
Prometheus and INGENIAS Agent

Methodologies: A Complementary Approach

José M. Gascueña and Antonio Fernández-Caballero

Departamento de Sistemas Informáticos
Instituto de Investigación en Informática de Albacete (I3A)
Universidad de Castilla-La Mancha, 02071-Albacete, Spain

{jmanuel,caballer}@dsi.uclm.es

Abstract. A great number of methodologies to develop multi-agent sys-
tems (MAS) have been proposed in the last few years. But a unique
methodology cannot be general enough to be useful for everyone with-
out some level of customization. According to our knowledge, existent
agent-based surveillance systems have been developed ad-hoc and no
methodology has been followed. We are interested in creating tools that
allow to model and to generate monitoring environments. This has mo-
tivated the selection of Prometheus and INGENIAS methodologies, to
take advantage of both approaches in developing agent-based applica-
tions. In this paper a collection of equivalences between the concepts
used in both methodologies is described extensively.

1 Introduction

The use of surveillance systems has grown exponentially during the last decade,
and has been applied in many different environments [29]. A distributed config-
uration is mandatory to get scalable and robust surveillance applications ([28],
[27], [18], [22]). These systems are complex and work in highly dynamic environ-
ments, where scattered sensors (e.g., camera, temperature, presence detection,
and microphone) can decide and act with some degree of autonomy, and cooper-
ate and coordinate for complete tracking of special situations. These characteris-
tics are often cited as a rationale for adopting agent technology [31]. In fact, this
technology has already been used in several surveillance systems (e.g. [26], [16],
or [1]). According to our knowledge, existent agent-based surveillance systems
have been developed ad-hoc and no methodology has been followed. Neverthe-
less, using a methodology allows to share the same terminology, annotation,
models, and development process [2].

A great number of methodologies to develop multi-agent systems (MAS) have
been proposed in the last few years (e.g. Gaia, Tropos, Message, MaSE). But a
unique methodology cannot be general enough to be useful for everyone without
some level of customization [4]. Habitually, techniques and tools proposed in
different methodologies are combined.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 131–144, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 J.M. Gascueña and A. Fernández-Caballero

2 Combining Prometheus and INGENIAS

In [10] several agent-oriented software development methodologies are presented,
an evaluation and comparison of this methodologies is carried out by Tran
and Low (chapter 12), and Henderson-Sellers introduce in chapter 13 a con-
ceptual framework that enables reusing methodology fragments to create a spe-
cific methodology for each project faced. Some works on agent methodology
integration are related to Tropos to INGENIAS mapping [7], or FIPA proto-
cols specified in AUML transformed in equivalent INGENIAS models [8]. Also,
the CAFnE toolkit [3] provides a framework that facilitates domain experts in
making modifications to a deployed agent-based system without the assistance
of agent programmers. Recently, a proposal for facilitating MAS complete life
cycle through the Protégé-Prometheus approach has been presented [24].

In our case, we shall reuse parts of Prometheus and INGENIAS methodologies
due to the following reasons. Once both methodologies have been studied, we
have observed that the process followed in INGENIAS [17] during the analysis
and design phases of MAS is very complex and difficult to follow, because is it
not clear how the different models are being constructed along the phases, de-
spite the documented general guidelines. In addition, it does not offer guidelines
helping to determine which the elements that form the MAS are. It is solely the
experience of the developer that determines its identification. On the contrary,
Prometheus does offer these guidelines. These guidelines are also able to serve as
a help to the experts in MAS development. They will be able to transmit their
experience to other users explaining why and how they have obtained the dif-
ferent elements of the agent-based application. In addition, Prometheus is also
useful because it explicitly considers agent perceptions and actions as model-
ing elements. INGENIAS (1) is currently focused to model-driven development
(MDD) [18], (2) offers a process to generate code for any agent platform [8], and,
(3) is supported by INGENIAS Development Kit (IDK) [17] that can be person-
alized for any application domain. These three characteristics are not offered by
Prometheus. Nowadays the use of model-driven engineering (MDE) techniques
along the software development life cycle is gaining more and more interest [23].
An MDD has important benefits in fundamental aspects such as productivity,
portability, interoperability and maintenance. Therefore, in the MAS field, it
seems quite useful to use a methodology such as INGENIAS, which supports
this approach.

3 In-depth Comparison of Prometheus and INGENIAS

Prometheus [13] defines a proper detailed process to specify, implement and
test/debug agent-oriented software systems. It offers a set of detailed guidelines
that includes examples and heuristics, which help better understanding what is
required in each step of the development. This process incorporates three phases.
The system specification phase identifies the basic goals and functionalities of
the system, develops the use case scenarios that illustrate the functioning of the

Prometheus and INGENIAS Agent Methodologies 133

system, and specifies which are the inputs (percepts) and outputs (actions). It
obtains the scenarios diagram, goal overview diagram, and system roles diagram.
The architectural design phase uses the outputs produced in the previous phase
to determine the agent types that exist in the system and how they interact.
It obtains the data coupling diagram, agent-role diagram, agent acquaintance
diagram, and system overview diagram. The detailed design phase centers on
developing the internal structure of each agent and how each agent will perform
his tasks within the global system. It obtains agent overview and capability
overview diagrams. Finally, Prometheus details how the entities obtained during
the design are transformed into the concepts used in a specific agent-oriented
programming language (JACK); this supposes, in principle, a loss of generality.
The debugging mechanisms used in Prometheus are described extensively in
[15]. The Prometheus methodology is supported by Prometheus Design Tool
(PDT) [25].

On the other hand, the foundation of INGENIAS is the definition of MAS
meta-model and a set of MDD tools oriented towards agents (model edition, ver-
ification, validation and transformation) integrated in INGENIAS Development
Kit (IDK). The meta-model and IDK can be customized for a specific appli-
cation domains. The meta-model describes the elements that enable modeling
MAS from different points of view - agent, organization, environment, goals and
tasks, and interaction [17]. The agent perspective considers the elements to spec-
ify the behavior of each agent. The organization perspective shows the system
architecture. From a structural point of view, the organization is a set of enti-
ties with relationship of aggregation and inheritance. It defines a schema where
agents, resources, tasks and goals may exist. Under this perspective, groups may
be used to decompose the organization, plans, and workflows to establish the way
the resources are assigned, which tasks are necessary to achieve a goal, and who
has the responsibility of carrying them out. The environment perspective de-
fines the agents’ sensors and actuators, and identifies the system resources and

Table 1. Comparing Prometheus and INGENIAS

Prometheus INGENIAS

Proper development pro-
cess

YES NO: Based in the USDP (analysis
and design phases). An agile pro-
cess is suggested in [19]

General process to
generate code from the
models

NO: Only obtains code for JACK lan-
guage

YES: Based in template definitions

Iterative development
process

YES YES

Model-driven develop-
ment (MDD)

NO: Only proposes a correspondence
between design models and JACK
code

YES

Requirements capture YES YES
Meta-model YES [6] YES
Mechanisms to discover
agents and interactions
among agents

YES: Groups functionalities through
cohesion and coupling criteria

NO

Agent model BDI-like agents Agents with mental states

134 J.M. Gascueña and A. Fernández-Caballero

Table 2. Comparing PDT and IDK

PDT IDK

Supported methodology Prometheus INGENIAS
Interface references the
development process

YES: Diagrams are grouped in
three levels according to the three
Prometheus phases

NO: Possibility to create pack-
ets that correspond to the diverse
phases of the process. Models of
each phase are added to the corre-
sponding packet

Mechanisms to prioritize
parts of the project

YES: Three scope levels (essential,
conditional and optional) [21]

NO

Code generation YES: JACK http : //www.agent −
software.com/

YES: JADE http : //jade.tilab.com/

Report generation of
the MAS specification
in HTML

YES YES

Model fragmenting in
various pieces

NO: For instance, only one diagram
may be created to in order to gather
all the objectives of the system

YES

Save a diagram as an im-
age

YES: Format .png. The image reso-
lution can be configured

YES: Formats .jpg, .svg, .png,
wbmp, .bmp and .jpeg

Deployment diagrams NO YES
Agent communication Defined in basis of messages and

interaction protocols. Does not use
a specific communication language.
For JACK, there is a module com-
pliant with FIPA [32]

Defined in accordance with
communication acts of the
agent communication language
(ACL) proposed by FIPA http :

//www.fipa.org/specs/fipa00061/

Utility to simulate MAS
specifications before
generating the final code

NO YES: Realized on the JADE plat-
form. It is possible to manage in-
teraction and tasks, and to in-
spect and modify the agents’ men-
tal states

Plans Executable as
stand-alone

Textual description YES Graphical description YES

Integration in Eclipse YES: See [14] YES: in IDK version 2.7

applications. The goals and tasks perspective describes the relations between
tasks and goals. The interaction perspective describes how the coordination
among the agents is produced. INGENIAS, at difference with Prometheus, does
not define its own development process; rather it adopts the unified software
development process (USDP) [11] as a guideline to define the steps necessary to
develop the elements and diagrams of MAS during the analysis and design phases
of the USDP. Moreover, INGENIAS facilitates a general process to transform
the models generated during the design phase into executable code for all desti-
nation platforms. This general process is based in the definition of templates for
each destination platform and procedures for extraction of information present
in the models.

Both Prometheus and INGENIAS methodologies support the facility to cap-
ture requirements. In the Prometheus system specification phase, a version of
KAOS is used to describe the system’s goals [30] complemented with the de-
scription of scenarios that illustrate the operation of the system. In addition, in
[5] guidelines appear to generate the artifacts of the Prometheus system spec-
ification from organizational models expressed in i*. In INGENIAS, require-
ments capture is performed by means of use case diagrams. Then, use cases are

Prometheus and INGENIAS Agent Methodologies 135

associated to system goals, and a goals analysis is performed to decompose them
into easier ones, and finally tasks are associated to get the easiest goals.

In summary, INGENIAS has several advantages as opposed to Prometheus
(see Table 1): (a) it follows an MDD approach, (b) it facilitates a general process
to transform the models generated during the design phase into executable code.
The advantages of Prometheus can be used (following the process to discover
which be the agents of the system and its interactions) to enhance INGENIAS.

In Table 2 the Prometheus Design Tool (PDT) and INGENIAS Development
Kit (IDK) tools are compared. It may be observed that PDT only has one ad-
vantage with respect to IDK: it has a mechanism to prioritize parts of a project.
In the rest of considered characteristics, IDK equals or surpasses PDT. The tool
that it will use to support the new methodology is IDK as it is independent from
the development process and it may be personalized for the application under
development.

4 Mapping Prometheus into INGENIAS

In the new methodology, we propose that the MAS developer firstly follows the
system specification and architectural design phases proposed in Prometheus.
Thus, an initial model in accordance with Prometheus is obtained using the
guidelines that enable to identify the agents and their interactions. Afterwards,
an equivalent model in INGENIAS is obtained using the collection of equiv-
alences (mappings) between the concepts used in both methodologies. Next,
modeling goes on with INGENIAS; thus, benefiting from the advantages of
model-driven software development.

The detailed design phase of Prometheus is not followed because it mentions
a specific agent-based model, namely the BDI model, which is different from
the mental state agents used in INGENIAS. In this section, the collection of
equivalences is described. We would like to point out that we are only describing
the mapping from Prometheus into INGENIAS of the concepts used during the
system specification and architectural design phases defined in Prometheus.

The proposed mappings have mainly been deduced on the basis of the organi-
zations and relations between organizations that are possible to create with the
supported tools PDT and IDK, respectively. In our next exposition, we use the
Entity 1 - RelationX → Entity 2 notation to express that Entity 1 and Entity 2
are related through relation RelationX. The direction in which the arrow is point-
ing accurately reflects what the graphic representation of the relation is like. In the
figures, dotted arrows are used to stand out how the organizations of Prometheus
are transformed into the equivalent organizations of INGENIAS. In the tables in-
formation is offered on the models in which the structures represented graphically
appear; and, textually, the transformations carried out are described.

4.1 Mapping Prometheus Goals

There are different approaches for the use of the term ”goal” [9]: (1) in
classical planning, it is seen as a description of the state of the world to be

136 J.M. Gascueña and A. Fernández-Caballero

Fig. 1. Mapping information related with Prometheus goals into INGENIAS

reached - goals as aggregation; (2) in the BDI model, it is a wish to be satisfied -
goals as entities; and, (3) to reflect the requirements that the system must fulfill
in the design - goals as requirements. In INGENIAS, the goals are initially taken
as self-representing entities (goals-as-entities approach) which guide the behavior
of the agent. To take into account the planning approach (goals-as-aggregation
approach), the goals must be allowed to connect with the set of elements (e.g.
predicates) that they represent. As for the last approach (goals-as-requirements
approach), the assimilation of goals with requirements is purely interpretative.
It is up to the engineer to consider a goal as a requirement or not.

A goal that appears in the goal overview diagram used in Prometheus will
correspond to a goal in the goals and tasks model in INGENIAS. AND and OR
dependencies between goals can be established in both models; therefore, it is
possible to directly transfer these relations from one model to another. In the
goals and tasks model, a GTDecomposeAND relation and a GTDecomposeOR
relation will be established to reflect an AND and OR relation between goals,
respectively. The arrows m1 and m2 of Fig. 1 highlight the transformation of
the structures between goals in Prometheus into the equivalent structures in
INGENIAS - m1 and m2 show the transformation of AND and OR structures,
respectively. When a goal has only one sub-goal, GTDecomposes is used.

Prometheus and INGENIAS Agent Methodologies 137

In the system roles1 diagram of Prometheus methodology, relations between
goals and functionalities are established. The latter will be grouped to determine
the types of agents in the system - the relation among agents and roles, Agent
→ Role, appear in the agent-role grouping diagram, whilst the relation among
roles and goals, Role → Goal, appear in the system roles diagram. Therefore,
implicitly, there is a relation between goals and agents. In INGENIAS, one of
the consistency criteria of the goals and tasks meta-model expresses that “the
goal that appears in a goals and tasks model must appear in an agent model or in
an organization model” (criterion 2). Basing ourselves on the information from
the system roles diagram and taking into account the previous comments, for
each goal, the following relations2 will be established in INGENIAS: (a) Agent
- GTPursues → Goal in the organization model, (b) Agent - GTPursues →
Goal in the agent model and (c) Agent - GTPursues → Goal in the tasks and
goals model. All these equivalencies are summarized graphically and textually
in Fig. 1.

4.2 Mapping Prometheus Agents

Every agent identified in the Prometheus methodology is reflected in INGENIAS
in the agent model and in the organization model, based on the agent model con-
sistency criterion “for every agent in the organization model, there must be an
instance for the agent model and vice-versa” (criterion 4). If the agent must
perceive changes in the environment, it will be also shown in the environment
model. The agents that interact with other agents should also be represented
in the interaction model. However, IDK only supports roles to generate the
code that corresponds to an interaction. Therefore, for every agent identified in
Prometheus, an associated role in the corresponding interaction model in INGE-
NIAS to state its participation in the interaction has to be created. Likewise, we
will establish an Agent - WFPlays → Role relation in the organization or agent
model. Finally, we should remember that in the goals and tasks model, agents
will be also obtained, according to what was specified in section 4.1.

4.3 Mapping Prometheus Percepts and Actions

A percept is a piece of information from the environment received by means of a
sensor. In Prometheus, percepts must at least belong to one functionality, and,
thus, to the agent associated to that functionality, too. The relations among per-
cepts and roles (Percept → Role) and the relations among percepts and agents
(Percept → Agent) appear in the system roles diagram and the system overview
diagram, respectively. The percepts of a Prometheus agent can be modeled in

1 Sometimes, in the description of the mappings, the term role is used instead of the
term functionality. Role is the term used in PDT, whereas functionality is the term
used in Prometheus.

2 What we really mean is that instances of the corresponding entities will be created
and will be related through the pertinent relation.

138 J.M. Gascueña and A. Fernández-Caballero

Fig. 2. Mapping information related with Prometheus percepts into INGENIAS

INGENIAS by specifying a collection of operations in an application. Depending
on whether the application existed prior to the MAS development or was devel-
oped ad-hoc, for this purpose, we can specify the application in an environment
application or an internal application, represented by EnvironmentApplication
and InternalApplication, respectively.

The consistency criterion 2 of the environment model states that “every agent
that perceives changes in the environment must appear in the environment model
associated to an application”. Therefore, in the environment model, an EPer-
ceivesNotification relation between the agent and the corresponding application
will be established. In a Prometheus percept descriptor, there is a field, Informa-
tion carried, where it is specified the information transported as part of the per-
cept. In INGENIAS, this information is included with an ApplicationEventSlots
type of event associated to EPerceivesNotification relation. The basic ingredients
of these equivalencies are graphically and textually summarized in Fig. 2.

In Prometheus, also every action must at least belong to one functionality and
the agent associated to the functionality must execute it. The relations among
actions and roles (Role → Action) and the relations among actions and agents
(Agent → Action) appear in the system roles diagram and the system overview
diagram, respectively. An action represents something that the agent does to
interact with the environment. In INGENIAS, actions on the environment are
assumed to be calls to operations defined in the applications. Therefore, an action

Prometheus and INGENIAS Agent Methodologies 139

Fig. 3. Mapping information related with Prometheus actions into INGENIAS

present in Prometheus will be transformed into an application operation present
in the environment model in INGENIAS. EPerceives will be used to establish the
relation between the agent and the application. In the environment model, an
Agent - ApplicationBelongs To → Application relation will be also established
to express that an agent uses an application. In addition, the operations in
INGENIAS will be executed by the corresponding agent, by means of the relevant
task. Thus, in the INGENIAS agent model, it will be created (1) an Agent -
WFResponsible → Task relation to specify the agent responsible for carrying out
the task, which triggers the execution of an action on the environment; and (2) a
Task - WFUses → Application relation to express that an application is used in
the task. If it is decided to specify the application in an environment or internal
application, Task - WFUses → Environment Application and Task - WFUses
→ Internal Application is choosed, respectively. On the other hand, according
to the INGENIAS agent model consistency criterion 1, “every task associated to
an agent must appear in the organization model, indicating its role within the
task global structure”, in the organization model, Agent - WFResponsible Task
will appear. This information is summarized in Fig. 3.

140 J.M. Gascueña and A. Fernández-Caballero

4.4 Mapping Prometheus Data

In INGENIAS, facts reflect information that is inherently true; for example,
“water evaporates by applying heat”, or any other information resulting from
the execution of tasks. The data written and read by Prometheus agents will
be made to correspond with facts or framefacts in INGENIAS. A framefact is a
fact whose information is within its slots.

In the Prometheus system overview diagram, there are Agent → Data (ex-
presses that the data is written by the agent) and Data → Agent (expresses that
the data is read by the agent) relations. These structures would be translated to
the INGENIAS agent model through the following procedure: a MentalState -
AContainsME → Fact relation is created to specify a fact associated to a mental
state, and an Agent - AHasMS → MentalState relation to specify that the men-
tal state corresponds to the agent equivalent to the one we had in Prometheus.
That is to say, an Agent - AHasMS → Mental State - AContainsMS → Fact
structure will be get. The fact would become a Framefact instead of a Fact,
if it includes more than one field of information. In INGENIAS, mental states
are represented in terms of goals, tasks, facts, or any other entity that helps in
state description. In INGENIAS goal and task model, Task - WFConsumes →
Fact, Task - WFProduces → Fact, and Task - GTModifies → Fact relations are
created to indicate that a fact is read, written and modified when executing a
task, respectively. An agent will be responsible for executing that task - it is rep-
resented by an Agent - WFResponsible → Task relation. All these equivalencies
are summarized graphically and textually in Fig. 4.

4.5 Mapping Prometheus Interaction Protocols

Prometheus offers a mechanism to derive interaction diagrams, and, as a result,
interaction protocols from the scenarios developed. In one interaction protocol,
there are agents that participate in the interaction and the messages that the
agents send to one another.

In INGENIAS, the interaction model is used for describing how coordination
between agents comes about. For each interaction protocol in Prometheus, we
will develop an interaction model which will include: (1) an Interaction entity
having the same name as the interaction protocol in Prometheus, (2) roles (from
INGENIAS) associated to the agents that intervene in the interaction protocol,
(3) an Interaction - IInitiates → Role relation, for the role associated to the
agent that initiates the interaction protocol, (4) Interaction - ICollaborates →
Role relations, for the roles associated to the agents (different to the initiating
agent) that participate in the interaction protocol, and, (5) an Interaction -
IHasSpec → GRASIASpecification relation. The GRASIASpecification entity
will be associated to an interaction model where the messages sequence that
intervenes in the interaction protocol, the agents that send them and their tasks
involved will be described. In INGENIAS, the term Interaction Units, instead
of messages, is used. In Prometheus, a protocol descriptor makes reference to
the scenarios which include the protocol. When a scenario is created with PDT,

Prometheus and INGENIAS Agent Methodologies 141

Fig. 4. Mapping information related with Prometheus data into INGENIAS

a goal associated to the scenario is automatically generated. This is due to the
contributions by Perepletchikov [21]. Therefore, the mentioned goal would be
related to the interaction created in the INGENIAS interaction model.

5 Conclusions

After carrying out a comparative analysis of the Prometheus and INGENIAS
methodologies, we realized that we can benefit from the simple guidelines offered
by Prometheus in its development process to obtain an initial model of the MAS
that we will be dealing with. Subsequently, we can move it into INGENIAS to
proceed with the modeling, in order to benefit from the model-driven develop-
ment. In order to make the transformations of concepts used in Prometheus into
concepts used in INGENIAS the described mappings are applied.

142 J.M. Gascueña and A. Fernández-Caballero

At the moment these transformations are made manually. In order to imple-
ment our mapping proposal we plan to use some model transformation language.
UML-AT [8] enables integrating N methodologies; but, as we are integrating
only two, it is sufficient to use ATL (Atlas Transformation Language) [12]. In
the foreseen implementation the INGENIAS Ecore meta-model will be used and
the Prometheus Ecore meta-model will be created. Moreover, we are interested
in going on adapting the IDK editor to model surveillance systems because it is
independent from the development process and it may be personalized for the
application under development.

Acknowledgements

This work is supported in part by the Junta de Comunidades de Castilla-La
Mancha PBI06-0099 grant and the Spanish Ministerio de Educación y Ciencia
TIN2007-67586-C02-02 grant.

References

1. Aguilar-Ponce, R., Kumar, A., Tecpanecatl-Xihuitl, J.L., Bayoumi, M.: A network
of sensor-based framework for automated visual surveillance. Journal of Network
and Computer Applications 30, 1244–1271 (2007)

2. Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems
development. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS (LNAI), vol. 4457, pp. 38–61. Springer, Heidelberg (2007)

3. Buddhinath Jayatilleke, G., Padgham, L., Winikoff, M.: A model driven develop-
ment toolkit for domain experts to modify agent based systems. In: 7th Interna-
tional Workshop on Agent Oriented Software Engineering, pp. 190–207 (2006)

4. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: From standardisation to research. International Journal of
Agent-Oriented Software Engineering 1(1), 91–121 (2007)

5. Cysneiros, G., Zisman, A.: Refining Prometheus methodology with i*. In: 3rd In-
ternational Workshop on Agent-Oriented Methodologies (2004)

6. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change
propagation in software evolution. In: Proceedings of the Australian Software En-
gineering Conference, pp. 309–318 (2006)

7. Fuentes, R., Gomez-Sanz, J.J., Pavón, J.: Integrating agent-oriented methodolo-
gies with UML-AT. In: Proceedings of the Fifth international Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1303–1310 (2006)

8. Fuentes, R., Gomez-Sanz, J.J., Pavón, J.: Model integration in agent-oriented de-
velopment. International Journal of Agent-Oriented Software Engineering 1(1),
2–27 (2007)

9. Gómez Sanz, J.J.: Modelado de sistemas multiagente. Ph.D thesis, Departamento
de Sistemas Informáticos y Programación. Universidad Complutense de Madrid
(2002)

10. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Publishing, USA (2005)

11. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

Prometheus and INGENIAS Agent Methodologies 143

12. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

13. Padgham, L., Winikoff, M.: Developing intelligent agents systems: A practical
guide. John Wiley and Sons, Chichester (2004)

14. Padgham, L., Thangarajah, J., Winikoff, M.: Tool support for agent development
using the Prometheus methodology. In: First International Workshop on Integra-
tion of Software Engineering and Agent Technology, pp. 383–388 (2005)

15. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the
Prometheus methodology. Engineering Applications of Artificial Intelligence 18(2),
173–190 (2005)

16. Patricio, M.A., Carbó, J., Pérez, O., Garćıa, J., Molina, J.M.: Multi-agent frame-
work in visual sensor networks. EURASIP Journal on Advances in Signal Process-
ing, Article ID 98639 (2007)

17. Pavón, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent-Oriented Methodologies. Idea Group Publishing, USA (2005)

18. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: Model driven development of multi-agent
systems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 284–298. Springer, Heidelberg (2006)

19. Pavón, J.: INGENIAS: Développement Dirigé par Modèles des Systémes Multi-
Agents. Habilitation à diriger des recherches de l’Université Pierre et Marie Curie
(2006)

20. Pavón, J., Gomez-Sanz, J.J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: De-
velopment of intelligent multi-sensor surveillance systems with agents. Robotics
and Autonomous Systems 55(12), 892–903 (2007)

21. Perepletchikov, M., Padgham, L.: Systematic incremental development of agent
systems, using Prometheus. In: Fifth International Conference on Quality Software,
pp. 413–418 (2005)

22. Remagnino, P., Shihab, A.I., Jones, G.A.: Distributed intelligence for multi-camera
visual surveillance. Pattern Recognition 37(4), 675–689 (2004)

23. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter 39(2), 25–31 (2006)

24. Sokolova, M.V., Fernández-Caballero, A.: Facilitating MAS complete life cycle
through the Protégé-Prometheus approach. In: Nguyen, N.T., Jo, G.S., Howlett,
R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS, vol. 4953, pp. 63–72. Springer,
Heidelberg (2008)

25. Thangarajah, J., Padgham, L., Winikoff, M.: Prometheus Design Tool. In: Proceed-
ings of the 4th International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 127–128 (2005)

26. Ukita, N., Matsuyama, T.: Real-time cooperative multi-target tracking by commu-
nicating active vision agents. Computer Vision and Image Understanding 97(2),
137–179 (2005)

27. Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent systems to
integrate independent multi-sensor platforms in complex surveillance. In: IEEE
International Conference on Advanced Video and Signal based Surveillance, vol. 49
(2006)

28. Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent system model
for fuzzy automatic speech / speaker recognition. In: Nguyen, N.T., Jo, G.S.,
Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS, vol. 4953, pp. 73–82.
Springer, Heidelberg (2008)

144 J.M. Gascueña and A. Fernández-Caballero

29. Valera, M., Velastin, S.A.: A review of the state-of-the-art in distributed surveil-
lance systems. In: Intelligent Distributed Video Surveillance Systems. IEE Profes-
sional Applications of Computing Series, vol. 5, pp. 1–30 (2006)

30. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Proceedings of the 5th IEEE International Symposium on Requirements Engineer-
ing, pp. 249–263 (2001)

31. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2), 115–152 (1995)

32. Yoshimura, K.: FIPA JACK: A plugin for JACK Intelligent AgentsTM. Technical
Report, RMIT University (2003)

	Prometheus and INGENIAS Agent Methodologies: A Complementary Approach
	Introduction
	Combining Prometheus and INGENIAS
	In-depth Comparison of Prometheus and INGENIAS
	Mapping Prometheus into INGENIAS
	Mapping Prometheus Goals
	Mapping Prometheus Agents
	Mapping Prometheus Percepts and Actions
	Mapping Prometheus Data
	Mapping Prometheus Interaction Protocols

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

