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Abstract. Motion analysis in sequences of images is a discipline in constant growth due
to the great number of applications in which it plays a primordial key function. The
presentation of a simple way to obtain, in real time and in a neural form, a fundamental
parameter associated to the objects in movement (its size) is the objective of this paper.

1 Introduction

Motion analysis in images is growing in importance in numerous applications. Some of these
applications are: (a) television coding by means of compensation, (b) mobile robotics, (c)
satellite images, (d) applications, civil as well as military, related to objective pursuit and
autonomous guidance, (e) biological and medical images, (f) surveillance and supervision, and,
(g) virtual reality [6]. The problem of motion detection is particularly interesting when the
objective is to spatially locate the mobile objects in the scene. This motion detection is always
strongly bound to the detection of temporary changes in the image. When moving objects exist
in a scene, we will always have to handle with changes in the intensity of the images’ pixels.
This fact has given place to an extensive bibliography, in which we already highlight some
classic works with different approaches. For a more extensive study of the topic, we recommend
the papers of  M.A. Fernandez [2] and A. Fernandez Caballero et al. [5]. To highlight the
emergent approach of Fernandez look at [1] [3] [4] in this sense.

      The pursuit of elements from one image to another is a common procedure, mainly in
applications of surveillance. Some pursuit processes have been defined by means of: (a) a
representative model of elements (for example, the image co-ordinates of some characteristic
points, the longitude and the orientation of the segments of the contour), (b) a kinetic model of
the evolution of the elements (for example, a constant speed, a constant acceleration), (c) a group
of relationships between the parameters of the pattern and the measures of the image, and, (d) a
temporary filter for the estimate of the parameters of the pattern starting from the image data.

      Most research is nowadays dealing with complicate algorithms. Nevertheless, in many
applications, it is not necessary to deal with very elaborated data, but real time is the
fundamental cue. Often, this is only possible using neural networks associated to very simple
parameter extraction.



2 Maximum line segments

One of the principal aspects of the structure of an object is its size. To know the size of an object
in absolute terms is useful for the recognition of the object [7] [8]. An object in translation,
dilation or rotation can be simplified in terms of the calculation of its size in all instant of time t.

      Our proposal is that this variables can be obtained in a simple, well-known way, provided the
object’s silhouette S is known at every instant t. Therefore we will define the size starting from
the longitude of two right lines (or cords) determined by four well-known points of the surface
of the object. The points to which we are making reference are (x1 , y1), (x2 , y2), (x3 , y3) and (x4 ,
y4), such that:

∀  (x,y) ∈  S (i, j, t),   x1  < x
∀  (x,y) ∈  S (i, j, t),   x2  > x
∀  (x,y) ∈  S (i, j, t),   y3  < y
∀  (x,y) ∈  S (i, j, t),   y4  > y

     In other words, the four points are:

(x1 , y1) : point most at the left of the object in the image
(x2 , y2) : point most at the right of the object in the image
(x3 , y3) : upper most pixel of the object in the image
(x4 , y4) : lower most pixel of the object in the image

Figure 1. Obtaining of the extreme points of an object

      The two cords that we denominate maximum line segments of the object, won't unite the
pixels (x1 , y1) and (x2 , y2), (x3, y3) and (x4, y4) to each other, but rather their projections (X1 , 0)
and (X2 , 0), (0 , Y3) and (0 , Y4), respectively, as you can appreciate in figure 2.
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      Now, the object’s location will be determined by a unique characteristic pixel (Xobj , Yobj),
that is to say, the intersection of the two segments (X1 , Y3)(X2 , Y4) and (X2, Y3)(X1, Y4). This
pixel will be denominated representative point of the object.

                        Image at t1                  Image at t2

Figure 2. Obtaining of the maximum line segments and of the representative point of the object

3 Motion evaluation

      Once the maximum line segments and the representative point of an object have been
obtained in a sequence of images, it should be rather simple to detect a lot of motion cases.
Anyway, if we consider the following possibilities:

(a) no motion (N),

(b) translation in X or Y-axis (T),

(c) dilation, or translation in Z-axis (D), and,

(d) rotation (R)

we may only obtain by combining them the following possibilities:

(A) N no motion detected

(B) T pure translation detected

(C) TD translation plus dilation detected

(D) TR translation plus rotation detected
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(E) TDR translation plus dilation plus rotation detected

(F) D pure dilation detected

(G) DR dilation plus rotation detected

(H) R pure rotation detected

      We consider the previous states to appear in most cases as shown in graph 1. Graph 1 shows
the different possibilities when no change is detected in the representative point’s co-ordinates
enclosed in brackets. When there is a change in the co-ordinates of the representative point, a T
has been added before the result enclosed in parenthesis.
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image k

Vertical segment
from image k-1 to
image k

Horizontal versus
vertical
enlargement scale

Similar [D]      (TD)

Larger Different [DR]   (TDR)

Larger Equal [R]      (TR)

Smaller [R]      (TR)

Larger [R]      (TR)

Equal Equal [N]      (T)

Smaller [R]      (TR)

Larger [R]      (TR)

Smaller Equal [R]      (TR)

Smaller Similar [D]      (TD)

Different [DR]   (TDR)

      Of course, we assume the possibility to offer some erroneous results with an unknown error
rate, especially in front of some rotation examples. Nevertheless, if the number of images in a
sequence is great enough, this error rate should be very little.



4 A neural implementation

A neural implementation is proposed to obtain values X1, X2, Y3 and Y4 in real time. That’s why
we implement an easy to handle neural structure. We start from the basic structure of the multi-
functional neuron of figure 3. In this figure we have:

INHin = inhibition signal coming from the preceding neuron
ACTin = input activation signal of the neuron
INHout = inhibition signal toward the following neuron
ACTout = output activation signal of the neuron

      This neuron possesses as a primary characteristic the power to be linked in series with other
neurons of the same type through the signals INH as shown in figure 4. See that signal INH goes
spreading with the initial value 0 (that is to say, don’t inhibit) until a certain neuron presents the
appropriate condition to transmit the value 1 (do inhibit) starting from that moment.

Figure 3. The multi-functional neuron

Figure 4. Neural connections
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      In the concrete case we are interested in, we have to detect the previously described values
X1, X2, Y3 and Y4. To do this, we propose to use four arrays of neurons according to figure 5,
where the ACT (ACTin as well as ACTout) signals’ purpose is to pass the information to be
processed from a lower level (obtaining of the silhouette of the object) to a higher level
(calculation of the basic parameters of the object) through the neuron.

Figure 5. Determination of values X1, X2, Y3 and Y4.

The algorithm is presented here for the case of the neurons that have to detect lines DetX1 or
DetX2. For cases DetY3 or DetY4, change i by j, line by column, and vice versa.

1, if Σ S(i, j, t) > 0, j=1.. k
ACTin (i, t) = (1)

     0, otherwise

      Equation (1) tells us that column i neuron has an activation at its input if any image pixel of
column i for any row j belongs to the object’s silhouette.

1, if INHin (i, t) = 1 ∪  ACTin (i, t) = 1
INHout (i, t) = (2)

     0, otherwise

      Signal INHout goes spreading through the line of neurons with value 0 until one of two
possible events happens (they don't have to be exclusive to each other): (a) an inhibition value of
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1 arrives to the neuron, or, (b) the neuron receives an activation signal from the preceding level.
In both cases, the signal INHout begins to spread with a value of 1.

ACTout (i, t) = i * ACTin (i, t) * [1 - INHin (i, t)] (3)

      This last equation shows the behaviour of the neuron in its output toward the following level.
In this case the elected function allows to elevate to higher instances the value of the position of
the neuron inside the line.

      We see as, in each array, at most one neuron will pass the value from its position to the next
level. All the other ones take a value of 0. The “winner” neuron is the first one that detects where
a silhouette’s pixel is found. This way:

DetX1: is able to obtain the position of the column where silhouette appears more to the
left, that is to say X1

DetX2: is able to obtain the position of the column where silhouette appears more to the
right, that is to say X2

DetY3: is able to obtain the position of the row where silhouette appears more to the top,
that is to say Y3

DetY4: is able to obtain the position of the row where silhouette appears more to the
bottom, that is to say Y4

4 Tests and results

The algorithms have been applied to the synthetic sequences SOFA 1, 2 and 3 in a software
prototype programmed under Visual Microsoft C++. We thank the courtesy of Computer Vision
Group, Heriot-Watt University (http://www.cee.hw.ac.uk/~mtc/sofa) for the permission of use of
the images.

      Figure 6 shows some examples of the 20 images that compose each one of the sequences. In
the three sequences we only segment the cube that appears in them, starting from standard
techniques, in order to be able to apply our algorithm to the traced silhouettes. We may see how
in sequence 1 the cube is rotating, in sequence 2 it goes approaching to the observer, while in
sequence 3, the cube goes approaching while it makes a slight inclination.

      Our algorithms offer the following direct results: (a) for number 1 sequence, TR, (b) for
number 2 sequence, D, and, (c) for number 3 sequence, DR. So, sequences 2 and 3 are correctly
classified in their motion possibilities. Sequence 1 throws a raw result of TR, while the correct
answer should be R. This is because the algorithm doesn’t differentiate between changes and
little changes in the representative point’s co-ordinates. Introducing a lower limit for the
detection of this change would throw the correct answer.



                    Sequence: SOFA 1

     Image 1            Image 5            Image 10           Image 15           Image 20

                    Sequence: SOFA 2

     Image 1            Image 5            Image 10           Image 15           Image 20

                    Sequence: SOFA 3

     Image 1            Image 5            Image 10           Image 15           Image 20

Figure 6. Some images of the SOFA sequences.

Image X1 X2 Y3 Y4 Xobj Yobj
S1img1 68 189 23 146 128.5 84.5
S1img2 68 189 23 146 128.5 84.5
S1img3 67 188 23 145 127.5 84
S1img4 67 188 23 145 127.5 84
S1img5 67 187 23 145 127 84
s1img6 67 187 23 145 127 84
s1img7 67 186 23 145 126.5 84
s1img8 67 185 23 145 126 84
s1img9 68 184 23 144 126 83.5

s1img10 68 183 24 144 125.5 84
s1img11 68 182 24 144 125 84
s1img12 69 181 24 143 125 83.5
s1img13 69 180 24 142 124.5 83
s1img14 70 179 24 142 124.5 83
s1img15 71 178 25 141 124.5 83
s1img16 72 177 25 141 124.5 83
s1img17 72 176 25 140 124 82.5
s1img18 73 174 25 139 123.5 82
s1img19 74 173 26 139 123.5 82.5
s1img20 76 172 26 138 124 82

Table 1. Results for the SOFA 1 sequence.



Image X1 X2 Y3 Y4 Xobj Yobj
S2img1 100 157 106 151 128.5 128.5
S2img2 99 158 105 152 128.5 128.5
S2img3 98 159 104 153 128.5 128.5
S2img4 97 160 103 154 128.5 128.5
S2img5 95 162 102 155 128.5 128.5
S2img6 94 163 101 156 128.5 128.5
S2img7 93 164 100 157 128.5 128.5
S2img8 91 166 98 159 128.5 128.5
S2img9 89 168 97 160 128.5 128.5

S2img10 87 170 95 162 128.5 128.5
S2img11 85 172 93 164 128.5 128.5
S2img12 83 174 91 166 128.5 128.5
S2img13 80 177 88 169 128.5 128.5
s2img14 78 179 85 172 128.5 128.5
s2img15 74 183 82 175 128.5 128.5
s2img16 71 186 78 179 128.5 128.5
s2img17 67 190 74 183 128.5 128.5
s2img18 62 195 68 189 128.5 128.5
s2img19 56 201 62 195 128.5 128.5
s2img20 50 207 53 204 128.5 128.5

Table 2. Results for the SOFA 2 sequence.

Image X1 X2 Y3 Y4 Xobj Yobj
S3img1 100 157 106 151 128.5 128.5
s3img2 98 159 106 152 128.5 129
s3img3 96 161 105 152 128.5 128.5
s3img4 95 162 103 154 128.5 128.5
s3img5 92 165 101 156 128.5 128.5
s3img6 90 167 99 158 128.5 128.5
s3img7 88 169 96 161 128.5 128.5
s3img8 86 171 94 163 128.5 128.5
s3img9 83 174 91 166 128.5 128.5

s3img10 81 176 88 169 128.5 128.5
s3img11 78 179 85 172 128.5 128.5
s3img12 74 183 82 175 128.5 128.5
s3img13 71 186 78 179 128.5 128.5
s3img14 67 190 74 183 128.5 128.5
s3img15 63 194 69 188 128.5 128.5
s3img16 58 199 64 193 128.5 128.5
s3img17 53 204 58 199 128.5 128.5
s3img18 47 210 52 205 128.5 128.5
s3img19 40 217 45 212 128.5 128.5
s3img20 32 225 36 221 128.5 128.5

Table 3. Results for the SOFA 3 sequence.



5 Conclusions

A simple but effective method for the detection of an important parameter of an object in
movement (its size), has been presented in this paper. The algorithm is likely to be implemented
in hardware, using neural mechanisms, pursuing the objective of obtaining the searched data in
real time.

      Our research team is specially interested in extracting simple feature characteristics of the
moving objects in image sequences. Therefore, the image segmentation phase doesn’t fit too
much in our recent contributions. We are rather paying special attention on the analysis of
parameters of motion.
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