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Abstract

In this article knowledge modelling at the knowledge level for the task of moving objects detection in image sequences is introduced. Three

items have been the focus of the approach: (1) the convenience of knowledge modelling of tasks and methods in terms of a library of reusable

components and in advance to the phase of operationalization of the primitive inferences; (2) the potential utility of looking for inspiration in

biology; (3) the convenience of using these biologically inspired problem-solving methods (PSMs) to solve motion detection tasks.

After studying a summary of the methods used to solve the motion detection task, the moving targets in indefinite sequences of images

detection task is approached by means of the algorithmic lateral inhibition (ALI) PSM. The task is decomposed in four subtasks:

(a) thresholded segmentation; (b) motion detection; (c) silhouettes parts obtaining; and (d) moving objects silhouettes fusion. For each one of

these subtasks, first, the inferential scheme is obtained and then each one of the inferences is operationalized. Finally, some experimental

results are presented along with comments on the potential value of our approach.

q 2004 Published by Elsevier Ltd.
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1. Knowledge modelling at the knowledge level

A central problem of applied artificial intelligence is to

construct models of tasks and problem solving methods

(PSMs) at the knowledge level and in the domain of the

external observer (Ford, Bradshaw, Adams-Webber, &

Agnew, 1993; Maturana, 1975; Mira & Delgado, 1987,

2003; Varela, 1979). Then we have to reduce these models

of expertise from the domain of human experts to the

domain of formal tools, both at the knowledge level. That is

to say we have to go from natural language description of

the task and the PSM used to solve this task, to a formalism

transformation of this conceptual model in terms of formal

tools (rules, neural nets). Finally a new rewriting of the

formal model is made in terms of the primitives of a

programming language to produce the program.

The usual approach to modelling at the knowledge level

and to facilitating the subsequent model reduction of the

model to the program has been to develop libraries of PSMs

and domain ontologies. We talk about a reduction of the real

model as information always remains at knowledge level

(in the sense of Newell) and in the domain of the observer

(in the sense of Maturana (1975), Mira and Delgado (1987)

and Varela (1979)). Relevant examples of this approach

include the CommonKADS methodology (Breuker & van

de Velde, 1994; Eriksson, Shahar, Tu, Puerta, & Musen,

1995; Schreiber et al., 2001), the formal framework UPML

(Fensel, Benjamins, Motta, & Wielinga, 1999), and the

general-purpose framework Protégé-II (Eriksson et al.,

1995; Mira, Alvarez, & Martinez, 2000). In this methodo-

logical context, the knowledge modelling process starts at

the knowledge level and follows the next steps (Mira,

Herero, & Delgado, 1998; Mira et al., 2000)

1. Describe in natural language the task you try to model

and code, and disregard the terms that are not causal in

the reasoning process.
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2. Identify the entities of the domain knowledge. These

entities play the same role as physical magnitudes in an

analytical model. They represent separate concepts that

the human expert considers necessary and sufficient to

describe his/her knowledge concerning the solution of

the specific task under consideration.

3. Identify the relations between these entities that appear

explicitly or implicitly in the expert’s description.

4. Search for inferential components of the reasoning,

usually verbs (establish, refine, select, match, abstract),

which are used by the human expert to describe his/her

reasoning steps in natural language. These inferences are

the components from which we will build the PSMs.

5. Describe, for each one of these inferential verbs, the

input and output roles to be played by the domain

entities.

6. Try to sketch the inferential circuit corresponding to

the knowledge flow through the dynamic roles and the

different inferences according to the sequence, con-

currences, and loops that more closely represent the

reasoning pattern followed by the expert. These

reasoning patterns (PSMs) can sometimes be selected

from a library of reusable components (Benjamins &

Fensel, 1998; Breuker & van de Velde, 1994; Fensel,

1997; Schreiber et al., 2001) (abstract-match-refine,

establish-and-refine, propose-critique-modify, generate-

and-test, cover-and-differentiate), although additional

knowledge is usually needed for adaptation of the PSM

to the task (task–PSM bridge) and to the domain

(PSM–domain bridge) (Taboada, Des, Mira, & Marin,

2001).

At the end of the last step we have

1. A set of entities and relations of the domain model.

2. A set of inferences with the corresponding input and

output roles.

3. An inferential circuit connecting these inferences

through dynamic roles.

4. A control structure.

That is to say, we have a conceptual model at the

knowledge level to solve the task. The next step in the way

to build the code is to make operational each one of these

inferences (abstract, select, classify, refine). That is, to

rewrite them in formal terms by selecting specific formal

operators (symbolic rules, fuzzy rules, neural nets, Bayesian

networks, and so on) for each one of the inferences. The

criteria used in this selection process are always related with

the balance between data and knowledge available for the

specific inference under consideration. Also relevant is the

sort of knowledge (precise, uncertain) and data (labelled,

unlabelled) available.

We usually don’t possess the whole knowledge to be able

to only use knowledge-driven operators. Neither it is

frequent to know nothing on the procedure used by human

experts to solve that task, and then being forced to use date-

driven methods. In real problems, most frequently the expert

describes his method of solving the task in a hybrid way,

with a symbolic part (rules) and a connectionist part (Fu &

Fu, 1990; Hilario, Orsier, Rida, & Pellegrini, 1995; Sun &

Alexandre, 1997). Conventionally, a method is said to be

symbolic when it is essentially guided by knowledge which

is made explicit in a declarative way and finishes being

completely programmed. Alternatively, a method is called

to be connectionist or neuronal if it possesses a modular fine

grain architecture, with a local parametric function, and

where an important part of the programming is substituted

by a supervised or non-supervised learning mechanism.

Essentially, a method is neuronal if it is data labelled. The

idea of a hybrid system is used to describe those situations

where not all data or knowledge necessary to solve the

problem is available. Thus, the available knowledge may be

firstly used to specify the initial skeletal model of a

connectionist net and, afterwards, a supervised learning

method to adjust the values of the parameters of this skeletal

model is established.

In this work the concept of hybrid is used in the sense of

the so called ‘unified approach’ (Hilario et al., 1995). That is

to say, the structure of the connectionist net is maintained,

while the calculation capacity of each node is augmented.

This way there is a gap from the most usual model

(weighted sum followed by sigmoid) to an inferential model

that possesses the structure of a rule where the antecedent

over the data field specified by the receptive field is

evaluated. Next a look-up table (LUT) is used to select the

most adequate action corresponding to each result of the

evaluation of the antecedent of the rule. This is our approach

in this paper for the task of silhouette obtaining of moving

elements in a sequence of images.

2. The motion detection task

The global objective of the task is to obtain the

silhouettes of all moving elements present in an indefinite

sequence of images. This way, the task consists in

observing, detecting, labelling and tracking the moving

objects in the scene. These objects may be non-rigid and

their detection is associated to the movement of any of the

parts that compose them. This movement, captured from an

indefinite sequence of frames, allows to gradually obtaining

the silhouettes of the elements that offer any kind of motion.

Fig. 1a shows one image of a satellite image. By taking in

consideration motion detected in the proper image

sequence, the silhouettes of all non-rigid moving objects

present in the scene should be obtained. In the case of the

present example, the optimal is given by the resulting image

(Fig. 1b), where three different elements are detected. The

problem faced is not limited to the observation, detection

and tracking of a single non-rigid object in a scene, but

ESWA 1181—10/2/2004—00:09—ADMINISTRATOR—94055— MODEL 5

J. Mira et al. / Expert Systems with Applications xx (0000) xxx–xxx2

ARTICLE IN PRESS

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224



UNCORRECTED P
ROOF

rather it consists in discriminating all the objects that offer

some kind of movement.

2.1. General motion detection

Motion detection in image sequences is applicable in

multitude of fields—generally, where motion plays an

important role in the definition of the problem of a given

scene. In particular, there are cases of detection of elements

with a certain velocity. Concrete cases can be found in

traffic control, security, surveillance, and other similar

fields. One of the most obvious applications in motion

detection and analysis is possibly in the field of robotics

(Horn, 1986). For autonomous robots, the visual movement

is a source of rich information for sailing and route planning

(Nair & Aggarwal, 1998; Wettergreen, Thomas, & Bualat,

1997). The techniques developed in robotics field are

demonstrating their usefulness in more specific environ-

ments. Industrial arms, for example, can develop a great

number of operations on objects passing on a conveyer belt

(Lewis, Abdallah, & Dawson, 1993; Sternberg, 1985). Also,

autonomous vehicles are able to follow the layout of a

highway (Kuan, Phipps, & Hsueh, 1988).

In other motion detection applications, three-dimen-

sional (3D) vision is not the main objective. Among these

applications, there is the interpretation of images taken

from a satellite or astronomical images, such as the

analysis of the formation of clouds in weather prediction

(Colet, Quinquis, & Boucher, 1992). Of a great interest

are restoration and image enhancement (Irani & Peleg,

1993). Another example is noise elimination in old

cinema movie (Vlachos & Thomas, 1996). Another area

where motion detection is of a great importance resides in

medical images, where it is used, for instance, to monitor

motion patterns of the heart starting from MR images

(Prince & McVeigh, 1992), or to improve and to interpret

scanned ultrasound images (Quistgaard, 1997). Motion

analysis is also finding a growing use in multimedia

systems (Idris & Panchanathan, 1997). In the field of

videotape data compression, motion information is used to

exploit temporary redundancies in the data.

A high level approach that incorporates some of the 3D

vision techniques previously mentioned, is the codification

based on models, where a 3D geometric model is built in a

limited scene. The model consists, for example, of the head

and the shoulders of a person, and may be used for

videoconferences. Once the model is known in the reception

and transmission nodes, transmitting the coded motion data

(Li, Rovainen, & Forchheimer, 1993) can animate it. As

related, applications that benefit from estimation, analysis

and tracking starting from motion detection are very

diverse.

2.2. Segmentation from motion

Segmentation from motion is already a classical problem

in computer assisted artificial vision. The most popular

general methods of moving object extraction are based in (a)

optic flow and (b) image differences. The first set of

techniques in motion segmentation is based on the optic

flow calculation. The velocity field is segmented to identify

the different objects in movement in the image. There

basically exist two approaches to calculate the disparity map

between two frames. The continuity (or gradient based)

approach uses the spatio-temporal variation according to the

famous motion restriction equation described by Horn and

Schunck (1981). This approach is completed with three

complementary techniques, that is, a technique of local

optimisation (Thompson & Barnard, 1981), a technique of

global optimisation (Horn & Schunck, 1981) and an

approach to the obtention of classes (Fennema & Thompson,

1979). The discrete (characteristics based) approach to

calculate the optic flow consists on extracting those

characteristics that correlate two consecutive frames. The

second set of segmentation from motion techniques is based

on image differences. Again, we are in response to two

Fig. 1. (a) One meteorology satellite image; (b) result after ‘motion detection’ task.
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categories of image difference techniques. The difference

between two images may be obtained from any frame of an

image sequence and a reference frame. You may also

calculate the difference between any couple of consecutive

frames of an image sequence.

When dealing with non-rigid objects, the motion

detection problem is much more complex. The different

approaches to the problem differ basically in the way they

model the shape and the movement, as well as in the

adopted method of optimisation. The formulations may be

continuous or discrete, deterministic or statistical, para-

metric or not. In general, we can affirm that great

attention has been paid to techniques based on active

contours (snakes) of non-rigid surfaces (Kass, Witkin, &

Terzopoulos, 1988). The use of snakes based techniques in

the context of the estimation of non-rigid motion is mainly

interesting in objective tracking, whenever there is a precise

prediction step (Bascle, Bouthemy, Deriche, & Meyer,

1994). An alternative method consists on the use of

parametric 2D patterns, wrapping a global compact

parameterisation to represent the shapes of interest (Yuille,

1992). Also parametric models of B-spline type under

forced deformations have been tested (Bascle et al., 1994).

These models appear to be more general and more robust

than those previously mentioned. In the studies of the non-

rigid motion, it is important to keep in mind as much the

global deformations as the local ones. The statistical models

like the Markov random field (MRF) model are very well

adjusted to this purpose (Amit, Grenander, & Piccioni,

1991). The articulated movement is of a special interest in

the analysis of human movement. The quantitative study of

the human movement (facial movement, gestures, etc.) is

useful in multitude of applications, including clinical

rehabilitation, sports bio-mechanics, new man–machine

Fig. 2. Inferential scheme of the ‘motion detection’ task.
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interfaces in virtual reality systems design, visual surveil-

lance, etc. (Rohr, 1994). With no doubt, the biggest source

of data representative of complex non-rigid motion resides

in biomedical imagery. Research in this field is really

important, mainly in elastic 3D models. There are also 2D

models, as for example in X-ray or ultrasound image

processing (Cootes, Hill, Taylor, & Haslam, 1994). The

computer processing of fluid motion in image sequences is

still a recent topic, although one can already speak of some

first pioneer intent (Maurizot, Bouthemy, Delyon, Iouditski,

& Odobez, 1995). It may also be focused toward the

exploitation of satellite images in meteorology or ocean-

ography (Cootes & Taylor, 1994).

2.3. Motion detection through ALI

In our proposal, the method used for the decomposition of

each one of the subtasks is a version of the algorithmic lateral

inhibition (ALI) (Delgado, Mira, & Moreno-Diaz, 1989;

Fernández-Caballero, Fernández, Mira, & Delgado, 2003a;

Fernández-Caballero, Fernández, Mira, & Delgado, 2003b;

Fernández-Caballero, Mira, Delgado, & Fernández, 2003c;

Fernández-Caballero, Mira, Fernández, & López, 2001;

Mira & Delgado, 2001). It is based on the selective

accumulation of properties detected in the temporary

expansion of the receptive field of the neuronal units of the

layers associated to the different subtasks by means of which

we decompose the global task. The ALI method maintains

the conceptual aspects of lateral inhibition (LI) and the

skeletal model, but we change the type of operators used to

make computational each one of the inferences. That means

that we move from analytics (adders, multipliers, sigmoids,

and so on) to inferential rules of parametric nature. The first

decomposition in subtasks of the moving objects silhouettes

obtaining task provides the following subtasks

(a) Thresholded segmentation (layer 0). Subtask

‘thresholded segmentation gets as input data the

values of the 256 grey level input pixels and

generates as output n binary images corresponding

to n levels defined by role bands. The output space

has a FIFO memory structure with two levels, one

for the current value and another one for the previous

instant value.

(b) ALI motion detection (layer I). The aim of this

subtask is to detect the temporal and local (pixel to

pixel) contrasts at each sub-layer associated to the n

grey level images binarised at layer 0. The couple of

binarisation values at each band constitute the input

space. The output space is formed by the permanency

levels accumulated in the local memory of element

ði; jÞ at band k after dialogue processing with

neighbouring elements.

(c) Silhouettes parts obtaining (layer II). The aim of this

sub-layer is to obtain the silhouette of all components

of a moving object. The layer considers the union of

pixels that are physically together and at a same grey

level band to be a component. n parallel channels

also form this layer, one for each grey level. At each

channel a set of concurrent LI processes are

performed to distribute the charge among all

neighbours that possess a certain minimum load

and are physically connected.

(d) Moving objects silhouettes fusion (layer III). The

purpose of this last layer is ‘to fuse’ or to juxtapose

the silhouettes of the moving objects detected by the

different grey level bands. The method used is again

LI, but now there are not n sub-layers or channels

processing in parallel, but rather the n channels of

layer II converge in one single layer through a

multiplexing operation on the n channels, where only

one of them has a charge value different from zero

for each co-ordinate ði; jÞ:

The inferential scheme corresponding to this decompo-

sition is shown in Fig. 2, where input and output roles of

each subtask and the parallelism inherent to the concurrent

calculation for each grey level band in which the initial

image breaks down are included. In Fig. 3 we show the

results of each subtask as well as the global transformation.

3. The algorithmic lateral inhibition

as a co-operative PSM

When looking for inspiration in Biology, and when

studying the way the nervous system processes information

in the visual pathway, from the photoreceptors, amacrines,

horizontal, bipolar, and ganglions cells in the retina up to the

associative cortex where, presumably, images are inter-

preted, one observes that there is a modular architecture that

repeats again and again:

1. Computation is modular, of small grain and recursive

(synapse, neuron, layer, column,).

2. Computation elements take their data from their

receptive fields.

3. There are overlaps of receptive fields at input (shared

data), as well as at output (dialogue among neighbouring

elements).

4. There coexist a double organisation, horizontal (layers)

and vertical (parallel calculation channels). In the

horizontal organisation there is all LI processes which

occur at the same time at all layers. The vertical

organisation corresponds to multiple channels in parallel,

as, for instance, in the visual pathway from ganglion cells

to columns in cortex.

5. Networks work in two time scales. There is a local

time, in general of analogical calculation, and a global

one, a slower time and in general of digital nature

with a clock defined by the inverse of the synaptic

retard.
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6. Finally, the local calculation model possesses an invariant

structure that in most cases can be formulated in terms of

recurrent and/or non-recurrent LI architecture.

Anatomically, the LI circuits correspond to schemes such

as the one shown in Fig. 4. The unit response not only

depends on its own inputs, but on the inputs and responses

of the neighbouring neurons. In general, the interaction is of

inhibitory type such that the activity of one neuron

diminishes where its neighbours are active. We can

distinguish between recurrent and non-recurrent actions

and, in both cases, between additive and multiplicative–

divisive actions, according to the mathematical operation

which best adjusts experimental results.

From the analytical modelling point of view, LI circuits

can be described with the following assumptions

† Each element of calculus performs a partition of the input

space into three regions: centre, periphery and excluded.

It does the same with the feedback from the output space

and in both cases it carries out a local process over the

central zone and another one over the peripheral zone.

Subsequently it analytically compares the results of these

processes and generates an output.

† These processes can be represented by means of

interaction factors, Kðx; y;a;bÞ: If we name Iða;bÞ the

input signal on the element located at coordinates ða;bÞ

and Fðx; yÞ the signal at the output of the element located

in position ðx; yÞ; we can formulate LI as

Non-recurrent

Fðx; yÞ ¼ Accumulation of direct excitation Iðx; yÞ with

that coming from the interaction with the neighbouring

Fig. 3. Result images of the diverse motion detection subtasks.
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elements, Iða;bÞ through the interaction factors

Kðx; y;a;bÞ:

Fðx; yÞ ¼
ðð

R
Kðx; y;a;bÞIða;bÞdadb

Recurrent

Fðx; yÞ ¼ Accumulation of direct response Fðx; yÞ with

that coming from the interaction with the neighbouring

elements, Fða;bÞ through the interaction factors

Kpðx; y;a;bÞ:

Fðx; yÞ ¼
ðð

Rp
Kpðx; y;a;bÞFða;bÞdadb

The specific shape, size, structure and adaptive changes

of these spatio-temporal convolution kernels convey a

relevant part of the LI computation. So, as we detail the

shape and position of the ON and OFF volumes, we are

designing the filter. This analogical formulation corre-

sponds to a band-pass spatio-temporal recursive filter of

order n: That is to say, LI is a detector of spatio-temporal

contrast complemented with the possibilities of (1) non-

linear expansions of the input and output spaces (multi-

plicative and divisive inhibition) (2) ‘tissue recruitment’

covered by dynamic reconfiguration of the ON and OFF

volumes (Delgado & Mira, 2002; Mira & Delgado, 2001;

Mira, Delgado, Boticario, & Dı́ez, 1995).

If we change the physical input/output spaces by

spaces of representation, the integral by generic inference

evaluate, and the non-linear decision function (the

sigmoid) by inference select, we have an inferential

scheme abstracted from the LI circuit. We call this

scheme ALI.

For the non-recurrent (input driven) case we obtain

the scheme of Fig. 5. Each calculation element samples

its data in the central ðCÞ and periphery ðPÞ part of the

volume that its receptive field (RF) specifies in the input

space V : On these two data fields (dynamic roles), the

calculation element carries out evaluation inferences

(evaluate) and results comparison (compare). This

comparison inference is made according to a set of

criteria (comparison frame) to generate a set of

‘difference values’ (discrepancy classes) that play a static

role in the final inference select, where the output is

obtained from the set of outputs associated with the

different discrepancy classes, according to the specific

discrepancy classes generated by the previous compare

inference.

In an analogous manner we can obtain the inferential

scheme abstracted from the recurrent IL circuits, as shown

in Fig. 6. Now each element of calculus starts to infer from

data sampled in the central ðCpÞ and periphery ðPpÞ parts of

its feedback receptive fields in the output space. The values

in Cp (individual opinion before dialogue) are compared

with the evaluation of the ‘opinions’ of all the elements in

the periphery. This comparison is made according to a set

of ‘rules for consensus’ (consensus criteria) to produce a

‘discrepancy class’. Finally, as in the non-recurrent case,

this discrepancy class plays the static role of a select

inference to provide the consensued output.

When first specifying the nature of inferences compare,

evaluate and select using decision rules, then specifying the

formal expression of these rules (differential operators

logical-relational rules) we obtain the different operationa-

lizations of the ALI method. In order of growing difficulty,

beginning with the analytic operators and finishing with the

inferential ones, we get the following functions

1. Temporal recursive and non-recursive filtering (tem-

poral characteristics extraction and temporal harmonic

analysis).

2. Spatial recursive and non-recursive filtering (spatial

characteristics extraction and spatial harmonic analysis).

3. Spatio-temporal filtering for motion detection (e.g.

direction, velocity, objects size).

4. Colour detection and coding.

5. Cooperation-competition processes.

Now we will explain how this LI method is applied in

levels 3 and 5 (spatio-temporal filtering and formulation

of algorithmic cooperation-competition processes) to

Fig. 4. (a) Recurrent LI circuit. (b) Analytical model.
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Fig. 5. Inferential scheme for the non-recurrent ALI (data-driven).

Fig. 6. Inferential scheme for the recurrent ALI (output-driven dialogue).
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decompose the four subtasks associated to the task of

obtaining the silhouettes of moving objects (thresholded

segmentation, movement detection, silhouettes parts obtain-

ing and moving objects silhouettes fusion).

4. Thresholded segmentation subtask (layer 0)

Subtask thresholded segmentation gets as input data

the values of the 256 grey level input pixels Iði; j; TÞ and

generates as output n binary images, xo
kði; j; tÞ; corre-

sponding to n levels defined by role bands. The output

space has a FIFO memory structure with two levels, one

for the current value and another one for the previous

instant value. Thus, for n bands, there are 2n binary

values for each input pixel, xo
kði; j; tÞ and the previous

value xo
kði; j; t 2 DtÞ:

xo
kði; j; tÞ ¼

1; if Iði; j; tÞ [ k
256

n
; ðk þ 1Þ

256

n
2 1

� �

0; otherwise

;

8><
>:

where k ¼ 0;…; n 2 1; is the band index.

This image binarisation in n bands expands the

inferential scheme in n parallel processes, one for each

band. The calculation elements of the neuronal inferential

network of this layer do not need lateral interaction. In Fig. 7

we show an example of the results of this subtask.

Fig. 7. An example for subtask ‘thresholded segmentation’. (a) Input image from a satellite. (b) Image segmented in four grey level bands (superposition of the

four bands in one single image). (c) Result images for each grey level band.
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5. ALI motion detection (layer I)

The aim of this subtask is to detect the temporal and local

(pixel to pixel) contrasts at each sub-layer associated to the

n grey level images binarised at layer 0, taking into account

the problems associated to contrasts not related to silhouette

motion. From now on, we shall only speak a one generic

sub-layer associated to grey level k:

To decompose this subtask we use first a temporal

version of the non-recurrent ALI introduced in Fig. 5.

Later, we will use the recurrent ALI method of Fig. 6 to

cope with the need for dialogue among the neighbouring

elements of calculus in the periphery of the output

space, ðPpÞ:

The couple of binarisation values at each bands, xo
kði; j; tÞ

and xo
kði; j; t 2 DtÞ constitute the input space of the temporal

non-recurrent ALI. The output space (before dialogue) is the

result of the individual calculus phase in each element, as

shown in Fig. 8.

Inference compare receives observable xo
kði; j; tÞ and

xo
kði; j; t 2 DtÞ and the current charge value that initially is

vdis: It also receives as static role the comparison rule and the

numerical coding of the different discrepancy classes

ðD1;D2;D3Þ: The output role (dynamic) is the class of

discrepancy selected at this time, DðtÞ: This class now plays

the static role of a select inference in charge of filtering

a specific charge value (before dialogue) from a set of

potential values. These potential values are vdis; vsat and max

{v 2 vdm; vdis}; where vdm is the decrement value applied

when no motion is detected between two frames, vdis is

the minimum charge value and vsat is the maximum charge

value. Value vsat is obtained either when an object just enters

the receptive field, or when movement has been detected by

any of the pixel’s neighbours.

The output selected constitutes the charge value

accumulated before dialogue, vðt þ kDtÞ; complemented

by a label, A; that, when A ¼ 1; denotes the fact that a

movement has been locally detected by this element. This

information is used for dialogue in the recurrent part of the

calculus.

These values of charge accumulated before dialogue

are written in the central part of the output space of each

element ðCpÞ that now enters in the dialogue phase

according to recurrent ALI inferential scheme of Fig. 6,

instantiated for this task in Fig. 9. The data in the

periphery of receptive field in the output space of each

element ðPpÞ contains now the individual calculi of the

neighbours. Then, each element takes into account this

set of individual calculus, {vjðt þ kDtÞ; Aj}; by means of

an evaluate inference that uses as static role the logical

union of the labels Aj;APp ðtÞ ¼
S

j AjðtÞ: This results,

APp ðtÞ; is now compared with ACp ; giving rise to one of

Fig. 8. Instantiation of the temporal non-recurrent ALI method used to decompose the first phase of the motion detection subtask (individual calculus).
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two discrepancy classes (recharge or stand-by) and,

subsequently, the class activated plays the static role of

selection criteria in the next select inference that outputs

the new consensued charge value after dialogue,

ykði; j; t þ DtÞ; with Dt ¼ kDt; being k the number of

iterations in the dialogue phase, a function of the size of

the receptive field. The purpose of this last inference of

selection is to fix a minimum object size in each grey

level band. In Fig. 10 we show an example of the result

of ‘motion detection’ subtask.

6. Silhouettes parts obtaining (layer II)

The aim of this sub-task is to obtain the silhouette of

all components of a moving object. The layer considers

the union of pixels that are physically together and at a

same grey level band to be a component. As at the

previous layer, also n parallel channels form this layer,

one for each grey level. At each channel, a set of

non-recurrent lateral interaction processes are performed

to distribute the charge among all neighbours that possess

a certain minimum load and are physically connected. A

double objective is aimed

1. To dilute the charge due to the image background

motion among other points of the own background, so

that only moving objects are detected.

2. To obtain a parameter common to all pixels of the

part of the object that belongs to the same grey level

band. This parameter will again be processed in

layer III.

Fig. 11 shows the inferential scheme of this subtask,

which is similar to the generic non-recurrent ALI of

Fig. 5. Charge values, ykði; j; t þ DtÞ; offered by layer I

are now evaluate in the centre and in the periphery. In

inference evaluate of Pp we have the average of those

neighbours that have charge values different from zero

(that is to say, those had charge values superiors to

threshold value uper in the previous layer). Observe that

in this subtask the dialogue (inferences compare and

select) again needs k iterations of clock t; being k

Fig. 9. Inferential scheme of the dialogue phase of subtask ‘motion detection’ by means of recursive ALI.
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a function of the size of the receptive field. Thus,

inference compare compares the result of the individual

value ðCÞ with the mean value in ðPÞ and produces a

discrepancy class according with layer II threshold, ðucarÞ;

and passes to layer III the mean charge values that

overcome that threshold ð{zkði; j; t}lzk $ ucarÞ:

Later it ‘waits’ for a new image, at the end of Dt: In

Fig. 12 we show the results of this subtask.

7. Moving objects silhouettes fusion (layer III)

The previous layers have detected the image elements

that are moving in some of the grey level bands and they

have tried to eliminate by means of two thresholds (uper and

ucar) all components of motion due to the background.

The purpose of this last layer is ‘to fuse’ or to juxtapose the

silhouettes of the moving objects detected by the different

grey level bands. The method used is again lateral

interaction, but now there are not n sub-layers or channels

processing in parallel, but rather the n channels of layer II

converge in one single layer through a multiplexing

operation (selection of maximum) on the n channels,

where only one of them has a charge value different from

zero for each co-ordinate ði; jÞ at each t:

The inferential scheme of this layer is the same as that

of layer II (Fig. 11) changing the domain elements that

play the corresponding dynamic and static roles. Now the

input to each element ði; jÞ is the maximum value of the

outputs of the corresponding pixels of each sub-layer of

layer II, zkði; j; tÞ; k ¼ 1;…; n; at each Dt: Then, this

maximum value is averaged with the values of

Fig. 10. An example for subtask ‘motion detection’. (a) Image segmented in four grey level bands (superposition of the four bands in one single image); (b)

motion image (superposition of the four bands in one single image); (c) result images for each grey level band.
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the periphery of the receptive field that have overcome a

certain threshold value. This is the way the silhouettes

Oði; j; t þ DtÞ are obtained. Finally, an illustration of the

outputs of the different layers in the motion detection task

is summarized in Fig. 13.

8. Conclusions

We have presented the knowledge modelling approach

for the moving objects in image sequences detection task,

trying to show three methodological items.

1. The convenience of modelling knowledge of tasks and

methods in terms of a library of reusable components

(inferential verbs evaluate, compare and select) and a set

of input and output roles played by the entities of the

application domain. This way, we contribute to approach

knowledge engineering to electronic engineering, where

the inherent advantage of the reusable character of the

same basic circuits is evident.

2. The potential utility of seeking for inspiration in Biology.

In this case, we have used a widespread version of the LI

circuits to model a vision task, starting from the certain

fact that this circuit type is the one that repeats in an

insistent way in the visual pathway of the vertebrates.

The distinctive character of our approach is that we have

introduced an abstraction. We have passed from the

signals level, where LI acts as a spatio-temporal band-

pass filter (contrast detection), to the knowledge level,

where LI becomes a generic PSM built up on the

inferences evaluate, compare and select that samples

data from a partition of the external inputs space and

from the outputs space (feedback).

3. The convenience to use hybrid PSM to solve problems

in artificial vision where the final configuration of a

PSM is always dependent on the particular balance

between data and knowledge available for the specific

case under consideration. In the motion detection task,

we have used the available knowledge to specify the

architecture of the net. Then we have enhanced

Fig. 11. Inferential scheme of layer II.
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the computational power of the artificial neurons that

become inferential rules of parametric nature. In this

way we can use supervised methods of connectionist

learning to adjust the values of these parameters.

For each one of the subtasks we have illustrated the results

of the inferential scheme. Finally, we conclude with a

summary of advantages and deficiencies of our approach in

comparison with others well established alternatives.

Our model applied to motion detection is a 2D approach to

motion estimation. In these kinds of approaches, motion

estimates are obtained from 2D motion of intensity patterns.

In these methods there is a general restriction: the intensity of

the image along the motion trajectory must be constant, that

is to say, any change through time in the intensity of a pixel is

only due to motion. This restriction does not affect our model

at all. This way, our algorithms are prepared to work with lots

of situations of the real world, where changes in illumination

are of a real importance.

The gradient-based estimates have become the main

approach in the applications of computer vision. These

methods are computationally efficient and satisfactory

Fig. 12. An example for subtask ‘silhouettes parts obtaining’. (a) Motion image (superposition of the four bands in one single image); (b) image composed of

silhouette elements (superposition of the four bands in one single image); (c) result images for each grey level band.
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motion estimates of the motion field are obtained.

Unfortunately, the gradient-based methods always present

some restrictions, but our method does not. The disadvan-

tages common to all methods based on the gradient also

arise from the logical changes in illumination.

Obviously, a way of solving the former limitations of

gradient-based methods is to consider image regions instead

of pixels. In general, these methods are less sensitive to

noise than gradient-based methods. Our particular approach

takes advantage of this fact and uses all available

Fig. 13. Description of ‘motion detection’ task. (a) Input image; (b) result of subtask ‘thresholded segmentation’; (c) result of subtask ‘ALI motion detection’;

(d) result of subtask ‘silhouettes parts obtaining’; (e) result of subtask ‘moving objects silhouettes fusion’.
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neighbourhood state information as well as the proper

motion information. On the other hand, our method is not

affected by the greatest disadvantage of region-based

methods. Our model does not depend on the pattern of

translation motion. In effect, in region-based methods,

regions have to remain quite small so that the translation

pattern remains valid.

The most important limitation of the method applied to

motion detection is the impossibility to differentiate among

objects that are seen as a whole due to occlusions.
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