
TOWARDS ADAPTIVE USER INTERFACES GENERATION

One Step Closer To People

Víctor López-Jaquero, Francisco Montero, Antonio Fernández-Caballero, María D. Lozano
Laboratory on User Interaction & Software Engineering (LoUISE), University of Castilla-La Mancha, Albacete, Spain

Email: victor@info-ab.uclm.es, fmontero@info-ab.uclm.es ,caballer@info-ab.uclm.es, mlozano@info-ab.uclm.es

Keywords: Human Computer Interaction, model-based design, connectors

Abstract: User interface generation has become a Software Engineering branch of increasing interest, probably due to

the great amount of money, time and effort used to develop user interfaces and the increasing level of

exigency of user requirements for usability (Nielsen, 1993) and accessibility (W3C, 2002) compliances.

There are different kinds of users, and that is a fact we cannot ignore. Human society is full of diversity and

that must be reflected in human-computer interaction design. Thus, we need to engage users in a new kind

of interaction concept where user interfaces are tailored-made, and where user interfaces are intelligent and

adaptive. A new generation of specification techniques is necessary to face these challenges successfully.

Model-based design has proved to be a powerful tool to achieve these goals. A first step towards adaptive

user interface generation is introduced by means of the concept of connector applied to model-based design

of user interfaces.

1 INTRODUCTION

Many things about computers are not changing at all
(Dourish, 2001). Our basic idea about what a
computer is, what it does, and how it does it, for
instance, has hardly changed for decades. The
increase in computational power and the expanding
context, in which we put that power on, suggest that
we need new ways of interacting with computers,
ways that are better tuned to our needs and abilities.

In the last few years, a new conceptualization of
computational phenomena has placed the emphasis
not on procedure but on interaction (Wegner, 1997).
Human-computer interaction in traditional
application development is focused on the
interaction between tasks and a single user interface
designed for a single kind of user. Application user
mass is treated as a single entity, making no
distinction between the different user stereotypes
included in that user mass (figure 1a). A logical
evolution should lead interaction to a development
model where these stereotypes are taken into
account. There are different kinds of users, and that
is a fact we cannot ignore. Human society is full of
diversity and that must be reflected in human-
computer interaction design (figure 1b).

However, one step forward in interaction design
is required in order to translate this diversity into
application development. Adding support for
different user profiles is, of course, more accurate
than development for a single kind of user, but the
real thing is that we are all a little bit different. We
might match a user profile, but with our own
particularities, leading to the concept of
specialization (figure 1c). Thus, we need to engage
users in a new kind of interaction concept where
user interfaces are tailored-made for each user, and
where user interfaces are intelligent and adaptive.

From business point of view, HCI is becoming
more and more important, because of the high cost
associated to user interface construction for
applications. Different studies have shown that 48%
of an application code is dedicated to user interface
development, and that 50% of implementation stage
time is dedicated to user interface construction
(Myers, 1992).

These facts have motivated the creation of
different research projects (Elwert, 1995;
Vanderdonckt, 1996; Lozano, 2001) that face these
problems from an automatic user interface
generation point of view. These projects try to fill
the gap in Software Engineering between functional
modelling and user interface development.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

 226

O. Camp et al. (eds.), Enterprise Information Systems V, 226-232.

TOWARDS ADAPTIVE USER INTERFACES GENERATION

227

Figure 1: (a) Unity, (b) Diversity, and (c) Specialization in interaction design.

Among these projects, model based approaches
(Paternò, 1999) arise as a useful and powerful tool to
develop user interfaces. These approaches take as
input a requirements specification that is converted
into different declarative models. The most widely
used are the task, the user, the domain, the dialogue
and the presentation models. These declarative
models are used to generate automatically a user
interface compliant with the requirements captured
in these models. Within these methodologies, user-
centred design must be taken into account, so we are
able to build usable (Nielsen, 1993) and accessible
(W3C, 2002) user interfaces.

User-centred design implies studying the final
user that will use the application that it is being
created and make user take part in a interactive
manner through all development stages.

In the next sections the connector concept is
introduced applied to user interface generation and
we will show how it actually makes easier adaptive
and portable user interface generation.

2 USER INTERFACE DESIGN IN

IDEAS

There are different proposals for model-based user
interfaces design, IDEAS is one of those proposals
(Lozano, Ramos & González, 2001). IDEAS is a
methodology for user interfaces development within
the framework of an automatic software production
environment. This environment is supported by the
object-oriented model OASIS (Letelier, 1998).

Abstraction is one of the basic principles needed
to understand and model the reality. The object
oriented paradigm favours this principle as it
conceives the object oriented development process
as an iterative and incremental approach that
progressively allows a detailed specification of the
system to be obtained.

The user interface development process within
IDEAS is tackled following this principle. This
process is not flat, but it is structured in multiple
levels and multiple perspectives. The vertical
structuring shows the reification processes followed
from the first and most abstract level passing
through the following levels to finally reach the
system implementation, which constitutes the last
level. On the other hand, the horizontal structuring
shows the different perspectives offered by the
different models developed in every one of the
vertical levels. Thus, different models are used at the
same abstract level to describe the different aspects
of the graphical user interface.

Following these ideas, we propose the user
interface development process depicted in figure 2.
Due to space constraints, we cannot detail the
different models proposed, so we will briefly
describe this process showing some examples of the
implemented tool which, interactively and
automatically, supports this methodological
approach.

At requirements level three models are created:
the Use Case Model, the Task Model and the User
Model. The Use Case Model captures the use cases
identified within the information system. Then, for
every one of the use cases there will be one or more
tasks which the user may perform to accomplish the
functionality defined by the use case.

Application
Application

TaskTask Task
Interface

Task
Interface

UserUser

Application
Application

TaskTask

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ation
Profile
Interface

Profile
Interface

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ation
UserUser

(a)

(b)

Application
Application

TaskTask

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ation
User

Interface

User
Interface

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ation
UserUser

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ationUser
Interface

User
Interface

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ation
User

Interface

User
Interface

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ationUserUser

Present

ation

Present

ation
Present

ation

Present

ation
Present

ation

Present

ation
UserUser

(c)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Profile 1

Profile 2

Profile n

ENTERPRISE INFORMATION SYSTEMS V

228

Figure 2: IDEAS user interface development methodology.

These tasks will be modelled in the task model.
The Task Model defines the ordered set of activities
and actions the user has to perform to achieve a
concrete purpose or goal. We propose a template
based on the one proposed by Cockburn (Cockburn,
2001) to describe in natural language all these
issues. The User Model describes the characteristics
of the different types of users. The purpose of this
model is to support the creation of individual and
personalized user interfaces. At analysis level the
Domain Model is generated. This model consists of
two diagrams. The first one is the Sequence
Diagram, which defines the system behaviour. The
second one is the Role Model, which defines the
structure of the classes that take part in the
associated sequence diagram together with the
relationships among these classes, specifying the
role of each one of them.

At design level the Dialogue Model is developed.
All the models that have been generated up to now
do not contain any graphical aspect of the final user
interface. It is from now on that these issues start to
be addressed and the way in which the user-system
interaction will be performed is especially important.

The purpose is to describe the syntactic structure
of the user-computer interaction. It establishes when
the user can invoke commands, select or specify the
input data and when the computer can require data
from the user or display the output data. These items
are modelled by means of Abstract Interaction
Objects (AIO) (Vanderdonckt & Bodart, 1993).

At implementation level the Presentation Model
is created. The Presentation Model describes the
concrete interaction objects (CIO) composing the
final graphical user interface, its design
characteristics and visual dependencies among the
objects. This model leads to the visualization of the
final graphical user interface according to the final
platform style guides. The final graphical user
interface generation is performed by using XUL
(Boswell, 2002), an XML based language, in order
to make it as independent as possible from the final
platform where the application is going to run.

The starting point for generating the graphical
user interface in XUL is the Dialog Model
developed at design level, which, as stated before,
models the structure and the behaviour of the
graphical user interface by means of AIOs. These
AIOs are translated into the CIOs offered by XUL.
Therefore, the graphical user interface structure is
generated automatically from the Component
Specification Diagram created at design level.

As a result of IDEAS methodology applied to an
application three different societies of objects will
appear: (1) the functional domain object society, that
represents the objects that perform the functionality
required in order to achieve the identified tasks, (2)
the abstract interaction object society, that includes
the objects that represent graphical user interface in
an abstract manner, and finally (3) the concrete
interaction object society, that will contain the
objects that represent the graphical user interface in
a specific platform.

Requirements

Analysis

Design

Implementation

 Use Case Model

User

Model
Task

Model

Sequence Diagram I, II

-Behavior-

Roles Diagram

-Structure-

Domain Model

Presentation

Model

Dialogue Model
Dialogue

Interaction Diagr.

Component Specification
Diagram

Design Decisions

Implementation Decisions

Graphical User Interface (GUI)

AIO => CIO

XUL Language

Internal State
Transition Diagram

Component Definition
Table

Contracts Definition

TOWARDS ADAPTIVE USER INTERFACES GENERATION

229

Therefore, user interface operation will consist on
the interaction between the objects included in the
same society (intra-society interaction), the
interaction between functional domain objects and
abstract interaction objects, and the interaction
between abstract interaction objects and concrete
interaction objects (intersociety interaction) (see
figure 3a).

Originally in IDEAS methodology interaction
between functional domain objects and abstract
interaction objects was specified using a
modification of the principles about contracts
between objects proposed by Andrade and Fiadeiro
(Andrade & Fiadeiro, 1999).

3 INTERCONNECTING OBJECTS

IN IDEAS: CONTRACTS

A contract describes interaction between objects
creating an association between the objects involved
in the interaction act. Business rules determine the
policy that will rule the communication process and
the coordination between objects, where that
coordination will not be included in the definition of
the interacting objects, but into contracts, because of
the nature inherent to business rules. Business rules
are associated to the tasks performed using the user
interface, and not to the interacting objects.

Including this communication process into the
contract definition will allow us to adjust business

rules according to the possible changes in system
requirements in a transparent manner for the objects
involved in the interaction act.

Figure 3b shows an excerpt of a contract
specification using the template in OASIS language
proposed in IDEAS methodology for this purpose.

To make easier understanding the mechanism
described we have chosen a well-known interaction
act: the interaction between a Main Window
(belonging to abstract interaction object society -
AIO), and a functional domain object that represents
the global configuration for an application. The
objects interacting will be described in the partners
section of the specification. This interaction is
included into a task we have called
Window_Management. When Main Window tries to
close - maybe because the user has ask the system to
do so – the request will be captured by the contract
according to the guard conditions specified in when
clauses. The contract will check whether pre-
condition is satisfied or not for that action. Pre-
condition is specified in with clause. In our example,
coordination event CW models this interaction as
specified in when clause. First, it will check pre-
condition. In this case it checks whether
configuration has changed or not. If it has not
changed it is not necessary to save data. Second, if
the pre-condition is satisfied the actions in do clause
will be executed. If the pre-condition is not satisfied
the coordination event ends.

(a) (b)
Figure 3: (a) User interface operation. (b) Contract class according to the template proposed in IDEAS.

Functional Domain

Object Society

Abstract Interface

Object Society (AIO)

Concrete Interaction

Object Society (CIO)

ContractClass CWindow_Management

 identification

 code:(code)

 task

 aWindow:Window_Management

 partners

 GUI objects // (AIO)

 aMainWindow:Window;

 domain objects

 aConfig:Configuration;

 constant atrributes

 code:nat;

 variable attributes

 ConfigChanged:bool(FALSE);

 coordination

 CW: when aMainWindow.calls(aWindow.Close)

 do aConfig.SaveWindow(aMainWindow)

 with ConfigChanged = TRUE

 …

 valuations

 [SavedConfig] ConfigChanged = FALSE

 …
end class CWindow_Management

ENTERPRISE INFORMATION SYSTEMS V

230

Contracts provide a mechanism for object
coordination where interacting objects are treated as
black boxes.

Although this artefact greatly improves system
flexibility, as long as it supports the modification of
changes in business rules quite easily, it still
introduces some drawbacks for adaptive and
portable user interfaces generation. In contracts
coordination between objects is specified explicitly
inside the contract, so it makes hard to use “plug and
play” coordination components according to
different users (maybe profiles) or target platforms.
It takes one step beyond so that we are allowed to
switch between different components easily, even at
run time. Connectors (Allen, 1997) provide a
powerful tool to support this software coordination
“plug and play” component paradigm.

4 ONE STEP BEYOND:

CONNECTORS

A connector consists of a set of roles and the
specification of glue to keep them together. Roles
model the behaviour for each part involved in
interaction. Glue, on the other hand, provides the
coordination between instances for each role
(Wermelinger, 2000).

Connectors where originally proposed for
software architecture specification to provide a
mechanism for software components
interconnection. To use connectors in the
construction process of a specific system, roles will
be instantiated. Nevertheless, a component will not
be able to instantiate the role if it doesn’t comply
with the specified service that role should play.

A connector is specified describing: (1) input
variables that will be used as input ports, (2) output
variables that will be used as output ports, and (3) a
set of actions, which will be fired according to a
guard condition. Both, variables and actions can be
declared as public or private items. Private items are
only available to the connector where they have
been declared.

Communication between components is achieved
in two different ways. On one hand, input and output
variables from different components are
interconnected, and on the other hand methods from
several components may be synchronized.

When applying connectors to our object societies
(Functional domain object society, Abstract
interaction object society and Concrete interaction
object society) we will need to encapsulate
interacting objects within component interfaces,
interconnected using connector paradigm. We will
exemplify how to use connectors in user interface
design by specifying the same scenario we described
for contracts before.

Now we have a CIO for the AIO that represents
the window. When the CIO wants to close, it will
notify to the AIO component its intentions so it can
react and perform any required action before it
actually closes. In the example, AIOWindow should
notify Config component. Then Config component
will check whether the configuration for that
window has changed or not, and if so it will ask the
right object (oConfig) to save window information.

The communication protocol between the
components and the objects involved in this
coordination process is depicted in figure 4. Notice
interconnection between input and output variables
is shown too, where little white squares are input
variables and grey little squares are output ones.

As shown in figure 4, three components are
involved:

Figure 4: Connector and classes involved in Window_Management scenario.

WindowJFrameAIOWindowConfig

Configuration

SaveW indow()
OpenWindow()
SaveColors()
OpenColors()
...()

TOWARDS ADAPTIVE USER INTERFACES GENERATION

231

Figure 5: Connector components specification (excerpt).

(1) WindowJFrame, that models the CIO – a Java
language frame -, (2) AIOWindow, which models the
AIO that represents an application window, and
finally (3) Config, which represents application
configuration. This component makes use of an
instance oConfig from Configurator class, and will
do the real job. This class belongs to functional
domain object society.

Next we will specify those depicted components,
according to the semantics we have already
described - input variables, output variables and
actions. A specification of all three components
involved in the coordination process in the example
scenario is shown in figure 5.

So, what makes it different from contracts? The
main difference is that involved components are
specified separately and that they are interconnected
through their interfaces. Therefore, it makes it
possible for us to replace one component with
another one whenever we may find it necessary. The
only thing we should take into account is that the
new brand component is compliant with the service
requested and offers the same interface to the
environment. Therefore, this will support cross
platform development, as long as we can connect
AIO components to any CIO (maybe CIOs for
different platforms) which is able to offer the
required functionality and interface to AIO
component. For instance, in our window
management example we could have components
representing CIOs for XUL (Boswell, 2002)
windows, Javatm

(Java, 2002) windows or Microsoft
Windows

tm
. Thus, our design process will boost

portability and cross platform development with all
the advantages it provides – above all reduced costs.

But this ability to switch between different
components not only supports portability and cross
platform design, it supports adaptive user interfaces
specification to greatly improve overall user
interface quality. AIO components are the traders
between functional domain objects and CIO

components, but we propose “intelligent” AIOs
which are able to process the information to be
presented, so they can choose between different
CIOs to meet user preferences or device dependent
features. For instance, a menu for an application
could be presented in different ways depending on
the number of options available for selection, as
proposed in (Vanderdonckt, 1993). Thus, if there are
just two options available a simple checkbox could
do the work. If the available number of options is
three, a set of grouped radiobuttons will be an
interesting choice, while if there are more than three
options available; a listbox could be used for this
purpose.

Designing both CIO and AIO once we are able to
achieve two great features: (1) we really boost
portability and cross platform development, and (2)
we generate automatically adaptive interfaces for all
the applications using the designed AIO and CIO
sets of components.

5 CONCLUSIONS

User interface generation has become a Software
Engineering branch of increasing interest, probably
due to the great amount of money, time and effort
used to develop user interfaces and the increasing
level of exigency of user requirements for usability
(Nielsen, 1993) and accessibility (W3C, 2002)
compliance interfaces. Besides the kind of users
engaged in HCI is becoming more and more
heterogeneous, and that is a fact we can not ignore.

In this paper we have proposed a first step
towards user interface design and generation with
some adaptive features by means of connectors in a
model based user interface design methodology:
IDEAS. We have shown how connectors can be used
to introduce a high degree of portability and cross
platform design, and how connectors can support
adaptive user interfaces generation.

Component Config

IN Cstatus:{open, close, …)

PRV ConfigChanged:boolean

PRV oConfig: Configuration

do eCLOSE: if (Cstatus = Close) and

 (ConfigChanged = TRUE) then

 oConfig.SaveWindow(AIOWindow);

 ConfigChanged := FALSE;

end if ;

 …

End Component

Component AIOWindow

IN status:{open, close, …)

OUT AIOstatus:{open, close, …)

…

End Component

Component WindowJMainFrame

IN status:{open, close, …)

OUT AIOstatus:{open, close, …)

…

End Component

ENTERPRISE INFORMATION SYSTEMS V

232

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish
CICYT TIC 2000-1673-C06-06 and CICYT TIC
2000-1106-C02-02 grants.

REFERENCES

Allen, R., Garlan, D. 1997. A Formal Basis for

Architectural Connectors, ACM TOSEM, 6(3), pg.

213-249, July.

Andrade, L.F., Fiadeiro, J.L. 1999. Interconnecting

Objects via Contracts. In: UML’99. Proceedings of the

International conference on the Unified Modeling

Language.

Boswell, D., King, B., Oeschger, I., Collins, P., Murphy,

E. 2002. Creating Applications with Mozilla.

O’Reilly. 0-596-00052-9.

Cockburn, A. 2001. Writing Effective Use Cases.

Addison-Wesley.

Dourish, P. 2001.Where the Action Is: The Foundations of

Embodied Interaction. Massachusetts Institute of

Technology.

Elwert, T., Schlungbaum, E. 1995. Modelling and

Generation of Graphical User Interfaces in the

TADEUS Approach. In: Designing, Specification and

Verification of Interactive Systems. Wien: Springer,

193-208.

Java. Sun Microsystems. 2002. http://java.sun.com.

Letelier, P., Ramos, I., Sánchez, P., Pastor, O. 1998.

OASIS version 3: A Formal Approach for Object

Oriented Conceptual Modeling. SPUPV-98.4011.

Edited by Universidad Politécnica de Valencia, Spain.

Lozano, M. 2001. Entorno Metodológico Orientado a

Objetos para la Especificación y Desarrollo de

Interfaces de Usuario. Ph.D. Thesis. Supervisors: Dr.

Isidro Ramos / Dr. Pascual Gonzalez. UPV. Valencia,

2001.

Lozano, M., Ramos, I., González, P. 2001. User Interface

Specification and Modelling in an Object Oriented

Environment for Automatic Software Development.

IEEE 34th International Conference on TOOLS, USA.

Myers, B. A., Rosson, M. B.. 1992. Survey on User

Interface Programming. In Striking a Balance.

Proceedings CHI’92. Monterey, May 1992, New

York: ACM Press, 195-202..

Nielsen, J. 1993. Usability Engineering. Academic Press.

Paternò, F. 1999. Model-Based Design and Evaluation of

Interactive Applications. Springer.

Puerta, A.R. 1997. A Model-Based Interface Development

Environment. IEEE Software, pp. 40-47.

Vanderdonckt. J.; Bodart, F. 1993. Encapsulating

Kwowledge for Intelligence Interaction Objects

Selection. Proceedings of Inter-CHI’93. ACM Press,

424-429.

Vanderdonckt, J. 1993. A Corpus of Selection Rules for

Choosing Interaction Objects, Technical Report TR

93/3, University of Namur.

Vanderdonckt, J. 1996. Knowledge-Based Systems for

Automated User Interface Generation: the TRIDENT

Experience. Institut d’Informatique, Facultés

Universitaires Notre-Dame de la Paix. Namur,

Belgica.

Vanderdonckt, J. 1996. Knowledge-Based Systems for

Automated User Interface Generation: the TRIDENT

Experience. Institut d’Informatique, Facultés

Universitaires Notre-Dame de la Paix. Namur,

Belgica.

W3C. 2002. WAI. http://www.w3.org/WAI/

Wegner, P. 1997. Why interaction is more powerful than

algorithms. Communications of the ACM, Vol. 40,

No. 5 (1997) 80-91.

Wermelinger, M., Lopes, A., Fiadeiro, J.L. 2000.

Superposing connectors, in Proc. 10h International

Workshop on Software Specification and Design,

IEEE Computer Society Press, 87-94

