
A TELEPHONE NUMBER CORRECTOR USING A
COUNTERPROPAGATION NETWORK

Juan Moreno 1,Gabriel Sebastián1, Miguel A. Fernandez2 & A. Fernandez Caballero2
email: 1{jmoreno,gsebas}@sancho.info-ab.uclm.es 2{miki,caballer}@info-ab.uclm.es

Departamento de Informática, Escuela Superior Politécnica de Albacete
Universidad de Castilla-La Mancha, 02071 - Albacete, Spain

ABSTRACT

This paper describes the implementation of a system that
reminds the user of the telephone number of a given list,
even if the user only remembers part of it, or if the given
number contains a series of exchanged digits. The system’s
input consists of a telephone number (composed by digits
from 0 to 9), containing from zero up to several generic
digits (asterisks, in this case). The system processes the
input and returns the selected telephone number among all
the learned telephone numbers. In this implementation auto-
associative memories have been used.
KEYWORDS: Software Tools, Algorithms and
Architectures, Memory

1. INTRODUCTION

The following paper introduces the software implementation
of a system that, associated to a telephone apparatus, is able
to learn a complete telephone agenda. In our system, when
the user dials a telephone number, the following cases are
accepted: (a) he may dial a complete telephone number, (b)
he may dial an incomplete one – where some forgotten
numbers are replaced by a generic digit -, (c) he may dial the
phone number with some exchanged numbers, (d) he may
dial an erroneous number, and, (e) any combination of the
previous cases. If necessary, the system corrects the
telephone number and returns the most similar telephone
number of among all the learned ones. For the
implementation of the system we have chosen an auto-
associative memory.

Let us suppose that we have L pairs of vectors {(x1,y1),
(x2,y2),..., (xL,yL)} where xi∈ Rn and yi∈ Rm. The auto-
associative memory presupposes that yi=xi and it establishes
a correspondence φ of x in x such that φ(xi)=xi, and, if some
arbitrary x is closer to xi than any other xj, j=1,...,L, then
φ(x)=xi. For the implementation of the auto-associative
memory we have chosen the counterpropagation network.
Hecht-Nielsen [1] synthesized this architecture combining a
structure known as the competitive net with Grossberg’s
outstar structure [2], [3], [4], obtaining this way the so called
counterpropagation networks.

The network’s operation is quite simple as shown in figure
1. Given a group of vectors (x1,y1), (x2,y2), ...,(xL,yL), the
network learns how to associate a vector X in the input layer
with a vector Y in the output layer. If the relationship

between X and Y may be defined by means of a continuous
function Ω, such that Y=Ω(X), then the network will be
able to learn to approximate that correspondence for all
value of X in the interval specified by the training vectors
group. In the same way, if the inverse of Ω exists, such that
X is a function of Y, then the network will also learn the
inverse correspondence, X=Ω-1(Y)2. In our special case, we
are only interested in the relationship Y = Ω(X).

Layer 3

Layer 2

Layer 1

Input Telephone Number Input Telephone Number

Output Telephone Number

Figure 1: Network structure.

Considering figure 1, note that the architecture consists of
three layers. An input vector (see, a telephone number) is
applied to the layer 1 units. Each unit of layer 2 calculates
its input value net, and a competition takes place to see what
unit possesses the greatest input value for net. This unit is
the only one that sends a value to the output units.

2. DESCRIPTION

We have not constructed a hardware implementation of the
described system. Our implementation consists of a software
simulator programmed under the Visual C++ 5.0 language.
Initially, the simulator shows the user a dialogue window
where the input telephone number is to be dialed. The user
is offered the possibility to dial a known digit (0 to 9), or an
asterisk (*) in the place where he doesn't remember the
corresponding digit. Once the number has been completely
dialed, the network processes the input number and responds
with an output number. The system has been trained to learn
100 distinct 9 digit telephone numbers in our latest tests.

Apart from the automatically Visual C++ 5.0 generated
classes, we have implemented the classes corresponding to
the different layers as well as to the whole
counterpropagation network.

The computer network simulators usually impose a
normalization for all the input data in order to adapt to the
computer CPU calculations. In a counterpropagation
network, layer 1 carries out this function. The outputs of
layer 1 are governed by the differential equation

∑
≠

−−+−=
ik
Ix)Ix(BAxx kiiiiiD

where B(0)x0 i << y 0BA, > .

Once the input vector X is applied, the process elements
rapidly reach a balance state 0)x(=D [5]. In a digital
simulation of the counterpropagation networks, it is possible
to simplify the program by software normalizing the input
vectors.

That’s why, in our simulator, Class CLayer1 normalizes the

input according to the equation

∑=
n I

2
/Ix

i
ii .

Layer 2 is the so called competitive network. It is formed by
a series of processing elements called instars [1], [2]. We
suppose that the input vector I and the weight vector w have
both been normalized. The output of the instar is governed
by the equation net*bayy +−=� , where w*Inet = and
a,b>0. The instar reaches the balance value in

net*(b/a)y
eq

= . The instar learns the weight vector w.

The learning capacity is carried out initializing with the
initial weight vector w, and evolving according to the
differential equation dIycww +−=D , where y is the output,
and c,d>0. The mission of the instar is to learn an input
vector y , providing a greater output intensity the more it
resembles to the learned input vector.

In the implementation of our CInstar class, we have given
the same values to a and b. It is possible to simplify the
learning of the instar by directly assigning the values of the
weights of vector w from vector y , already normalized.
That’s the way we have implemented our class CInstar. This
class also has a parameterized constructor that specifies the
number of elements of the vector.

The competitive network consists of a group of instars
classifying any input vector. The instar giving the greatest
output value is the winner of the competition, and will be
the only one that will have one non null output. The winner
will send a value of 1 to the outstar, while the rest of instars
of the competitive network will send the value 0.

Our class CCompetitiveNet incorporates a parameterized
constructor, to which the number of instars that form the
network, corresponding with the number of vectors to be
learned, is passed.

Finally, layer 3 consists of some processing elements called
outstars. During their training process their output values
can be calculated by means of

iiii net*cbyay''y ++−=D

where the parameters a,b,c>0 and the value of neti is
calculated in the previously described way. Once the
training has been accomplished, the output of the outstar is
equal to:

 eq
i

cway''y ii +−=D

where eq
i

w it is the weight value that has been obtained

during the training session [5], [2]. In a digital simulation, it
is possible to approach this learning assigning the weights of
the outstar directly from the values of the input vectors y .

The outstar quickly reaches a balance value equal to the
value of the weight encountered in the connection coming
from the winner unit of the competitive network. A simple
form of visualizing this process consists on realizing that the
balance output of the outstar is equal to the input net of the
outstar,

∑=
j

jkjzweq
k

y'

where jz is the input received from the corresponding
instar of the competitive network. Since jz =0, unless j=i:

kiiki wzweq
k

y' ==

This simple algorithm uses balance values of the activities
and outputs of the nodes. This way we avoid having to solve
numerically all the corresponding differential equations.
This way, our class COutstar uses the described algorithm
to calculate the output. With regard to learning, for each
outstari of layer 3, our class assigns to each weight wi the
value corresponding to each input vector yij.

The complete counterpropagation network uses the already
described classes CLayer1, CCompetitiveNet and COutstar,
forming a general class CCPN, with a parameterized
constructor incorporating two parameters that indicate the
number of instars and the number of elements of the input
vectors. That is to say, the class CCPN can contain a varied
number of vectors to learn and of elements of these vectors.
This way, this design allows us to implement flexible
architectures of counterpropagation networks.

The outline of our counterpropagation network is the
following one:

• Layer 1 or input layer consists of 9 nodes in the
input vector X, corresponding to the number of
digits of the telephone number marked by the user.
With regard to the y inputs, we have 900 nodes

corresponding to the 9 digits of the 100 telephone
numbers to learn.

• The hidden layer, the competitive network, is

formed by 100 instar nodes, where each instar
learns one telephone number.

• Finally, layer 3 or output layer, consists of 9

outstars, each one memorizing its corresponding
digit of the y input vectors. The output of this layer
will be the selected telephone number.

We have chosen the counterpropagation network to
implement this system, due to the fact that combining
already existing types of networks in a new architecture,
offers the possibility to form different and useful networks
starting from the existing structures. The counterpropagation
networks use different learning algorithms for each layer,
allowing the network to be very quickly trained. As a
counterpart these networks don't always offer enough
precision for some applications. In our special case, looking
at the obtained results, it is valid for our system.

With regard to the chosen parameters, let’s comment that we
have chosen 9 component input vectors, as in our country
(Spain), the phone numbers consist of 9 digits. We consider
that a 100 telephone number agenda is a sufficiently
significant sample as to check the validity of this system’s
counterpropagation network. Consider that these 100
telephone numbers have been chosen randomly.

As it has already been commented, the user marks the digits
that he doesn't remember with an asterisk (*). Each input
digit generates the intensity shown in table 1.

Digit Intensity
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
* 0 or 5

Table 1: Input intensities for each digit.

As it is possible to observe in table 1, the input intensity i+1
corresponds to each digiti, since the input intensity, having
been normalized, doesn't influence too much in the obtained
results. In the case of digit *, the best input intensity is 5,
since it is the one that best approaches to the intensity of the
rest of the digits. Better results are obtained using this
intensity rather than other intensities like the null one, as it
may be observed in the results section.

3. RESULTS

For the verification of the results we have selected a sample
of 10 telephone numbers. With this sample we have studied
the behavior of the network under the following cases: the
telephone number correctly dialed, the telephone number
containing one, two and three *, the telephone number
dialed with one and two erroneous digits, and finally, the
telephone number exchanging two digits.

In the following table (table 2), the validity of the system
may be graphically observed:

Telephone C * ** *** C1 C2 I2
967212356 ✔ ✚ /❑ ❑ ❑ ✔ ✔ ✔
921456753 ✔ ✚ /❑ ❑ ❑ ✔ ✔ ✔
999876543 ✔ ❑ ✔ ✔
967534389 ✔ ✚ /❑ ✔ ✔ ✔
934666543 ✔ ❑ ❑ ✔ ✔ ✔
965436745 ✔ ❑ ❑ ✔ ✔
945730980 ✔ ✚ ✔
933458658 ✔ ❑ ❑ ✔ ✔
978785656 ✔ ❑ ✔ ✔
965667933 ✔ ✚ /❑ ❑ ❑ ✔ ✔ ✔

Table 2: Results of the simulation.

• C: Behavior of the network dialing the telephone

number correctly.

• *: Behavior of the network dialing the telephone

number with a generic digit.

• **: Behavior of the net dialing the telephone

number with two generic digits.

• ***: Behavior of the network dialing the telephone

number with three generic digits.

• C1: Behavior of the network dialing the telephone
number with an erroneous digit.

• C2: Behavior of the network dialing the telephone

number with two erroneous digits.

• I2: Behavior of the network dialing the telephone
number with two exchanged digits.

• ✔ : The network responds with the correct

telephone number, the most similar of among those
learned.

• ✚ : The network responds with the correct

telephone number, when we assign to the generic
digits an intensity of 0.

• ❑ : The network responds with the correct

telephone number, when we assign to the generic
digits an intensity of 5.

• An empty cell expresses that the network responds
with an incorrect telephone number.

It is easy to observe the improvement of results that is
offered by assigning to the generic digits * an intensity of 5,
with regard to those obtained assigning them the intensity of
0. It is also deduced that the behavior of the network is quite
robust except for the case in which the user dials a telephone
number with three generic digits. Finally, it is necessary to
highlight the excellent behavior appreciated in the case of
the exchange of two digits.

4. CONCLUSIONS

The counterpropagation network is a good solution for the
system that is sought to be built in hardware, providing an
excellent behavior in the case of assigning a value of 5 to
the intensity of the generic digit. It also incorporates a quick
and simple learning mechanism. You have only to assign the
telephone number digits to the weights. And the answer is
obtained in a quick way.

References
[1] Hecht-Nielsen R., Neurocomputing, Addison-Wesley,

Reading, MA, 1990.
[2] Grossberg S., “Studies of Mind and Brain”, Boston

Studies in the Philosophy of Science, vol. 70, D. Reidel
Publishing Company, Boston (1982).

[3] Hecht-Nielsen R., “Counterpropagation networks”,
Applied Optics, vol. 26, no. 23, pp. 4979-4984 (1987).

[4] Hecht-Nielsen R., “Counterpropagation networks”,
Proceedings of the IEEE First Internacional Conference
on Neural Netwoks, Piscataway, NJ, pp. II-19 - II-32,
IEEE (1987).

[5] Freeman J.A. & Skapura D.M., Neural Networks.
Algorithms, Applications, and Programming
Techniques, Addison-Wesley, Reading, MA, 1991.

