
Holonic Multi-agent Systems to Integrate Independent Multi-sensor Platforms
in Complex Surveillance

J.J. Valencia-Jiménez & Antonio Fernández-Caballero
Departamento de Sistemas Informáticos & Instituto de Investigación en Informática de Albacete,

Universidad de Castilla-La Mancha, 02071-Albacete, Spain
caballer@info-ab.uclm.es

Abstract

As far as a surveillance system is always integrated
in an environment it has to adapt to possible changes
that can occur in it. For this reason, it is not sufficient
to install a series of sensors along the facilities to be
guarded, as any modifications enormously increment
the amount of data to be interpreted. Also, eventual
failures or sabotages to the sensors produce the
collapse of the system, which is not convenient at all in
a potentially dangerous environment. Thus, the natural
evolution of these systems is the integration in a
compact system of intelligent platforms, which are able
or not of moving in the environment, which possess
several and complementary sensor types, and which
interpret the information of each sensor coherently to
offer the platform itself a fair service of surveillance.
Quality of service is notably increased when there are
a sufficient number of platforms forming a compact
multi-agent system (MAS). Moreover, this MAS can
itself be a compact subsystem of a superior hierarchy
MAS composed of several subsystems. This is what we
denominate recursive or holonic multi-agent systems.

1. Introduction

Thanks to the incorporation of distributed artificial
intelligence [1], development of new technologies in
detection (sensors and captors), robotics (actuators)
and data communication enables surveillance systems
to detect a wider frequency range, to cover a wider
sensor area and to decide with a greater independence
on the character of a particular situation.

No doubt that the main decision in any surveillance
system is the positioning of the sensors in critical
points that permit the optimization of the capacities of
the sensors. A position can be static, when the sensor
or platform is always in the same place [2], although it
may consider different orientations; or dynamic [3],
when a sensor is on a platform moving in the zone.

When a platform carries different types of sensors
(multi-sensorial platforms) [4] that complement each
other to capture a portion of electromagnetic spectrum
as great as possible, the overall information gotten is of
a much better quality.

Anyway, communication among the system’s
elements is essential [5], as alarms have to be
propagated along the subsystems and help or
collaboration with other platforms is absolutely
necessary to perfectly determine the situation and take
the correct actions. If the multi-sensor platform is
dynamic, the communication link should be wireless,
whereas if the position is static, the link can either be
wireless or wired. Nonetheless, wireless
communication is preferred because the distance to
other nodes may be very long [6].

Traditionally, control in an automatic surveillance
system has been centralized, with a topology or
configuration where sensors are like tentacles of a
central node. The captured data is sent to the central
node where it is processed and decisions on how to act
are decided. This architecture is conceptually simple,
but offers many problems related to scalability,
bottlenecks and robustness, which are inherent to
hierarchic rigidity of this architecture to not foreseen
variations. For instance, this is the case when failures
occur in the communication links, when sensors do not
cover all areas in the environment, or when a burst of
alarms collapses the control system and by domino
effect the whole system.

Thus, it is necessary to consider new less
centralized architectures, but not only in relation to the
concept of distribution [7]. There are two main aspects
in a distributed architecture that may help in complex
surveillance systems. In first place, distributed systems
allow the system nodes to possess a certain degree of
autonomy to take their own decisions locally and to act
independently of the central node. This way, problems
derived from the temporal and spatial isolation of the
nodes may be solved. Also, they can auto-adapt to

changes or failures that are not foreseen, and there is
less communication necessary in the system, helping to
remove possible bottlenecks and enhancing the
system‘s efficiency. Secondly, this kind of architecture
enhances the performance of the system through the
coordination of the distributed system’s components.
Consider, for example, the evaluation on the relevance
of the events captured by the sensors, or the
collaboration among the nodes for the resolution of a
problem [8].

2. Holons vs. multi-agent systems

However, at the limit of a completely distributed
architecture, a system with a predictable control,
completely deterministic and with high performance -
especially in a heterogenic and complex environment -,
is not provided. A surveillance system needs reliable
solutions in real-time and lacks in resources are not
permitted. Thus, it is necessary to model the distributed
system architecture in a suitable way. A very
interesting solution is based in complex adaptable
systems theory [9].

Arthur Koestler proposed the term “holon” [10] as a
combination of the Greek word holos (all) with the
suffix on, meaning particle or part of something. What
moved Koestler to propose the concept of holon were
two main observations: (1) First, it is easier to build a
complex system when it is composed of elements or
intermediate subsystems that are stable. Also, complex
systems, like biological organisms or societies, are
always structured as a hierarchy of stable subsystems
at multiple levels, which again are recursively divided
into subsystems of an inferior order. Structurally it is
not a simple aggregation of elemental parts, and
functionally it is not a global behavior like
superposition of behaviors of elemental units; we are in
front of a synergy. (2) Second, when analyzing
hierarchies, systems and intermediate subsystems that
are stable - in alive organisms and social organizations
-, it is found that, although it is easy to identify “sub-
all” and parts of the all, the “all” and the “parts” do not
exist in an absolute sense, because they have a double
nature of “sub-all/part”.

Holonic systems are systems that are modeled in
terms of components (holons) that have their own
unique identity but are part of a larger whole. This
larger whole is known as a holarchy [11]. Holons are
auto-content respect to their subordinate parts and
simultaneously dependent parts when they are
observed from higher hierarchic levels. Thus, the word
holarchy denotes hierarchic organizations of holons;
we are in front of a recursive structure. Holarchy can
both guarantee performance stability, predictability,

and global optimization of hierarchical control, and
provide flexibility and adaptability of heterarchical
control [12].

Therefore, according to this reasoning, a complex
system can only be defined as such if and only if it is
composed of other stable subsystems, where each one
is able to adapt to events and to cooperate with other
subsystems. This could directly be compared with a
system of distributed hierarchy, with cooperative
nodes. However, the key characteristic to introduce in
the distributed hierarchy is the fact that subsystems
cooperate in form of dynamic hierarchies. Temporary,
to reach a global goal, they reorganize each certain
time or when the global goal to be accomplished
changes. This description of systems perfectly fits in
multi-agent systems (MAS) theoretical and practical
architectures. Indeed, a holon might be an agent or an
autonomous multi-agent subsystem, if introducing the
concept of “recursive agent”. And, the holarchy might
be considered as the organization in a given instant of
the hierarchy of agents, where all agents cooperate to
reach a global goal and adapt in a dynamic way to the
changes. Therefore, given the previous characteristics
of the holarchy and the multi-agent architecture it is
reasonable to consider the design of a complex
surveillance system composed of multi-sensorial
platforms as the design of a holonic multi-agent
system, which reports considerable advantages at the
implementation time, in terms of:

• Bandwidth: As holons inhabit the capacity of

processing locally, they avoid the transmission of a
great amount of redundant data to other holons,
saving this way a great bandwidth in the
communication. In our case, the saving in
bandwidth would mainly belong to the data flow
between sensors that catch the data and their later
processing. There must be agents close to the
sensors to receive and to handle this enormous
amount of data and later be able to transmit the
results through the interconnection network in a
more efficient way.

• Productivity or throughput: The total processing

capacity of the system is increased when holons
participate in a parallel way, as it is the case in a
system with distributed architectures. Here there
should be different agent types based on the
different parallel tasks to perform. For instance, we
need agents for the management of sensor data and
for the movements of the platforms.

• Speed: Distributed processing in holons not only
increases the total throughput of the system as more
charge is processed at the same time, but also

allows to process in less time the same load, since
there is an equitable distribution of load among the
system’s holons. This way, a surveillance service
close to real-time is achievable.

• Robustness: As the multi-agent system based on

the holonic architecture is composed of stable
subsystems in a recursive way, the tolerance to
failures increases. Indeed, in addition to being able
to have holons dedicated to the recovery and
reconfiguration of the system, it is possible to start
off from an initial stable situation at a given holonic
level and to climb the level of the hierarchy in
order to reach a stable state in the complete and
global system. All agents execute valid solutions
locally depending on the type of failure, and once
an agent is recovered, it will coordinate with other
agents; this way, the whole system is recovered.

• Autonomy: By definition holons are independent.
In our system the multi-sensorial platforms must
cover a potentially extensive area, and have to
transmit the information of their surveillance to the
other holons. It is physically necessary that multi-
sensorial platforms are as independent of the rest of
the system as possible, such that the unnecessary
traffic that can occupy the transmission channels
increasing the congestion probabilities of traffic
and collapsing the system is kept to a minimum.

• Scalability: The holonic architecture is recursive;

therefore subsystems can be integrated to build
greater systems, which again are integrated in
greater systems, and so on. A complex surveillance
system may continuously integrate more and more
multi-sensorial platforms. The system divides into
subsystems that cluster platforms, the set of these
clusters forms the system, and this way the system
can grow up in an easier and trustworthy way
because platforms are autonomous. Most of the
processing load is local and the computational cost
of synchronization and communication among
agents can be assumed.

Figure 1. Agents and functionalities modeled in Prometheus

Next we introduce a preliminary design of a holonic
MAS, based on the PROMETHEUS methodology
[13], to make the surveillance system function with a
series of multi-sensorial platforms.

3. An architecture for holonic multi-agent
surveillance systems

The PROMETHEUS methodology basically
consists of three consecutive and iterative phases [6]:

1. The system specification, which is concentrated in

identifying the basic objectives, functionalities,
scenarios and interfaces of the system, as well as in
defining inputs (percepts) and outputs (actions).

2. The architectural design determines the types of
agents of the system and their interactions.

3. The detailed design is focused in the contents of
each agent and how the agents carry out the tasks.

In this paper we only include some aspects of the

two first phases: objectives, functionalities and types of
agents and their interactions. In addition, it is necessary
to consider that the proposed MAS is indifferently
made up of agents and multi-agent subsystems.

First, the principal goals that must be fulfilled by
the basic system requirements are:

• The user is aware of wherever any platform is,

what its operational state is, and any other
information about the environment (e.g. obstacles,
walls, stairs, holes, and so on).

• The user may select any platform and sensor in
order to directly receive data, to move the platform
or sensor, to assign new positions to the platforms
(where they must move to), or to order a diagnosis
of the whole platform and its sensors.

• The platforms are independent; they can move to
other positions, watching along the way, and
moving theirs sensors autonomously.

• The system must be able to provide an
interpretation of the situation that is observed for
each sensor, to decide if there is a threat or not.

• The system is capable of learning new parameters
or patterns, so the sensors can make better
decisions, lower the false alarm and non detection
ratios.

In Prometheus functionalities are chunks of

behavior that are formed by grouping related goals,
jointly with related data, percepts and actions. Figure 1
shows a diagram including agents and functionalities.
Thus, we obtain:

• Maps_Management: For creating and updating the
maps stored in the maps database. The maps are
used by platforms to move around the real
environment.

• System_Init: To detect the communication network

and, afterwards, all the possible platforms that are
required to make a diagnosis, so the system updates
the platforms database with information about the
position and the state of all the platforms and their
sensors.

• Display_User: The monitor displays all information

about the map, position and state of all platforms
and data from the selected sensors.

• Platforms_Sensors_Selection: The user selects

platforms and sensors from the platform databases
to apply further actions.

• Platform_Diagnosis: The platform checks its state

and all its sensors every timeout or after the user
launches the command; this information is
communicated to the whole system. In order to
increase the device-independent diagnosis, there is
a diagnosis agent in the platform that controls the
specific diagnosis agent for each sensor.

• Destinations_Asignation: The user selects

platforms and assigns destinations to them directly
or it is left to the system criteria (‘shortest way’);
the platforms handle the routes autonomously.

• Direct_Data_from_Sensor: The user selects

platforms and within these some sensors that send
their data streams directly to be displayed on the
user monitor. The user identifies the determined
sensors that are in platforms, each sensor sends its
data through the communication device of the
platforms. Thus, there must be an agent in the
platform that arbitrates the use of the
communication if there are several sensors in the
same platform sending data to the user’s monitor.

• Platform_Drive: Moves the platform independently

or controlled by the user. At each timeout it
communicates and updates the position of the
platform on the map, avoiding the obstacles, walls
and forbidden zones. Here, the configuration may
vary enormously depending on the platform type
and its propulsion type. It may be useful to assign
an agent to each motor, axis or leg, and a superior
agent to control them.

• Sensor_Orientation: Focuses the sensor
independently or by means of the user control,
communicating with the next functionality if
something strange is observed.

• Interpretation_Data_of_Sensor: This functionality

encloses all sensor processes of data capture and
preproccessing, and latter recognition and
interpretation of the recognized patterns (e.g.
alarms). Due to the complexity of this task, this
functionality completes a multi-agent system by
itself.

• Alarm_Management: When a platform generates an

alarm, the system reacts by sending a command to
some platforms to confirm and to manage the
potential threat by generating some plan of
contingence.

After studying the functionalities for the

surveillance system, holarchy is gotten by modeling
three levels of agents. Firstly, we have defined the
following types of agents for the overall system,
including man-machine interface:

• Display_Agent: Manages maps, platforms, their

states, and so on.
• Init_Agent: Contacts with the communication

elements (stations, antennas), and afterwards with
the platforms, asks for diagnosis, and creates the
platform databases with their answers.

• Maps_Manager_Agent: Manages the maps
database and which zones of the map are provided
to each platform. When a platform exits its zone,
the agent sends the zone that is necessary to the
platform.

• Selector_Agent: Accesses the platform databases
and selects platforms and sensors.

• Streams_Agent: This is an intermediate agent to
Display_Agent to show the data of the sensors.

• Alarm_Manager_Agent: Coordinates when an
alarm happens, and when necessary, it also
elaborates contingency plans.

• Pattern_Learning_Agent: The user may specify
how to update the sensor patterns databases with
new details and parameters in order to interpret the
situations.

Also, the platforms inhabit the following types of

agents (second level in the hierarchy):

• P_Driver_Agent: Moves the platform.

• P_Remote_Control_Agent: When controlled by the
user, it uses the P_Driver_Agent to move the
platform.

• P_Diagnosis_Agent: Performs the diagnosis of the
platform by asking for the diagnosis to all its
sensors (S_Diagnosis_Agent).

• P_Communication_Agent: This agent is the most
required one, as it controls all the communication
of the platform with the system

Lastly, the sensors, at the last level of the holarchy,

incorporate the following agents:

• S_Orientation_Agent: Controls the movement of
the sensor.

• S_Remote_Control_Agent: The user controls the
movement of the sensor through the
S_Orientation_Agent.

• S_Diagnosis_Agent: Enables a diagnosis interface
to update the types of sensors in the platform.

• S_Interpretation_SubSystem:
 S_Capture_Agent
 S_Preprocessing_Agent
 S_Pattern_Matching_Agent
 S_Pattern_Learning_Agent

• S_Stream_Report_Agent: In coordination with any
other S_Stream_Report_Agent and the
P_Communitacion_Agent, it receives the data of
the S_Capture_Agent or S_Preprocessing_Agent to
transform them into a stream sent to the monitor.

4. Conclusions

The interest to use agents in intelligent surveillance
systems comes from their huge advantage when
implementing very flexible and scalable complex
systems. The paradigm of the holonic multi-agent
systems introduced contributes to much more power at
the time of designing systems that have to be integrated
in most of the cases in a simple way into other
subsystems that are currently working or that should
work with a considerable degree of independence. This
is precisely the case in the subsystem dedicated to the
recognition and interpretation of the data captured by
the sensors. Also, for the surveillance system it is
much easier to integrate it and to belong to other
greater systems, forming a constellation of stable
systems.

As described in the paper, our approach benefits
from an enhanced bandwidth, and better throughput,
speed, robustness, autonomy and scalability. All this is
of a great interest in a complex multi-sensorial
surveillance system.

5. Acknowledgements

This work is supported in part by the Spanish
CICYT TIN2004-07661-C02-02 grant and the Junta de
Comunidades de Castilla-La Mancha PBI06-0099
grant.

6. References

[1] P. Remagnino, A.I. Shihab, and G.A. Jones, “Distributed
Intelligence for Multi-camera Visual Surveillance”, Pattern
Recognition, Volume 37, Issue 4, 2004, pp. 675-689.

[2] X. Yuan, Z. Sun, Y. Varol, and G. Bebis, “A Distributed
Visual Surveillance System”, IEEE Conference on Advanced
Video and Signal Based Surveillance (AVSS'03), 2003, p.
199.

[3] M.T. López, A. Fernández-Caballero, M.A. Fernández, J.
Mira, and A.E. Delgado, “Visual Surveillance by Dynamic
Visual Attention Method”, Pattern Recognition, In press,
2006.

[4] R. Stiefelhagen, K. Bernardin, H.K. Ekenel, J.
McDonough, K. Nickel, M. Voit, and M. Wölfel, “Audio-
visual Perception of a Lecturer in a Smart Seminar Room”,
Signal Processing, In Press, 2006.

[5] A. Saad, and D. Smith, “An IEEE 1394-Firewall-Based
Embedded Video System for Surveillance Applications”,
IEEE Conference on Advanced Video and Signal Based
Surveillance (AVSS'03), 2003, p. 213.

[6] A. Mahapatra, K. Anand, and D.P. Agrawal, “QoS and
Energy Aware Routing for Real-time Traffic in Wireless
Sensor Networks”, Computer Communications, Volume 29,
Issue 4, 2006, pp. 437-445.

[7] S.-N. Lim, L.S. Davis, and A. Elgammal, “A Scalable
Image-Based Multi-Camera Visual Surveillance System”,
IEEE Conference on Advanced Video and Signal Based
Surveillance (AVSS'03), 2003, p. 205.

[8] J.M. Molina, J. García, F.J. Jiménez, and J.R. Casar,
“Surveillance Multisensor Management with Fuzzy
Evaluation of Sensor Task Priorities”, Engineering
Applications of Artificial Intelligence, Volume 15, Issue 6,
2002, pp. 511-527.

[9] N. Honma, K. Abe, M. Sato, and Hiroshi Takeda,
“Adaptive Evolution of Holon Networks by an Autonomous
Decentralized Method”, Applied Mathematics and
Computation, Volume 91, Issue 1, 1998, pp. 43-61.

[10] A. Koestler, The Ghost in the Machine, Arkana Books,
1971.

[11] J. Jarvis, R. Rönnquist, D. McFarlane, and L. Jain, “A
Team-based Holonic approach to Robotic Assembly Cell
Control”, Journal of Network and Computer Applications,
Volume 29, Issues 2-3, 2005, pp. 160-176.

[12] B. Huang, H. Gou, W. Liu, and M. Xie, “A Framework
for Virtual Enterprise Control with the Holonic
Manufacturing Paradigm”, Computers in Industry, Volume
49, Issue 3, 2002, pp. 299-310.

[13] L. Padgham, and M. Winikoff, Developing Intelligent
Agent Systems: A Practical Guide, Wiley, 2004.

