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Abstract. Due to the growing interest of many applications in detecting sequences of
numbers (communications, artificial vision,...) where some of them may appear faulty,
we thought about the possibility to compare two types of adequate neural nets to resolve
this problem. These are the counter-propagation and the spatio-temporal nets. To see the
effectiveness of each of them, our team has implemented two simulators of a system
whose function is to correct a telephone number (as example of a sequence of numbers).
To do this, the system reads the telephone number and, using the counter-propagation
and the spatio-temporal nets, selects a telephone number of among all the learned ones.

1 Introduction

This paper seeks to check the efficiency of the counter-propagation nets (CPNs) and of the
spatio-temporal nets (STNs) in the detection of sequences of numbers containing errors. To
check each of the described nets, two simulators of a system have been implemented. These
simulators memorise a calendar of telephone numbers, and when they receive as input a
telephone number, either a complete one, or where some digits are missing (this is simulated
introducing an ‘* ' called generic digit), or where some numbers appear to be exchanged, the
system corrects the telephone number (if it is erroneous) with another one selected among all
the previously learned ones.

 Hecht-Nielsen [5] synthesised the CPN by combining a structure known as competitive
net with Grossberg’s outstar structure [2][3][4], obtaining this way the so called counter-
propagation net. This net’s functionality is shown in figure 1. Given a group of vectors
(x1,y1), (x2,y2), ...,(xL,yL), the net learns how to associate one vector X in the input layer with
one vector Y in the output layer. If the relationship between X and Y may be defined by
means of a continuous function Ω, such that Y=Ω(X), then the net will learn how to
approach that correspondence for any X value in the interval specified by the training vectors
set.

 As you may appreciate on figure 1, the architecture consists of three layers. An input
vector is offered to all layer 1 units. Each unit of layer 2 calculates its net input value, and a
competition takes place to calculate which unit possesses a greater net input. This unit will
be the only one to send a value to the output units.
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Figure 1.  The CPN structure

 To test the STN we have designed a three layer architecture. This architecture
incorporates an input layer whose output is a normalised vector calculated according to a
mathematical expression that we will see later on. Moreover, the architecture consists of a
hidden layer that receives the output of the input layer. This layer is precisely a spatio-
temporal net. The architecture has also an output layer whose function is to choose the
output of among all the learned ones. Spatio-temporal nets incorporate the peculiarity that
the presented input vectors have a correlation in time. This architecture is based in the
structure of Grossberg’s formal avalanche [6]; instead of carrying out a recognition
operation, the avalanche allows to learn and to remember a sequence of spatio-temporal
patterns. Let {Q11, Q12, ..., Q1n} be the sequence of numbers that feeds our net. Then, the
recognition avalanche is the one represented in figure 2.
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Figure 2.  The STN structure

 Each one of the Q1i becomes a normalised vector (by means of a function carried out by
the input layer), and is applied to the inputs of all STN units; they are allowed to remain
there during a time t; later, the following vector Q1i + 1 is applied, and so forth. During that
time t, each unit dynamically adjusts its activation and its output values. After the processing



of all the digits for the input and STN layers, the outstar chooses a sequence of numbers of
among the learned ones.

2 The CPN functionality

As it has already been said in the introduction, the architecture consists of three layers. Each
of the layer 1 units normalises the received input number, passing it to layer 2. Layer 2 is
known as a competitive net [5]. It is formed by a series of process elements called instars
[1][2]. The mission of an instar is to memorise a normalised input vector, providing a greater
output intensity the more it resembles the learned vector. The competitive net consists of a
set of instars that classify any input vector. The one instar offering the greatest output is the
winner of the competition, and it will be the only one that will have a non null output value.
The winner will send value 1 to the outstar, and the rest of instars of the competitive net will
send a 0 value. Finally, layer 3 consists of some process elements called outstars. Each of
these process elements memorises a number of the sequence. The outstar’s function is to
provide the sequence of output numbers.

 The CPN learning phase is carried out by means of a series of equations [8], although, to
simulation effects, learning may be performed in the process elements by assigning the
sequences of normalised numbers to each instar’s weight vectors. With regard to the outstar,
and in our simulations, learning is carried out in a similar way: the numbers to be learned are
assigned to the weight vectors.

 The CPN needs the intensity of each one of the numbers of the sequence to be defined. In
our tests the selected input intensities for each of the digits are shown in table 1.

Table 1. Input intensities for each digit

Digit Intensity
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
* 0 or 5 or 10

 As you may observe on table 1, to each digit i we assign an input intensity i+1, since the
normalised input intensity doesn't influence too much in the obtained results. For the generic
digit, the chosen input intensities for the tests were 0, 5 and 10. An intensity value of 5 has
been chosen because it is the one that best approaches the intensity of the rest of the digits.
We have also tested with intensity values 0 and 10.



3 The STN functionality

STN works in the way described in the introduction. To perform the tests we have designed a
three layer architecture, like the one shown in figure 3. Next to the STN we have added two
layers (an input and an output layer). The input layer [9] has a unique process element that
transforms the input number into a normalised vector. The hidden layer, a spatio-temporal
net, memorises a sequence of normalised vectors. And, the output layer associates the
winning sub-net with a telephone number of among the learned ones. The sequence of input
numbers is sequentially offered to the unique input layer unit. Then, this layer spreads its
output simultaneously to all the units of the hidden layer. Once the whole sequence of digits
has been processed in the input and hidden layers, the output layer associates the hidden
layer winning group with a telephone number shown as output.
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Figure 3.  Our STN architecture

      Our input layer has the mission of transforming an input number into a normalised
vector. Since the STNs [1][5][7] require their input to be normalised, our architecture
contains a layer for it. What the input layer really does is to associate to an input number a
vector of those presented in figure 4. These vectors have the property of being unitary (they
have module one). The output of the input layer is obtained by using the following
mathematical expression:

if  j = ‘*’

   then N(j) = (1, 0, 0) (1)

   else  N(j) = (cos α , sin (j * π⁄5), cos (j * π⁄5) * sinα )



where j is the input digit to the layer, andα is the angle between the vector and the X-axis.
By enlarging the value of the angle, the STN confuses less the vectors received through the
input layer. This is due to the fact that a greater value ofα means that the vectors are far
away from each other. So the scalar product of the input vector by the STN unit learned
vector will give a smaller value when erroneous. The angle π⁄5 is obtained by dividing the
length of a circumference (2π) by 10 (the number of possible input digits, 0 to 9 in our
simulations). Expression (1) may be generalised to other applications where the input
number varies from 0 to n.
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Figure 4. The vector’s graphical representation

 The hidden layer corresponds to a spatio-temporal net, made up of n*m units, where n is
the number of sequences of numbers to be learned, and m is the number of elements a
sequence consists of. The net’s units receive an input value equal to the scalar product of the
input vector Q by the weight vector Z of that unit. Also, each one receives an input signal
coming from the outputs of all the units that precede them. Precede means at the left of a
given unit, as represented in figure 2. The hidden layer is divided in groups of m units, each
one taking charge of learning and recognising one sequence of numbers. The output of the
last unit of each group will be the group’s output value. The output unit containing the
greatest answer will be the only one that has a non null value (exactly the same as for the
CPN).

 Finally, the output layer performs the same function than the CPN, that is to say, it
selects the output sequence.

 Learning in STNs is carried out by means of a series of equations [6][9], although to
simulation effects, each unit of the STN is able to learn by assigning the normalised vectors
to each weight vector of each instar. With regard to the outstar, learning is carried out in the
same way than in the STN outstar.



4 Results

 To verify the results, two simulators have been implemented, one for each kind of net.
Telephone numbers have been chosen as sequences of numbers. Both simulators carry out
learning of the diverse layers firstly. They next send to both net’s input layers, one by one,
all the telephone numbers. A telephone number consists of 9 components, since in Spain
they are composed of 9 digits. The tests have been carried out randomly with a calendar of
100 elected telephone numbers, since we consider that this is a significant sample to check
the validity of both types of nets. With the purpose of carrying out a statistic of results we
have introduced all the telephone numbers with some error. The studied cases are the
following ones: the correct telephone number (C), the phone number with a generic digit in a
random position (1 *), with two generic digits in random positions (2 *), with three generic
digits in random positions (3 *), with an error in a random position (E1), with two errors in
random positions (E2), with three errors in random positions (E3), with two digits randomly
exchanged (I2), the phone number displaced one position to the right from the initial position
(D1), and the phone number displaced one position to the right from a random position
(DX). By generic digit (*) we understand the digit that is to be used in case the user doesn't
remember a particular digit of the telephone number. Four simulations have been performed
for each studied case. Later, their mean values have been calculated and shown as results in
tables 2 and 3.

 Table 2 presents the results obtained for the CPN working with the different input
intensities for the generic digit i=0, i=5 and i=10. This table shows the percentage of guesses
for this net. The first quality to highlight for the CPN is that it learns quickly and offers an
excellent response time. Observing table 2, one can affirm that better results are obtained for
input intensity of 5, although the percentages are practically the same except for cases 1 *, 2
* and 3 *. In cases with erroneous digits (E1, E2 and E3), observe that the solution is very
good for any i. In a generic digit analysis, excellent results are obtained for input intensity 5
(91.25%). Nevertheless, results are quite bad for intensities 0 and 10. This is because with
i=5, the error that takes place between the intensity of the real digit of that position and the
input value is never greater than 5. For the displacements in the input sequence, the CPN
offers poor results. The results for D1 are quite worse than those for DX because all the
numbers are incorrect, while in case of DX at least a part fits with the correct sequence.
Finally for the exchanges the answer is acceptable, overcoming a 50% of guesses.

 Table 3 presents the percentage of guesses for the STN for each inputα . The greater the
angleα  the better the obtained results (see table 3). This is because the system confuses less
the digits to each other, as its corresponding vectors are more distant. The designed
architecture works better in the case of introducing one or several generic digits than in the
case of introducing erroneous digits. This is due to the fact that function (1) assigns a vector
to the generic digit equidistant to the rest of vectors. We highlight the results obtained in case
3 *, with guesses over a 40% for allα and near to 50% when α = π/3, even more when we
have other possible correct outputs when generic digits exist. For the case of error detection,
the STN obtains an exceptional solution, since a percentage of 85.5% and 60.25% are given
for cases E1 and E2, with α =2π/5. The results for input vector displacements are excellent
too, being better in case D1 than in DX, because in the STN the inputs of the units coming
from the previous units provide more weight to their output. Finally the case of exchange is
better than in the CPN. We obtain a very good result of approximately a 70% of guesses.



Table 2. Results for the CPN

Studied cases i=0 i=5 i=10

Correct telephone
number

100% 100% 100%

One error 75.75% 76.75% 76%

Two errors 48.5% 48% 52.75%

Three errors 34% 31.75% 33.75%

One generic digit 40.75% 91.25% 48.5%

Two generic digits 23.75% 66.25% 27.25%

Three generic digits 16.25% 45.5% 16.75%

Displacement from
the first position

4% 4% 4%

Displacement from a
random position

35.75% 36.5% 38.75%

Exchange of two
digits

54% 56.75% 55.5%

Table 3. Results for the STN

Studied cases α=π/4 α=π/3 α=2π/5 α=π/2

Correct phone
number

100% 100% 100% 100%

One error 83.25% 82% 85.5% 81.5%

Two errors 59.25% 59% 60.25% 59%

Three errors 34.25% 33.5% 35% 35.75%

One generic digit 81% 87% 88.75% 85.5%

Two generic digits 64.75% 64.75% 67.75% 68%

Three generic digits 41% 48.25% 44% 44.75%

Displacement from
the first position

83% 83% 84% 83%

Displacement from
a random position

69.75% 73.75% 73.5% 74.25%

Exchange of two
digits

63.25% 72.25% 67.25% 70.5%



 Finally, we want to highlight that the STN has a superior percentage of success than the
CPN in most of the studied cases. In the case of the presence of a generic digit in the
sequence with input intensity i=5, a better percentage is obtained for the CPN.

5 Conclusions

The CPN has a good behaviour to detect sequences of numbers with errors. For the treatment
of the generic digits it provides a good behaviour when the input intensity is appropriate for
the concrete case. And it is not appropriate for displaced sequences of numbers.

 The STN is more appropriate than the CPN to detect sequences of numbers with errors.
As it  receives the outputs of the preceding units, the STN knows the information of the
incoming sequences, being activated when they are correct, even if the input intensity is not
the expected one. That’s to say, sequencing is a cue in STN. They provide acceptable values
for all the tested cases. They have an order of inferior complexity to any other system
analysing the same cases [9]. Also, any other case to be analysed doesn't suppose an
increment of the order of complexity. In order to deal with problems without temporary
component, the input layer is primordial, because it has to find a normalised vector that has
to identify the received number with no possible confusion.

As a main conclusion note that both nets are good in dealing with sequences of numbers,
since the obtained results confirm it so.
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