
Auto-Adaptive Questions in E-Learning System

Enrique Lazcorreta, Federico Botella
Operations Research Center, Universidad Miguel Hernández de Elche, Elche, Spain

{enrique, federico}@umh.es
Antonio Fernández-Caballero, José M. Gascueña

Department of Computer Science and Computer Science Research Institute of Albacete,
Universidad de Castilla-La Mancha, Albacete, Spain

{caballer, jmanuel}@info-ab.uclm.es

Abstract

All books entitled “Learn … with 1000 exercises”

have in common the same basic principle. They aim to
supply enough material to students so that they may
better understand the studied subject, starting from
their own practice. If there is no instructor who helps
students during the reading of the book, the students
will not be able to understand the subject, as the
excessive amount of information provided in this kind
of books does not enable learners to pursue the
learning goals.

There is a great boom in e-learning through the so-
called Intelligent Tutoring Systems, excellent virtual
instructors which guide their learners through the
reading of such kinds of books and help their learners
to classify all the exercises and recommend them which
ones to solve first. Nowadays instructors and teachers
are entrusted to produce these books and to classify all
exercises, whatever implies an overload to teachers.

In this work we introduce a scalable system that
only requires teachers to write the questions and their
answers. The system will classify and manage all the
questions. So the teacher will obtain, with the minimal
effort, hundreds of exercises at the end of the course
(and for future courses) which will reinforce
individually his students.

1. Introduction

Today’s technology enables e-learning systems to
manage a great deal of didactical material and data on
student courses. A good allocation of these data
permits to retrieve the full path of any student of the
course in real time, and so to give him/her the most
suitable material to his/her real level and specific
needs.

Much of the current research works are oriented to
the development of Intelligent Tutoring Systems [1],
which supervise the interaction of the learner with the
contents and resources of the course with the intention
of discovering his learning style and to guide him in
his studies [2], or to suggest reinforcing badly acquired
concepts [3]. These systems use to evaluate students by
defining their knowledge level about the subject.

Butz et al [4] adapt the program of the course to the
needs of a student who wants to review a unique topic
(for making an immediate exam, for example), so the
system reveals the minimal previous concepts to study.

Brusilovsky et al. [5] define an elementary
programming course in 44 topics and two or three
questionnaires for each topic, consisting in 5 or 6
questions like “What is the final value of an
expression?” or “What will be printed?”. Their
proposal consists in using adaptive annotations to show
the student which questionnaires he must solve
depending on the authors knowledge about the
prerequisites of the topic and its needs. Their work is
complementary to a previous proposal [6] where the
researchers show how to parameterize all the questions
so that the student may solve them without repeating
the same code in the question.

Student adaptivity in e-learning systems is of
tremendous interest. Instructors are set free of guiding
their students by holding their own rhythm. But
instructors will have to prepare new material or to
upgrade the past material in order to adapt to the new
programs in the system.

The remainder of this work is structured as follows:
in section 2 we show a view of the management and
elaboration of adaptive didactical material. In section 3
we explain a system to set instructors free of this
management and that helps them to elaborate material.
Finally, in section 4 we present the conclusions and
future work.

2. Adaptive didactical material

Courses in e-learning systems are composed of
concepts that the student must learn. To determine if a
student has learnt a concept, the system proposes
several questions and writes down the successes and
the failures in addition to showing the results to the
student. Moreover, the instructor of the course can
define prerequisites for each concept, so if a student
wants to study a concept, the system may suggest him
to first study some previous concepts.

The proposals of Brusilovsky et al. [5,6] lose their
potential when grouping concepts into topics. The
reason could be the awkwardness of elaborating and
classifying the questionnaires if the teacher has to
group them based on the hundreds of concepts which
have to be learnt by an applicant to programmer,
instead of grouping the questionnaires in 44 topics.
This reasoning could lead to this situation:

• A student wants to study the topic “if_else” but
he doesn’t know how to use the % operator in
C language. However he knows well the topic
integer_operator, because he knows well the
remainder of operations of the topic. The first
question that the system proposes to the
student is:

 What is the final value of i?

main() {
 int i = 0;
 if (6 % 2)
 i += 2;
 else
 i++;
}

Imagine that the student is not able to solve it.
The system will write down this failure of the
student with the topic if_else and will continue
ignoring the failure of the student in the %
operator.

• The system notifies the teacher about the
progress of the student, and the teacher takes
notice of this situation. Then he changes the
question replacing % by >=.

• The next day the problem occurs again with
another student who “knows” relational
operators but who does not understand well the
>= operator.

• If the teacher decides to recover the first
version of the question and to maintain the
second one, the system will maintain two near
identical questions and will not be able to
differentiate, because both questions belong to
the if_else topic. If this situation is repeated

with other concepts of the course, the
questionnaires will grow and lose their
adaptivity to students (a long questionnaire
invites not to be solved and the student will
lose the interest towards the system). And all
that with a great effort of the teacher.

• If the teacher decides to eliminate the questions
to avoid the abandon of the student, it will
have the same consequence of the traditional
education: even if the system is managed by a
powerful computer system, the system is not
able to reuse much material elaborated by the
teacher.

If the system permits the student to select his own
programme, and after studying the if_else topics the
student would like to review the integer_operators
subject, will it be appropriate to propose the student the
exercise of our example? The system will not do it
because it has classified as a question of the topic
if_else, which is not the objective of the student.

Our proposal is not to discard the full power of this
system and to facility the work of the teacher, by
liberating him of the task to classify all the questions.
For this reason we will work at the concept level and
we will only lead the teacher to write down the
headings of the questions, the answers and at last a
subjective evaluation of its difficulty level. The system
will classify all questions and determine what the most
suitable question that better adapts to the student in
each situation is.

3. Auto-adaptive Questions

When descending to the concept level, our example
would be related to the concepts of C language: main,
int, =, if, %, + =, else and ++. The teacher only
has to write the question and a simple text parser can
report these relations to the system.

When the question is introduced, it can be suggested
by the system to any student that studies someone of its
related concepts and knows the rest, not mattering if
there exist other prerequisite foreseen by the teacher
(another delicate and subjective task of which the
teacher is liberated).

Obviously, a simple text parser does not constitute
the whole adaptive education system; it is actually like
an open door to prepare hundreds of questions in order
that the system can adapt to the particular situation of
any student. At any time, even when he is teaching
lessons and a concrete example occurs to him, the
teacher can invoke the Question Parser to add it as a
question. And so, it is immediate to extract sub-
questions (questions with slightly less difficulty and
related to fewer concepts) from the question added.

Figure 1 shows the moment the question is raised
for the first time, when studying the concept return
during the study of the Function's topic. Figure 2
shows how the teacher only has to select some lines
from the initial question and change the heading to get
another question in the system.

In a few minutes he can incorporate all the sub-
questions that make some sense (the previous one
without else, …) without worrying about its
classification. An important characteristic of the sub-
questions is atomicity: it turns out to be elementary to
create questions that only refer to a concept. This way,
the system will have more resources to adapt to the
students of the course. For example a sub-question that
arises from the previous example is:

Knowing that variable i stores the value 3,
what will be its value after the following
sentence?
 i += 2;

The adaptation of the system to the teacher enables
that he does not lose any of his ideas. Moreover, other
teachers or students could set up different question
collections that serve to enrich the course contents.

Figure 1: Question Parser

Figure 2: Adding sub-questions

3.1. System architecture

Besides the Question Parser, the system has a data
base formed by four tables: TConcepts, TQuestions,
TAnswers and TStudents.

Table TConcepts is common to the majority of
tables for this purpose in current e-learning systems.
To work with the auto-adaptive questions, the system
only needs the course curriculum: a collection of
concepts classified under thematic units (topics).

Figure 3: Teacher-System interaction

Figure 3 shows how the system starts its work
reading this information to be able to use it with the
Questions Parser (1). When the teacher inserts a new
question (sub-question) (2), the system analyzes and
stores in TQuestions this information (3):

• idQuestion
• Heading
• Source code
• Solution
• Number of different topics
• Number of different concepts
• Father Question (0 if not sub-question)
• Difficulty level (0 unclassified)
• concept1_frequency
• ...
• conceptC_frequency

where C is the total number of concepts in the course.
The stored frequencies allow weighing in real time

the affinity level of the question with the request done
by the student. The number of different topics and
concepts are useful in order to determine the simplicity
(few concepts) or complexity of the question. The
difficulty level assigned by the teacher can also be used
by the system, but as it is just a subjective measure it
will be considered on a second plane.

If the teacher needs to incorporate a new concept he
can indicate it to the system by using the Question
Parser (4). The system will update first the table
TConcepts (5) and later it will look for the new
concept in all the questions of the course to update the
table TQuestions if necessary (6). Also it will add to
table TStudents the field corresponding to the new
concept and its right/wrong frequency will be updated
as right/wrong if the concept has been found in some
already existing question in the course (7).

Besides, the system allows the teacher to see the
data stored in the different tables under different
perspectives (8).

3.2. Student adaptivity

When a student wants to perform a session of
practices the system displays its interface, allowing
deciding among:

• To revise a topic or a concept

1. as the only aim
2. and practice also the topics/concepts with

a lower punctuation
• To do a general revision

3. of the topics/concepts with a lower
punctuation

4. of the topics/concepts with better
punctuations (to learn without straining in
this instant, fun learning)

5. randomly, only with known concepts
6. purely random

• To visualize his knowledge level in the different
topics and concepts to decide what to do at this
instant

Students also can decide their preferred level of

difficulty of the questions as well as to use or not to
use questions that already he tried to solve.

Figure 4: Student-System interaction

Figure 4 shows the underlying mechanism of the

system after having received the student request for a
practical session (9). The system obtains from
TAnswers (10) the questions that must not be
suggested to him, either because he already solved
them correctly or because he does not want any
question to be repeated, even he answered in a wrong
way in the past. This table stores data about each
answer received by the system. Its fields are

• date
• idStudent
• idQuestion
• right/wrong

The student's level of knowledge is stored in table
TStudents. To be able to find the questions that better
adapt to the current profile of the student, the system
can look into the following fields:

• Registration date
• Final date of the course
• Grades (it might include partial grades)
• idStudent
• concept1_right
• concept1_wrong
• ...
• conceptC_right
• conceptC_wrong

With the information obtained in the request of the

student and the information that the tables report (10,
11) the system only has to link the table TQuestions
with the most appropriate criteria (12). For instance, if
the student wants to revise exclusively a concept, he
will obtain only the questions from TQuestions,
weighted by the following features: (a) it contains the
requested concept, (b) it does not contain other
concepts, and (c) it contains only a few additional
concepts that the student knows well. Moreover, the
questions are filtered by the preferences of the student
when solving only new questions and by their
difficulty.

The system shows the student a list of questions
arranged according to its affinity to the request (13).
The student can freely choose the question to solve,
answers it and the system annotates in TAnswers a new
record. Next, the system updates the rest of tables and
the query, and invites the student to continue practising
with the matter.

Lastly, a student may also consult some views from
the system tables (14).

3.3. Informing the teacher

The system will regularly inform the teacher about
the usage of his questions, and it sends an e-mail when
it can not help the student above a certain threshold (as
a number of questions found or as an affinity to the
request of the student).

4. Conclusions and future work

We have defined auto-adaptive questions and have
shown a methodology that enables the teacher to
simply write the questions without classifying them. It
is rather the system which proposes the student the
appropriate questions depending on the knowledge of
the student and the objectives of the study. Moreover,
the system permits to create sub-questions, and is able
to inform the teacher which concepts are the most (or
lest) used in his questions, which pair of concepts has
been missing in their questions when recommending,

or even to show questions containing these concepts
that are not in the system yet.

Our system will not lead to “Learning C language
by practice” by itself because the system needs quality
theoretic material to achieve the success of the course.

As future work we will export the system to
subjects, not so structured as programming languages,
but it will allow to be evaluated by test exercises: the
teacher will classify the concepts involved in each
option, and random questions with multiple replies will
be generated for which the teacher has prepared many
options.

Acknowledgements

This work has been partially funded by the
R.R.1256/04 grant supported by University Miguel
Hernández of Elche – Bancaja and by the Spanish
PBC-03-003 grant supported by Junta de Comunidades
de Castilla-La Mancha.

References

[1] F.A. Dorça, C.R. Lopes, and M.A. Fernandes. “A
Multiagent Architecture for Distance Education Systems”,
Proceedings of the 3rd IEEE International Conference on
Advanced Learning Technologies (ICALT 2003), 2003, pp.
368-369.

[2] C.I. Peña, J.L. Marzo, J.L. de la Rosa, “Intelligent agents
in a teaching and learning environment on the Web”,
Proceedings of the 2nd IEEE International Conference on
Advanced Learning Technologies (ICALT 2002), 2002, pp.
21-27.

[3] A. Fernández-Caballero, J.M. Gascueña, F. Botella, and
E. Lazcorreta, “Distance Learning by Intelligent Tutoring
System.”, Proceedings of the 7th International Conference on
Enterprise Information Systems (ICEIS 2005), 2005, vol. 5,
pp. 75-82.

[4] C.J. Butz, S. Hua, R.B. Maguire, “Bits: a Bayesian
Intelligent Tutoring System for Computer Programming“,
Proceedings of the Western Canadian Conference on
Computing Education (WCCCE04), 2004, pp. 179-186.

[5] P. Brusilovsky, S. Sosnovsky, and O. Shcherbinina,
“QuizGuide: Increasing the Educational Value of
Individualized Self-Assessment Quizzes with Adaptive
Navigation Support”, Proceedings of the World Conference
on E-Learning (E-Learn 2004), 2004, pp. 1806-1813.

[6] S. Sosnovsky, O. Shcherbinina, and P. Brusilovsky,
“Web-based parameterized questions as a tool for learning”.
Proceedings of the World Conference on E-Learning (E-
Learn 2003), 2003, pp. 309-316.

