
A Neural Architecture for the Identification
of Number Sequences

Juan Moreno1, Gabriel Sebastian1, Miguel A. Fernandez2 & A. Fernandez Caballero2

1{jmoreno,gsebas}@sancho.info-ab.uclm.es 2{miki,caballer}@info-ab.uclm.es
Departamento de Informatica, Escuela Politecnica Superior de Albacete

Universidad de Castilla-La Mancha, 02071 - Albacete, Spain

Abstract

This paper describes an architecture based on spatio-
temporal networks that identifies sequences of numbers.
This architecture incorporates an input layer that
transforms (by means of a mathematical function) the
system's input into a normalized vector that will be applied
in a second step to a spatio-temporal network. Finally, the
architecture is completed by an output layer using
Grossberg's outstar units [1]. We have appreciated our
system's complexity to be lower than any other existent
method developed to solve problems of this type. By means
of this architecture we have implemented a system that
reminds a user of the telephone number of a given list,
even if the user only remembers part of it, or if the given
number contains a series of exchanged digits. The system
processes the input and returns the selected telephone
number among all the learned ones.

1. Introduction

The following work describes an architecture based
on spatio-temporal networks to identify sequences of
numbers. The architecture incorporates an input layer
whose output is a normalized vector obtained according to
a mathematical expression that will be explained in next
section. The architecture also incorporates a hidden layer
that receives the output of the former input layer. This
hidden layer is a spatio-temporal network (STN). Finally
there is an output layer (outstar) whose function is to
choose the output of among all the previously learned
ones.

This architecture has inspired a system that,
incorporated to a telephone apparatus, memorizes an
agenda of telephone numbers. When the user dials a
telephone number, either a complete one, or where some
digits are missing, or even where some digits have been
exchanged, the system returns the correct telephone
number (obviously if it was erroneous).

We will use a memory in the following terms. Let's
have L pairs of vectors {(x1,y1), (x2,y2),..., (xL,yL)} where

xi∈Rn and yi∈Rm. This memory presupposes that yi=xi;
establishing this way a correspondence φ from x into x
such that φ(xi)=xi, and, if any arbitrary x is closer to xi

than any other xj, where j=1,... , L, then φ (x)=xi. For the
implementation of this memory we have chosen the idea
of spatio-temporal networks .

In spatio-temporal networks, the input vectors that are
presented to them are correlated in time. Their architecture
is based on the structure of formal avalanche proposed by
Grossberg [2]. Instead of carrying out a recognition
operation, the avalanche allows to learn and to remember
a sequence of spatio-temporal patterns.

In our particular application each dialed digit
corresponds to one normalized vector; the sequence of
digits through the time will form the final telephone
number.

If { Q11, Q12, ..., Q1n} is defined as the sequence of
input digits to our network, the avalanche for the
recognition of a telephone number is the one represented
in figure 1.

xmx2

{ Q11, Q12, Q1m } = Q1

zm

d

x1

yd
d

z2z1

Figure 1. The avalanche network structure .

Every Q1i is transformed into a normalized vector by
means of the function defined in the input layer, and is
applied to the inputs of all the units of the STN. These
inputs are allowed to remain there during a time t. Later
the following vector Q1i + 1 is applied, and so forth.

During that time t, each unit dynamically adjusts its
activation and output values according to a rule that will be
introduced later. Observe that the output of each unit is
connected to all successive units, from left to right, with a
connection intensity d, where 0 < d < 1.

After processing all the digits in the input and STN
layer, the outstar chooses one specific telephone number
of among all the learned ones.

2. Description

Based upon the above ideas, we have designed an
architecture consisting of three layers, as shown in figure
2. We may distinguish an input layer with one single
processing element that transforms the input digit. There is
also a hidden layer based on a spatio-temporal network
that is able to learn a sequence of normalized vectors.
Finally consider also the output layer that associates the
winning sub-network to one particular telephone number.

INPUT LAYE R

OUTPUT LAYE R

HIDDEN LAYE R

Figure 2. The network architecture.

The unique unit of the input layer is fed by the
complete sequence of input numbers. Then this layer
spreads its output simultaneously to all the units of the
hidden layer. Once the whole sequence of digits has been
processed by the input and hidden layers, the output layer
associates the winning group of the hidden layer with one
concrete telephone number.

2.1 The input layer

The input layer carries out the mission of transforming
an input number into a normalized vector. As the STN
[3][4][5] requires its inputs to be normalized, our aim was
to incorporate to the architecture a specific and novel layer
accomplishing this cue. The input layer associates to an
input number a vector as shown in figure 3. Any of the so
obtained vectors has the property of being unitary (its
modulus is equal to one). This is to say, they are already
normalized. This distribution of vectors also incorporates
the characteristic that the digit j is halfway to the digits j+1
and j-1.

4

8

0 1

2

3

6
5

7

* X

Z

Y

9

Figure 3. The vectors graphical
representation .

The output of the input layer is obtained by the
following mathematical expression (2.1.1):

if (j = ‘*’)

 then N(j) = (1, 0, 0)

 else N(j) = (cosα, sin(j*
π
5) * sinα, cos(j*

π
5) * sinα)

where j is the input digit to the layer, and α is the angle
formed by the vector and the X-axis. By giving larger
values to the angle, the STN confuses less the vectors that
it receives of the input layer. This is due to the fact that a
larger value of α implies that the vectors are more
separated from each other, so the scalar product of the
input vector by the learned vector will give a smaller value
as a result.

In our application, the input layer associates each
possible input digit, 0 to 9, and the generic digit * , to a
normalized vector according to expression (2.1.1). The
angle π/5 is obtained by dividing the circumference length

(2π) by 10 (the maximum number of possible input digits).
Obviously, expression (2.1.1) may be generalized for other
applications where the input number could vary from 0 to
n, just substituting the angle π/5 by)1/(2 +nπ . For the

generic digit we have chosen the vector (1,0,0) because it
is halfway to the rest of the normalized vectors.

2.2 The hidden STN layer

In our architecture this layer corresponds to a spatio-
temporal network, made up of n*m units, where n is the
number of sequences of digits (or telephone numbers) to
be learned, and m is the number of elements (or digits)
making up a sequence.

Just as in other networks, these network units receive
an input value net obtained as the scalar product of the
input vector by the unit's weight vectors: Q*Z.
Furthermore, each unit receives an input signal from the
outputs of all the preceding units. Preceding means to the
left of a given unit, as represented in figure 1. Since all the
weights associated to the last connections have the value
of a constant d < 1, the total input of unit i will be:

∑
+

=
+=

1

1
1

i

k
kiii xd*ZQI (2.2.1)

where xk is the output of unit k. The output of unit i is
modeled by means of a differential equation as:

[])(Γ− ++−= IibaxAx ii
�

 (2.2.2)

where a and b are both positive constants. Function [u]+
is defined as:

[]




≤
>

=+

0 0

0

uif

uifu
u (2.2.3)

where Γ represents a value threshold. We will consider
that Γ is a previously defined constant value that filters the
total input of the unit, only affecting the values that
overcome it. Function A(u) is a so called attack function. It
is defined by equation:





≤
>

=
0

0
)(

zifcz

zifz
zA

where 0 < c < 1. The attack function is used to determine
that the times of charge and discharge of the output
values of the unit's weights are different. The calculated
unit's attack function value is multiplied by a small value
(δt) that indicates the speed of updating the network,
producing this way the updating value of the output of

the unit. The unit's output is updated adding the
calculated attack value to the previous output value.

The hidden layer is divided into groups of m units.
Each of them has to learn and recognize one telephone
number. The output of the last unit of each group will be
the group's output value.

The output unit of each group presenting the largest
answer will be the only with a non null result. In other
words, we convert to 1 the highest output value of each
group, and to 0 the rest. The output of each group may be
calculated as:





 ≠∀>

=
otherwise 0

 if 1 ijxx
z

ji
i

These outputs will be the inputs to the output layer.
Let’s consider now the values given to the parameters

in this layer. Parameter δt has been assigned a value of 1,
leaving this way the updating value unchanged.
Parameter c representing the discharge value of the
output intensity of each unit, has been assigned a value of
0'1, so that, once a unit has been charged, it will not be
quickly discharged. The total input is filtered with a
threshold value Γ. When a unit receives the memorized
vector as its input, it gives 1 as a result. So, assigning a
value of 0'8 to Γ, only similar vectors to the expected one
will be allowed to go through. Parameters a and b,
indicating the importance of the previous output and the
total input, respectively, have been assigned the values
1'1 and 1/0'3, in order to adjust the output intensity of
each group. Parameter d represents the influence of the
connections of the preceding units to the unit's total
input. We have given it a value of 0'2. This way we don't
lose the charge of a sequence of guessed digits that can
take a maximum value of two, and at the same time we
don't annul the total input.

2.3 The output layer

Finally, the output layer consists of a series of
processing elements called outstars. The output of an
outstar is:

wcayy eq
iii +−= ''

�

where w
eq
i is the fixed value of the weight that has been

found during the learning step [3] [1], as it will be
described later on.

The outstar quickly reaches a balance value equal to
the value of the weight of the connection coming from the
winning unit of among the outputs of the groups. An easy
way of understanding this process consists in realizing that
the balance output of the outstar equals the input value net
of the outstar,

∑=
j

jkj
eq
k zwy
'

where jz is the input received from the corresponding
group of the STN layer. Since jz = 0, unless j = i , it is
possible to rewrite:

kiiki
eq
k

wzwy =='
(2.3.1)

This simple algorithm uses balance values of the
activities and outputs of the nodes. This way we avoid
solving numerically all the corresponding differential
equations.

2.4 Learning

In this section we will describe the learning algorithms
of the different layers of our architecture.

The input layer doesn't need a learning phase. The
translation is easily performed by implementing the
function described in section 2.1.

Learning of each unit of the STN layer starts with the
initial weight vector w, which evolves according to the
differential equation dIycww +−=

�
, where y is the

output, and c, d > 0. The role of an STN unit is to
memorize a normalized input vector, providing the larger
an output intensity the more the input vector resembles the
learned input vector.

On the other hand, the weights of each outstar unit of
the output layer evolve during their learning process
according to the differential equation

iiii netcbyayy *'' ++−=�

where a, b, c > 0 and neti=I*W .

3. Implementation

Our architecture has been proved as a particular
application in the problem of the correction of phone
numbers as described in the introduction section. We have
implemented a simulator using the Visual C++ 5.0
programming language. Initially the user is shown a
dialogue window where he is invited to dial the desired
number. Apart from the normal digits (0 to 9), the user has
the possibility to dial an asterisk ('* '), if he doesn't
remember the corresponding digit. Once the number has
been dialed, our architecture processes the input number
and responds with an output number. The system has
memorized in our latest tests one hundred 9-digit
telephone numbers.

Apart from the automatically generated classes by
Visual C++ 5.0, we have written the classes

corresponding to the different layers as well as to the
complete network.

The implementation of the input layer is very simple. It
has been as easy as implementing function (2.1.1) as a
method of the CInput class.

The STN layer is formed by a group of the same type
of units. To implement one of theses units, class CUnit has
been written. This class is formed by a group of attributes
and methods that carry out the functions described in
section 2.2. The class has been parameterized in order to
use dynamic memory. That’s why it incorporates an
integer parameter indicating the number of inputs coming
from the preceding units of its group. Class CNetworkSTN
(spatio-temporal network) is formed by a list of CUnit
objects. This class forces each unit to learn and propagate,
and finally, the competition among the outputs of the last
unit of each group is realized. This competition is nothing
but the change to one of the output of the unit with the
largest intensity, and to zero of the others.

The outstar output layer consists of a group of objects
of class COutstar. This class uses formula (2.3.1) to
calculate its output. With regard to learning, to each
outstari of the output layer, our class assigns to each
weight wi the corresponding value to each input vector yij.

The complete architecture uses the already described
classes CInput, CNetworkSTN and COutstar, forming a
general class COurArchitecture, with a parameterized
constructor with two parameters that indicate the number
of groups and the number of elements of the input
sequence, respectively. That is to say, the class
COurArchitecture may contain a variable number of
groups to learn as well as of elements of these groups. This
way, this design allows us to implement flexible
architectures.

4. Results

For the verification of results we have carried out
several simulations with 100 different telephone numbers
composed of 9 digits each. With the purpose of obtaining a
complete statistic of results we have introduced all the
telephone numbers with some error, and with different
values for α. The studied cases are the following ones: the
telephone number is correct (C), a generic digit appears in
a random position (1*), two generic digits are introduced
in random positions (2*), three generic digits are dialed in
random positions (3*), one erroneous digit is dialed in a
random position (E1), there occur two errors in random
positions (E2), three errors appear in random positions
(E3), two digits are exchanged in a random way (I2), the
telephone number is displaced one position to the right
from the initial position (D1), and the phone number is
displaced one position to the right from a random position
(DX). The simulations present as a result the three
telephone numbers that took the greatest output intensities.

Table 1 shows the number of successful guesses in the
simulations, with the following values of parameter α in
the input layer: π/4, π/3, 2π/5 and π/2.

α π/4 π/3 2π/5 π/2
1st 100 100 100 100
2nd 0 0 0 0C
3rd 0 0 0 0
1st 87 86 90 91
2nd 7 12 5 61*
3rd 3 1 4 3
1st 64 65 72 69
2nd 15 12 14 132*
3rd 6 14 4 6
1st 45 44 54 48
2nd 14 21 20 173*
3rd 12 9 7 13
1st 78 84 90 88
2nd 14 12 5 8E1
3rd 3 3 2 2
1st 57 59 62 66
2nd 15 21 13 11E2
3rd 6 7 9 6
1st 39 36 39 40
2nd 12 17 14 17E3
3rd 11 8 9 4
1st 65 74 72 72
2nd 13 9 7 14I2
3rd 4 2 9 8
1st 83 83 84 83
2nd 8 9 7 8D1
3rd 3 3 4 3
1st 70 78 79 72
2nd 10 10 7 14DX

3rd 8 4 6 4

Table 1. Simulation results.

where:

• C: the system’s number of successful guesses
introducing the correct telephone numbers.

• 1*: the system’s number of successful guesses
introducing the telephone numbers with a generic
digit.

• 2*: the system’s number of successful guesses
introducing the telephone numbers with two generic
digits.

• 3*: the system’s number of successful guesses
introducing the telephone numbers with three
generic digits.

• E1: the system’s number of successful guesses
introducing the telephone numbers with one random
erroneous digit.

• E2: the system’s number of successful guesses
introducing the telephone numbers with two random
erroneous digits.

• E3: the system’s number of successful guesses
introducing the telephone numbers with three
random erroneous digits.

• I2: the system’s number of successful guesses
introducing the telephone numbers with two
exchanged digits.

• D1: the system’s number of successful guesses
introducing the telephone numbers displaced one
position to the right from the initial position.

• DX: the system’s number of successful guesses
introducing the telephone numbers displaced one
position to the right from a random position.

If we observe the results presented on table 1, we can
confirm that, in most cases, for larger values of the angle
α the obtained results are better. This is because the
system confuses less the digits as their corresponding
vectors are more distant. On the other hand, it is possible
to appreciate that the system’s behavior is better for
telephone numbers containing asterisks (‘*') than for
telephone numbers with erroneous digits. Consider also
that the number of successful guesses in case D1 is
almost of 85% in the telephone number with a greater
output intensity. Finally, for any value of α , and in most
test cases the system’s number of successful guesses is
equal or greater to a 70%. It is necessary to keep in mind
that in cases E3 and specially 3*, the telephone numbers
obtained as an answer cannot be considered to be
erroneous, as you may have several telephone numbers
that fulfill the conditions of the dialed telephone number.

On the other hand, it is interesting to analyze the
complexity of the implementation of our architecture.
The complexity is a function of two parameters: n, that is
the number of telephone numbers of the agenda, and m,
that expresses the number of digits of each telephone
number. We will analyze the complexity of our
implementation layer by layer.

The input layer is just the implementation of the
mathematical function (2.1.1) of order O(1). As it is
passed m digits, its complexity will be of order O(m).
The STN layer is composed of m*n units, and to each of
these units the m digits are passed; so, the complexity is
of order O(m*n*m) = O(m2*n). The outstar is governed

by the equation ∑=
j

jkj
eq
k zwy
'

; as this sum goes from 1 to

n, the order of complexity would be O(n). Finally,
summing all three layers, the complexity of the system
would be O(m)+ O(m2*n)+O(n). As O(m) and O(n) are
insignificant towards O(m2*n), the total complexity will
be of order O(m2*n). The extra cost to this complexity is

the cost of the learning step which is only carried out in
one occasion. The complexity of learning in the STN
layer is of order O(m*n), since each unit of the STN layer
memorizes a normalized vector of three components, and
this is of order O(1). On the other hand, the outstar
memorizes n digits (assignment of n values in an array of
n components), and cause we have m outstar units, the
complexity will be of order O(m*n). So the complexity
of learning is O(m*n). If we compare this complexity
with a common method, -just keep in mind the case of
the displacements- the complexity would be very
superior to ours, hardly inferior to O(n2).

Furthermore, our implementation is able to evaluate
many more cases than those presented in this paper, but
always remaining the same complexity, while in any
other algorithm you have to evaluate case by case.

5. Conclusions

An architecture that includes, as a relevant novelty,
an input layer associating to an input number a
normalized vector by means of a mathematical function,
has been presented. This vector hardly “confuses” with
any other representative vector of any other input
number. This way the STN layer takes a great advantage
in recognizing the number sequences.

With regard to the results of the simulations, consider
that, for any value of α, and in almost all the cases of our
tests, the percentage of successive guesses of the system
takes a value of 70% or higher. In particular, the
percentage in tests with telephone numbers with
displaced sequences of digits, takes a surprising value
around an 80% (if we only take in account the winner
telephone number).

The complexity of the implementation of the
proposed architecture is lower compared to any common
method. Especially if we consider the displacement
cases. Our implementation is valid in much more cases
than those analyzed in the tests, always presenting the
same complexity.

Finally, we want to highlight that, thanks to the
flexibility of our architecture, it is applicable to a great
variety of problems related with the recognition of
number sequences, like in the case of artificial vision,
speech recognition, and so on.

References

[1] S. Grossberg. Studies of Mind and Brain, volume 70 of
Boston Studies in the Philosophy of Science. D.Reidel Publishing
Company, Boston, 1982.
[2] S. Grossberg. Learning by Neural Networks. Published by
Stephen Grossberg in Studies of Mind and Brain. D. Reidel
Publishing, Boston, MA, 65-156, 1982.
[3] J. A. Freeman & D. M. Skapura. Neural Networks.
Algorithms, Applications, and Programming Techniques.
Addison-Wesley, Reading, MA, 1991.

[4] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley,
Reading, MA, 1990.
[5] R. Hecht-Nielsen. Nearest matched filter classification of
spatio-temporal patterns. Technical Report, Hecht-Nielsen
Neurocomputer Corporation, San Diego, CA, 1986.

