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ABSTRACT 

This paper describes the implementation of a system that 
reminds the user of the telephone number of a given list, 
even if the user only remembers part of it, or if the given 
number contains a series of exchanged digits. The system’s 
input consists of a telephone number (composed by digits 
from 0 to 9), containing from zero up to several generic 
digits (asterisks, in this case). The system processes the 
input and returns the selected telephone number among all 
the learned telephone numbers. In this implementation auto-
associative memories have been used. 
KEYWORDS: Software Tools, Algorithms and 
Architectures, Memory 
 
 

1. INTRODUCTION 
 
The following paper introduces the software implementation 
of a system that, associated to a telephone apparatus, is able 
to learn a complete telephone agenda. In our system, when 
the user dials a telephone number, the following cases are 
accepted: (a) he may dial a complete telephone number, (b) 
he may dial an incomplete one – where some forgotten 
numbers are replaced by a generic digit -, (c) he may dial the 
phone number with some exchanged numbers, (d) he may 
dial an erroneous number, and, (e) any combination of the 
previous cases. If necessary, the system corrects the 
telephone number and returns the most similar telephone 
number of among all the learned ones. For the 
implementation of the system we have chosen an auto-
associative memory.  
 
Let us suppose that we have L pairs of vectors {(x1,y1), 
(x2,y2),..., (xL,yL)} where xi∈ Rn and yi∈ Rm. The auto-
associative memory presupposes that yi=xi and it establishes 
a correspondence φ of x in x such that φ(xi)=xi, and, if some 
arbitrary x is closer to xi than any other xj, j=1,...,L, then 
φ(x)=xi. For the implementation of the auto-associative 
memory we have chosen the counterpropagation network. 
Hecht-Nielsen [1] synthesized this architecture combining a 
structure known as the competitive net with Grossberg’s 
outstar structure [2], [3], [4], obtaining this way the so called 
counterpropagation networks.  
 
The network’s operation is quite simple as shown in figure 
1. Given a group of vectors (x1,y1), (x2,y2), ...,(xL,yL), the 
network learns how to associate a vector X in the input layer 
with a vector Y in the output layer. If the relationship 

between X and Y may be defined by means of a continuous 
function Ω,  such that Y=Ω(X), then the network will be 
able to learn to approximate that correspondence for all 
value of X in the interval specified by the training vectors 
group. In the same way, if the inverse of Ω exists, such that 
X is a function of Y, then the network will also learn the 
inverse correspondence, X=Ω-1(Y)2. In our special case, we 
are only interested in the relationship Y = Ω(X).  
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Figure 1: Network structure. 
 

Considering figure 1, note that the architecture consists of 
three layers. An input vector (see, a telephone number) is 
applied to the layer 1 units. Each unit of layer 2 calculates 
its input value net, and a competition takes place to see what 
unit possesses the greatest input value for net. This unit is 
the only one that sends a value to the output units.  
 
 

2. DESCRIPTION 
 

We have not constructed a hardware implementation of the 
described system. Our implementation consists of a software 
simulator programmed under the Visual C++ 5.0 language. 
Initially, the simulator shows the user a dialogue window 
where the input telephone number is to be dialed. The user 
is offered the possibility to dial a known digit (0 to 9), or an 
asterisk (*) in the place where he doesn't remember the 
corresponding digit. Once the number has been completely 
dialed, the network processes the input number and responds 
with an output number. The system has been trained to learn 
100 distinct 9 digit telephone numbers in our latest tests.  



Apart from the automatically Visual C++ 5.0 generated 
classes, we have implemented the classes corresponding to 
the different layers as well as to the whole 
counterpropagation network.  
 
The computer network simulators usually impose a 
normalization for all the input data in order to adapt to the 
computer CPU calculations. In a counterpropagation 
network, layer 1 carries out this function. The outputs of 
layer 1 are governed by the differential equation  
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Once the input vector X is applied, the process elements 
rapidly reach a balance state 0)x( =D [5]. In a digital 
simulation of the counterpropagation networks, it is possible 
to simplify the program by software normalizing the input 
vectors.  

 
That’s why, in our simulator, Class CLayer1 normalizes the 

input according to the equation 
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Layer 2 is the so called competitive network. It is formed by 
a series of processing elements called instars [1], [2]. We 
suppose that the input vector I and the weight vector w have 
both been normalized. The output of the instar is governed 
by the equation net*bayy +−=� , where w*Inet =  and 
a,b>0. The instar reaches the balance value in 

net*(b/a)y
eq

= . The instar learns the weight vector w. 

The learning capacity is carried out initializing with the 
initial weight vector w, and evolving according to the 
differential equation dIycww +−=D , where y  is the output, 
and c,d>0. The mission of the instar is to learn an input 
vector y , providing a greater output intensity the more it 
resembles to the learned input vector.  

 
In the implementation of our CInstar class, we have given 
the same values to a and b. It is possible to simplify the 
learning of the instar by directly assigning the values of the 
weights of vector w from vector y , already normalized. 
That’s the way we have implemented our class CInstar. This 
class also has a parameterized constructor that specifies the 
number of elements of the vector.  

 
The competitive network consists of a group of instars 
classifying any input vector. The instar giving the greatest 
output value is the winner of the competition, and will be 
the only one that will have one non null output. The winner 
will send a value of 1 to the outstar, while the rest of instars 
of the competitive network will send the value 0.  

 
Our class CCompetitiveNet incorporates a parameterized 
constructor, to which the number of instars that form the 
network, corresponding with the number of vectors to be 
learned, is passed.  

Finally, layer 3 consists of some processing elements called 
outstars. During their training process their output values 
can be calculated by means of  
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where the parameters a,b,c>0 and the value of neti is 
calculated in the previously described way. Once the 
training has been accomplished, the output of the outstar is 
equal to:  
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w it is the weight value that has been obtained 

during the training session [5], [2]. In a digital simulation, it 
is possible to approach this learning assigning the weights of 
the outstar directly from the values of the input vectors y .  

 
The outstar quickly reaches a balance value equal to the 
value of the weight encountered in the connection coming 
from the winner unit of the competitive network. A simple 
form of visualizing this process consists on realizing that the 
balance output of the outstar is equal to the input net of the 
outstar,  
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where jz  is the input received from the corresponding 
instar of the competitive network. Since jz =0, unless j=i:  
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This simple algorithm uses balance values of the activities 
and outputs of the nodes. This way we avoid having to solve 
numerically all the corresponding differential equations. 
This way, our class COutstar uses the described algorithm 
to calculate the output. With regard to learning, for each 
outstari of layer 3, our class assigns to each weight wi the 
value corresponding to each input vector yij.  

 
The complete counterpropagation network uses the already 
described classes CLayer1, CCompetitiveNet and COutstar, 
forming a general class CCPN, with a parameterized 
constructor incorporating two parameters that indicate the 
number of instars and the number of elements of the input 
vectors. That is to say, the class CCPN can contain a varied 
number of vectors to learn and of elements of these vectors. 
This way, this design allows us to implement flexible 
architectures of counterpropagation networks.  

 
The outline of our counterpropagation network is the 
following one:  
 

•  Layer 1 or input layer consists of 9 nodes in the 
input vector X, corresponding to the number of 
digits of the telephone number marked by the user. 
With regard to the y inputs, we have 900 nodes 



corresponding to the 9 digits of the 100 telephone 
numbers to learn.  

 
•  The hidden layer, the competitive network, is 

formed by 100 instar nodes, where each instar 
learns one telephone number.  

 
•  Finally, layer 3 or output layer, consists of 9 

outstars, each one memorizing its corresponding 
digit of the y input vectors. The output of this layer 
will be the selected telephone number.  

 
We have chosen the counterpropagation network to 
implement this system, due to the fact that combining 
already existing  types of networks in a new architecture, 
offers the possibility to form different and useful networks 
starting from the existing structures. The counterpropagation 
networks use different learning algorithms for each layer, 
allowing the network to be very quickly trained. As a 
counterpart these networks don't always offer enough 
precision for some applications. In our special case, looking 
at the obtained results, it is valid for our system.  

 
With regard to the chosen parameters, let’s comment that we 
have chosen 9 component input vectors,  as in our country 
(Spain), the phone numbers consist of 9 digits. We consider 
that a 100 telephone number agenda is a sufficiently 
significant sample as to check the validity of this system’s 
counterpropagation network. Consider that these 100 
telephone numbers have been chosen randomly.  

 
As it has already been commented, the user marks the digits 
that he doesn't remember with an asterisk (*). Each input 
digit generates the intensity shown in table 1.  

 
 

Digit  Intensity  
0 1 
1 2 
2 3 
3 4 
4 5 
5 6 
6 7 
7 8 
8 9 
9 10 
* 0 or 5 

 
Table 1: Input intensities for each digit.  

 
As it is possible to observe in table 1, the input intensity i+1 
corresponds to each digiti, since the input intensity, having 
been normalized, doesn't influence too much in the obtained 
results. In the case of digit *, the best input intensity is 5, 
since it is the one that best approaches to the intensity of the 
rest of the digits.  Better results are obtained using this 
intensity rather than other intensities like the null one, as it 
may be observed in the results section.  
 

3. RESULTS 
 
For the verification of the results we have selected a sample 
of 10 telephone numbers. With this sample we have studied 
the behavior of the network under the following cases: the 
telephone number correctly dialed, the telephone number 
containing one, two and three *, the telephone number 
dialed with one and two erroneous digits, and finally, the 
telephone number exchanging two digits.  
 
In the following table (table 2), the validity of the system 
may be graphically observed:  
 

 
Telephone C * ** *** C1 C2 I2 
967212356 ✔  ✚ /❑  ❑  ❑  ✔  ✔  ✔  
921456753 ✔  ✚ /❑  ❑  ❑  ✔  ✔  ✔  
999876543 ✔  ❑     ✔  ✔  
967534389 ✔  ✚ /❑    ✔  ✔  ✔  
934666543 ✔  ❑  ❑   ✔  ✔  ✔  
965436745 ✔  ❑  ❑   ✔   ✔  
945730980 ✔   ✚    ✔   
933458658 ✔  ❑  ❑   ✔   ✔  
978785656 ✔  ❑    ✔   ✔  
965667933 ✔  ✚ /❑  ❑  ❑  ✔  ✔  ✔  

 
Table 2: Results of the simulation.  

 
•  C: Behavior of the network dialing the telephone 

number correctly.  
 
•  *: Behavior of the network dialing the telephone 

number with a generic digit.  
 
•  **: Behavior of the net dialing the telephone 

number with two generic digits.  
 
•  ***: Behavior of the network dialing the telephone 

number with three generic digits.  
 

•  C1: Behavior of the network dialing the telephone 
number with an erroneous digit.  

 
•  C2: Behavior of the network dialing the telephone 

number with two erroneous digits.  
 

•  I2: Behavior of the network dialing the telephone 
number with two exchanged digits.  

 
•  ✔ : The network responds with the correct 

telephone number, the most similar of among those 
learned.  

 
•  ✚ : The network responds with the correct 

telephone number, when we assign to the generic 
digits an intensity of 0.  

 
•  ❑ : The network responds with the correct 

telephone number, when we assign to the generic 
digits an intensity of 5.  



•  An empty cell expresses that the network responds 
with an incorrect telephone number.  

 
It is easy to observe the improvement of results that is 
offered by assigning to the generic digits * an intensity of 5, 
with regard to those obtained assigning them the intensity of 
0. It is also deduced that the behavior of the network is quite 
robust except for the case in which the user dials a telephone 
number with three generic digits. Finally, it is necessary to 
highlight the excellent behavior appreciated in the case of 
the exchange of two digits.  
 
 

4. CONCLUSIONS 
 
The counterpropagation network is a good solution for the 
system that is sought to be built in hardware, providing an 
excellent behavior in the case of assigning a value of 5 to 
the intensity of the generic digit. It also incorporates a quick 
and simple learning mechanism. You have only to assign the 
telephone number digits to the weights. And the answer is 
obtained in a quick way.  
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