
Pattern Recognition 36 (2003) 1131–1142
www.elsevier.com/locate/patcog

Spatio-temporal shape building from image sequences using
lateral interaction in accumulative computation

Antonio Fernandez-Caballeroa ;∗, Miguel A. Fernandeza, Jose Mirab, Ana E. Delgadob
aDepartamento de Informatica, Universidad de Castilla-La Mancha, Campus Universitaro, 02071 Albacete, Spain

bDepartamento de Inteligencia Arti"cial, UNED, c/Senda del Rey, 9, 28040 Madrid, Spain

Abstract

To be able to understand the motion of non-rigid objects, techniques in image processing and computer vision are essential
for motion analysis. Lateral interaction in accumulative computation for extracting non-rigid shapes from an image sequence
has recently been presented, as well as its application to segmentation from motion. In this paper, we introduce a modi4ed
version of the 4rst multi-layer architecture. This version uses the basic parameters of the LIAC model to spatio-temporally
build up to the desired extent the shapes of all moving objects present in a sequence of images. The in5uences of LIAC model
parameters are explained in this paper, and we 4nally show some examples of the usefulness of the model proposed.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been a great deal of research interest in motion
tracking [1–3] because of its great applicability in a wide
variety of applications. Non-rigid motion is di;cult by its
proper nature. There has also been much work carried out on
the extraction of non-rigid shapes from image sequences. In
general, all papers take advantage of the fact that the image
5ow of a moving 4gure varies both spatially and temporally.

Little and Boyd [4] found it reasonable to suggest that
variations in gaits are recoverable from variations in im-
age sequences. There have been several attempts to recover
characteristics of gait from image sequences by Polana and
Nelson [5,6]. Polana and Nelson [7] characterise the tem-
poral texture of a moving 4gure by summing the energy of
the highest amplitude frequency and its multiples. They use
Fourier analysis. Their more recent work [8] emphasises the
spatial distribution of energies around the moving 4gure.
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Bobick and Davis [9] introduced the motion energy image
(MEI), a smoothed description of the cumulative spatial
distribution of motion energy in a motion sequence. Bobick
and Davis [10] enhanced the MEI to form a motion-history
image (MHI), where pixel intensity is a function, over time,
of the energy in the current binary motion energy and recent
activity, which they extend in later work [11]. The MEI [9]
is arrived at by binary threshold of motion displacements
computed as the threshold of the pixelwise summed squared
diEerence between each image and the 4rst, over an entire
sequence.

Yang and Ahuja [12] segment an image frame into regions
with similar motion. The algorithm identi4es regions in each
frame comprising the multiscale intraframe structure [13].
Regions at all scales are then matched across frames. A;ne
transforms are computed for each matched region pair. The
a;ne transform parameters for region at all scales are then
used to derive a single motion 4eld that is then segmented
to identify the diEerently moving regions between two
frames.

Olson and Brill [14] propose a general purpose system for
moving object detection and event recognition where mov-
ing objects are detected using change detection and tracked
using 4rst-order prediction and nearest neighbour matching.
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The goal of this paper is to present a novel method for
spatio-temporally shape building taking advantage of the
inherent motion present in image sequences. With this new
model, we can parameterise the aspect of gradually emerging
shapes due to motion.

2. Lateral interaction in accumulative computation

Lateral interaction in accumulative computation has re-
cently been introduced [15–18], as well as its application
to segmentation from motion [19]. For it, a generic model
based on a neural architecture was presented. We shall now
remind of the most important characteristics of this model.

The proposed model is based on accumulative computa-
tion function [16,17] followed by a set of co-operating lat-
eral interaction processes [20,21]. These are performed on a
functional receptive 4eld organised as centre–periphery over
non-linear and temporal expansions of their input spaces
[5,21,22].

A lateral interaction model [6,23] consists of a layer of
modules of the same type with local connectivity, such that
the response of a given module does not only depend on
its own inputs, but also on the inputs and outputs of the
module’s neighbours. From a computational point of view,
the aim of the lateral interaction nets is to partition the in-
put space into three regions: centre, periphery and excluded.
The following steps have to be done: (a) processing over
the central region, (b) processing over the feedback of the
periphery zone, (c) comparison of the results of these oper-
ations and a local decision generation, and, (d) distribution
over the output space.

We also incorporate the notion of double time scale
present at sub-cellular micro-computation [17]. So, the fol-
lowing properties are applicable to the model: (a) local con-
vergent process around each element; (b) semiautonomous
functioning, with each element capable of spatio-temporal
accumulation of local inputs in time scale T , and conditional
discharge; and (c) attenuated transmission of these accu-
mulations of persistent coincidences towards the periphery
that integrates at global time scale t.

Therefore, we are in front of two diEerent time scales: (1)
the local time T and (2) the global time t (t = nT ). Global
time is applicable to steps (a) and (d) of our neuronal lateral
interaction model, whereas steps (b) and (c) use local time
scale T .

3. LIAC architecture for spatio-temporal shape building

In 4rst place, and in the following 4gure, the complete
structure chosen as the modular computational solution to
apply the model to spatio-temporal shape building is pre-
sented. In Fig. 1, four layers can be appreciated that form the
architecture of the lateral interaction in accumulative com-
putation method.

Now we are going to explain the role of each of these
four layers in the task of shape building.

3.1. Layer 0: segmentation by grey level bands

This layer covers the need to segment the image at a
prede4ned group of n grey level bands. Each element (x; y)
is capable of processing motion from input grey level value
IN (x; y; t) and its proper charge value. Let GLS(k; x; y; t) be
the presence or absence of grey level k at element (x; y) at
time t

GLS(k; x; y; t) =

{−1 if IN (x; y; t)�=k;
1 otherwise;

∀k∈[0; 255];

where n is the number of grey level bands, and, k is a partic-
ular grey level band. In other words, we have to determine
in what grey level band a certain pixel falls. So, we are not
evaluating, at this level, if there is motion in a grey level
band for a given pixel. This task is left to the following layer.

It must be clear that one, and only one, of the outputs
of all the detecting modules of the grey level bands can be
activated at a given instant. This fact, although obvious, is of
a great interest at the higher layers of the architecture, since
it will avoid possible con5icts among the values oEered by
the diEerent grey level bands. Indeed, only one grey level
band will contain valid values.

3.2. Layer 1: lateral interaction for accumulative
computation

This layer has been designed to obtain the permanence
value PM (k; x; y; t) on a decomposition in grey level bands
basis. We will have n sub-layers and each one of them will
memorise the value of the accumulative computation present
at global time scale t for each element. Lateral interaction
in this layer is thought to reactivate the permanence charge
of those elements partially loaded and that are directly or
indirectly connected to maximally charged elements. The
permanence charge of each element will be oEered to the
following layer as output.

Firstly, at global time scale t, permanence memory charge
or discharge due to motion detection is performed. This
information, given as input from layer 0, is associated to
sub-layer k of layer 1 (grey level band k). The accumulative
computation equation may be formulated as

PM (k; x; y; t)

=




ldis if GLS(k; x; y; t)=−1;

lsat if GLS(k; x; y; t)=1 and

GLS(k; x; y; t−Mt)=−1;

max(PM (k; x; y; t−Mt)−dv; ldis)
if GLS(k; x; y; t)=1 and GLS(k; x; y; t−Mt)=1;
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Fig. 1. Multi-layer con4guration.

where ldis is the discharge or minimum permanence value,
lsat is the saturation or maximum permanence value, and dv
is the discharge value due to motion detection.

Note that Mt determines the sequence frame rate
and is given by the capacity of the model’s implementa-
tion to process one input image. At each element (x; y)
we are in front of three possibilities: (1) The sub-layer
does not correspond to the grey level band of the im-
age pixel. The permanence value is discharged down to
value ldis. (2) The sub-layer corresponds to the grey level
band of the image pixel at time instant t, and it did not
correspond to the grey level band at the previous instant
t − Mt. The permanence value is loaded to the maxi-
mum of saturation lsat . (3) The sub-layer corresponds to
the grey level band of the image pixel at time instant t,
and it also corresponded to the grey level band at the in-
stant t − Mt. The permanence value is discharged by a
value dv (discharge value due to motion detection); of

course, the permanence value cannot get oE a minimum
value ldis.

The discharge of a pixel by a quantity of dv is the way
to stop maintaining attention to a pixel of the image that
had captured our interest in the past. As it will be seen
later on, if a pixel is not directly or indirectly bound by
means of lateral interaction mechanisms to a maximally
charged pixel (lsat), it goes down to the total discharge
with time.

Secondly, an extra charge rv (recharge value due to neigh-
bouring) is added to the permanence memory in those im-
age pixels that receive a stimulus from a maximally charged
element almost l1 pixels far away in any of four directions.
This recharge can only happen one time, and provided that
none neighbour element up to the maximally charged ele-
ment is discharged. l1 is called number of neighbours in ac-
cumulative computation. This recharge mechanism allows
maintaining attention on those pixels directly or indirectly
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connected to maximally charge pixels. This mechanism is
even able to reinforce the permanence memory value if the
rv¿dv.

PM (k; x; y; T ) = min(PM (k; x; y; T −MT ) + � rv; lsat);

where

� =




1 if ∃(16 i6 l1)!∀(16 j6 i);

(PM (k; x; y + i; T −MT )

=lsat ∩ PM (k; x; y + j; T −MT )¿ldis)∪
(PM (k; x + i; y; T −MT )

=lsat ∩ PM (k; x + i; y; T −MT )¿ldis)∪
(PM (k; x; y − i; T −MT )

=lsat ∩ PM (k; x; y − j; T −MT )¿ldis)∪
(PM (k; x − i; y; T −MT )

=lsat ∩ PM (k; x − 1; y; T −MT )¿ldis)

0 otherwise

Lastly, back at global time scale t, the permanence value at
each pixel (x; y) is threshold and sent to the next layer.

PM (k; x; y; t) =

{
PM (k; x; y; t) if PM (k; x; y; t)¿�1;

�1 otherwise:

In order to explain the central idea of this layer 1, we
will say that the activation toward the lateral modular struc-
tures (up, down, right and left) is based on the following
basic ideas: (1) all modular structures with maximum per-
manence value lsat (saturated) output the charge toward the
neighbours; (2) all modular structures with a not saturated
charge value, and that have been activated from some neigh-
bour, allow to pass this information through them (they be-
have as transparent structures to the charge passing); and
(3) the modular structures with minimum permanence value
ldis (discharged) stop the passing of the charge information
toward the neighbours (they behave as opaque structures).
Therefore, we are in front of an explosion of lateral activa-
tion beginning at the structures with permanence memory
set at lsat , and that spreads lineally toward all the addresses,
until a structure appears in the pathway with a discharged
permanence memory.

3.3. Layer 2: lateral interaction for charge redistribution
by grey level bands

Layer 2 is also formed of n sub-layers, where, by means of
lateral interaction, charge redistribution among all connected
neighbours in a surrounding window of l2 ∗ l2 pixels that
hold a minimum charge, is performed. Besides distributing
the charge C(k; x; y; t) in grey level bands, at this level, the
charge due to the motion of the background is also diluted.

The new charge obtained in this layer is oEered as an output
toward layer 3.

Starting from the values of the permanence memory in
each pixel on a grey level band basis, we will see how it is
possible to obtain all the parts of an object in movement. A
part of an object concretely means the union of pixels that
are together and in a same grey level band. The discrim-
ination of each one of the parts that compose the objects
is equally obtained by lateral co-operation mechanisms. In
case of layer 2, the charge will be homogenised among all
the pixels that pertain to the same grey level band and that
are directly or indirectly united to each other. This way, a
double objective will be obtained: (1) diluting the charge
due to the false image background motion along the other
pixels of the background. This way, there should be no pres-
ence of motion characteristic of the background, but we will
rather keep motion of the objects present in the scene. (2)
Obtaining a parameter common to all the pixels of the part
of the object in a surrounding window of l2 ∗ l2 pixels with
a same grey level band.

Initially, at global time scale t, the charge value at each
pixel (x; y) and at each sub-layer k is given the value of the
permanence value from the previous layer

C(k; x; y; t) = PM (k; x; y; t):

Afterwards, at local time scale T , provided that the neigh-
bour input charge values are high enough, the centre ele-
ment (x; y) calculates the mean of its value and the partially
charged neighbours in a surrounding window of l2 ∗ l2 pix-
els. l2 is denominated number of neighbours in charge re-
distribution

C(k; x; y; T )

=

C(k; x; y; T−MT )

+
∑l2

i=−l2
∑l2

j=−l2 �x+i;y+jC(k; x+i; y+j; T−MT )

1+
∑l2

i=−l2
∑l2

j=−l2 �x+i;y+j
;

∀(i; j)�=(0; 0);

where

��;� =

{
1 if C(k; �; �; T −MT )¿ldis;

0 otherwise:

Again at global time scale t, the charge value at each pixel
(x; y) is threshold and sent to the next layer

C(k; x; y; t) =

{
C(k; x; y; t) if C(k; x; y; t)¿�2;

�2 otherwise:

3.4. Layer 3: lateral interaction for spot fusion

In each element of layer 3, we have an input from each
corresponding element of the n sub-layers of layer 2. This
layer has as purpose the fusion into uniform spots of the
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objects in a surrounding window of l3∗l3 pixels. That is why
it takes the input charges of each one of the grey level bands
and performs a fusion of these values, obtaining uniform
parts of all the moving objects of the original image. Its
output is a set of spots S(x; y; t).

Up to now attention has been captured on any moving
objects in the scene by means of co-operative calculation
mechanisms in all grey level bands. Motion due to back-
ground has also been eliminated. It is now necessary to 4x
as a new objective to clearly distinguish the motion of the
diEerent objects. This discrimination is obtained equally by
lateral co-operation mechanisms. Again we will connect the
modular structures of this layer in a mesh form in layer 3.
Nevertheless, now we will no longer work with sub-layers,
but rather all information of the n sub-layers of layer 2 end
up in a single layer. In layer 3, we will homogenise the
charge values among all the pixels that contain some charge
value superior to a minimum threshold and that are physi-
cally connected to each other in a radius of l3 pixels.
Firstly, the spot charge value at each pixel (x; y) is given

the charge value of the maximally charged sub-layer k from
the previous layer.

S(x; y; t) = max(C(k; x; y; t)); ∀k ∈ [0; 255]:

At local time scale, provided that the neighbour input
charge values are high enough, the centre element (x; y)
calculates the mean of its value and the partially charged
neighbours in a surrounding window of l3 ∗ l3 pixels. l3 is
denominated number of neighbours in object fusion.

S(x; y; T )

=

S(x; y; T −MT )
+
∑l3

i=−l3
∑l3

j=−l3 �x+i;y+jS(x + i; y + j; T −MT )

1 +
∑l3

i=−l3
∑l3

j=−l3 �x+i;y+j
;

∀(i; j) �= (0; 0);

where

��;� =

{
1 if S(�; �; T −MT )¿ldis;

0 otherwise:

Back to global time scale t, the spot charge value at each
pixel (x; y) is threshold.

S(x; y; t) =

{
S(x; y; t) if S(x; y; t)¿�3;

�3 otherwise:

4. In�uence of the basic LIAC parameters in shape
building

Nowwe will comment the in5uence of the most important
parameters of the lateral interaction in accumulative com-
putation model applied to spatio-temporal shape building.
This will be carried out by using the results of applying a
model’s implementation to a sequence of images taken in

Table 1
Basic LIAC parameters

Parameter description Layer

n Number of grey level bands 1
dv Discharge value due to motion detection 1
rv Recharge value due to neighbouring 1
l1 Number of neighbours in accumulative computation 1
�1 Permanence value threshold 1
l2 Number of neighbours in charge redistribution 2
�2 Charge value threshold 2
l3 Number of neighbours in object fusion 3
�3 Shape value threshold 3

our research laboratory. In this sequence three people are
moving freely.

The basic parameters, as previously seen in the three lay-
ers of our architecture, are depicted in Table 1.

4.1. In7uence of parameter “number of grey level bands”

To explain the in5uence of parameter number of grey
level bands (n) we shall work with three possible values of
this parameter and we will oEer the obtained results after
applying up to layer 3 of the model (see Fig. 2). Results
appear as images, where (a) the 4rst column oEers the input
images, (b) the second column oEers the results of applying
case study A (n= 4), (c) the third column oEers the results
of applying case study B (n=8), and, (d) the fourth column
oEers the results of applying case study C (n=32). As you
may appreciate, a higher value of number of grey level bands
usually enables to better discriminate the whole shapes of the
moving non-rigid objects. Nevertheless, a too high value of
this parameter may include some image background into the
shapes. This may even lead to fuse more than one diEerent
shape into one single silhouette.

4.2. In7uence of parameter “discharge value due to
motion detection”

To explain the in5uence of parameter discharge value due
to motion detection (dv) we will work with three possible
values of this parameter (dv=255, 127 and 15), and we will
oEer the results obtained as output of layer 1 of the model
(Fig. 3). Once again, the 4rst column of Fig. 3 oEers the
input images to the implementation of the lateral interaction
in accumulative computation model. The following columns
show the result of applying the model to the three case
studies. On the column second you may appreciate in white
colour the image pixels that have just changed their grey
level band since the last image. Lowering the discharge value
due to motion detection, we go obtaining the trail of the
movement in the last images. This way, the third column
oEers the story of the last three images. That is, in white
the diEerence among the images at t and t − 1, and in light
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Fig. 2. In5uence of parameter number of grey level bands: (a) input images; (b) result after layer 3 for case study A; (c) result after layer
3 for case study B; (d) result after layer 3 for case study C.

grey the diEerence between the images at t − 1 and t − 2.
The fourth column shows more clearly the history of the last
images. Indeed, by means of little value of discharge value
due to motion detection, we obtain more information of the
history of the movement through the oEered trail.

4.3. In7uence of parameter “recharge value due to
neighbouring”

To explain the in5uence of the parameter recharge value
due to neighbouring (rv) we will work equally with three
possible values of this parameter (rv= 0, 63 and 127), and
we will oEer the results obtained as output of layer 1 (see
Fig. 4). In the 4rst column of Fig. 4, the input images to
the implementation of the lateral interaction in accumula-
tive computation model are shown. The successive columns
show the result of applying the model in the three cases.

The second column of Fig. 4 shows the results for the
4rst study case. Here we have decided not to recharge the
memories, that is to say, we use a recharge value due to
neighbouring equal to 0. You may appreciate three diEer-
ent charge levels. (a) In black, corresponding to grey level
value 0—or minimum permanence value (ldis)—there is the
background, where no motion has been detected. (b) In dark
grey, that is to say, for a grey level around 128, we have
motion detected between time instants t−2 and t−1. (c) In

white, corresponding to grey level value 255—or maximum
permanence value (lsat)—there is motion detected between
time instants t − 1 and t. The third column shows the re-
sults of applying the model to the second case study, using
a recharge value due to neighbouring (dv) diEerent to 0, but
inferior to the discharge value due to motion detection (rv).
In this case a charge increase is appreciated in those pix-
els that in the column second were in dark grey (a charge
value su;cient to be recharged). These pixels are now in
clear grey. Note that the recharge has as secondary eEect,
recovering part of the history of motion.

The last case study presents the highest possible value of
recharge value due to motion detection (rv). The result is
that of big pixel areas loaded to the maximum permanence
value (lsat).

4.4. In7uence of parameters “number of neighbours in
accumulative computation”, “number of neighbours in
charge redistribution” and “number of neighbours on
object fusion”

As there is no appreciable diEerence in the explanation of
the in5uence of parameters number of neighbours in accu-
mulative computation (l1), number of neighbours in object
fusion (l3) and number of neighbours in charge redistribu-
tion (l2), we will only oEer an example for l2. To explain
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Fig. 3. In5uence of parameter discharge value due to motion detection.

the in5uence of parameter number of neighbours in charge
redistribution (l2) we will oEer on Fig. 5 two diEerent cases,
denominated case study A (l3=64) and case study B (l3=8),
as re5ected in Table 1. We oEer the results equally in form
of images of the output of layer 2 of the model.

In general, one can a;rm that parameters number of
neighbours in accumulative computation, number of neigh-
bours in charge redistribution and number of neighbours in
object fusion are conceived to de4ne the outreach or in5u-
ence area of lateral interaction of the model. Logically, the
higher the action radius, the greater the area aEected by the
neighbours charges.

If you want to fuse small pixel areas, a relatively low
value for number of neighbours in accumulative computa-
tion, number of neighbours in charge redistribution or num-

ber of neighbours in object fusion is required. This way it is
possible to maintain the details of the non-rigid objects. On
the contrary, if you want to fuse greater pixel areas a higher
value has to be used. This other way allows fusing more
extensive areas of pixels in a single shape. You may appre-
ciate on Fig. 5 how a lower value of number of neighbours
in charge redistribution guards more details of the shapes
(compare column 3 with column 2).

4.5. In7uence of parameters “permanence value
threshold”, “charge value threshold” and “shape value
threshold”

Once again, we shall take advantage of the fact that
there is no appreciable diEerence in the explanation of the
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Fig. 4. In5uence of parameter recharge value due to neighbouring.

in5uence of parameters permanence value threshold (�1),
shape value threshold (�3) and charge value threshold (�2).
Thus, to explain the in5uence of parameters permanence
value threshold (�1), charge value threshold (�2) and shape
value threshold (�3) we will work with two values of pa-
rameter �2, namely (�2=150 and 200). Results are shown in
Fig. 6.

As you can easily appreciate, parameter charge value
threshold (�2)—or permanence value threshold (�1), shape
value threshold (�3)—is a threshold that limits the image
pixels charge value at layer 2—layer1, layer 3—of the lateral
interaction in accumulative computation model. A higher
value of permanence value threshold (�1), charge value
threshold (�2) or shape value threshold (�3) is able to bet-
ter discriminate the number of pixels to be used at this
level.

5. Some signi!cant examples

To show the usefulness and the multi-functionality of
the parameterised model proposed, we show in this section
three signi4cant examples where the algorithms described
may be applied, namely: (1) silhouette detection (SD), (2)
motion detection (MD), and (3) direction detection (DD)
and motion tracking. All three examples are the result of
applying our model to a same image sequence, namely
TwoWalkNew, downloaded from University of Maryland
Institute for Advanced Computer Studies, copyright? 1998
University of Maryland, College Park. This sequence used to
test the real time visual surveillance system W 4 [24] shows
two people that walk trough a scene. The diEerent results are
obtained just by using diEerent values for the same LIAC
model (see Table 2).
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Fig. 5. In5uence of the number of neighbours in charge redistribution.

Table 2
Parameter values for the three signi4cant examples

n ldis lsat dv rv l1 �1 l2 �2 l3 �3

SD 8 0 255 64 0 1 192 1 192 1 192
MD 16 0 255 192 4 8 63 16 63 32 63
DD 8 0 255 16 4 1 127 1 127 1 127

Fig. 7 shows the model output for the three examples. The
pure output is shown on the 4rst column for each example.
The second column shows the result superimposed on the
input image. The results of silhouette detection are drawn
in blue colour (Fig. 7a), motion detection in red colour

(Fig. 7b) and direction detection in green colour (Fig. 7c).
In this last example notice that motion direction is
shown by means of the intensity of green colour. Direc-
tion has to be interpreted going from clearer to darker
green.
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Fig. 6. In5uence of parameter charge value threshold.

6. Conclusions

In this paper, we have introduced a multi-layer archi-
tecture that uses the basic parameters of the LIAC model
to spatio-temporally build the shapes of all moving objects
present in a sequence of images. This novel method for
spatio-temporally shape building takes advantage of the in-
herent motion present in image sequences. With this new
model, we can parameterise the aspect of gradually emerg-
ing shapes due to motion.

A high enough value of number of grey level bands
enables to discriminate the whole shapes of the moving
non-rigid objects. Nevertheless, a too high value of this
parameter may include some image background into the
shapes. This may even lead to fuse more than one diEerent

shape into one single silhouette. By tuning the value of dis-
charge value due to motion detection, we obtain more or less
information of the history of the movement through the of-
fered trail. Recharge value due to neighbouring allows main-
taining attention on those pixels directly or indirectly con-
nected to maximally charge pixels. Parameters number of
neighbours in accumulative computation, number of neigh-
bours in charge redistribution and number of neighbours in
object fusion are conceived to de4ne the outreach or in5u-
ence area of lateral interaction of the model. Logically, the
higher the action radius, the greater the area aEected by the
neighbours charges. Lastly, notice that a higher value of per-
manence value threshold (�1), charge value threshold (�2)
or shape value threshold (�3) is able to better discriminate
the number of pixels to be used.
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Fig. 7. Three signi4cant examples: (a) silhouette detection, (b) motion detection, (c) direction detection.

Our model may be compared to background subtraction
or frame diEerence algorithms in grey-scale images in the
way motion is detected. Then, a region growing technique
is performed to de4ne moving objects up to the desired
extent. In contrast to similar approaches no complex image
pre-processing must be performed and no reference image
must be oEered to our model.

We also have to highlight that our method has no limita-
tion in the number of non-rigid shapes to diEerentiate. As
in other approaches [25] no object model is used, so our
algorithms can segment any kind of moving elements. Our
method facilitates any higher-level operation by taking ad-
vantage of the common charge value of parts of the moving
objects.

The model seems to be promising in a lot of diEerent
applications related to image processing. We conclude af-
4rming that the proposed neuronal lateral interaction in ac-
cumulative computation mechanisms oEer a promising tool

for image segmentation as a 4rst approach to pattern recog-
nition. We are currently testing the model in very diEerent
real world applications.
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