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     Abstract. A system based on the charge-discharge characteristics of the neural synapses of the visual path, is shortly 
introduced. The proposed system uses the LSR (length/speed ratio) descriptor. After image segmentation, the LSR 
characteristic is used to detect and classify motion in the scene. This paper mainly focuses on its simulator named TIRANO 
and in particular on its learning sessions and results. That’s the reason why  TIRANO learning capacity is demonstrated for 
the detection of moving targets in the following cases: (a) recognition of a family of synthetic moving elements, (b) 
recognition of real elements, (c) recognition of several positions of the same object, and, (d) recognition of characteristic 
motion situations. 
 
 
1. INTRODUCTION 
 
     Detection of moving  elements has been largely 
studied over the past decades. An excellent 
classification of computational models in pattern motion 
can be found in [Ser93]. Models of local motion 
detection are the gradient models ([Fen79] [Hor81] 
[Mar81] [Law89]), the correlation models ([Has56] 
[Bar65] [Ade85] [Wat85]) and the image difference  
models ([Fu88] [Sch89]), whereas models of pattern 
motion measurement can be divided into models that 
incorporate multiple motion constraints ([Fen79]), 
matching models ([Tho81] [Pra83]), and models that 
use a smoothness constraint ([Hor81] [Hil84] [Koc86] 
[Yui88]). We propose in this paper our particular 
solution to the detection of moving elements. 
 
     The developed system is based on the charge-
discharge characteristics of the neural synapses of the 
visual path ([Fer92] [Fer95]). By analysing the problem 
of the detection of moving targets in image sequences, 
we found that one relevant point was the time of 
presence of a specific grey level in the same coordinate 
of the scene. A fast target is present during a shorter 
time than a slower one, and the greater the size of the 
target the longer time it stays on each pixel of the 
sensor. The descriptor `length/speed ratio´ (LSR) was 
therefore studied.  
 
     We define the LSR of a moving zone as the ratio 
between its length L in the direction of movement and 
its speed S. This descriptor can be interpreted as a 

measure of the permanence of a given zone over the 
sampling point. In other words, the LSR value measures 
the time that a certain element of the image activates a 
particular coordinate in the array of sensors. In the case 
of points at which the image is static, there is no 
substantial modification of grey levels, so a saturation 
value is generated for the LSR. So, this value is not 
significant.  
 
     The LSR characteristic is invariant under changes in 
the distance between the sensor and the moving 
element. It is also invariant under changes in the 
direction of movement, but it is not invariant under 
rotations of the moving element with respect to the 
direction of movement. 
 
     This LSR relation can be locally computed, it 
permits multilayer processing and presents good 
discriminating features, it is able to learn, and thus it 
means it is neural.  
 
2. TIRANO SYSTEM 
 
     In order to solve this problem, a network made up of 
three layers has been used: 
 
1. Segmentation. The variations in the image are 

detected. 
 
2. Selection and extraction of characteristics. The 

LSR  characteristics set used to classify motion in 
the scene is detected and selected. 



3. Classification and association. The classes linking 
the elements of the learning family are 
differentiated. 

 
     TIRANO is the simulator for the described problem. 
This system has learning capacity through a training 
period in which the system is shown, beside the video 
signal, an assistance signal indicating the elements 
appearing in each scene. The system learns to classify 
motion situations or elements and is able to differentiate 
them later [Fer97]. 
 
3. SIMULATION 
 
     The simulation is designed with the possibility to 
control and debug learning and computational 
processes. The simulator uses an undefined sequence of 
photograms as input and performs the same process as 
the proposed network. The simulator processes the 
information frame by frame allowing the input of a new 
frame when the previous one has already been 
processed. 
 

The working method can be divided into several 
steps: 
 
1. Design and assembly of the training, test and 

operation sequences. The scene backgrounds and 
moving elements are designed by means of 
different simulator tools. 

 
2. Design of the assistance values. Assistance values 

are generated simultaneously using the same 
routines. 

 
3. Preparation and definition of the state. The 

simulator defines the values of all parameters of the 
system. The system provides a full set of predefined 
values for all parameters, so you can properly work 
with them. Nevertheless, they can be modified for 
specific applications before starting the learning 
sessions or at any point of the process.  

 
4. Trace and analysis of the learning process and 

behaviour. The simulator allows the analysis of the 
evolution of variables behaviour and the system 
modules’ state of activation. 

 
The management of image sequences presented to 

the system during the learning session is essential. A 
learning process can imply several sessions, and some 
of them can even be substituted by any other during the 
process. Modifications of system parameters or 
alterations of system age during the learning process can 
also be accomplished. This permits to analyse the 
influence of these modifications in the process, or to 

introduce changes into the learning process or into the 
running process in a controlled manner. The final state 
of the system will depend upon all these processes. 

 
The simulation trace management is directed to the 

control of the trace, allowing the definition of the level 
of information supplied to the user. Some possibilities 
are allowed trough this option. The definition of the 
simulation stops after the process of the layers 1 
(segmentation), 2 (characteristic extraction) or 3 
(classification), or when the number of processed 
photograms is multiple of a constant; or the possibility 
to save the state of the system when the number of 
processed photograms is multiple of a specific constant. 

 
The management of system parameters allows, 

beside other modifications, to change the parameters of 
the three layers and those of the system. In the first 
layer, operations such as segmentation activation on the 
digitising card can be performed to see in the monitor 
the binary image. For the case of layer 1, the simulator 
allows to show all data related to the realised process. 
Monitoring of the state of layer 2 consists in showing 
state and activation values of the modules of this second 
layer as well as the value of the state variables. 
Therefore all data related to the LSR characteristic are 
shown. Data associated to the monitoring of the layer 3 
state will be all those regarding associative and class 
modules. The working stage parameters of the system 
are shown in each layer, as well as the number of 
sequence within the present session, number of 
photogram in sequence, number of repetition of the 
sequence, number of photograms processed and age of 
the system. 

 
4. LEARNING SESSIONS AND RESULTS 
 
     We next describe several examples of learning 
sessions. Consider the fact that the system used for all 
examples is exactly the same. Its learning capacity 
allows the system to adapt itself to the environment it is 
shown with no intervention at all. 
 
4.1. Recognition of a family of synthetic 
moving elements. 
 
     The aim of this learning exercise is to achieve that 
the system learns to recognise a set of moving elements, 
being able to detect them and differentiate them even if 
they are defective or accompanied by noise. Here we 
choose a family of elements with very well known 
characteristics (see figure 2a), allowing thus to predict 
and check the system performance. 
 
     During the learning process a scene composed of a 
static transparent background (figure 1a) and the set of 



moving elements (figure 2a), all of them at same speed, 
is shown to the system accompanied by their respective 
assistance values. This will cause the LSR characteristic 
to appear in the scene.  

 
     After the network training process, different types of 
sequences are offered. In first place a complete 
sequence with all the elements of the learning family are 
shown, with no noise, in perfect state and with no 
assistance values (figure 2a). The network recognises all 
moving elements (see table 1). In second place, in a 
non-transparent background (figure 1c), the detection of 
one of the elements is accomplished defectively (table 
2). When a zone of a mobile overlaps with a zone of the 
background with the same grey level (and there does not 
exist any intermediate grey level variation), the LSR 
value is lost, due to the fact that the charge values on the 
static background were previously saturated. In order to 
check up to what level the network is able to 
differentiate satisfactorily the elements in the scene, a 
set of defective elements has been generated (see figure 
2b), both on a transparent background (figure 1a) and on 
a non-transparent background (figure 1c), yielding 
highly satisfactory results (see tables 3 and 4, 
respectively).  
 
 
 

    (a) 
 

    (b) 
 

    (c) 
 

    (d) 
 

Figure 1. Different backgrounds. (a) Transparent. 
(b) Uniform. (c) Synthetic. (d) Wally. 

     In all presented tables Shown Element is the icon 
moving through the scene, Expected Response should be 
the correct answer of the system, while System 
Response corresponds to the element that has really 
been recognised by the system. We offer one more of all 
available system’s variables. Certainty shows the 
certainty of the system’s decision on the recognition of 
the element. 
 

 
Table 1: Results obtained for perfect synthetic icons 

on a transparent background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

S0 0 0 100 
S1 1 1 100 
S2 2 2 100 
S3 3 3 100 
S4 4 4 100 
S5 5 5 100 
S6 6 6 100 
S7 7 7 100 

 
 
 
Table 2: Results obtained for perfect synthetic icons 

on a non-transparent background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

S0 0 0 100 
S1 1 1 100 
S2 2 2 / 7 46 
S3 3 3 100 
S4 4 4 100 
S5 5 5 100 
S6 6 6 100 
S7 7 7 100 

 
 
 
Table 3: Results obtained for non-perfect synthetic 

icons on a transparent background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

DS0 0 0 81 
DS1 0 6 100 
DS2 2 2 81 
DS3 2 2 / 7 40 
DS4 2 5 62 
DS5 5 5 81 
RS0 1 1 100 
RS1 1 1 100 

 
 



       
        S0 / V=1               S1 / V=1 

       
        S2 / V=1              S3 / V=1     

      
        S4 / V=1               S5 / V=1          

        
        S6 / V=1               S7 / V=1    
 

Figure 2a. Moving elements. Perfect synthetic. 
 
 

      
        R0 / V=1               R1 / V=1 

         
        R2 / V=1              R3 / V=1     

  
        R4 / V=1               R5 / V=1          

        
        R6 / V=1               R7 / V=1    
 

Figure 2c. Moving elements. Perfect real. 
 
                          

       
        DS0 / V=1               DS1 / V=1 

     
        DS2 / V=1              DS3 / V=1     

   
        DS4 / V=1               DS5 / V=1          

        
        RS0 / V= ½               RS1 / V= ¼    
 

Figure 2b. Moving elements. Non-perfect synthetic. 
 
 

      
        DR0 / V=1               DR1 / V=1 

         
        DR2 / V=1              DR3 / V=1     

  
        DR4 / V=1               DR5 / V=1          

        
        DR6 / V=1               DR7 / V=1    
 

Figure 2d. Moving elements. Non-perfect real. 
 
                          



 
              G0 / V=1                       G1 / V=1          

      
               G2 / V=1                       G3 / V=1    
 

Figure 2e. Moving elements.  
Several positions of a same element. 

 
 

 
                M0                              M1          

    
                M2                              M3    
 

Figure 2f. Moving elements.  
Characteristic motion situations. 

 
 
                         
 
 
Table 4: Results obtained for non-perfect synthetic 

icons on a non-transparent background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

DS0 0 0 81 
DS1 0 6 100 
DS2 2 6 99 
DS3 2 2 / 7 40 
DS4 2 5 62 
DS5 5 5 81 
RS0 1 1 100 
RS1 1 1 81 

4.2. Recognition of real elements. 
 
     This time the moving elements are extracted from 
real images taken by a TV camera (figure 2c). So their 
characteristics are unknown. Following the steps of the 
previous example –this time, the background is a 
uniform non-transparent one (see figure 1b)-, the results 
obtained confirm that the network is not only effective 
for synthetic working environments but also for real 
environments. 
 
     We offer in tables 5 through 7, the results obtained 
using the real perfect elements of figure 2c on the 
uniform non-transparent background of figure 1b (table 
5), those of the real perfect elements of figure 2c on the 
non-uniform non-transparent background of figure 1d 
(table 6) and , finally, those of the non-perfect elements 
of figure 2c on the non-uniform and non-transparent 
background of figure 1d (see table 7). 
 
     This offers the possibility to use the network for 
numerous applications where it is usual to modify the 
elements to be detected. Our system contains the 
necessary operative and evolutionary resources to 
require just a single learning session with a 
predetermined number of photograms properly 
accompanied by assistance. 
 
Table 5: Results obtained for perfect real icons on 

an uniform background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

R0 0 0 95 
R1 1 1 97 
R2 2 2 98 
R3 3 3 97 
R4 4 4 96 
R5 5 5 95 
R6 6 6 93 
R7 7 7 100 

 
 
Table 6: Results obtained for perfect real icons on a 

non-transparent non-uniform background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

R0 0 0 95 
R1 1 1 97 
R2 2 2 98 
R3 3 3 97 
R4 4 4 96 
R5 5 5 95 
R6 6 6 93 
R7 7 7 100 



Table 7: Results obtained for non-perfect real icons 
on a  non-transparent non-uniform background 
Shown 

Element 
Expected 
Response 

System 
Response 

Certainty 

DR0 0 0 95 
DR1 1 1 97 
DR2 2 2 98 
DR3 3 4 97 
DR4 4 4 96 
DR5 5 5 95 
DR6 6 6 93 
DR7 7 7 100 

 
 
4.3. Recognition of several positions of the 
same object. 
 
     In this session we intend to illustrate how the lack of 
invariance of the LSR characteristic can be used in 
situations of orientation change of the mobile with 
respect to motion direction. 
 
     During the learning process a scene composed of a 
static background (figure 1a) and the same moving 
element which appears with different orientations with 
respect to the direction of the speed vector (figure 2e), 
but always at the same speed, is presented to the system. 
For this session, we extract a set of elements from real 
images obtained with a black and white TV camera. 
 
     During the stage of operation, the network 
recognises all orientations of the moving element, thus 
proving the starting hypothesis (see results on table 8). 

 
 

Table 8: Results obtained for the detection of 
various orientations of the same element 

Shown 
Element 

Expected 
Response 

System 
Response 

Certainty 

G0 0 0 100 
G1 1 1 100 
G2 2 2 100 
G3 3 3 100 

 
 
4.4. Recognition of characteristic motion 
situations. 
 
     In this process we want the system to detect 
characteristic motion situations. The system should also 
be able to associate them to the corresponding 
assistance values. 
 

     For this aim a set of simple moving elements has 
been designed (see figure 2f). Each mobile may have a 
different speed (in pixels per frame), as can be observed 
in table 9. We assume that each combination of motion 
is characteristic of a system’s state and our goal is that it 
differentiates at each moment the state of the scene 
being observed. An example of such a system may be a 
traffic control system where the fluidity of vehicles 
actually represents the characteristic of the state of the 
scene. Results are presented on table 10. 
 
 

Table 9 
Situations M0 speed M1 speed M2 speed M3 speed

SM0 1 1 1 1 
SM1 ½ ½ 1 1 
SM2 1 1 ½ ½ 
SM3 1 ½ ½ 1 
SM4 2 1 1 2 
SM5 1 2 2 1 
SM6 ½ 1 2 2 
SM7 2 2 1 ½ 

 
 

Table 10: Results obtained for the detection of 
characteristic motion situations 

Shown 
Element 

Expected 
Response 

System 
Response 

Certainty 

SM0 0 0 100 
SM1 1 1 100 
SM2 2 2 100 
SM3 3 3 100 
SM4 4 4 80 
SM5 5 5 80 
SM6 6 6 80 
SM7 7 7 80 

 
 
5. CONCLUSIONS 
 
     After considering the results obtained for all of these 
learning sessions it can be stated that all our proposals 
are valid. We have demonstrated through the shown 
examples the versatility of our system in adapting to a 
great number of different training sets with no change in 
the basic structure. 
 
     Some examples of this type of applications can be 
flow analysis or traffic control, moving elements 
detection and classification on a conveying belt or on 
real extern backgrounds, or other applications with 
similar characteristics. 
 



     Our research group actively goes on working on this 
field. 
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