moving in the environment, which possess 
several and complementary sensor types, and which 
interpret the information of each sensor coherently to 
offer the platform itself a fair service of surveillance. 
Quality of service is notably increased when there are 
a sufficient number of platforms forming a compact 
multi-agent system (MAS). Moreover, this MAS can 
itself be a compact subsystem of a superior hierarchy 
MAS composed of several subsystems. This is what we 
denominate recursive or holonic multi-agent systems.  
 
1. Introduction 
 

Thanks to the incorporation of distributed artificial 
intelligence [1], development of new technologies in 
detection (sensors and captors), robotics (actuators) 
and data communication enables surveillance systems 
to detect a wider frequency range, to cover a wider 
sensor area and to decide with a greater independence 
on the character of a particular situation. 

No doubt that the main decision in any surveillance 
system is the positioning of the sensors in critical 
points that permit the optimization of the capacities of 
the sensors. A position can be static, when the sensor 
or platform is always in the same place [2], although it 
may consider different orientations; or dynamic [3], 
when a sensor is on a platform moving in the zone. 

When a platform carries different types of sensors 
(multi-sensorial platforms) [4] that complement each 
other to capture a portion of electromagnetic spectrum 
as great as possible, the overall information gotten is of 
a much better quality. 

Anyway, communication among the system’s 
elements is essential [5], as alarms have to be 
propagated along the subsystems and help or 
collaboration with other platforms is absolutely 
necessary to perfectly determine the situation and take 
the correct actions. If the multi-sensor platform is 
dynamic, the communication link should be wireless, 
whereas if the position is static, the link can either be 
wireless or wired. Nonetheless, wireless 
communication is preferred because the distance to 
other nodes may be very long [6]. 

Traditionally, control in an automatic surveillance 
system has been centralized, with a topology or 
configuration where sensors are like tentacles of a 
central node. The captured data is sent to the central 
node where it is processed and decisions on how to act 
are decided. This architecture is conceptually simple, 
but offers many problems related to scalability, 
bottlenecks and robustness, which are inherent to 
hierarchic rigidity of this architecture to not foreseen 
variations. For instance, this is the case when failures 
occur in the communication links, when sensors do not 
cover all areas in the environment, or when a burst of 
alarms collapses the control system and by domino 
effect the whole system. 

Thus, it is necessary to consider new less 
centralized architectures, but not only in relation to the 
concept of distribution [7]. There are two main aspects 
in a distributed architecture that may help in complex 
surveillance systems. In first place, distributed systems 
allow the system nodes to possess a certain degree of 
autonomy to take their own decisions locally and to act 
independently of the central node. This way, problems 
derived from the temporal and spatial isolation of the 
nodes may be solved. Also, they can auto-adapt to 



changes or failures that are not foreseen, and there is 
less communication necessary in the system, helping to 
remove possible bottlenecks and enhancing the 
system‘s efficiency. Secondly, this kind of architecture 
enhances the performance of the system through the 
coordination of the distributed system’s components. 
Consider, for example, the evaluation on the relevance 
of the events captured by the sensors, or the 
collaboration among the nodes for the resolution of a 
problem [8]. 
 
2. Holons vs. multi-agent systems 
 

However, at the limit of a completely distributed 
architecture, a system with a predictable control, 
completely deterministic and with high performance - 
especially in a heterogenic and complex environment -, 
is not provided. A surveillance system needs reliable 
solutions in real-time and lacks in resources are not 
permitted. Thus, it is necessary to model the distributed 
system architecture in a suitable way. A very 
interesting solution is based in complex adaptable 
systems theory [9]. 

Arthur Koestler proposed the term “holon” [10] as a 
combination of the Greek word holos (all) with the 
suffix on, meaning particle or part of something. What 
moved Koestler to propose the concept of holon were 
two main observations: (1) First, it is easier to build a 
complex system when it is composed of elements or 
intermediate subsystems that are stable. Also, complex 
systems, like biological organisms or societies, are 
always structured as a hierarchy of stable subsystems 
at multiple levels, which again are recursively divided 
into subsystems of an inferior order. Structurally it is 
not a simple aggregation of elemental parts, and 
functionally it is not a global behavior like 
superposition of behaviors of elemental units; we are in 
front of a synergy. (2) Second, when analyzing 
hierarchies, systems and intermediate subsystems that 
are stable - in alive organisms and social organizations 
-, it is found that, although it is easy to identify “sub-
all” and parts of the all, the “all” and the “parts” do not 
exist in an absolute sense, because they have a double 
nature of “sub-all/part”.  

Holonic systems are systems that are modeled in 
terms of components (holons) that have their own 
unique identity but are part of a larger whole. This 
larger whole is known as a holarchy [11]. Holons are 
auto-content respect to their subordinate parts and 
simultaneously dependent parts when they are 
observed from higher hierarchic levels. Thus, the word 
holarchy denotes hierarchic organizations of holons; 
we are in front of a recursive structure. Holarchy can 
both guarantee performance stability, predictability, 

and global optimization of hierarchical control, and 
provide flexibility and adaptability of heterarchical 
control [12]. 

Therefore, according to this reasoning, a complex 
system can only be defined as such if and only if it is 
composed of other stable subsystems, where each one 
is able to adapt to events and to cooperate with other 
subsystems. This could directly be compared with a 
system of distributed hierarchy, with cooperative 
nodes. However, the key characteristic to introduce in 
the distributed hierarchy is the fact that subsystems 
cooperate in form of dynamic hierarchies. Temporary, 
to reach a global goal, they reorganize each certain 
time or when the global goal to be accomplished 
changes. This description of systems perfectly fits in 
multi-agent systems (MAS) theoretical and practical 
architectures. Indeed, a holon might be an agent or an 
autonomous multi-agent subsystem, if introducing the 
concept of “recursive agent”. And, the holarchy might 
be considered as the organization in a given instant of 
the hierarchy of agents, where all agents cooperate to 
reach a global goal and adapt in a dynamic way to the 
changes. Therefore, given the previous characteristics 
of the holarchy and the multi-agent architecture it is 
reasonable to consider the design of a complex 
surveillance system composed of multi-sensorial 
platforms as the design of a holonic multi-agent 
system, which reports considerable advantages at the 
implementation time, in terms of: 

 
• Bandwidth: As holons inhabit the capacity of 

processing locally, they avoid the transmission of a 
great amount of redundant data to other holons, 
saving this way a great bandwidth in the 
communication. In our case, the saving in 
bandwidth would mainly belong to the data flow 
between sensors that catch the data and their later 
processing. There must be agents close to the 
sensors to receive and to handle this enormous 
amount of data and later be able to transmit the 
results through the interconnection network in a 
more efficient way. 

 
• Productivity or throughput: The total processing 

capacity of the system is increased when holons 
participate in a parallel way, as it is the case in a 
system with distributed architectures. Here there 
should be different agent types based on the 
different parallel tasks to perform. For instance, we 
need agents for the management of sensor data and 
for the movements of the platforms. 

• Speed: Distributed processing in holons not only 
increases the total throughput of the system as more 
charge is processed at the same time, but also 



allows to process in less time the same load, since 
there is an equitable distribution of load among the 
system’s holons. This way, a surveillance service 
close to real-time is achievable. 

 
• Robustness: As the multi-agent system based on 

the holonic architecture is composed of stable 
subsystems in a recursive way, the tolerance to 
failures increases. Indeed, in addition to being able 
to have holons dedicated to the recovery and 
reconfiguration of the system, it is possible to start 
off from an initial stable situation at a given holonic 
level and to climb the level of the hierarchy in 
order to reach a stable state in the complete and 
global system. All agents execute valid solutions 
locally depending on the type of failure, and once 
an agent is recovered, it will coordinate with other 
agents; this way, the whole system is recovered. 

• Autonomy: By definition holons are independent. 
In our system the multi-sensorial platforms must 
cover a potentially extensive area, and have to 
transmit the information of their surveillance to the 
other holons.  It is physically necessary that multi-
sensorial platforms are as independent of the rest of 
the system as possible, such that the unnecessary 
traffic that can occupy the transmission channels 
increasing the congestion probabilities of traffic 
and collapsing the system is kept to a minimum. 

 
• Scalability: The holonic architecture is recursive; 

therefore subsystems can be integrated to build 
greater systems, which again are integrated in 
greater systems, and so on. A complex surveillance 
system may continuously integrate more and more 
multi-sensorial platforms. The system divides into 
subsystems that cluster platforms, the set of these 
clusters forms the system, and this way the system 
can grow up in an easier and trustworthy way 
because platforms are autonomous. Most of the 
processing load is local and the computational cost 
of synchronization and communication among 
agents can be assumed. 
 
 

 
 

Figure 1. Agents and functionalities modeled in Prometheus 



Next we introduce a preliminary design of a holonic 
MAS, based on the PROMETHEUS methodology 
[13], to make the surveillance system function with a 
series of multi-sensorial platforms.  
 
3. An architecture for holonic multi-agent 
surveillance systems 
 

The PROMETHEUS methodology basically 
consists of three consecutive and iterative phases [6]: 

 
1. The system specification, which is concentrated in 

identifying the basic objectives, functionalities, 
scenarios and interfaces of the system, as well as in 
defining inputs (percepts) and outputs (actions). 

2. The architectural design determines the types of 
agents of the system and their interactions. 

3. The detailed design is focused in the contents of 
each agent and how the agents carry out the tasks. 
 
In this paper we only include some aspects of the 

two first phases: objectives, functionalities and types of 
agents and their interactions. In addition, it is necessary 
to consider that the proposed MAS is indifferently 
made up of agents and multi-agent subsystems. 

First, the principal goals that must be fulfilled by 
the basic system requirements are: 

 
• The user is aware of wherever any platform is, 

what its operational state is, and any other 
information about the environment (e.g. obstacles, 
walls, stairs, holes, and so on). 

• The user may select any platform and sensor in 
order to directly receive data, to move the platform 
or sensor, to assign new positions to the platforms 
(where they must move to), or to order a diagnosis 
of the whole platform and its sensors. 

• The platforms are independent; they can move to 
other positions, watching along the way, and 
moving theirs sensors autonomously. 

• The system must be able to provide an 
interpretation of the situation that is observed for 
each sensor, to decide if there is a threat or not. 

• The system is capable of learning new parameters 
or patterns, so the sensors can make better 
decisions, lower the false alarm and non detection 
ratios.  

 
In Prometheus functionalities are chunks of 

behavior that are formed by grouping related goals, 
jointly with related data, percepts and actions. Figure 1 
shows a diagram including agents and functionalities. 
Thus, we obtain: 

 

• Maps_Management: For creating and updating the 
maps stored in the maps database. The maps are 
used by platforms to move around the real 
environment. 

 
• System_Init: To detect the communication network 

and, afterwards, all the possible platforms that are 
required to make a diagnosis, so the system updates 
the platforms database with information about the 
position and the state of all the platforms and their 
sensors. 

 
• Display_User: The monitor displays all information 

about the map, position and state of all platforms 
and data from the selected sensors. 

 
• Platforms_Sensors_Selection: The user selects 

platforms and sensors from the platform databases 
to apply further actions. 

 
• Platform_Diagnosis: The platform checks its state 

and all its sensors every timeout or after the user 
launches the command; this information is 
communicated to the whole system. In order to 
increase the device-independent diagnosis, there is 
a diagnosis agent in the platform that controls the 
specific diagnosis agent for each sensor. 

 
• Destinations_Asignation: The user selects 

platforms and assigns destinations to them directly 
or it is left to the system criteria (‘shortest way’); 
the platforms handle the routes autonomously. 

 
• Direct_Data_from_Sensor: The user selects 

platforms and within these some sensors that send 
their data streams directly to be displayed on the 
user monitor. The user identifies the determined 
sensors that are in platforms, each sensor sends its 
data through the communication device of the 
platforms. Thus, there must be an agent in the 
platform that arbitrates the use of the 
communication if there are several sensors in the 
same platform sending data to the user’s monitor. 

 
• Platform_Drive: Moves the platform independently 

or controlled by the user. At each timeout it 
communicates and updates the position of the 
platform on the map, avoiding the obstacles, walls 
and forbidden zones. Here, the configuration may 
vary enormously depending on the platform type 
and its propulsion type. It may be useful to assign 
an agent to each motor, axis or leg, and a superior 
agent to control them. 

 



• Sensor_Orientation: Focuses the sensor 
independently or by means of the user control, 
communicating with the next functionality if 
something strange is observed. 

 
• Interpretation_Data_of_Sensor: This functionality 

encloses all sensor processes of data capture and 
preproccessing, and latter recognition and 
interpretation of the recognized patterns (e.g. 
alarms). Due to the complexity of this task, this 
functionality completes a multi-agent system by 
itself. 

 
• Alarm_Management: When a platform generates an 

alarm, the system reacts by sending a command to 
some platforms to confirm and to manage the 
potential threat by generating some plan of 
contingence. 

 
After studying the functionalities for the 

surveillance system, holarchy is gotten by modeling 
three levels of agents. Firstly, we have defined the 
following types of agents for the overall system, 
including man-machine interface: 

 
• Display_Agent: Manages maps, platforms, their 

states, and so on. 
• Init_Agent: Contacts with the communication 

elements (stations, antennas), and afterwards with 
the platforms, asks for diagnosis, and creates the 
platform databases with their answers. 

• Maps_Manager_Agent: Manages the maps 
database and which zones of the map are provided 
to each platform. When a platform exits its zone, 
the agent sends the zone that is necessary to the 
platform. 

• Selector_Agent: Accesses the platform databases 
and selects platforms and sensors. 

• Streams_Agent: This is an intermediate agent to 
Display_Agent to show the data of the sensors. 

• Alarm_Manager_Agent: Coordinates when an 
alarm happens, and when necessary, it also 
elaborates contingency plans. 

• Pattern_Learning_Agent: The user may specify 
how to update the sensor patterns databases with 
new details and parameters in order to interpret the 
situations. 

 
Also, the platforms inhabit the following types of 

agents (second level in the hierarchy): 
 

• P_Driver_Agent: Moves the platform. 

• P_Remote_Control_Agent: When controlled by the 
user, it uses the P_Driver_Agent to move the 
platform.  

• P_Diagnosis_Agent: Performs the diagnosis of the 
platform by asking for the diagnosis to all its 
sensors (S_Diagnosis_Agent). 

• P_Communication_Agent: This agent is the most 
required one, as it controls all the communication 
of the platform with the system 
 
Lastly, the sensors, at the last level of the holarchy, 

incorporate the following agents: 
 

• S_Orientation_Agent: Controls the movement of 
the sensor. 

• S_Remote_Control_Agent: The user controls the 
movement of the sensor through the 
S_Orientation_Agent. 

• S_Diagnosis_Agent: Enables a diagnosis interface 
to update the types of sensors in the platform. 

• S_Interpretation_SubSystem: 
 S_Capture_Agent 
 S_Preprocessing_Agent 
 S_Pattern_Matching_Agent 
 S_Pattern_Learning_Agent 

• S_Stream_Report_Agent: In coordination with any 
other S_Stream_Report_Agent and the 
P_Communitacion_Agent, it receives the data of 
the S_Capture_Agent or S_Preprocessing_Agent to 
transform them into a stream sent to the monitor.  

 
4. Conclusions 
 

The interest to use agents in intelligent surveillance 
systems comes from their huge advantage when 
implementing very flexible and scalable complex 
systems. The paradigm of the holonic multi-agent 
systems introduced contributes to much more power at 
the time of designing systems that have to be integrated 
in most of the cases in a simple way into other 
subsystems that are currently working or that should 
work with a considerable degree of independence. This 
is precisely the case in the subsystem dedicated to the 
recognition and interpretation of the data captured by 
the sensors. Also, for the surveillance system it is 
much easier to integrate it and to belong to other 
greater systems, forming a constellation of stable 
systems. 

As described in the paper, our approach benefits 
from an enhanced bandwidth, and better throughput, 
speed, robustness, autonomy and scalability. All this is 
of a great interest in a complex multi-sensorial 
surveillance system.   
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