
ATRIUM
Architecture Traced from

RequIrements by applying a Unified
Methodology

Computing Systems Department
University of Castilla-La Mancha

Elena María Navarro Martínez
May 2007

PhD. Thesis
Elena María Navarro Martínez, Albacete, Spain
Printed in Spain
Design of the Cover Template: Pedro J. Molina
Design of the Cover: Elena María Navarro Martínez
Picture of the Cover: “Relativity”
Author: © M. C. Escher
Picture of the Back Cover: “Design of a chaple”
Author: © Partially extracted from “Leonardo's Notebooks”

-iii-

ATRIUM
Architecture Traced from

RequIrements by applying a Unified
Methodology

Computing Systems Department
University of Castilla-La Mancha

A thesis submitted in partial fulfilment of the
requirements for the degree of Doctor of Philosophy in

Computer Science.

Presented by: Elena María Navarro Martínez
Supervisors: Dr. Isidro Ramos Salavert

Dr. Patricio Letelier Torres

May 2007

-v-

Dedicatoria/Dedication

A Javier por demostrarme tu amor cada día, por tu apoyo
incondicional y ayuda en todo y, sobre todo, por conseguir que
cada día sea maravilloso por saber que estás ahí. Gracias vida
mía.

A mis padres por todo lo que me han dado.A mi padre, José
María, que siempre me ha dado su apoyo y su cariño a pesar
de mis innumerables viajes. A mi madre, Elena, tú me has
hecho ser quién soy, me has ayudado a crecer en todos los
sentidos, a tener un espejo en el que mirarme para saber hacia
donde ir. Gracias madre.

A mis hermanos, José Manuel y Roberto, por ser como sois,
siempre dispuestos a alguna peleilla que nos hagar reir.

A Mar y Marisa, por hacerme sentir que puedo contar con
vosotras, que vais a estar siempre ahí.

A mi sobrina Ruth, que ha traido alegría a mi vida con sus
travesuras y su fantasía.

-vii-

Agradecimientos/Acknowledgment
Esta tesis no habría sido posible sin dos personas que me han ayudado a lo largo de todo el
camino. Gracias Isidro por ayudarme a andar al comienzo de esta tesis, sin tu ayuda todavía
me encontraría perdida. Tú me tendiste la mano y me ayudaste a salir de la oscuridad.
Gracias Patricio por haber sido mi guía, por ayudarme a discutir, por ayudarme a razonar y
ver mis errores gracias a esa maravillosa hoja en blanco. Me has ayudado a hacerme creer que
era capaz de conseguirlo.

No puedo olvidar a aquellos alumnos que de un modo u otro han colaborado con su esfuerzo e
ilusión a hacer realidad las ideas que hay en esta tesis. Gracias David Reolid, Alejandro
Rodríguez y Rubén Segura por ayudarme con vuestra energía.

A todos los miembros del Departamento de Sistemas Informáticos, como Gregorio Díaz y
Julia Flores, que de un modo u otro me han ayudado en las mil vicisitudes que he vivido a lo
largo de esta tesis. Especialmente a Paco Montero y Víctor López que durante estos últimos
meses siempre han respondido cuando he tocado la puerta de su despacho.

A todos los miembros del grupo ISSI de la Politécnica de Valencia que me han acogido como
a uno más y han hecho que las horas de laboratorio fueran más llevaderas. Gracias
Alejandro, José Antonio, Cristóbal, Manolo, Nour, Rafael, María Eugenia y Rogelio por
todos los buenos momentos que me habéis hecho pasar. En especial a Jenny e Isabel, por esos
buenos ratos de cotilleos en la Vella.

A mi familia de Valencia, que me ha acogido, mimado y querido desde que os conocí.
Especialmente a ti Encarna, por toda tu dedicación y tu cariño.

A todos mis amigas y amigos, por todo lo que hemos reído y llorado juntos a lo largo de los
años, porque me habéis enseñado el valor de la amistad y por eso me habéis perdonado que os
haya robado tantos momentos en estos últimos años. Gracias de corazón por ser como sois,
especialmente a Nuria, Rosario, Mari Carmen, Charo y Susana.

A Antonio Quintanilla por ser mi “padre científico”. Tú fuiste el primero en creer en mí, el
primero que me apoyó cuando empecé a conocer este fascinante mundo de la investigación y el
que siempre ha estado ahí haciéndome saber que puedo contar contigo más que como
compañero como amigo. Gracias por ser como eres.

-ix-

ABSTRACT

Requirements Engineering (RE) process must establish how to acquire, analyze
and document requirements, i.e., focusing on the customer-defined services and
constraints. The Requirements Specification is the foundation on which the
system-to-be should be implemented and gives support for requirements
validation and evolution over time.

Architectural models have a lower abstraction level than requirements, being
closer to the end system, and they must be consistent with defined
requirements in order to produce a valid solution. Developing precise Software
Architectures from a structural and dynamic point of view and able to meet
changeable requirements, is a challenging issue. A well-established process
appears as the best approach to achieve this goal, leading to an increased
productivity and a quality solution.

Recently, increased attention has been paid to how to establish and strengthen
the relationships between requirements and architectural design. In particular,
how the process must encompass the definition of requirements over time and
their effects upon a system’s architecture. This thesis presents our work in this
field. It describes the methodology called ATRIUM (Architecture Traced from
RequIrements applying a Unified Methodology) to guide the architecture
definition that pays special attention to the functional and non-functional
requirements that must be met by the system-to-be. In its definition, the
Aspect-Oriented approach has been considered as cornerstone helping to
specify properly the detected concerns of the system-to-be. In addition, we
should mention that this work follows mainly the guidelines of the domain-
oriented proposals. For this reason, customization of Models and Process has
been considered mandatory in order to facilitate its application to different
domains.

ATRIUM has been defined by means of a set of well-defined processes and
Models that guides the analyst throughout its application. In addition,
automation has also been used in those tasks that could be error-prone or
cumbersome. A tool, called MORPHEUS, which allows the analyst the
specification of the different Models and its later exploitation, supports
ATRIUM. By means of its exploitation, ATRIUM has been put into practice in
a real case study, the EFTCoR project, which has facilitated the validation of
the proposal.

-xi-

TABLE OF CONTENTS

1 Introduction.. 1
1.1 Introduction...1
1.2 Motivation..2
1.3 Methodology of development...4
1.4 Scheme of the work..8

2 Requirements and Software Architecture: considering the Aspect-Oriented
Approach ..11

2.1 Introduction...11
2.2 An overview about Requirements Engineering ..12

2.2.1 Goal-Oriented Approach...15
2.2.2 Scenario-based approach ...16

Use Cases ..17
2.2.3 Problem Frames..19
2.2.4 Viewpoints ...19
2.2.5 Features ..21
2.2.6 Variability Management ...22

2.3 An overview about Software Architecture ..24
2.3.1 Concepts for Software Architecture Descriptions ...27

Components ...27
Connectors..27
Systems ..28
Ports...28
Connections..29
Compositions ...29
Configuration ...29
Other concepts...30

2.4 Aspect-Oriented Software Development ..30
2.4.1 Aspect-Oriented Requirements Engineering ..33

Scenario Approach and AORE ...34
Goal-Oriented and AORE...35
Viewpoints and AORE...36
Features and AORE..36
Multi-dimensional AORE ..37
Other approaches to AORE..37
Main discussion..38

2.4.2 Aspect Oriented Software Architectures ...39
Non-aspects ..40
Architectural Aspects ..41
Aspectual binding ..42
Concern model...43
Multiple dimensions ..44

xii Table of Contents

Some conclusions.. 45
2.5 Conclusions ...45

3 Intertwining Requirements and Software Architecture: a Context for ATRIUM
... 47

3.1 Introduction ..47
3.2 Proposals Intertwining Requirements and SA..48

3.2.1 Goal-Oriented for defining SA...48
KAOS ... 48
GBRAM ... 51
TROPOS.. 52
CREWS-L'Ecritoire .. 54
GRL... 55

3.2.2 Scenarios and AOSD ...57
AOSD/UC... 57
Aspectual Scenarios .. 58
AO-MDSD .. 59

3.2.3 Problem Frames..61
3.2.4 Features..62
3.2.5 Other Proposals ..63

AOCE... 65
3.2.6 Main discussion...66

3.3 Our Proposal: ATRIUM..71
3.3.1 Models for ATRIUM...72

ATRIUM Goal Model.. 72
ATRIUM Scenario Model.. 73
PRISMA Model ... 74

3.3.2 A process for ATRIUM...75
Activity 1. Define Goals... 75
Activity 2. Define Scenarios. ... 76
Activity 3. Synthesize and transform.. 76

3.4 Conclusions ...77
4 Preliminaries .. 79

4.1 Introduction ..79
4.2 Tele-operated Systems ...79

4.2.1 EFTCoR: Environmental Friendly and cost-effective Technology for
Coating Removal..80
4.2.2 TeachMover ..83

4.3 An Introduction to PRISMA ..85
4.3.1 PRISMA Interfaces ..86
4.3.2 PRISMA Aspects..87
4.3.3 PRISMA Architectural Elements ...89

PRISMA Port... 90
PRISMA Played Role.. 91
PRISMA Weaving ... 91

4.3.4 PRISMA Systems..92
PRISMA Bindings... 93

 Table of Contents xiii

4.3.5 PRISMA Attachments..93
4.3.6 Instantiating a PRISMA model ...94

5 Goals: why the system will be .. 95
5.1 Introduction...95
5.2 A proposal for customizing RE metamodels..96

5.2.1 A Metamodel for Requirement Specification ...97
5.2.2 A process for customizing the core..99

5.3 Describing the ATRIUM Goal Model.. 100
5.3.1 Building Blocks for the Goals Model.. 104

Defining goals ... 106
Defining Requirements .. 108
Defining operationalizations ... 109

5.3.2 Relationships: An Element in the Refinement Process 111
Describing refinement relationships .. 111
Describing dependency relationships .. 114

5.4 A Process for the ATRIUM Goal Model ... 120
5.4.1 Elicitation and Specification of ATRIUM Goal Models 121

ISO/IEC 9126: Selecting and Identifying Concerns... 122
Elicitation and Specification of the ATRIUM Goal Model ... 125
Operationalizating the ATRIUM Goal Model ... 128

5.4.2 Analyzing Goal Models... 132
Satisfiability Analysis: a Technique for Automated Reasoning.. 135
A customizable analysis process ... 139
Analysing architectural alternatives .. 151

5.5 Conclusions .. 153
6 Playing with ATRIUM Goal Models ... 157

6.1 Introduction.. 157
6.2 Elicitation and Specification... 159

6.2.1 Functionality ... 159
Suitability.. 159
Security ... 165

6.2.2 Reliability... 166
6.2.3 Efficiency .. 167
6.2.4 Maintainability .. 168
6.2.5 Portability.. 168
6.2.6 Safety: being one step ahead... 170

Identifying and Specifying Safety Requirements.. 172
Applying the process .. 178

6.2.7 Operationalizing the model .. 183
Suitability.. 184
Reliability.. 185
Safety... 186

6.3 Analyzing the Atrium Goal Model .. 188
6.4 Conclusions .. 192

7 Scenarios to run Aspect-Oriented Software Architectures.............................. 195

xiv Table of Contents

7.1 Introduction ..195
7.2 Elements of the Scenarios Model...197
7.3 Graphical notation..201

7.3.1 Lifelines..204
7.3.2 Messages ..205
7.3.3 ExecutionSpecification ..207
7.3.4 Guards..209
7.3.5 Interaction ...210
7.3.6 InteractionOccurrence ...212
7.3.7 Combined Fragments...213

Alternative interactions .. 213
Optionality ... 214
Parallel composition ... 214
Iterations... 215

7.3.8 Gates...216
7.4 Architectural Styles and Patterns ..217

7.4.1 Architectural Styles...220
Blackboard Style .. 221
Pipe and Filter Style .. 223
Layered Style .. 224
Event-based Style .. 226
Interpreter Style... 227
ACROSET DSSA ...228

7.4.2 Design Patterns...230
Safety Patterns ... 231

7.5 Process for Scenarios Modelling...235
7.6 Conclusions ...239

8 Towards a first view of the Architecture.. 243
8.1 Introduction ..243
8.2 Context and alternatives for our proposal...244

8.2.1 QVT: a proposal for model transformation in ATRIUM.............................249
8.3 Describing QVT transformations ..251

8.3.1 Architectural transformation patterns..253
8.3.2 Applying the Architectural Style...258
8.3.3 PRISMA idioms..263

Idioms for Architectural Elements... 264
Idioms for Coordination Aspect identification .. 266
Idioms for Presentation Aspect identification.. 270
Other relevant Idioms related to Aspects.. 272

8.4 Process for Synthesis and Transformation..273
8.5 Conclusions ...275

9 MORPHEUS: A Tool for ATRIUM.. 279
9.1 Introduction ..279
9.2 Technologic decissions for MORPHEUS ..280
9.3 Requirements Environment ..282

 Table of Contents xv

9.3.1 Requirements Metamodel Editor .. 283
9.3.2 Requirements Editor ... 288
9.3.3 An add-in for customizing the analysis process... 292

9.4 Scenarios Environment... 296
9.5 Architecture Environment.. 298

9.5.1 Describing the notation .. 298
9.5.2 Graphical Editor of PRISMA .. 301

9.6 Conclusions .. 306
10 Conclusions and further work .. 309

10.1 Conclusions .. 309
10.2 Results of the phd.. 312

10.2.1 Publications .. 312
International Journals... 312
Book Chapters... 312
International Conferences & Workshops ... 313
National Conferences & Workshops... 314

10.2.2 Conference Activities .. 315
10.3 Further work... 316

Keywords ... 319
Acronyms .. 325
References ... 327
List of Figures ... 347
List of Tables .. 351
Appendix A. Software Process Engineering Metamodel................................... 353
Appendix B. Transforming ATRIUM Scenarios – PRISMA............................. 355
Appendix C. ATRIUM Scenarios ... 367

C.1 Safety patterns... 367
Alternative Scenarios for the Safety Pattern: Redundant Safety Node........................... 367

C.2 TeachMover Scenarios .. 369
OPE. 1 Operational closing of the Wrist by TeachMover Control accessing RUC-SUC
... 369
OPE. 2 Operational opening of the Wrist by TeachMover Control accessing RUC-SUC
... 369
OPE. 8 Operational angular movement of the joint by TeachMover Control accessing
RUC-MUC-SUC ... 370
OPE. 15 Add a Safety Aspect to the control of the Wrist ... 371
OPE. 9 Operational angular movement by TeachMover Control RUC- MUC –SUC 371

Appendix D. From an ATRIUM Scenario to a PRISMA description 373
D.1 ATRIUM Scenario used for generation ... 373
D.2 Generated PRISMA Specification... 378
D.3 PRISMA ADL Generated.. 381

-1-

“Nothing in life is to be feared. It is only to be
understood. .” —

Marie Curie

CHAPTER 1

1 Introduction

1.1 INTRODUCTION

Nowadays, Software Development process is becoming a high difficult task
because systems are more and more complex. This complexity comes from
several factors that have a high impact on the outcomes of the process. Among
them, it can be considered the new issues that must be taken into account to
tackle either environmental or the stakeholders’ needs that are evolving over
time. The Software Development process must be established in such a way
that it facilitates the users not only to describe their needs but also change them
whenever they need so. The Lehman Law (Lehman, 1980) of continuous
change provides compelling arguments about this need of change

The Requirements Engineering process (RE) establishes the foundation on
which the system-to-be should be implemented. Therefore, it has to be able to
identify and define this facility for the management of change into its artifacts
in such a way that they can be traced to low level abstraction artifacts. It is
especially relevant its traceability to the Software Architecture, because the
reasoning about the capabilities of the system-to-be is established at this level.

In addition, quality is a critical issue for software development. Quality arises
from several key points related to the software development and maintenance
processes. Requirements are directly related to the quality in terms of customer
satisfaction. This is specially affected by the Non-Functional Requirements, i.e.,
requirements as modifiability, performance, maintainability and the like. For
this reason, satisfying them in the system-to-be, properly encompassed by the

2 CHAPTER 1 Introduction

system architecture, is a compelling argument about the quality of the system-
to-be.

1.2 MOTIVATION

Requirements Engineering establishes the foundations to build the system-to-
be. It is in charge of gathering the stakeholders’ expectations and needs in order
to produce a quality product. Software Architecture typically plays a key role as
a bridge between requirements and implementation as (Garlan, 2000) and
(Perry & Wolf, 1992) have stated (see Figure 1-1). It provides a system’s high-
level abstraction helping in its comprehension. Nevertheless, the problem for
many software development organisations refers to which alternative,
Requirements or Architecture, is the best starting point to proceed with the
software development process. As (Nuseibeh, 2001) states, this election
inevitably leads to artificially frozen requirements documents (frozen in order
to proceed with the next step in the development life cycle) or leads to systems
artificially constrained by their architecture that, in turn, constrain their users
and handicap their developers by resisting inevitable and desirable changes in
requirements. For this reason, one of the keys of the success of any software
development process is that both the requirements of the system-to-be and its
architecture are developed in an intertwined way and that their development is
interleaved.

Figure 1-1 Software Architecture as a bridge

Developing Software Architectures enough settled for its use, but also dynamic
to address changeable requirements, is not an obvious issue. For this reason,
several problems arise, as (Nuseibeh, 2001) state, when requirements and
architecture models, which are developed concurrently (see Figure 1-2), have to
be changed. A change, which is usually initiated when new requirements on

 1.2 Motivation 3

existing products or by new products, that needs to be incorporated in the
system-to-be. The incorporation of this change typically leads to:

− architectural evolution related to changes to the components that make up
the architecture, the relations between them, etc;

− component evolution related to the incorporation of new and changed
requirements on the components functionality which can affect to them
not only internally but also to their interaction;

− product evolution in terms of both new versions and run-time evolving
system, i.e., dynamic architectures.

Figure 1-2 An intertwined process to define Requirements and SA (extracted from

(Nuseibeh, 2001))

In addition, software requirements could have, implicitly or explicitly,
information related to the Software Architecture. How this information can be
incorporated in its specification is critical to develop a system meeting the
established the needs. Moreover, other limits appear when distinct stakeholders
state the same requirement in different ways. As (Bosch, 2000) state:

“since the Software Architecture constrains the quality requirements, the driving
quality attributes should have a major influence on the architecture of a software
system, in some cases, even more that the functional requirements of the system”.

In addition, the selected aforementioned architecture also compels a high
constraint on the requirements offered by the system. It shows that an request
to provide a feedback from architectural model to the requirements model
would help to refine, in an iterative process, both the definition of the problem

4 CHAPTER 1 Introduction

and the solution provided. This points out that both Requirements and
Software Architecture are highly intertwined.

Therefore, the challenge to be faced is the definition of a formalized and
flexible process to acquire the requirements to be compiled in an architecture,
and manage their concurrent evolution over time is a challenge. This issue is
going to constitute the main objective of this thesis, the description of a
methodology, which has been called ATRIUM, that provides the analyst with
proper guidelines and artifacts for the specification of Requirements and
Software Architecture in an intertwined way. It has as a mandatory constraint
the establishment of proper traceability between the artifacts all the way down
from the requirements to the architecture.

In addition, a key element included in the definition of ATRIUM is the
integration of the Aspect Oriented approach as was described by (Elrad et al.,
2001a). It is aimed at providing a proper separation of concerns both functional
and non-functional (performance, safety, security, etc) of the system. A great
deal of work related to this paradigm has been performed from requirements
(Rashid et al., 2003) to architecture (Cuesta et al., 2005), design (Suzuki &
Yamamoto, 1999) and implementation (Kiczales et al., 1997). In this context,
how to identify, specify and trace each concern across the software lifecycle
satisfying the closure property (Elrad et al., 2001b) is an open issue that has not
been solved up to date, as (Baniassad et al., 2006) state. ATRIUM has been
defined to identify, specify and rightly trace this Separation of Concerns (SoC)
from the requirements to the architecture.

1.3 METHODOLOGY OF DEVELOPMENT

Software Engineering is frequently criticized because disconnections between
theoretic research and its practice emerge as observed in Figure 1-3. In this
thesis, special attention has been paid to this aspect. For this reason, all the
work presented in this thesis has been performed in a collaborative way in the
context of the CICYT project called DYNAMICA. One of the main aims of
this project is to develop a framework for dynamic Software Architecture
applicable to the development of tele-operated systems. This has facilitated that
all the theoretical proposals have been validated by its application in this real
case study.

 1.3 Methodology of development 5

Figure 1-3 Disconnection between Research and Practice in Software Engineering

(Moody, 2000)

DYNAMICA exhibits several specific needs in terms of requirements
specification, such as, the variability inherent in the family of robots to be
handled; the high incidence of non-functional requirements (reliability,
performance, safety, etc) which crosscut functional ones; the need to evaluate
alternative designs meeting system requirements; and, finally, a large
specification where an appropriate organization is unavoidable. In this context
of complexity, associated with the requirements specification and the emphasis
in achieving reuse through a product family specification, we found favourable
conditions for the application of Action-Research, as described by (Baskerville
& Wood-Harper, 1996). It allows us to solve a real problem, by means of a
continuous refinement of our approach, throughout the 3 years of project
duration.

Action-Research has emerged as a proposal to break the disconnection between
research and practice. With this aim, it has two clear goals: to generate profits
for the customer of the research; and, at the same time, to generate relevant
““knowledge of research”” (Kock & Lau, 2001). Therefore, Action-Research is
an approach to research highly collaborative between research, researchers and
practitioners, focused on both theory and practice and carried out by means of
a cyclic process. In addition, Action-Research describes a class of methods,
which share the following characteristics (Baskerville & Wood-Harper, 1996):

− To be oriented to action and change.

− To be focused on a problem.

− To have an organic model of process that entails systematic stages and
some iterative ones.

− To be collaborative between the participants.

6 CHAPTER 1 Introduction

Figure 1-4. Applying Action-Research: actors in DYNAMICA

In a more formal analysis of the participants in Action-Research, (Wadsworth,
1998) identifies the four types of roles (sometimes the same person or team
plays more than a role) that are described in the following along the with actors
playing that roles in DYNAMICA (see Figure 1-4):

− The researcher or team who proactively perform the research process. This
role has been played by us (UPV).

− The object under research, i.e., the problem to be solved. In our case, the
object of research has been the development of a methodology for the
description of Software Architecture meeting the established requirements.
Despite the fact that this methodology had to be validated in the context of
tele-operated systems, it should be appropriate for the development of any
kind of systems.

− The reference critical group who receives the results of the research and
participates in the research process (although less actively than the
researcher). This group is integrated for both persons who know they are
involved in a research and other who do not know it. This role has been
played by the University Polytechnic of Cartagena. They have a deep
knowledge of this kind of systems, providing us with the proper
background for our work.

− The beneficiary (stakeholder) of the research who is expected to exploit the
results of the research although it does not take part in the process. In this

 1.3 Methodology of development 7

case, it is going to be any enterprise that has software development,
particularly of tele-operated systems, as its main activity.

Figure 1-5. Cyclic character of Action-Research

Considering the above assigned responsibilities, to put into practice the Action-
Research methodology was necessary to establish the activities that guide the
research. With this aim, (Padak & Padak, 1994) have established the following
steps (Figure 1-5):

I. Scheduling: to identify the questions relevant to the guidance of the
research, directly related to the object under research and susceptible to
obtain the answer. During this activity, we wonder questions as:

• Which kind of requirements specification provides abilities to analyze
alternatives?

• Which kind of requirements specification provides mechanisms for
traceability between requirements and Software Architecture?

Several alternatives were studied and examined to answer all the questions
that emerged during the development of this work.

II. Action. The studied alternatives were put into practice to validate the
results.

III. Observation. To gather information, data and recording the results of the
application of the proposals.

IV. Reflection. To share and analyze the results with other stakeholders in
order to improve the proposals and obtain other more refined.

8 CHAPTER 1 Introduction

These activities were performed iteratively, in such a way that we were getting
more refined solutions by completing cycles. Each cycle supposed that new
ideas and proposals were run and validated in the following cycle as is observed
in Figure 1-5. The cyclic peculiarity of this process determined to re-evaluate
and raise questions and alternatives weighing up diagnosis and reflection.

1.4 SCHEME OF THE WORK

This work has been structure in the following chapters:

− Chapter 1 describes the main questions that have led to the development of
this thesis.

− Chapter 2 describes an overview about the current situation in
Requirements Engineering and Software Architecture. Special attention has
been paid to how both disciplines are seen from the Aspect-Oriented
approach.

− Chapter 3 presents an analysis of the current proposals for the intertwining
between requirements and Software Architecture, giving special emphasis
to that elements related to the Aspect-Oriented approach. This description
provides a good insight to present the proposal of this thesis: ATRIUM. It
is briefly introduced in this chapter.

− Chapter 4 describes some concepts to improve the comprehension of the
rest of this work. Therefore, a brief introduction to the case study
employed throughout this thesis is presented. In addition, a sketch of
PRISMA, the Aspect-Oriented Architectural Description Language used as
target language is presented.

− Chapter 5 explains the Define Goals activity of ATRIUM, describing both
the artifacts used to describe the requirements of the system-to-be and the
process for its description and exploitation.

− Chapter 6 describes a detailed example of how the activity Define Goals is
applied in the context of a real-life case study.

− Chapter 7 depicts the Define Scenario activity of ATRIUM related to the
description of the scenarios realizing the established requirements. A model
and a process for its description are shown in this chapter.

 1.4 Scheme of the work 9

− Chapter 8 portrays how the Synthesize and Transform activity is in charge of
transforming automatically the described scenarios into a draft of the
architecture. The mechanism used are justified and explained.

− Chapter 9 describes the developed tool called MORFPHEUS that provides
support to the description of the different artifacts and their exploitation.

− Chapter 10 includes the main conclusions achieved with this thesis along
with the future works.

-11-

“It ain't what you don't know that gets you into
trouble. It's what you know for sure that just ain't

so.” —
Mark Twain

CHAPTER 2

2 Requirements and Software Architecture:
considering the Aspect-Oriented Approach

2.1 INTRODUCTION

There are compelling economic arguments why an early understanding of
stakeholders’ requirements leads to systems that more closely meet
stakeholders’ expectations. For this reason, the introduction of an appropriate
Requirements Engineering (RE) process in the software development is one of
the keys to achieve the success of the project. RE must show how to acquire,
analyze and document requirements focusing on the customer-defined services
and constraints. RE establishes the foundation on which the system-to-be
should be implemented and gives support for requirements validation and
evolution over time.

Similarly, there are persuasive arguments why an early understanding and
construction of the Software Architecture (SA) provides the foundations to
gather system requirements and constraints, evaluate a system’s technical
feasibility, and evaluate alternative design solutions. Architectural models are a
bridge between requirements and the system-to-be (Garlan, 2000) providing us
with a lower abstraction level than requirements. They are used as intermediate
artifacts to analyse whether the requirements are met or not. However,
developing precise Software Architectures from a structural and dynamic point
of view and being able to meet changeable requirements, is not an obvious
issue (Nuseibeh, 2001). A guided process appears as the best approach to
achieve this goal, leading to an increased productivity and a quality solution.

12 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

This chapter focuses on the state-of-the art of some of the most relevant
proposals for Requirements and Software Architecture giving a brief
introduction to the Aspect-Oriented approach in both fields. In order to
provide a better comprehension it has been structured as follow. Section 2.2
presents a brief resume of the process of Requirements Engineering. In
addition, the most relevant approaches in RE, which are exploited for the RE
process, are described as well. Section 2.4 gives an overview about the Software
Architecture field, describing its main concepts. Section 2.4 introduces Aspect-
Oriented Software Development, presenting its main concepts and why this
approach has emerged. Finally, the conclusions round up this chapter.

2.2 AN OVERVIEW ABOUT REQUIREMENTS ENGINEERING

A successful software system development is specially affected by how it can
satisfy the user needs, providing an appropriate and cost-effective solution.
That is why RReeqquuiirreemmeennttss EEnnggiinneeeerriinngg is the major process applied
to anchor development activities to any real-world problem. Broadly speaking,
RE is the process of discovering that purpose, by identifying stakeholders
(including customers, users and developers) and their needs, and documenting
them in an amenable way for analysis, communication, and subsequent
implementation. (Zave, 1997) provides one of the most well known definitions
for RE:

“Requirements Engineering is the branch of Software Engineering concerned with
the real-world goals for, functions of, and constraints on software systems. It is also
concerned with the relationship of these factors to precise specifications of software
behaviour, and to their evolution over time and across software families”.

This definition faces several key issues. On the one hand, it is related to “real-
world goals” that have to be satisfied when a system is developed, i.e., what the
system behaviour will be. These goals are named RReeqquuiirreemmeennttss and they
describe the activities of the system, such as its reaction to input, its different
states before and after any activity, etc. These kinds of requirements are known
as ffuunnccttiioonnaall rreeqquuiirreemmeennttss and they usually describe interactions
between the system and its environment. However, this description does not
fulfil the problem if it does not address that restrictions the system must show,
that is, adaptability to different environments, performance on memory usage,
etc. These restrictions are called nnoonn--ffuunnccttiioonnaall rreeqquuiirreemmeennttss.
They are very relevant for the software development because they do not only
describe requirements demande by the stakeholders, but they are going to
establish the scope of the set of likely solutions as well.

 2.2 An overview about Requirements Engineering 13

On the other hand, (Zave, 1997) refers to “precise specifications”. They can
range from an understanding of the problem being solved to its detailed
specification. This specification has to be complete, consistent and
unambiguous. These provide the basis for analysing requirements in terms of
the well known Validation and Verification (V&V) activity:

− VVaalliiddaattiioonn,, according to (Nuseibeh & Easterbrook, 2000), it is the
process of establishing that the elicited requirements and models provide
an accurate description of stakeholder requirements.

− VVeerriiffiiccaattiioonn is in charge of determining if the implementation
satisfies the specification.

The major problem of these activities arises from their relation with the
stakeholders. It is because they found severe difficulties to articulate their needs
and to reconcile their different goals. This usually leads to misalignments
between their expectations and the final result. For this reason, mechanisms of
ttrraaddee--ooffff with and between different stakeholders and ddeecciissiioonn
ssuuppppoorrtt, which help to achieve agreements and facilitate the negotiation, are
always recommendable in any RE approach.

With this scenario in mind, several methods have emerged that assist with the
process of Requirement Engineering. GGooaall--OOrriieenntteedd RReeqquuiirreemmeennttss
EEnnggiinneeeerriinngg (see section 2.2.1) is a well-known approach that helps to
define the objectives a system must meet, agents fulfilling them, alternatives to
be assessed, etc. On occasions, users find difficult to describe these objectives.
In these cases, SScceennaarriioo--BBaasseedd (see section 2.2.2) approaches are used to
provide a better understanding of some aspect of using a system. Among the
different proposals, following the scenario-based approach, are the UUssee
CCaasseess that describe the system in terms of the user interaction with the
system-to-be. PPrroobblleemm FFrraammeess (see section 2.2.3) are also a well-known
approach that supports the RE process by modelling the relation of the system-
to-be with its context. VViieewwppooiinnttss (see section 2.2.4) is another approach
very appropriate to find out conflicts owing to the different views that
stakeholders hold. FFeeaattuurreess MMooddeell (see section 2.2.5) are gaining more
and more attention lately as a mean to simplify the management of the
requirements by encapsulating both functional and quality requirements.

But, RE is not only a process of acquiring requirements; it also facilitates
communication among stakeholders. How the requirements are documented, it
is a crucial point to ensure an appropriate analysis and validation. Several
alternatives have appeared related to the specification languages and notations,
which range from informal to semi-formal and formal languages:

14 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

− NNaattuurraall LLaanngguuaaggee (Ambriola & Gervasi, 1997) proposes the use of
an informal and often used language to write requirements specifications
that are plain to the user. Nevertheless, it shows misunderstandings
between the stakeholders because of the ambiguity and excessive flexibility
of the language.

− SSttrruuccttuurreedd NNaattuurraall LLaanngguuaaggee is a restricted form of natural
language for requirements specification. Its advantage is that it maintains
most of the expressiveness and understandability of the Natural Language
but ensures a degree of uniformity throughout the specification by limiting
the used terminology and, sometimes, using templates (Duran, 2000).
However, templates cannot provide by themselves a structured mechanism
for requirements. Both this and the previous approach show a poor
usefulness to validate and verify the requirements. (Osborne & MacNish,
1996) address this issue providing natural language processing techniques
to aid the development of formal descriptions from requirements
expressed in a controlled natural language.

− Several ffoorrmmaall aapppprrooaacchheess have appeared to address the problems
showed by the previous ones. Generally speaking, a formal specification is
the expression, in some formal language (Z, VDM, OBJ, etc) and at some
level of abstraction, of a collection of properties that the system-to-be
should satisfy (Lamsweerde, 2000). These approaches provide higher-
quality specifications and the basis for their automated support to produce
animations, generate concrete scenarios, etc. However, they also show
some problems as restrictions in terms of expressiveness.

Finally, the Zave’s definition (Zave, 1997) refers to specifications’ “evolution
over time and across software families”, surfacing the reality of a changing
world and the need to reuse partial specifications. It is obvious that a method to
read, navigate, query and change requirements documentation is needed, i.e.,
the MMaannaaggeemmeenntt ooff CChhaannggee of requirements. This activity has to do with
the assessment of the impact of the change requests, and their management
trough the software lifecycle. Related to this activity, the establishment of
proper traceability mechanisms is a demanding need. The TTrraacceeaabbiilliittyy of
requirements has been described by (Gotel, 1994) as:

“…the ability to describe and follow the life of a requirement, in both a forwards
and backwards direction.”

Mainly, it assists to reconcile the changes in user’s needs with the software,
decrease costs of acquiring critical knowledge, assess consequences and impact
of a change, etc. This means that the appropriate introduction of requirements
traceability helps to address the problems arisen by the evolution of the

 2.2 An overview about Requirements Engineering 15

requirements over time. Finally, the specifications across software families have
become a reality by the introduction of VVaarriiaabbiilliittyy MMaannaaggeemmeenntt
techniques (see section 2.2.6). They provide facilities to describe the assets that
will be shared across a software family.

Some of the most relevant concepts in the Requirements Engineering have
been briefly described above. In this sense, either (Nuseibeh & Easterbrook,
2000) or (Lamsweerde, 2000) provide a wider description of these concepts and
the field in general. The idea behind this introduction is to make know the
reader the main concepts used by the approaches introduced in the following
sections.

2.2.1 Goal-Oriented Approach

In the context of Requirements Engineering, the Goal-Driven Requirements
Engineering approach (Lamsweerde, 2001a) has proven its usefulness to elicit
and define requirements. More traditional systems analysis techniques, such as
Use Cases, focus only on establishing the features (i.e. activities and entities)
that a system will support. Nevertheless, Goal-based proposals, such as (Chung
et al., 2000) or (Dardenne et al., 1993), focus on why systems are being
constructed by providing the motivation and rationale to justify the Software
Requirements. They are not only useful for analyzing goals, but also for
elaborating and refining them.

There are a wide number of proposals ranging from elicitation to validation
activities in the RE process (see (Kavakli & Loucopoulos, 2005) for an
exhaustive survey). However, some concepts are common to all of them:

− GGooaall describes why a system is being developed, or has been developed,
from the point of view of the business, organization or the system itself. In
order to specify it, both functional goals, i.e., expected services of the
system, and non-functional goals related to the quality of service,
constraints on the design, etc should be determined. These goals can be
described using formal languages, as for instance temporal logic, helping in
the process of verification of the specification.

− AAggeenntt is any active component, either from the system itself or from the
environment, whose cooperation is needed to define the operationalization
of a goal, that is, how the goal is going to be provided by the system-to-be.
This operationalization of the goals is exploited to maintain the traceability
throughout the process of software development.

16 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

− RReeffiinneemmeenntt RReellaattiioonnsshhiippss: AND/OR/XOR relationships allow
the construction of the goal model as a directed graph. These relationships
are applied by means of a refinement process (from generic goals towards
sub-goals) until they have enough granularity to be assigned to a specific
operationalization.

It must be pointed out that one of the main advantages exhibited by this
approach is that it introduces mechanisms for reasoning about the
specification. It facilitates the process of evaluating designs or alternative
specifications to the system-to-be.

Figure 2-1 Partial description of a Goal graph (extracted from Dardenne et al.)

2.2.2 Scenario-based approach

This approach tries to facilitate the discussion of the stakeholders in the RE
process. They are based on the description of examples of use of the system-to-
be instead of using abstract description so that the stakeholders can criticize
and modify them more easily. Each scenario depicts one or more possible
interactions, providing a better understanding of some aspect of using a system.

Quite different styles have been used for scenarios description, such as, textual
narratives, storyboards, video-mocks up and written prototypes. (Leite et al.,
2000) describe a good overview about these alternatives. It must be pointed out

 2.2 An overview about Requirements Engineering 17

that they consider Use Cases as one of the styles for scenarios descriptions. In
addition, CREWS project (Co-operative Requirements Engineering with
Scenarios) (Maiden, 1998) is also a quite well know project that has detected the
wide range of interpretations and uses of the current proposals. Most of the
proposals describe a scenario by means of:

− GGooaallss that are descriptions of the expected behaviour of the system and
the users.

− EEppiissooddeess that are descriptions of the basic flow of events.

− EExxcceeppttiioonnss that are descriptions of the unexpected behaviour and its
treatment.

− RReessuullttss that are descriptions of the expected result when the scenario
finishes.

Depending on the proposal, different notations are used to describe each
concept. For instance, Leite et al. propose the use of a structured natural
language to perform the episodes description, whereas the other elements are
described by means of natural language. However, one of the most well known
approaches is the Use Cases (Cockburn, 2000) that are introduced in the
following section.

Use Cases

They are perhaps one of the most popular approaches to requirements
specification. They have been widely embraced by the industrial community
due to their straightforward notation and application. These properties allow
stakeholders to easily understand them, and this contributes to the elicitation
and validation of the requirements. Another factor that denotes their popularity
is that Use Cases are the only notation included in UML for modelling
requirements. In a Use Case diagram (Figure 2-2), we mainly distinguish the
following elements:

− UUssee CCaasseess represent an atomic functionality (there is no hierarchical
refinement when Uses Cases are specified or identified) that the system
offers to the environment for achieving some specific goal. Basically, the
detailed specification of a Use Case shows the dialogue between the
environment and the system to obtain a desired service. In addition to the
communications steps, templates for specifying Use Cases usually include
other artifacts, such as preconditions, post-conditions, alternative steps or
exceptions, non-functional requirements, etc. They are mainly used to
describe the functionality to be provided by the system.

18 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

− AAccttoorrss represent the environment of the system-to-be and can be users,
devices or any other system that interacts with the system being developed.
The Actor name describes which role it plays in that interaction.

− RReellaattiioonnsshhiippss which include CCoommmmuunniiccaattiioonn (to represent the
interaction between the Actor and the Use Case); GGeenneerraalliizzaattiioonn
(applicable both to Uses Cases and Actors to establish specialization
hierarchies); IInncclluuddee and EExxtteenndd (to factorize an original Use Case).

Figure 2-2 Use Case approach

By means of the Include and Extend unidirectional dependencies, the Use Case
model offers expressiveness for specifying relationships between requirements.
The Include relationship permits a Use Case to be reused and the Extend
relationship simplifies a Use Case. Thus, this factorization can be for reuse or
for simplification purposes depending on whether Include or Extend relationship
are used, respectively. Additionally, as stated above, Uses Cases do not allow
for hierarchical refinement, which implies a lack of consensus related to both
the proper granularity level of functionality that a Use Case should have and the
precise exploitation of Extend and Include relationships. Consequently, the
simple and easy notation of Use Cases is actually one of their major problems.
In situations where modelling has to be rigorous and/or precise, Uses Cases
usually exhibit problems with regard to their interpretation because of their
overloaded semantics and lack of consensus.

In addition, this approach is not appropriate when the system-to-be is highly
demanding in terms of non-functional requirements. It is because it is mainly
focus on the description of the interaction between the user and the system.

 2.2 An overview about Requirements Engineering 19

The traceability in this approach depends on the analyst ability to introduce
mechanisms that help in the process.

2.2.3 Problem Frames

This approach has been introduced by (Jackson, 2000) in order to change the
usual predisposition in software development to think in the solution and not
in the problem being solved. For this reason, this approach focuses on the
problem analysis and structuring. The main idea behind this proposal is to find
out the main characteristics that help to determine a class of problems so that
the same type of models can be used.

Figure 2-3 Problem Frames approach

Problem Frames approach presumes that some knowledge of the application
domain and context has been gathered, as for instance, through a process
modelling, so that a Problem Frame can be determined. A Problem Frame is
graphically described by means of a context diagram (Figure 2-3) that identifies:

− CCoonnttrrooll MMaacchhiinnee is a description of the piece of software, which the
customer desires. It illustrates the expected effects of its execution and its
interface with the domain.

− DDoommaaiinn is a part of the world that is affected by the effects of the
Control Machine.

− RReeqquuiirreemmeennttss are the properties in the Problem Domain that the
customer wants to observe by means of the shared phenomena b. b shows
the effects of the Control Machine that interacts with the Problem Domain
via the shared phenomena a.

One of the main advantages of this approach is its ability for requirements
reuse, detecting similarities among tasks. They also provide support for
traceability because the decomposition strategy, from problems to sub-
problems followed by the Problem Frames, allows the analyst to map sub-
problems directly to their solutions. However, there are no works, to the best
of our knowledge, that introduce support for non-functional requirements.

2.2.4 Viewpoints

20 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

Several proposals, such as (Finkelstein et al., 1992) and (Kotonya &
Sommerville, 1996), have introduced the use of Viewpoints to both obtain and
organize the requirements. In this approach, the system-to-be is defined
according to the context where it is going to perform its main computation.
With this aim, it is defined considering all the involved stakeholders and
assigning a different viewpoint to each party. Each established viewpoint can be
used to catalogue some stakeholders and, thus, different sources of
information.

Most of the proposals, following this approach, distinguish two different kinds
of viewpoints:

− DDiirreecctt VViieewwppooiinnttss: they describe those persons or systems that
directly interact with the system-to-be. They are usually customers that are
going to receive the service to be provided. They provide detailed
requirements, usually about features and interfaces of the system-to-be.

− IInnddiirreecctt VViieewwppooiinnttss: they describe those stakeholders that do not
interact directly with the system but have some interest in some or all of
the service which are going to be provided by the system-to-be. They
usually provide organizational requirements and constraints.

There is not a standard notation that can be used to describe Viewpoints but
every proposal identify different concepts as relevant for the description of a
Viewpoint. However, most of them recognize that it is necessary to identify:
the kkiinndd ooff VViieewwppooiinntt and the ssppeecciiffiiccaattiioonn following that
notation (Petri nets, statecharts, etc.) that is more appropriate to the domain
that the viewpoint belongs to. The main advantage this approach provides is
the facility to find out conflicts between requirements stated by different
stakeholders. In addition, some notations provide support for traceability
bottom-up and top-down. For instance, (Nuseibeh et al., 1994) use the work
record (Figure 2-4) to document every action or process the viewpoint has
suffered throughout its history. They also provide specific notation to depict
with non-functional requirements.

 2.2 An overview about Requirements Engineering 21

Figure 2-4 An example of a viewpoint (extracted from (Finkelstein et al., 1992))

2.2.5 Features

Features Diagrams are a popular approach for requirements modelling in two
areas: Software Product Lines (SPL) (Clements & Northrop, 2001) and
Dynamic Software Architectures (DSA) (Oreizy et al., 1998). SPLs allow the
analyst to identify and specify shared product line assets so that the products
implemented can be varied. DSA allows the system to evolve in both
composition and configuration, by supporting ad-hoc features at run-time.
Features Diagrams have been massively used for modelling the variability, i.e.,
the commonalities and differences existing in a SPL or a DSA (see section
2.2.6).

A wide diversity of proposals have emerged during the last year that describe
different languages for modelling Features Diagrams. (Schobbens et al., 2006)
describe a survey where the most relevant proposals are described and analysed.
However, despite this diversity, most of the proposals describe a Features
Diagram as a tree composed of nodes and directed edges. The nodes are called

22 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

FFeeaattuurreess and the edges determine the relationships among the features. In
order to describe what a feature is, the definition provided by (Kang et al., 1990)
can be used:

“a prominent or distinctive user-visible aspect, quality or characteristic of a software
system or systems.”

The edges are going to determine if a feature is mmaannddaattoorryy, ooppttiioonnaall or
aalltteerrnnaattiivvee. Mandatory features are always included in every product.
Optional features can be included or not, depending on the product. Alternative
features describe when only some features from a set can be included in a
product. Figure 2-5 shows an example of a Feature diagram where each kind of
feature is illustrated.

Figure 2-5 An illustrative example of a feature diagram (extracted from Kang et al.)

One of the main advantages of this approach is that it provides a specific
notation for the description of the variability. In addition, it also simplifies the
management of the requirements because they can be used as groups described
from the point of view of one or several stakeholders. This approach has the
advantage of dealing with both functional and non-functional features of the
system-to-be. The traceability towards others artifacts in the software
development can also be established by means of the implementation links.

2.2.6 Variability Management

This approach helps the analyst to delay the decision of what functionality or
quality aspects will be incorporated in the final system as long as possible. This
approach has been successfully applied in two areas: Software Product Lines
and Dynamic Software Architectures.

Traditionally, most of the proposals supporting this approach have dealt with
the management of variability at the architectural level by establishing a central

 2.2 An overview about Requirements Engineering 23

architecture, along with a set of components that can be evolved or integrated
according to the system needs. When variability identification is delayed at the
architectural level, a problem related to product lines and dynamic architectures
arises because the number of potential systems and the capability of adaptation,
respectively, are more limited (Clements & Northrop, 2001). Thus, the early
identification of the variability which is performed in the requirements phase,
which has been called eeaarrllyy vvaarriiaabbiilliittyy, is a great advantage as (Gurp
et al., 2001) have stated (and described in Figure 1-5).

Figure 2-6 Bottleneck with early and delayed variability (extracted from (Gurp et al.,

2001))

There is no a widely accepted notation to specify the variability in the
requirement phase. However, other approaches such as Use Cases have been
extended to support the variability management. Instead of describing the
different notations available for modelling variability, we present below the
necessary concepts as designated by (Trigaux & Heymans, 2003) as follows:

− RReepprreesseennttaattiioonn ooff ccoommmmoonn aanndd vvaarriiaabbllee ppaarrttss. The
notation should allow the analyst to express those assets that are shared
among different products of a product line, or among different instances of
Software Architecture and those that are specific to a specific product or
instance. The notation should be able to represent both variation points
and variants. A vvaarriiaattiioonn ppooiinntt indicates a specific variability in the
specification. A vvaarriiaanntt is a specific realization of variability in a specific
variation point. Each variation point has a ttiimmee lliinnkk, i.e., when the
variability is removed during the development process: design, analysis,
running, etc. It is also important to define the mmuullttiipplliicciittyy (both
maximum and minimum) in each variation. The multiplicity determines

24 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

how many variants must exist at the same time in a product or architecture
when the variability is removed.

− Distinction between ttyyppeess ooff vvaarriiaabbiilliittyy. The notation must
allow the analyst to express the different types of variability in the
following way: a) ooppttiioonnaall - when some specific variants can be
selected in the instantiation process, b) aalltteerrnnaattiivvee - when only a
single variant can be selected and c) ooppttiioonnaall aalltteerrnnaattiivvee - when
either cero or one alternative can be selected from those available.

− Representation of ddeeppeennddeenncciieess between variable parts. The variants
frequently have dependencies among them that have to be represented. For
instance, some the dependencies that are used are RReeqquuiirree (when a
variant must be selected if another variant is present) or EExxcclluuddee (when
the selection of a variant implies another variant can not be selected). A
more extended set of relationships in the requirements stage is presented in
(Bühne et al., 2003).

2.3 AN OVERVIEW ABOUT SOFTWARE ARCHITECTURE

There is not a standard and recognized definition of Software Architecture. On
the contrary, a wide set of definitions can be found in the bibliography. We
introduce those we consider the most relevant:

 “Architecture is concerned with the selection of architectural elements, their
interactions, and the constraints on those elements and their interactions necessary to
provide a framework in which to satisfy the requirements and serve as a basis for the
design.” (Perry & Wolf, 1992)

“Beyond the algorithms and data structures of the computation; designing and
specifying the overall system structure emerges as a new kind of problem. Structural
issues include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to
design elements; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives.” (Garlan & Shaw, 1993)

 2.3 An overview about Software Architecture 25

“The structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time. (Garlan &
Perry, 1995).”

“Architecture is defined by the recommended practice as the fundamental
organization of a system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design and evolution.
This definition is intended to encompass a variety of uses of the term architecture by
recognizing their underlying common elements. Principal among these is the need to
understand and control those elements of system design that capture the system’s
utility, cost, and risk. In some cases, these elements are the physical components of
the system and their relationships. In other cases, these elements are not physical, but
instead, logical components. In still other cases, these elements are enduring
principles or patterns that create enduring organizational structures. The definition
is intended to encompass these distinct, but related uses, while encouraging more
rigorous definition of what constitutes the fundamental organization of a system
within particular domains.” (ANSI, 2000)

The core of these definitions is the notion that the architecture of a system
describes its gross structure. This structure surfaces the top-level design
decisions, including issues such as how the system is composed of interacting
parts, where the main pathways of interaction are, and what the key properties
of each part is. The Software Architecture allows designers to reason about the
ability of a system to satisfy certain requirement. For this reason, the Software
Architecture typically plays a key role as a bridge between Requirements and
Implementation. It is because an architectural description should include
enough information by providing an abstract description of a system. It allows
that a high-level analysis and critical assessment can be performed. In addition,
they also suggest that it is a first draft for system construction and composition
so that the implementation of the system can be properly planed.

However, one the main issue is how the architecture is represented. The
informality of most box-and-line depictions of architectural designs leads to a
number of problems. The meaning of the design may not be clear. Informal
diagrams cannot be formally analyzed for consistency, completeness, or
correctness. In addition, the architectural constraints assumed in the initial

26 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

design cannot be enforced as a system evolves if a precise description is not
established.

In response to these problems, a number of researchers in industry and
academia have proposed formal notations for representing and analyzing
architectural designs. Generically referred to as AArrcchhiitteeccttuurree
DDeessccrriippttiioonn LLaanngguuaaggeess (ADLs) 1, these notations usually provide
both a conceptual framework and a concrete syntax for characterizing Software
Architectures. They also typically provide tools for parsing, displaying,
compiling, analyzing, or simulating architectural descriptions. A wide diversity
of languages have emerged during the last decades, each one having distinctive
capabilities. For instance:

− C2 (Medvidovic, 1996), supports the description of user interface systems
using an event-based style;

− Darwin (Magee et al., 1995) supports the analysis of distributed message-
passing systems;

− Rapide allows architectural designs to be simulated, and has tools for
analyzing the results of those simulations;

− Wright (Allen & Garlan, 1994) supports the formal specification and
analysis of interactions between architectural elements.

Independently of the specific properties these ADLs have, they should be
expressive enough to facilitate as well-defined Software Architectures as to be
used for ensuring the requirements are properly meet. Nevertheless, they also
play an interacting role with requirements. It has been described that they play a
critical role to determine the feasibility of the requirements, as (Andrade &
Fiadeiro, 2003) suggest, and to support the decision-making process at this
level, as (Miller & Madhavji, 2001) have analysed.

1 Interested readers are referred to (Medvidovic & Taylor, 1997) and (Cuesta, 2002) for a detailed

analysis of these ADLs

 2.3 An overview about Software Architecture 27

2.3.1 Concepts for Software Architecture Descriptions

Despite the wide set of ADLs defined up to date, there are some concepts that
are transverse to all of them. In order to facilitate a better comprehension of
this work, the most relevant ones are presented in the following sections. In
order to obtain a deep insight into Software Architecture (Garlan, 2001) and
(Shaw & Clements, 2006) are recommended. The former shows the emerged
tendencies over the last decade and the latter set out the new challenges
appearing for the next one.

Components

Normally, the ccoommppoonneennttss of a system are treated as “black boxes” about
which nearly nothing is known, except for the way they connect with other
architectural elements. They are the base to modularize the functionality of the
system with a high level of encapsulation. It is because their interface (or
interfaces) are well defined describing clearly the service they require and/or
provide. They have been defined by (Szyperski, 1998) as:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.”

This concept is applied in other contexts, specially for Components-Based
Software Development (CBSD) and the use of components Commercial off-
the-shelf (COTS). Exploiting CBSD, the core computation is separated from
connectivity between the elements to provide such a computation (Szyperski,
1998). In this way, the system-to-be is built by assembling pre-built units. The
introduction of COTS helps to speed-up the process of software development
because code can be reused. That is why this concept has been widely used at
the implementation level, describing a component as a package of code (Souza
& Wills, 1999). However, while defining the Software Architecture, its
abstraction level is higher facilitating its reuse and, over all, the comprehension
of the architecture.

Connectors

CCoonnnneeccttoorrss are defined in terms of the interaction among components.
They are in charge of coordinating the process of the components they
connect. This means they facilitate the separation of two concerns: the main
computation performed by the components and the coordination provided by
the connectors. For this reason, they supply the components with a loose

28 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

coupling and enhance their reuse in different systems. (Shaw, 1994) describe
them as:

“…the locus of relations among components. They mediate interactions but are not
“things” to be hooked up (they are, rather, the hookers-up). Each connector has a
protocol specification that defines its properties. These properties include rules about
the types of interfaces it is able to mediate for, assurances about properties of the
interaction, rules about the order in which things happen, and commitments about
the interaction such as ordering, performance, etc.”

In a similar way to components, they interact with the other parts of the system
by means of the interfaces that describe the services they require and/or
provide.

Some ADLs do not incorporate this concept explicitly. For instance, Rapide
describes connection among components that cannot be named and, thus, they
cannot be reused. However, several works, as (Allen & Garlan, 1994) and
(Shaw, 1996), state compelling arguments for its definition as “first class
citizens”. Among them, it is specially relevant the expressive power and analysis
properties that connectors provide to the architectural description.

Systems

It is frequently the case that different abstraction level must be provided to
facilitate the understandability and the specification of the architectural
description. For this reason, mechanisms to describe architectural elements
with different granularity level are always desirable. Most ADLs have
introduced the notion of SSyysstteemm as a complex component, i.e., a component
that is made up of other architectural elements. This facilitates that the system-
to-be can be described in a hierarchical way, as (Andrade & Fiadeiro, 2003) set
out. In such a way, the software composition can be defined in a
straightforward way facilitating the reuse and the modularity.

Ports

Every architectural element usually has iinntteerrffaacceess. An interface specifies
the service, or set of services, that they provide and/or require. Interfaces are
often typing the ppoorrttss of the architectural element. They are the interaction
points between them and the rest of the Software Architecture. They are in
charge of preserving the black-box view every architectural element should
have.

 2.3 An overview about Software Architecture 29

Connections

They are used to constrain when an interaction is allowed between which
architectural elements. It is because they establish the communication channel
between the architectural elements, connecting components ports and
connector ports. However, if connectors are not considered as first-citizens in
the specification then connections are only established between components.
Usually, these connections are called aattttaacchhmmeennttss.

Compositions

This type of relationship is established to allow the communication between
systems and the architectural elements that made them up. In this way,
architectural elements with different granularity level are connected, providing a
compositional semantics, as (Garlan, 2001) set out. This is why attachments are
not used for this aim. These relationships usually receive the name of
BBiinnddiinngg.

Configuration

Additionally, the interconnection between these elements has to be embodied
to describe the structure of the system. This structure is usually named
ccoonnffiigguurraattiioonn. Its definition is key to determine how the system-to-be
will be built. Some assistance in order to define this topology, and select the
involved elements, is provided by the AArrcchhiitteeccttuurraall SSttyyllee. (Garlan &
Shaw, 1993) describe them as:

“An Architectural Style defines a family of systems in terms of a pattern of
structural organization. More specifically, an Architectural Style determines the
vocabulary of components and connectors that can be used in instances of that style,
together with a set of constraints on how they can be combined. These can include
topological constraints on architectural descriptions (e.g., no cycles). Other
constraints, having to do with execution semantics, might also be part of the style
definition.”

As can be observed, they mainly sketch the main structure that every Software
Architecture, compliant with an Architectural Style, should have. The
Architectural Styles basically describe a set of constraints that must be satisfied
if it is applied. Both (Buschmann et al., 1996) and (Shaw & Garlan, 1996) have
proposed a set of styles to be reused for facing different problems that share a
common solution space, as for instance the pipe and filters, event based, etc.
More details about Architectural Styles are presented in chapter 7.

30 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

Other concepts

There are other concepts related to the Software Architecture that can be
defined. For instance, the concept of VViieeww, firstly introduced by (Perry &
Wolf, 1992), offers the analyst the facility of analyzing a Software Architecture
from different points of view. It also relevant the concepts of PPrrooppeerrttyy
(Garlan, 2001) and CCoonnssttrraaiinntt (Andrade & Fiadeiro, 2003) used to
describe the semantics associated to the architectural elements or the restriction
of the design, respectively. However, they have not been exploited in this work.
Reader is referred to that works to obtain more details about them.

2.4 ASPECT-ORIENTED SOFTWARE DEVELOPMENT

(Parnas, 1972) introduced the concept of SSeeppaarraattiioonn ooff CCoonncceerrnnss
((SSooCC)) as a way to manage the complexity of software development by
decomposing it into simpler units. Applying this concept, a loose coupling is
achieved so that change on a concern has not any or reduced effect on the
other concerns. Parnas demonstrated that it means a meaningful advantage in
terms of maintenance and reuse. (Sutton & Tarr, 2002) have also highlighted its
support for analysis and understanding, evolution and reuse. Most of the
proposals following this approach consider that a concern is not an artifact
produced during the software development but a conceptual entity that can
affect throughout several artifacts. (Sutton & Tarr, 2002) describe a concern as:

“…any matter of interest in a software system”

As (Hursch & Lopes, 1995) state, several approaches have emerged that offer
different support to this concept. For instance, CCoommppoonneenntt--BBaasseedd
SSooffttwwaarree DDeevveellooppmmeenntt (CBSD) (Szyperski, 1998) promotes the
separation of the functionality from the coordination concern by exploiting an
assembly process to produce a final product. However, the CBSD approach is
not a silver bullet for the software development. As (Jacobson, 2003) set out,
components are developed to satisfy several requirements, which lead to a
development where concerns of the systems are ttaanngglleedd and ssccaatttteerreedd
across the components of the system. (Tarr et al., 1999) have described these
concepts as:

“scattering - a single requirement affects multiple design and code modules - and
tangling - material pertaining to multiple requirements is interleaved within a single
module”.

The AAssppeecctt--OOrriieenntteedd PPrrooggrraammmmiinngg (AOP), (Kiczales et al., 1997),
(Elrad et al., 2001b), emerged as another approach for realizing this concept,

 2.4 Aspect-Oriented Software Development 31

but showing a key difference: it focuses on those concerns that crosscut a
software system facilitating that each concern can be separately specified. For
this reason, its notion of concern is close to that provided by the standard
(IEEE, 2000):

“…those interests which pertain to the system’s development, its operation or any
other aspects that are critical or otherwise important to one or more stakeholders”

The problem that AOP tries to solve is how to manage properly those
catalogued as ccrroossssccuuttttiinngg--ccoonncceerrnnss, i.e., concerns that are scattered
and tangled. The software development without considering separation of
concerns techniques can leads to problems compromising its maintainability
and performance. For this reason, AOP introduce mechanisms to factorize
these crosscutting-concerns into units called aassppeeccttss that can be reused
throughout the system by weaving them wherever it is necessary, managing
properly the tangled and scattered code. It means advantages in terms of
understandability of the code, maintainability and reusability, as (Kiczales et al.,
1997) demonstrated. AOP introduce a set of concepts necessary to understand
this paradigm2:

− BBaassee ccooddee is that code that describes the core functionality of a
program or domain, where the aspects are woven. Every aspect
encapsulates a crosscutting concern for the specific program or domain.
The aassppeecctt ccooddee collects the set of defined aspects.

− JJooiinn ppooiinnttss determine the coordination structure between the base
code and the aspect code. With this aim, each joint point identifies a point in
the base code that determines where an aspect will be hooked.

− PPooiinnttccuutt is a set of join points. When the execution reaches one of
them, the advice (a piece of code) is executed to determine the sequence of
execution at that point. Usually, an aaddvviiccee determines if the aspect must
be executed before, after or instead of the base code.

2 (Dounce & Le Botlan, 2005) offer a more exhaustive definition of these concepts

32 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

− WWeeaavviinngg is the process allocated to control this change of context
between the base code and the aspectual code, that is, when and how the
injection of the aspectual code is performed.

Figure 2-7 Main concepts in AOP (code extracted from (Kickzales et al., 2001))

Figure 2-7 shows where each one of these concepts is established. The code has
been (partially) extracted from (Kickzales et al., 2001) using as reference
language AspectJ, the most widely accepted Aspect-Oriented language defined
as an extension to Java3. It can be observed, that the specified pointcut, whose
name is ““moves””, establishes a set of reference points, that is, each time the
method ““setY”” of the class ““Point”” is referred, directly or indirectly, a joint
point is established. It can be observed that there is not a specific notation for
the join points but they are implicitly defined. Their semantics depends on the
MMooddeell ooff JJooiinntt PPooiinnttss established in the Aspect-Oriented language.
In the example of the figure, a model based on method call has been used.
Several models of joint points have been established up to now following this
approach. For instance, (Kickzales et al., 2001) establish a set of eleven kinds of
join points that determines they can be established on a method call, method call
reception, method execution, etc. Alternatively, other Models of Join Points

3 See (Brichau & Haupt, 2005) for an extensive survey of the current Aspect-Oriented language

and Execution Models

 2.4 Aspect-Oriented Software Development 33

propose to specify explicitly such join points, usually by means of labels
(Walker et al., 2003).

Figure 2-7 also illustrates how an advice has been established determining that
after the execution of the pointcut ““moves””, the variable ““flag”” is set to ““true””.
Therefore, it is responsible for providing the crosscutting behaviour. However,
it must be taken into account that there are other alternatives to support this
behaviour as, for instance, by means of iinntteerr--ttyyppee ddeeccllaarraattiioonnss.
Some languages, such as XAspects proposed by (Shonle et al., 2003), use them
to modify the static structure of a program introducing methods, constructors,
etc.

However, this paradigm has not only focus on the implementation level but a
wide range of proposals has emerged that promote the detection and
description of aspects at early stages of development, such as the design (Suzuki
& Yamamoto, 1999), architecture (Pérez, 2006) or requirements (Rashid et al.,
2002), in order to satisfy the closure property (Elrad et al., 2001b). This is how
the term AAssppeecctt--OOrriieenntteedd SSooffttwwaarree DDeevveellooppmmeenntt (AOSD) has
emerged exploiting the advantages this paradigm can provide in each stage of
the software development. Because of the main motivation of this work is the
establishment of a process that support the SoC from the requirements to the
Software Architecture definition, in sections 2.4.1 and 2.4.2 an introduction to
how the AO approach has been incorporated in both fields is presented.
Special attention is devoted to the proposals in the Requirements Engineering
arena because its relevance for the later definition of the architecture, as (Ferrari
& Madhavji, 2007) state.

2.4.1 Aspect-Oriented Requirements Engineering

The attention to AOSD has burst onto the Requirements Engineering with the
definition of AAssppeecctt--OOrriieenntteedd RReeqquuiirreemmeennttss EEnnggiinneeeerriinngg
(AORE). This approach has been used with several objectives in the RE
process. One of them is obviously the detection of eeaarrllyy--aassppeeccttss, that is,
concerns detected in the requirements stage that are candidates to be realized as
aspects in later stages of the development (Rashid et al., 2002). However, other
alternatives try to exploit this approach to improve the requirements
specification, such as (Alencar et al., 2006). This is because, no care the
requirements specification employed, when dealing with complex and/or large
systems, the crosscutting usually appears in the specification. This crosscutting
manifests itself by affecting negatively the readiness and maintainability of the
specification. AORE identifies and manages this crosscutting in an elegant and
effective way, based on the SoC.

34 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

AORE does not have its own notation or expressiveness. Current proposals
have developed their own notations based on other techniques in order to
accomplish the identification of early aspects. Nonetheless, we can enumerate a
some concepts that are common to all of them:

− CCoonncceerrnn refers to the interests of the system, which can be either
functional or non-functional.

− CCrroossssccuuttiinngg is a relationship among concerns that arises whenever a
given concern interacts with other ones (either by constraining, extending,
etc.). A more detailed description of potential crosscutting relationships can
be found in (Rashid et al., 2003).

Some requirements models that are based on the Aspect-Oriented approach
include the concept of early aspect as a constructor of the model. However, this
is not mandatory because, when applying AORE, it is more important to detect
and manage the composition relationships between early aspects (along with
their traceability later) than to explicitly specify them as early aspects. The main
purpose of AORE is to improve the crosscutting management and to establish
the composition relationships between specifications. This is done by
encouraging the separation of concerns in a similar way to the role played by
weaving in Aspect-Oriented Programming.

It is worthy of note that the proposals presented up to date can be classified as
ssyymmmmeettrriicc or aassyymmmmeettrriicc mmooddeellss. Most of the current proposals are
asymmetric because of the great influence AspectJ has had. It was the first
proposal, and currently, the most widely used. This kind of models assumes
that there is a dominant decomposition, which is usually the functional one.
Aspects specify the crosscutting concerns, typically the non-functional ones, of
the system-to-be for thei later woven to the functional ones. However, the
symmetric model do not care whether they are crosscutting concerns or not.
Each concern is independently specified and can be woven or not depending
on the expected behaviour of the system.

In the following sections, an example of different proposals in the field,
according to the RE notation extended, is presented (a deeper analysis can be
found in (Chitchyan et al., 2005)).

Scenario Approach and AORE

Several proposals have been presented that employ scenarios as the base
approach for AORE. Most of them employ the Use Cases Models as the base
notation to describe the functional requirements, and another notation to

 2.4 Aspect-Oriented Software Development 35

identify the non-functional requirements and its possible crosscutting
relationships.

(Brito & Moreira, 2003) have presented one of these proposals. They have
defined an extension to Use Case Model to identify and specify the crosscutting
concerns, considering quality attributes as the first candidates to be
crosscutting-concerns. They define the functional requirements by means of a
Use Case Model. The non-functional ones are described by using a template
describing their names, description, etc. It is specially relevant the section where and
contribution to detect the candidate aspects. It is because they list the models,
model elements and concerns that are affected by the non-functional
requirement being specified. Both models are composed by describing the
matchpoints in the Use Case diagrams. The composition stereotypes used are
overlap, override, and wrap depending on the candidate aspect is applied before (or
after), or superposing or encapsulating the concerns it transverse, respectively.
One of the main advantages exhibited by this approach is that it allows the
modelling of aspects (elicited at the requirements phase) at the design phase. It
is also relevant the identification of some mechanisms to facilitate the trade-off
among conflicting candidate aspects. However, the use of different models to
describe functional and non-functional requirements can lead to problems in
terms of the maintainability and traceability between them. In addition, they
neither provide a tool to support their proposal.

Goal-Oriented and AORE

The goal-oriented approach is by definition quite appropriate to be used for
detection and specification of crosscutting concerns. It is due to the fact that it
introduces a notation to specify contributions between goals described in the
model. However, not many works have been presented up to date. (Yu et al.,
2004) is one of these proposals. They have defined an analysis process that
helps to identify aspects by using a Goal Model that they have called a V-Graph.
This process is mainly based on the relations of functional goals (called goals in
their proposal) and non-functional goals (called softgoals). These goals are
refined into sub-goals until operationalizations can be described. These
operationalizations have a contribution relationship towards the satisfaction of
goals. An aspect is detected whenever an operationalization is contributing to
several goals. One of the advantages of this proposal is that it offers an
automatic support to detect early aspects. In addition, they propose a well-
defined process to specify the V-Graph by means of refinement. However, its
main drawback emerges when dealing with negative contributions. It is because
some goals, necessary to achieve the satisfaction of the model, could be not
satisified because of the negative contributions they have. It means that these

36 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

requirements could not be properly mapped to the operationalizations level and
they would not meet by the system-to-be.

Viewpoints and AORE

Some proposals have exploited the Viewpoint approach for the detection of
early aspects. The main advantage they show is its capability for managing
conflicts, so relevant when different stakeholders are involved in the process.

(Rashid et al., 2003) have defined the Early AORE model. They describe a
process that systematically entails all the activities of SoC: identification and
specification of concerns, detection of candidate aspects, composition of
concerns and handling of conflicts. Different Viewpoints are used to identify
the concerns, and their related requirements, of the system-to-be. Both
elements are specified in an association matrix that facilitates the identification
of the candidate aspects whenever a concern is related to several Viewpoints.
They have also defined a set of composition rules in order to facilitate their
later composition.

In addition, they provide support for trade-off when conflicts emerge. These
conflicts are defined in an association matrix, describing when a concern
contributes negatively to other/s along with a weight that indicates its
importance. A negotiation process is carried out to resolve such situations.
Once this process is resolved, the elicited aspects are classified according to
their importance and mapped on the artifacts defined at later stages of
development.

This proposal exhibits several advantages. One of them is that a tool called
Aspectual Requirement Composition and Decision support tool (ARCADE)
supports the whole process. In addition, it is the proposal with a more detailed
description of the composition rules to be applied in the early stages of
development. However, authors recognize that the composition rules have not
validated beyond the proposed case study. They recognize that these rules
could be highly dependent on the application domain.

Features and AORE

The exploitation of Features models is gaining more and more adepts because
of its simplicity. (Pang & Blair, 2004) have exploited it by extending the Agile
process of Feature Driven Development (FDD) proposed by (Coad et al., 1999).
The FDD is analysed by using a feature extraction template in order to identify
the crosscutting. The analysis determines that a crosscutting exists if more than
one class is included in a feature. They also describe a specific process for
managing conflicts. This crosscutting is identified and resolved by an algorithm

 2.4 Aspect-Oriented Software Development 37

that is based on Boundary Condition Exploration that uses the priority assigned to
the features. They have defined a specific notation, similar to AspectJ, that is in
charge of providing the crosscutting behaviour. However, it is only a theoretical
proposal that has not been validated in a case study nor has a supporting tool.

Multi-dimensional AORE

(Tarr et al., 1999) proposed the Multidimensional Separation of Concerns to
break the called “tyranny of the dominant decomposition”. The main idea is that
artifacts are defined, by default, by multiple and overlapping concerns. For this
reason, if they were decomposed according to several concerns simultaneously
then advantages in terms of traceability and impact of change would be
obtained.

Several proposal have emerged that describe the main ideas provided by this
approach, such as (Sutton & Rouvellou, 2004), and (Moreira et al., 2005). The
latter have proposed an extension to the (Rashid et al., 2003)’s work called
CORE (Concern Oriented Requirements Engineering). However, in this case
they decompose the requirements uniformly without taking into account if they
are functional or not. If facilitates that any concern can be mapped to any other
one, without caring its nature and providing an enhanced flexibility.

CORE proposes to use a meta concern space that can be reused from system to
system. It is defined as a catalogue of concerns that is used to classify the
requirements in the specific system. In order to reduce the potential number of
concerns to be analysed as possible conflicting ones, they have introduced the
notion of compositional intersection. It provides a reduced set of concerns that can
be used as a base for concern projection and the trade-off analysis that is
performed latter on. CORE identifies a matrix to determine the relations
between concerns that is the base to apply the composition rules at the
requirements level. A conflict resolution is applied by assigning priorities and its
later discussion with the stakeholders. For every concern, its influence on
decisions at the architectural level is identified. The proposal exhibits several
advantages related to the way the decomposition of the system proceeds and
the support it provides for conflict resolution. However, one of the main
drawbacks is that there is not a catalogue of concerns to help in the process,
neither any guidance to determine the compositional intersection. In addition,
there is not a supporting tool facilitating its applicability.

Other approaches to AORE

38 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

There are some proposals that have been defined without following any
traditional approach to RE. Among them, it is worth noting that proposed by
(Baniassad & Clarke, 2004). The proposal is based on a concept they have
introduced: Theme. It is a meaningful unit of cohesive functionality that is
composed with other themes. This facilitates that the system-to-be description
follows a multidimensional approach. There are two kinds of themes: base
themes, which may share some structure and behaviour with other base themes;
and, crosscutting themes that have behaviour overlapping the behaviour described
by the base themes. The crosscutting themes are identified as aspects.

The main idea of the proposal is to describe the different Themes of the system-
to-be by means of a graph-based representation, which is amenable to perform
the subsequent analysis to determine the crosscutting. With this aim, four
elements are used throughout the process:

− Action View that describes non-hierarchical links between the action words
(verbs) identified from the requirements document and requirements
sentences. These actions must be previously classified as Themes if they are
major enough or just behaviour within themes following a described
process. If a requirement sentence is linked to several themes, and it can
not be rewritten to break such link 1-N, then tangling behaviour is
identified, and, thus, an aspect is identified.

− Clipped Action View that is generated from the previous View by clipping the
secondary actions from every requirements sentence. This secondary
behaviour will crosscut the base behaviour and the primary actions will be
classified as base.

− Theme View is in charge of identifying entities from the requirements
document.

This proposal provides the advantage of helping to identify aspects by using
action words. In addition, there is a tool called Theme/Doc that helps to
automate to some extent the process. Despite their well-behaviour with
functional requirements, it does not seem so appropriate with the non-
functional ones. It is because they are not usually written using action words,
and, thus, it is required to rewrite them for their identification. That means that
finally the analyst must do the work that is the advantage of the proposal.

Main discussion

As can be observed, there are a wide diversity of proposals that provide
support for the identification, specification and composition of concerns at the
early stages of development. They are not only theoretic proposal but most of

 2.4 Aspect-Oriented Software Development 39

them have been applied and have a supporting tool. However, the major
problem is related to traceability throughout the software development process.
As far as we know and according to (Baniassad et al., 2006), there is none
proposal that provides traceability from requirements to architecture
maintaining the so desired SoC, that is, a proposal where AORE and Aspect-
Oriented Software Architecture (AOSA) are combined.

2.4.2 Aspect Oriented Software Architectures

Recently, a deal of work has been performed that exploits the benefits of the
integration of AOSD and Software Architecture. This integration must tackle a
wide diversity of issues but two of them are mandatory for any proposal. The
first one is related to how the concept of aspect is introduced at the
architectural level. However, their definition at the architectural level is not
standardized but a wide set of definitions have emerged. The second one is
related to the composition, i.e., the description of mechanisms that integrate
both architectural aspects and architectural elements in a suitable way. Both
issues are more detailed in the following.

The incorporation of aspects at the architectural level implies considering what
an aspect is at this level. However, as was stated above, there is not a standard
definition of aspect at the architectural level but its meaning is very dependent
of the proposal4. In order to facilitate its comprehension, (Cuesta et al., 2005)
have elaborated a taxonomy that can be used to understand the different
meanings this concept can have at the architectural level. They have identified
the following approaches:

a) Non-aspects. The proposals in this category, such as JIAZZI (McDirmid et
al., 2001), consider that aspects do not have to be defined because either
they are not necessary or they can be provided by some existing
composition mechanism.

4 (Pérez, 2006) and (Chitchyan et al., 2005) offers a deeper analysis of the most well know

proposals in the field

40 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

b) Architectural aspects. The proposals following this approach extend or use the
architectural elements to specify architectural aspects, that is, they are
considered as a special type of component and/or connector that support
aspectual capabilities. Some proposals in this category are FUSEJ (Suvée et
al., 2005), AspectLeda (Navasa et al., 2005), etc.

c) Aspectual binding. The proposals in this category state that there is no need
of describing aspects but only extending the binding mechanisms of the
components to consider the aspectual ones. They use some kind of
architectural abstraction to encapsulate the aspectual interaction. Aspectual
components (Lieberherr et al., 1999), CAESAR (Mezini & Ostermann,
2003), or Composition filters (Bergmans & Aksit, 2001) are examples of
this kind.

d) Concern model. This approach considers those ADL that provide support for
the description of an internal model of concerns. Perspectival Concern-
Space (Kande, 2003) and PRISMA (Pérez, 2006) are clear examples of this
kind.

e) Multiple dimensions. It is similar to the previous one but concerns are made
explicit in their definition. The description of the system is structured
according to the identified concerns, and later on, some mechanism is
provide to facilitate their composition. Architectural Views of Aspects
(Katara & Katz, 2003) is a proposal following this approach.

Taking into account the taxonomy described above, it is described in the
following sections how the composition with the architectural elements has
been defined by different proposals.

Non-aspects

One of the proposals following this approach is Jiazzi. It is an aspect-oriented
proposal that extends Java in a non-invasive way because it does not change the
core of the language. The construction of systems is performed by defining java
classes, which constitutes the base code, and components, which are called
units. These units can be thought as generalized Java packages that are described
by importing packages of java classes. Figure 2-8 illustrates the unit ““a:applet””
which imports the package ““ui”” and exports the package ““applet””. Units are
compiled and typed-checked independently of the base code improving the
composition of concerns later. Each unit can import and export several classes
so that it can modularize a given concern that crosscut multiple classes.

A separate language of Jiazzi, which acts as an aspect-configuration language, is
in charge of composing base code and units. The links are defined externally

 2.4 Aspect-Oriented Software Development 41

eliminating hard-coded dependencies and making more flexible the definition
of the components. The linking creates the compounds that are built from other
units and compounds. As can be observed in Figure 2-8, they establish the
connections between the units by matching source and destination packages in
each unit, so that direct connection between classes can be eliminated. The
compound can be used to create new compounds because they can export
packages as it is shown in the Figure 2-8 by ““ui_out”” and ““applet_out””.
Compounds, units and java classes of the base code are linked all together by the
jiazzi unit linker and compiled to produce new builts.

Figure 2-8 Describing the compound linkui as a link between the units applet and ui by

matching the packages ui_out and ui_in (extracted from (McDirmid et al.,
2001))

As can be observed, this proposal does not introduce the concept of aspect in
its definition but a unit whose granularity regarding other proposals is higher. In
addition, it has been defined in a non-invasive way for the Java language. It
cannot deal with concerns whose implementation is deeply tangled with other
code so that it only provides an aspect-interaction similar to the “around”
advice defined previously (see section 2.4).

Architectural Aspects

Most of the proposals following the Architectural aspects approach employ or
extends the mechanisms provided to connect architectural elements. One of
these proposals, FUSEJ, uses the mechanism of composition described in
Figure 2-9. Components are used to describe both regular components and
aspect-oriented components in the Component Layer. Each Component describes a
set of services, which it provides, called features.

42 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

Figure 2-9 Describing the composition in FUSEJ (extracted from (Suvée et al., 2005))

These features cannot be directly accessed. It is by means of the gates, described
in the Gate Layer, how it is specified the features that are provided for a
Component. The coordination between the Components is established specifying
connectors in the Connector Layer. They are specified in a different way depending
on whether they are coordinating two regular components or a regular
component and an aspect-oriented one. In the latter case, the connector is
specified using the primitives of the Aspect-Oriented approach. It can be
observed, that the specification of the connector is specialized to deal with the
interaction mechanisms of the Aspect-Oriented approach.

Aspectual binding

Regarding the Aspectual binding approach, (Lieberherr et al., 1999)’s proposal
considers an aspectual component as a module of functionality that is structured by
means of a graph called Participant Graph. Their participants are object-oriented
classes. Each aspectual component must describe its expected and provided
interfaces achieving their higher reusability. These aspectual components are
composed with the base application that is just a special kind of aspectual
component but without interfaces. Both the base application and the aspectual
components are composed by means of connectors that coordinate them by
encapsulating the pointcuts.

 2.4 Aspect-Oriented Software Development 43

Figure 2-10 Composing an Aspectual Component and the Base Application (partially

extracted from (Lieberherr et al., 1999))

The connectors are in charge of performing the pattern matching between the
base application and the interfaces of the aspectual components. Once this
composition is established, the result is weaved code at the deployment stage as
is described in the Figure 2-10. It is worthy of note that this connector can also be
used to describe the composition between aspectual components in order to
produce a new composed aspectual component.

Concern model

As was stated above, the PRISMA model is an example of Concern model.
PRISMA defines the architectural elements, both components and connectors,
by means of a gluing of aspects, where the weaving relationships are described
internally to these elements achieving more reusable aspects, as is described in
Figure 2-11. This means that there is not any mechanism to establish the
composition between the architectural elements and the aspects, but the
composition of aspects are described internally to the architectural elements.
This model is more widely described in section 4.3.

44 CHAPTER 2 Requirements and SA: considering the Aspect-Oriented Approach

Figure 2-11 Describing a PRISMA connector

Multiple dimensions

Finally, the Architectural Views of Aspects is a proposal following the Multiple
dimensions approach. This proposal uses Views as a means to specify and analyse
the system-to-be from the point of view of a specific concern, such as security,
or functionality. Each View can be treated by more than one aspect, where an
aspect is a module that encapsulates a set of components along with the
connections between them. As can be observed in the Figure 2-12, an aspect
can be shared by several concerns to describe a behaviour that is addressed by
them. In addition, they can be composed when it is necessary to form a
composite aspect for a single concern. For instance, ““(C, S)”” are composed for
the ““Security”” concern in Figure 2-12.

Figure 2-12 Concern diagram (extracted from (Katara & Katz, 2003))

The composition of aspects is based on the superimposition principle, an
asymmetric operation that establishes the composition order of the aspects to
establish which aspects are applied on top (before, after or instead) of others.

 2.5 Conclusions 45

The dependencies between modules are described when given a module it has
elements that are bound to elements belonging to other module. These
relationships are used to perform the composition. Therefore, in the example
of the Figure 2-12, a specification that deals with both ““overflow”” and
““security”” concerns would compose the aspect in any order, that is, ““S/O/C””
or ““O/S/C””.

Some conclusions

Taking into account the above presented proposals, it can be concluded that
the definition of aspect at the architectural level is highly dependent on the
proposal. Most of them consider that AArrcchhiitteeccttuurraall AAssppeeccttss provide
a new means of modularization and encapsulation part of the system
computation and/or its interaction that is used in the definition of the system-
to-be. In addition, it can be notice that some of them use symmetric model
where the crosscutting do not have to exist to encapsulate that behaviour but it
is intended as a way of managing the complexity of the specification.

As was expected, the mechanisms used for the composition between the
architectural aspects and the architectural elements depend totally on how they
have incorporated in the proposal. It was observed that some proposals do not
deal with such composition because they are not directly connected.

2.5 CONCLUSIONS

In this chapter, a brief overview about the Requirements and Software
Architecture fields has been presented. The most well known proposals in RE
has been introduced in order to make know the reader the concepts they
introduce. Similarly, the most important concepts in SA have been described as
well. It will facilitate the comprehension of the remaining chapters.

In addition, the Aspect-Oriented Software Development approach has been
introduced. This approach means a step forward the achievement of
maintainability and reusability, two quality factors key in every software
development process. Its use facilitates an efficient management of change
because their impact can be better understood and evaluated. It facilitates the
analysis of the system because it reduces the complexity of its specification.
How this approach has been addressed at the Requirements and Software
Architecture stages has been introduced as well.

-47-

“There was a wish to get something exceptional…
I also wanted to deliver something technically

unique” —
Santiago Calatrava

CHAPTER 3

3 Intertwining Requirements and Software
Architecture: a Context for ATRIUM

3.1 INTRODUCTION

Nowadays, software has quality as a goal throughout its lifecycle, from its
inception to its completion. Several factors, methods and/or processes can be
used to cope with this issue. Some of them assessed the quality in terms of
customer satisfaction. Such approach highlights how needed the elaboration of
high quality requirements specifications is. Therefore, they should produce
systems that are more likely to perform according to the stakeholder’s
expectation.

Architectural specifications allow the analyst to reason whether a system
satisfies its requirements and, therefore, to determine the quality shown by the
system. However, it is clear that the transition from requirements to
architecture is not a straightforward task but a complex one, because different
languages are used when dealing with both kinds of artifacts. In addition, once
a system is built, new and changed requirements may arise and the system
needs to evolve. Therefore, traceability among them becomes a critical issue for
the development. For this reason, some workshops and conferences, as for
instance STRAW’01 (Castro & Kramer, 2001) and STRAW’03 (Berry et al.,
2003), as emerged lately to cope with this issue.

An additional topic has also emerged: AOSD. As was presented in the previous
chapter, there is a need of providing traceability from the early-aspects detected

48 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

and specified in the early stages of development to the architecture and, finally,
to the code. This also constitutes another topic that must be dealt with by any
proposal following this approach.

In order to describe properly these issues the chapter is structured as follows.
Section 3.2 describes the most relevant works that deal with the intertwining
between Requirements and Software Architecture along with a comparative
framework. Section 3.3 presents the process that has been defined in this work
having into account the previous proposals. The chapter finishes with the
obtained conclusions.

3.2 PROPOSALS INTERTWINING REQUIREMENTS AND SA

In the next sections, some of the most relevant approaches in the field are
introduced. It can be observed that they are catalogued according to the RE
approach they use. This is because it has been detected, as (Ferrari & Madhavji,
2007) set out, that a proper knowledge in RE, from the point of view of
techniques and their exploitation, has a high impact on the quality of the
architecture specification.

3.2.1 Goal-Oriented for defining SA

By putting emphasis on goal analysis, goal-oriented proposals explicitly link
business needs and objectives to system functional or non-functional
components. According to (Kavakli & Loucopoulos, 2005) there are four
proposals that concern on this topic: KAOS (Lamsweerde, 2003), GBRAM
(Antón, 1996), the NFR framework (Chung et al., 2000), and the CREWS-
L'Ecritoire (Rolland et al., 1999). However, we can focus on i* (Castro et al.,
2002) due to the fact that this has been an extension of the initial NFR
Framework in order to deal with functional requirements too. These works are
based on the premise that systems components satisfy some higher goal in the
larger environment. In addition, GRL, proposed by (Liu & Yu, 2004) is also
introduced because it has also commonalities with this thesis.

KAOS

(Lamsweerde, 2003) has proposed the use of the KAOS framework (Dardenne
et al., 1993) to guide the process of elaborating the Software Architecture from
requirements. It defines an iterative refinement process, from functional
specifications to an abstract architectural, draft in order to meet domain-

 3.2 Proposals Intertwining Requirements and SA 49

specific architectural constraints. The KAOS methodology is aimed at
supporting the process of requirements elaboration – from the high level goals
that should be achieved by the composite system to the operations, objects and
constraints to be implemented by the software. KAOS use four models,
depicted in Figure 3-1:

− Goal Model. The various goals the system should meet are defined in this
model and interrelated by means of AND/OR refinement links. Whenever
a goal is assignable to an agent of either the environment or the system is
specified as a constraint.

− Object Model. A KAOS OObbjjeecctt is a thing of interest in the domain whose
instances may evolve from state to state. In KAOS, the object model
describes the set of entities along with the possible relationships among them
and the events that can arise through the objects life.

− Operational Model describes the set of KAOS Operations, i.e., the set of
input-output relations over objects. Whenever an operation is applied, a
state transition for the involved objects is performed.

− Responsibility Model. An aaggeenntt is an object acting as a processor for some
actions. Agents can be humans, devices, programs, etc. The Operational
Model and the Responsibility Model are directly related because the former
describes the services to be provided by the agents of the latter. It is because
each operation is assigned to be performed by a specific agent. The
Responsibility Model is also related to the Object Model because the agents
are in charge of monitoring and controlling the objects state. Finally, this model
is related to the Goal Model as well thanks to the responsibility relationships
established between constraints and agents.

Software Agents, identified in the Responsibility Model, are the main elements
used to generate the architecture. That means that every software agent
responsible for performing some constraint will be specified as a component in
the final architecture. The connections among these components are
established thanks to the monitors and controls relationships that agents have.
Every time an agent monitors an object that another agent controls, then a
connection is established between them.

50 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

Figure 3-1 Four inter-related models for KAOS

One of the main advantages exhibited by this proposal is its capability to
analyse both alternative designs and systems. With this aim, the proposal
provides the following facilities:

i. definition of optional goals by means of the OR relationships. The
introduction of optional goals means that different systems can be
defined depending on which are finally selected;

ii. definition of optional operations. They describe alternative ways to
operationalize a constraint, and, thus, different designs of the system
because the responsibilities assigned to the agents will depends on the
selected operations.

The main restriction shown by this approach is related to the use of non-
functional requirements. They are only used to make decision among several
alternatives but they are not as relevant as the functional ones. This is quite

 3.2 Proposals Intertwining Requirements and SA 51

controversial because their relevance has been widely recognized, as (Bass et al.,
2001) and (Bosch & Molin, 1999) set out.

We should mention that there is another proposal that exploits the KAOS
approach to generate architectural specification that has been suggested by
(Brandozzi & Perry, 2001). They promote the use of intermediate descriptions
between requirements and architectures known as AArrcchhiitteeccttuurraall
PPrreessccrriippttiioonnss. They are a draft of the description of the architecture
using an Architectural Prescription Language (APL). They have established
mappings between the from KAOS entities and relationships to data components,
and from KAOS agents to processing components. These mappings are established
using the goals described in an intermediate level of the KAOS Goal Model. In
successive steps, these architectural elements are refined, modified or deleted
until every component has some constraint to satisfy, that is, some goals to
achieve. The main advantage this proposal exhibits is that an architectural
prescription is generated without being oriented to the implementations.
However, it does not give a full guidance throughout the process. For instance,
it does not describe how to detect which level is more appropriate to start the
process, why to describe non-functional requirements as additional constraints
when they are already described in the KAOS Goal Model, etc. In addition, it is
especially relevant that it is not clear how the connections among the
components are established.

GBRAM

(Antón, 1996) has focuses its efforts on the definition a well-established
process for identifying, elaborating, refining and organizing Goal Models. With
this aim, GBRAM extends the exiting approaches by means of the definition of
heuristics, which help to identify goals, and guidelines and recurring questions,
which help to refine them.

The main activities are depicted in Figure 3-2. It can be observed that Explore is
in charge of studying the available information to obtain a proper knowledge of
the needs of the system-to-be. This information is used by the activity Identify
that analysis the documentation, by applying a set of defined questions, to
extract goals and responsible agents. The identified goals are organized in the
next activity by cataloguing them as achievement or maintenance goals. Refine
activity is devoted to establish the precedence relationships, that is, when a goal
must be fulfilled before another. A set of questions is also provided to help in
this activity. Elaborate is the process of analyzing the goal set by identifying
obstacles, which can prevent the completion of the goal, identifying scenarios,
which help to uncover hidden goals, and identifying constraints, which must be
met for the goal completion. Finally, the Operationalization activity focus on

52 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

defining goals with enough detail by specifying the relationships between goals
and agents in terms of events that cause a change of state. The outcome of
GBRAM is a Software Requirements Document (SRD) that contains a
complete description of what the system will do.

Figure 3-2 Main activities of GBRAM (extracted from (Antón, 1996))

As was stated, the main advantage of this proposal is its guidance in the process
of Goal Model definition. However, this proposal does not deal with the
description of a Software Architecture but an initial assignment of
responsibilities to agents. In addition, this method produces a software
specification of the functional requirements in the form of goal schemas
without considering the non-functional requirements and the constraints they
mean.

TROPOS

(Castro et al., 2002) have established this methodology for guiding the process
of system specification from early requirements to a detailed analysis. This
methodology includes a set of techniques to generate code executable in the
platform JACK (an agent-oriented platform). The requirements are gathered
and elicited using the framework called i*. This framework has been specially
used to analyse business goals. i* includes two models:

− Strategic Dependency Model is a graph, where each node represents an actor,
and each link between two actors indicates that one actor (depender) depends

 3.2 Proposals Intertwining Requirements and SA 53

on another (dependee) for something (dependum) so that the former achieves
some goal. It is defined by means of goals, softgoal (not precisely defined
goals), and agents.

− Strategic Rationale Model is employed for reasoning how each actor expects to
fulfil its dependencies. Using a means-ends analysis, it is determined how
the goals can actually be fulfilled thanks to the contributions of other
actors. Figure 3-3 illustrates an example of this Model. It can be observed
that it has four kinds of nodes: goals, tasks (steps to accomplish a goal),
resources, and softgoals. It illustrates an example of the goals of an e-business
shop called “Mediashop” whose goals are marked by means of a boundary.
It can be observed that their dependencies with other agents are established
by means of dependencies.

Once both models have been defined, they are lately refined in an analysis stage
where both functional and non-functional requirements emerge. In this phase,
the number of requirements increases because of the decomposition of the
system.

Figure 3-3 Strategic Dependency Model (extracted from (Castro et al., 2002))

Another Goal Model is defined in order to select the Architectural Style
applicable to the system-to-be. The NFR Framework is used to perform an
analysis of the Architectural Styles, represented as operationalizations,
according to their contribution to the identified quality criteria. The selection of

54 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

the Style implies a refinement of the Strategic Dependency Model by
introducing new agents and re-assigning responsibilities. Once these agents
have been identified, they are refined into a detailed analysis by using the
extension of UML proposed by the FIPA (Foundation for Intelligent Agents,
(Odell et al., 2000)).

One of the advantages exhibited by this proposal is that it is a driven-
requirements proposal, that is, authors state that the same concepts are used
throughout the process, avoiding misconceptions. In addition, they generate an
executable which facilitates the validation tasks.

However, some problems emerge related to the analysis. In this proposal, the
mean-ends links are in charge of determining the alternatives to meet the
requirements. In a similar way to KAOS, these alternatives describe different
tasks in the system (operations in KAOS) to achieve a specific goal or softgoal.
Once these tasks have been assigned, a set of actors are identified as
responsible to perform such tasks. This means that there is not analysis of
alternatives in terms of the composing element of the system-to-be. There is
not any help to guide the analyst in this process either. In addition, there is no
mention about how the architecture is generated. We should point out that
Software Architecture is not only described by the identification of its
constituents but by the relations they have as well. This topic has not been
addressed in the published works. Finally, the use of a network approach for
representing the models, not a hierarchical one as KAOS uses, can offer
problems of legibility to the model when the system is complex.

CREWS-L'Ecritoire

(Rolland et al., 1999) have defined a proposal where both goal-driven and
scenario-based approaches are integrated. They are highly coupled allowing the
analyst to move from goals to scenarios and vice versa. It is because when a
goal is established a scenario is described for it, but also, once a scenario is
specified it is analysed to discover new goals. This means that both processes
are coupled, with an incremental discovering of goals and description of
scenarios.

The model they have proposed has as building blocks what they have called
Requirement Chunks (RC). It is a pair <G, Sc> where G is a goal and Sc is a
scenario. For the description of goals, they use a structured natural language to
facilitate their later analysis. A scenario is described as “a possible behaviour limited
to a set of purposeful interactions taking place among several agents”. It is described by
means of a set of agents, which interact by means of actions, a pre-condition and a
post-condition.

 3.2 Proposals Intertwining Requirements and SA 55

As can be observed in Figure 3-4, the RCs are related by means of AND/OR
composition relationships. But, they have also introduced AND/OR
refinement relationships to relate RCs described into different abstraction
levels. They have defined three levels of abstraction, which are called contextual,
functional and physical, depending on if they describe services for the
organization, for the users, or their actual performance, respectively.

Figure 3-4 Requirements chunks at different levels of abstraction

This proposal exhibits several advantages, over all in terms of analysis. The
exploitation of a textual template to describe the goals have been used to
determine alternative designs. It is because every parameter they introduce is
used to determine the most likely alternatives for the abstraction level where
the RC is being described.

However, this proposal does not provide more guidance for the generation of
the proto-architecture. It is mainly because scenarios are described by means
textual descriptions. In addition, they do not provide specific identification of
non-functional requirements, but they are tangled with the functional ones.

GRL

(Liu & Yu, 2004), similarly to l’Escritorie, propose to combine scenarios and
goals-based models during architectural design. The UUssee CCaassee MMaappss

56 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

(UCM) notation, proposed initially by (Buhr & Casselman, 1996), is used for
the former and the GRL language is used to define the latter.

Figure 3-5 Alternative Designs and their UCM (extracted from (Liu & Yu, 2004))

By means of GRL, a goal model is established similar to that presented for i*.
The main difference is related to this proposal does describes an ordered
refinement of the model, as can be observed on top of the Figure 3-5. In
addition, the analysis process is performed on the Goal Model by means of
tasks once the different alternatives have been established. This process
determines if the functional goals are achieved by evaluating the tasks respect to
the non-functional requirements in order to obtain the optimum alternative.
The optimum task is lately refined to facilitate the process of scenario
identification.

The UCM are scenarios employed to describe causal relations between the
interacting elements. The elements used in their definition are: starting point
(trigger) that is marked by means of a point; responsibility (actions, tasks or
functions) is specified by means of a cross; end point (post-conditions) specified
by means of a line; and components (entities or objects of the system). The

 3.2 Proposals Intertwining Requirements and SA 57

execution is established as path going from the starting point to the end point
through the responsibilities. A responsibility point represents a place where
some component of the system is changed or enquired. The UCMs are
described using the refined tasks as can be observed in Figure 3-5, where a
trace is established from a task ““classic tutorial”” to a UCM for the WBT
System.

One of the main advantages of this proposal is that UCM can represent system
designs in a high-level way. However, the tradeoffs between alternatives and the
intentional reasoning behind design decisions cannot be explicitly shown,
because both models are decoupled.

3.2.2 Scenarios and AOSD

Some proposals have emerged during the last years to face the problem of
defining Requirements and Software Architecture from the AOSD perspective
using the scenario approach. Three of them are described in the following.

AOSD/UC

AOSD/UC has been proposed by (Jacobson, 2003) focusing on AORE.
However, the main idea in its proposal is that Use Cases are, by definition,
crosscutting concerns. This is because several classes are usually necessary to
realize a Use Case, and the same class can collaborate to realize several Use
Cases. This idea is illustrated in Figure 3-6. We can observe that ““Interface”” is
realizing the three Use Cases established. Jacobson has proposed the
introduction of AOSD techniques has a way to maintain the separation of
concerns from the requirements to code.

Figure 3-6 The scattering and tangling while working with a use-case driven approach

(extracted from (Jacobson, 2003))

58 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

In order to maintain this SoC, Jacobson has defined an extension to UML. The
main idea is to facilitate the description of the use case slices. They are in charge
of describing the pointcut of a use case at each stage of the software
development (use-case model, analysis model, design model, implementation
model, etc) so that each use case remains separate all the way down of the
lifecycle. The set of slices of a UC composes a use case module.

He also distinguishes between peer and extension UCs. The first depict those UC
that are independent of any other described for the system-to-be, they are the
basic requirements. The second represent those UC that define additional
features that are hooked on the basic requirements. Both kinds of UC could be
separately defined and, later on, composed by means of the Extends
relationship. They are already provided by UML, and extended by Jacobson to
support the concept of join points. It facilitates that an extension can be
associated to a list of extension points.

According to Jacobson, AOP is the magic wand that facilitates this separation
of the peer and extension UCs can be translated to design and code in a
straightforward way. For this reason, he proposes that detected extensions and
extension points correspond to aspects and joint points in design and code,
respectively. It can be easily supported by (HyperJ, 2000) by realizing each UC
as a crosscutting concern.

One of the problems this proposal shows is related to non-functional
requirements. They introduce the notion infrastructure Use Case to model them.
However, a UC depicts by definition an interaction between the system and
external actors. There are some non-functional requirements that can be
defined in such a way, as for instance performance, by converting them into a
use case. However, it is not the case of others such as maintainability; the actors
do not interact with the system in any way to get it.

In addition, there is no concept for crosscutting concerns at the requirements
stage. Every UC is identified as a crosscutting concern because it crosscuts, at
the design and implementation level, several classes and/or components.
Nevertheless, it does not mean it is a crosscutting concern, that is, a
requirement that crosscuts other requirements.

Aspectual Scenarios

(Araujo et al., 2004) have defined an approach for the exploitation of aspectual
scenarios. Initially they describe the requirements of the system-to-be in a
similar way to that described by (Brito & Moreira, 2003), i.e., using Use Cases
for the functional requirements and templates for the non-functional ones (see
chapter 2, section

 3.2 Proposals Intertwining Requirements and SA 59

Scenario Approach and AORE). Using that description, non-crosscutting
scenarios are described by means of UML Sequence Diagrams and aspectual
scenarios are described using Interaction Pattern Specification (IPS). The IPS,
proposed by (Kim et al., 2004), is a specialization of the UML Sequence
Diagrams that allow one to describe patterns by establishing the roles of the
involved elements, and the expected behaviour. Once these scenarios have
been described, they are translated into a set of aspectual and non-aspectual
state machines for each entity specified in the scenarios. The state machines of
each entity are composed in order to meet the whole set of requirements. The
set of composed state machines are executable so that they can be used for
validation purposes. The main advantage of the proposal is the introduction of
aspectual scenarios, that is, they describe the crosscutting behaviour by means
of a well-established notation. In addition, the use of a widely accepted
approach for the generation of state-machines facilitate the automation of the
process. However, the authors do not provide any help or guidance about how
to identify the aspectual scenarios. In addition, the process cannot be
performed in a fully automatic way because bindings between state machines
must be introduced manually.

AO-MDSD

(Sánchez et al., 2006) have proposed a process that combines Model Driven
Software Development (MDSD) and AOSD to derive aspect-oriented
architectures from aspect-oriented requirements models. The first step of this
process entails the identification of aspectual requirements using some of the
current proposals of AORE. In the next step, the functional requirements are
modelled as UML scenarios using a profile they have defined. Non-functional
requirements are modelled independently as parameterized UML diagrams.
Figure 3-7 shows an example of what these scenarios look like. It depicts a
functional scenario called ““Identification”” and two non-functional scenarios
““ResponseTime”” and ““Authenticity””. The crosscutting relation between the
former and the latter are specified by means of «bind» relationships that specify
when and how a non-functional concern is woven to the functional one. In
Figure 3-7, ““who””, ““i_am”” and ““time”” are specified as the actual parameters in
the bind relation for the formal parameters of ““ResponseTime””.

60 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

Figure 3-7 UML representation of a scenario (extracted from (Sánchez et al., 2006))

Once the set of scenarios, both aspectual and functional, have been defined,
they are transformed into an aspect-oriented architecture by means of a set of
transformation rules. These rules have been specified using (QVT, 2005), an
standard model transformation language proposed by OMG5. Specifically, the
AO-ADL they have used as target language is CAM (Pinto et al., 2005). This
AO-ADL identifies aspects as a special kind of components that are applied
outside of the components in order to obtain components reusability and
composition.

One of the main advantages shown by the proposal is the definition of
aspectual scenarios. As they are parameterized, they can be woven whenever
they are necessary, obtaining a proper management of the crosscutting.
However, this proposal does not provide an architectural description coping
with non-functional requirements. Instead, they are introduced, at the
architectural level, as constraints. These constraints must be resolved at the
architectural level to discuss what architectural mechanisms should be used to
address them.

5 Object Management Group, http://www.omg.org

 3.2 Proposals Intertwining Requirements and SA 61

3.2.3 Problem Frames

The combination of Problem Frames and Software Architecture has not
received much attention during last years. One of the most well known
approaches in this sense has been that proposed by (Rapanotti et al., 2004).
They have described an extension to Problem Frames by introducing what they
have called Architectural Frames (AFrames). Problem Frames define requirements
as dependencies among the system and the world outside of the computer.
They help the developer to focus on the problem domain, establishing a clear
separation between the world and the machine. However, it does not provide
any guidance neither help to relate that description of the problem to the
structure of the solution.

The AFrame has been defined to address such a problem by combining a
problem class and an architecture class (Architectural Styles). The main idea is
that the latter can guide the analysis and the decomposition of the former. An
AFrame is defined by means of three elements: a Problem Frame diagram (see
section 2.2.3) that describes the Architectural Style to use; a collection of
decomposition templates that describe which problems must be faced if the selected
Architectural Style is applied; and a correctness argument to determine the correct
re-composition of every fragment by means of the application of the templates.
Figure 3-8 shows an example of an AFrame describing the Problem Frame diagram
for a pipe-and filter style and one of its related sub-problems: the scheduling of
the filter transformation. The process proceeds by applying the same
transformation as many times as needed. The templates can also be applied
according to the needs.

(a) The Pipe-and-Filter Transformation AFrame (b) Scheduling sub-problem

Figure 3-8 Describing an AFrame: (a) the pipe-and-filter transformation and (b) the
scheduling sub-problemn

This solution is amenable to perform iterative development due to the
interaction among requirements, architecture, and design: each one informing
about the others and vice versa. Both requirements and architectural
specification are encoded using the AFrame, what facilitates that interaction

62 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

between them. However, there is no mention of how the synthesis is
performed when the number of iteration is greater than one.

3.2.4 Features

Most works have exploited Feature Diagrams as a support for managing
properly the variability but not for defining concurrently requirements and
architecture. As far as we know, (Bruin & Vliet, 2003) is one of the proposal
that does address this issue. They have proposed a process for the generation
of Software Architecture taking as inputs both a rich Feature-Solution graph
and UCM. The former is in charge of describing the knowledge of both the
functionality of the system and the quality requirements, that they have called
Feature Space (FS). However, it is quite relevant because they also describe
solution fragments at the architectural level, called the Solution Space (SS). They
are not Feature Diagrams in the traditional sense, which was presented in
section 2.2.5, but authors have extended these diagrams borrowing concepts
from the goal-oriented approach. For this reason, they introduce links between
the feature and the solution space to establish which influence, positive or
negative, is on the solution space if a feature is selected. Figure 3-9 illustrates an
example of a Feature graph, where the feature space is shown on the left, and
the solution space on the right. As can be observed, both functional and non-
functional features are described by refining Functional and Non-Functional in
the graph. Negative links are described by means of broken lines.

Figure 3-9 An example of a FS graph for peer-to-peer communication (extracted from

(Bruin & Vliet, 2003))

 3.2 Proposals Intertwining Requirements and SA 63

Figure 3-10 Describing a UCM for a peer-to-peer architecture

The UCMs are defined by means of a refinement process, which entails the
composition of new UCMs as it progresses. Figure 3-9 describes that for the
system being developed a peer-to-peer architecture has been selected. This is
described by means of a UCM where sockets are specified. A socket is described
as a placeholder where at most two UCMs can be plugged. For instance, in the
Figure 3-10 a UCM is described that contains two components ““Peerl1””, that
provides a socket for sending data, and ““Peerl2””, which provides a socket for
receiving data. The solution space is built by means of a composition process.
For instance, if the analyst selects the feature ““High (Security)”” then the feature
““Firewall (UCM)”” could be selected to be in the final description of the system.
It would mean that its UCM would have to be plugged into the UCM described
by the ““Peer to Peer Architecture””. This process continues all the way down
until the architecture is fully defined according to the selected features of the
solution space.

The main characteristic of this proposal is its ability to establish traces between
the feature space and the solution space. This idea could be applied to the SPL
approach where products could be built using the FS graph. It facilitates that
both descriptions of the system can be maintained up to date. However, one of
the major problems to apply this proposal is that the analyst needs a clear
wisdom of where the sockets, in the initial description of the system, must be
placed. No guidance or help is provided in this sense. This means that
anticipated decisions must be made in the system. Authors do not determine
how the process of selection of the initial architecture is performed either.

3.2.5 Other Proposals

Other proposals have emerged during last years that address this coupling
between requirements and architecture without using any traditional approach
from the RE field. In the following, some of most well known proposals in this
field are introduced.

64 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

The work presented by (Westhuizen & Hoek , 2002) on software product lines
and system families has also examined the relationship between architectures
and requirements. The work has focused on identifying ccoorree
rreeqquuiirreemmeennttss (identified through a process of requirements prioritising)
and linking them to core architectures (identified by examining the stability of
various architectural attributes over time). However, their main focus is on the
architecture without a special treatment of requirements, when they are
normally the source of change.

(Grünbacher et al., 2001) explore the relationships between software
requirements and architectures, and propose an intermediate model called
CBSP (Component - System – Bus - Property), to depict the dependencies
among the key architectural elements and the stated system requirements.
These dependencies are established in a polling process where the involved
architects classify each requirement with respect to its architectural relevance.
Based on the CBSP model elements a proto-architecture can be derived with
the selection of the appropriate Architectural Style. Therefore, it describes a
systematic process to go from requirements to architecture. However, there is
not an explicit trace to the final architecture description. Neither an automatic
support helps in the process but the architects must summarize the results of
the trade-offs to establish manually the description.

(Wile, 2001) has examined the relationship between specific classes of
requirements and their equivalent dynamic architectures. It aims at enabling
requirements engineers to monitor running systems and their compliance with
these requirements. However, the focus of this work is runtime monitoring, not
more traditional development activity.

The method REVEAL, proposed by (Hammond et al., 2001), is based on a
clear separation between the world and the machine in order to provide a
practical approach to developing systems, taking a wide background from the
Problem Frames approach (section 2.2.3). For this reason, they understand the
system according to their interaction with the real word where it works.
REVEAL assumes a traditional development process where system is refined
progressively from the structuring of functional areas to the identification of
subsystems, as requirements are more detailed. The outcome of the process is
the identification and documentation of the subsystems along with the
interfaces between them. The process also introduces the concept of rich
traceability, that is quite similar to the use of AND/OR relationships in the
Goal-Oriented approach (section 2.2.1). However, there is not any information
about how these relationships are exploited to reason about the satisfiability of
the specification.

 3.2 Proposals Intertwining Requirements and SA 65

AOCE

(Grundy, 1999) has proposed Aspect-Oriented Component Engineering
(AOCE), in order to define and develop software components from
component requirements. The author states that traditional approaches of RE
do not provide the specific expressiveness to describe generic interfaces for
individual components. With this aim, the author introduces the notion of
systemic aspect, i.e., a system concern (e.g. user interface, persistence, etc) for
which components provide and/or require services. These systemic aspects
catalogue the services a component requires or provides related to the
functional and non functional specified requirements.

Figure 3-11 Example of components and their relationships to systemic aspects

(extracted from (Grundy, 1999))

In order to identify and specify the systemic aspects, a set of components are
pre-selected using the system requirements. This set is analysed to determine
the systemic aspects and the provides/requires relationships between them and
the components. Figure 3-11 depicts an example. It can be observed, in the
bottom level, the set of components that were identified using the system
requirements described in the top level. Every component has
provides/requires relations with the systemic aspects that are identified in the
medium level by means of dotted rectangles. These relationships are useful to
determine the relationships inter-components. Once systemic aspects and their
relations to components are identified, the aggregate aspects are identified. They
are requirement aspects that are related to a set of component or even the
whole system. These aggregate aspects are used to reason about the established
relationships, specified aspects or, even the selected components. This

66 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

reasoning could lead to determine that new components could be added, some
components could be modified, and thus, new or modified requirements aspect
could be determined. Once this reasoning is done, an evaluation is performed
to determine whether the system requirements are satisfied. Otherwise, an
iteration would be performed to select or add new components and/or
requirement aspects.

Therefore, AOCE reveals as an engineering approach that covers the lifecycle
of component engineering, from component requirements and specification, to
implementation. However, the proposal does not address one of the main
characteristics of AOSD: the management of the crosscutting. In addition, the
identification of aspects is quite directed by the set of the selected components,
what means that the outcome is not directed by the system requirements. It
also exhibits some problems related to the management of change because if
the system requirements change there is not explicit mechanisms to deal with
the impact in the systemic aspects and the identified components.

3.2.6 Main discussion

To the best of our knowledge, there is not a comparative framework that can
be used to evaluate the proposals presented above. In this sense, only the work
of (Chitchyan et al., 2005) identifies some features that can be used to analyze
AORE but without paying attention to the whole process, that is, from
requirements to architectures. They have identified four criteria for the analysis:
ttrraacceeaabbiilliittyy through software lifecycle; ccoommppoossaabbiilliittyy of the
different artifacts to improve the understanding of the system as a whole;
eevvoollvvaabbiilliittyy that is related to the ease of change; and ssccaallaabbiilliittyy
according to the size of project. Reader is referred to that work where some of
the works presented in section 2.4 have been analyzed using such features.
However, due to the different motivation of this analysis, we have established
our own comparison framework including a set of features that should be
present in any proposal having as goal the generation of proto-architecture
from requirements having the AOSD as cornerstone of the process. In the
following, these features are introduced along with the reasons that have
motivated their selection:

− RReeqquuiirreemmeennttss MMooddeell ffoorr tthhee pprroocceessss (RE Model).
Requirements are the foundation to build the system. A well-established
Requirements Model is mandatory if a right specification of the system
must be provided. It is also especially relevant in terms of the traceability to
be provided by the process.

 3.2 Proposals Intertwining Requirements and SA 67

− FFuunnccttiioonnaall aanndd NNoonn--FFuunnccttiioonnaall rreeqquuiirreemmeennttss (F &
NF). Non-functional requirements present the main constraints to be
satisfied when the Software Architecture of the system is being defined.
For this reason, any process should include specific mechanisms for both
specifying and dealing with such kind of requirements.

− SSeeppaarraattiioonn ooff CCoonncceerrnnss tthhrroouugghhoouutt tthhee lliiffeeccyyccllee
(SoC). As was stated above, the SoC introduces clear benefits in terms of
maintainability and reuse along with a way to manage the complexity of
software development. For this reason, its appropriate management
throughout the lifecycle means a clear benefit for the final product.

− TTrraacceeaabbiilliittyy tthhrroouugghhoouutt tthhee lliiffeeccyyccllee (Traceability).
The introduction of proper mechanisms of traceability is one of the
cornerstones necessary to evaluate the impact of change, follow properly
the realization of requirements, etc. This means that the introduction of
mechanisms to manage this traceability from requirements to code means a
clear benefit for the software development. As can be observed in Table
3-1, not all proposals provide support for traceability throughout the full
lifecycle but up to a specific stage of software development.

− AAlltteerrnnaattiivvee aannaallyyssiiss (Alternatives). It is frequent the case that an
alternative must be selected among a set of potential solutions when an
architectural decisions is being made to satisfy a specific requirement. This
means that a trade-off must be made among them in order to select the
most proper one. For this reason, the exploitation of mechanisms to
perform such analysis means a meaningful advantage for any proposal.

− AArrcchhiitteeccttuurraall SSttyylleess aanndd//oorr PPaatttteerrnnss (Arch. Style). Both
Architectural Styles and Patterns help the analysts in the process of
describing Software Architecture because their use means the reuse of
quality solution. In addition to this guidance, they also convey much
information about the decisions that are made. This leads to consider that
its use can provide a significant improvement for the solution described.

− AAuuttoommaattiicc oorr sseemmii--aauuttoommaattiicc ssuuppppoorrtt ffoorr tthhee
ggeenneerraattiioonn ooff tthhee pprroottoo--aarrcchhiitteeccttuurree (Automation). The
generation of a proto-architecture can be an error-prone and/or
cumbersome task as the system-to-be become more and more complex. In
this case, the number of requirements, the traceability links to the made
decisions, etc, can be quite significant. This means that the automation of
this task as much as possible can be another step towards the generation of
quality solutions.

68 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

− TTooooll ssuuppppoorrtt (Tool). Any kind of process shows a high demand in
terms of support to speed up and guide the stakeholders throughout its
application. Several persuasive reasons can be stated for the process of
intertwining the definition of Requirements and Architectures. First, it is
especially relevant when most of the artifacts to be produced, such as
Requirements Models and Architectural Models, have a graphical
representation to improve their legibility. Second, there are tasks
susceptible of being automated. Third, the establishment and maintenance
of the traceability can be quite difficult if there is not support for it. They
are compelling arguments for requiring the support of tools.

A comparison among the presented proposals was performed using the
features described above. Table 3-1 and Table 3-2 present the results obtained,
where each row describes the comparison for a proposal in the same order as it
was described. Some cells have been left blank because the needed information
was not available.
Table 3-1 Determining the satisfaction of the established features (first part)

Approaches RE Model F & NF SoC Traceability

KAOS Defined Yes No Up to design

Architectural
Prescriptions

Defined Yes No Up to architecture
specification

GBRAM Defined Yes No Up to architectural
decissions

TROPOS Defined Yes No Up to code

L’Escritorie Defined Yes No Up to requirements

G
oa

l-O
rie

nt
ed

GRL Defined Yes No Up to architectural
decisions

AOSD/UC Defined Infrastructure use
cases

Yes Up to design

Aspectual
Scenarios

Not specific
model

Not defined Up to
design

Up to design

Sc
en

ar
io

s AO-MDSD Not selected Yes Yes Partially, from
scenarios to
architecture

 3.2 Proposals Intertwining Requirements and SA 69

Approaches RE Model F & NF SoC Traceability

PF

AFrames Defined Yes No Up to
architectural
decisions

Fe
at

ur
es

Features & UCM Defined Yes It is
recommended
but not
addressed
specifically

Up to
architecture

Core
Requirements

Not defined Not defined No

CBSP Not defined
(intermediate
model CBSP)

Yes No Up to
architecture
specification

Runtime
monitoring

Textual
description

Not specifically No No

REVEAL Similar to Goal-
Oriented

Not specifically No No

O
th

er
s

AOCE Textual
description

Not specifically Concept of
aspect is not
explicit

No

Table 3-2 Determining the satisfaction of the established features (second part)

Approaches Alternatives Styles & Patterns Automation Tool

KAOS Yes It is recommended
but not dealt with

No Objectiver:
(requirements &
design
specification)

Architectural
Prescriptions

Yes No No GBRAT
(requirements
specification and
analysis)

G
oa

l-O
rie

nt
ed

 GBRAM Yes Organizational and
technological styles
evaluated for use but
not automatically
managed

Set of rules
identified but it
is not
documented its
use

TAOM4E
(generation of
the architectural
design is not
documented)

70 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

Approaches Alternatives Styles &
Patterns

Automation Tool

TROPOS Yes No No CREWS-
L’Ecritoire
tool(requirement
specification)

L’Escritorie Yes No No OME (under
development)

G
oa

l-O
rie

nt
ed

GRL No No No

AOSD/UC No No No No

Aspectual
Scenarios

No No Partially, up to the
generation of state
machines, but
weaving is manually
established

Not specific Tool

Sc
en

ar
io

 AO-MDSD No No QVT as definition
language but it has
not been tested

No

PF

AFrames Yes Used but not
evaluated nor
automatically
managed

No No

Fe
at

. Features & UCM Yes No No No

Core
Requirements

No No No Integration:Arch
Edit+
xArchADT+
Apigen+
XML Spy+
Data Binding+
Libraries +
Apache Xerces

CBSP Yes No No Integration:

GSS

Runtime
monitoring

No No No No

REVEAL Yes No No DOORS

O
th

er
s

AOCE Yes No No JComposer

 3.3 Our Proposal: ATRIUM 71

As can be observed, there is no proposal that satisfies the whole set of features
established above. This has motivated the definition of ATRIUM, presented in
the following section.

3.3 OUR PROPOSAL: ATRIUM

ATRIUM is a methodology intended to define concurrently Requirements and
Architectural artifacts by exploiting the Separation of Concerns as key to
improve the maintainability and adaptability of software artifacts. It focuses its
efforts on detecting and specifying this separation from the very beginning of
the software lifecycle until the architectural stage.

Using AOSD, functional and non-functional needs, such as performance or
compatibility, of the system’s behaviour can be separately acquired and
specified across the development lifecycle improving the maintainability and
reusability. This traceability across the software lifecycle is necessary to satisfy
the demanded closure property (Elrad et al., 2001b).

It is because ATRIUM deals with functional and non-functional requirements,
it exhibits a clear difference from other approaches which propose a
functionality-based design of the architecture. In this sense, this approach tries
to address the drawback, identified by (Bosch, 2000), of those architectural
designs not fulfilling the quality requirements of the system-to-be. In addition,
(Bosch, 2000) also states that a bottom-up reuse does not work in practice. For
this reason, ATRIUM provides a refinement from requirements to architecture.

ATRIUM has been described as an iterative and incremental process. This is
because the generation of the Software Architecture from Requirements is not
as straightforward as to define all the artifacts at once. Therefore, it seems
natural to provide the analyst with an iterative process in order to develop
incrementally the Software Architecture. It allows him/her to reason on
ppaarrttiiaall vviieewwss of the architecture, that is, only on partial descriptions of
the architecture. In addition, mechanisms for traceability throughout the
lifecycle have been incorporated so that the analyst can evaluate the impact of
the changes, reason about the realization of the requirements, etc.

In the following sections, the models and the processes that have been
identified and specified for the description of ATRIUM are briefly presented. It
has been described how they have been more widely detailed in the following
chapters.

72 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

3.3.1 Models for ATRIUM

Currently, the Model-Driven Development (MDD) (Selic, 2003) is not only
becoming more and more embraced by the researchers but by practitioners as
well. It has demonstrated positive influences for the reliability and productivity
of software development process due to several reasons. It allows one to focus
on the ideas and not on the supporting technology. It facilitates not only the
analyst get an improved comprehension of the problem to be solved but also
the stakeholders obtain a better cooperation of the software development. With
the aim of reliability and productivity, MDD exploits the models both to
properly document the system and generate automatic or semi-automatically
the final system.

This paradigm has been followed for the definition of ATRIUM, in such a way
that three models have been defined (Figure 3-12), from the requirements to
the architectural stage, that are briefly described in the following. In addition,
whenever automatic transformation can be defined, they have been introduced
to speed up the process and avoid errors as much as possible.

Figure 3-12 Models for ATRIUM

ATRIUM Goal Model

The Goal-Oriented approach has become highly relevant in the Requirements
Engineering arena mainly due to two advantages:

− Its ability to specify and manage positive and negative interactions among
goals, as state (Chung et al., 2000) and (Lamsweerde et al., 1998a), allows
the analyst to reason about design alternatives.

 3.3 Our Proposal: ATRIUM 73

− Its capability to trace low-level details back to high-level concerns,
described by (Dardenne et al., 1993), is very appropriate to bridge the gap
between architectural models and requirements.

These are the main reasons why the Goal Model is interesting as a
Requirements Model to identify and describe the users’ needs and expectations,
their relationships and how these can be met by the target system. Therefore, it
is going to play the role of the Computation-Independent Model (CIM)
because it is in charge of gathering the requirements of the system-to-be.

Furthermore, the Goal-Oriented approach allows for a proper separation of
system concerns, in such a way that evolution, adaptability, comprehensibility,
etc, can be achieved. Those concerns can be goals/requirements that are either
functional, i.e., services that the system-to-be has to provide; or non-functional,
such as security or fault-tolerance.

These advantages have been also detected by the industrial community.
According to (Lamsweerde, 2004) and his lessons learnt from the evaluation of
a wide set of real projects:

“Decision makers looked at goal models carefully, paying special attention to
alternative goal refinements, operationalizations and responsibility assignments; they
did not care too much about UML object models; annotated goal diagrams were
found to be more helpful for focussed brainstorming, validation, negotiation, and
decision making than fairly vague use case diagrams”.

These are the main reasons why the Goal Model has been introduced as an
ATRIUM artifact to identify and describe the users’ needs and expectations,
their relationships and how these can be met by the target system. The
ATRIUM Goal Model is widely described in chapter 5. How this Model has
been exploited in a real case study is presented in 6.

ATRIUM Scenario Model

One of the main outcomes of ATRIUM is the generation of a pprroottoo--
aarrcchhiitteeccttuurree, (Brandozzi & Perry, 2001), i.e., an initial description of the
architecture to be refined in a later stage of the software development. In order
to facilitate this task, it is necessary to provide some partial description of how
the requirements established in the Goal Model can be operationalized. These
partial descriptions act a Platform Independent Model (PIM) because it does
not include any detail from the point of view of the platform.

In order to obtain that description, a possible alternative could be to identify
the architectural elements, which collaborate in the operationalization of a
requirement, identifying a partial structural description of the architecture.

74 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

However, when the Software Architecture is defined, it is mandatory not only
to identify these elements but how they collaborate and how their behaviour is
going to meet the requirements.

Therefore, in the ATRIUM Scenario Model, a scenario is used to describe the
system behaviour associated to some requirements and under certain
operationalization decisions. A scenario is described by the sequence of
interaction messages in accordance with a specific choreography. Unlike classic
scenarios proposals, the ATRIUM scenarios specify architectural elements
interaction instead of objects along with the environmental agents that played a
role in that scenario. Sequence diagrams (UML, 2005) have been selected as the
language to specify the ATRIUM Scenario Model. Mainly because it is a wide
extended language with a well-known notation. It is also flexible enough to be
adapted to the specific needs of ATRIUM.

It has to be emphasized that the Scenario Model provides us with partial views
of the architecture, that is, partial descriptions of the architecture. These partial
views only identify shallow-components, shallow-connectors and shallow-
systems along with their behaviour expressed through interaction. They are
called shallow because we do not need their complete definition but an initial
one that can be refined for their later compilation to code. This model is
detailed in chapter 7.

PRISMA Model

The architectural artifacts to be produced must integrate two approaches:
AOSD and CBSD. Both approaches present a high potential when used in an
integrated way because of their modularization criteria are orthogonal
(Atkinson & Kuhne, 2003). For this reason, an AO-Architectural model was
selected as target of ATRIUM. Specifically, PRISMA (Pérez, 2006) has been
chosen to describe the proto-architecture. It is because its use allows us to
establish the separation of concerns detected and specified in the previous
models because it integrates both CBSD and AOSD. Thanks to its definition as
an extension of a formal language called OASIS (Letelier et al., 1998) it
provides facilities for verification purposes.

It must be highlighted that, similarly to the ATRIUM Scenarios Model, it
provides a PIM view of the system because it is not dependent of the platform.
In addition, one of the main advantages of PRISMA is that it also provides
support to a Platform Specific Model (PSM). It is because PRISMA has been
developed to support for the automatic generation of C# code and its
execution by means of a middleware.

 3.3 Our Proposal: ATRIUM 75

A more detailed description of PRISMA is presented in chapter 4, section 4.3,
in order to introduce briefly the concepts that have been used in this work.
Reader is referred to (Pérez, 2006) to obtain a whole description of this
Architectural Model, its AO-ADL and platform.

3.3.2 A process for ATRIUM

ATRIUM is a methodology oriented to the concurrent definition of Software
Architecture and Requirements. With this aim, ATRIUM provides the analyst
with guidance, along an iterative process, from an initial set of user/system
needs until the instantiation of the architecture. This process entails three
activities, to be iterated over, in order to define and refine the different artifacts
and allow the analyst to reason about partial views, of both requirements and
architecture. Figure 3-13 illustrates the three main ATRIUM activities, which
are described bellow, to be iterated over.

Figure 3-13. ATRIUM: activities and artifacts

Activity 1. Define Goals.

Two inputs are used to start on this activity. One of them is an informal set
of user/system needs, usually stated in natural language. The other one is
the (ISO/IEC 9126) quality model that is used as an instantiable
framework, providing the analyst with an initial set of concerns of the
system that him/her can select.

The main aim of this activity is to specify the set of goals to be satisfied by
the system-to-be. Considering an initial selection of concerns they are
refined until functional and non-functional requirements are established.
During this refinement, the detected crosscutting among goals and
requirements is also established. This is a first step for the identification of
concerns used in the detection of candidate aspects in the architecture

76 CHAPTER 3 Requirements and SA: considering the Aspect-Oriented Approach

specification, and their realization through aspects integrated into
components and connectors.

More details about how this process is performed are presented in chapter
5. An example of its exploitation is presented in chapter 6.

Activity 2. Define Scenarios.

The Goal Model obtained in the previous step is the main input for the
elaboration of the Scenario Model. In this sense, this activity is focused on
the identification of the set of scenarios that describes the system’s
behaviour under certain operationalization decisions. Each scenario depicts
the elements that interact to satisfy a specific requirement of the Goal
Model and their level of responsibility for achieving it. It facilitates that the
analyst can focus on partial views of the system description.

In order to describe these scenarios, two additional inputs are used during
this activity: patterns and Architectural Styles. The former are going to help
us to reuse partial solutions to describe a scenario. The latter will help us to
identify and select the suitable patterns to be used and it will give us some
initial sketch about how the scenarios should be defined.

Using scenarios an advantage can be taken. We are not only identifying the
elements, which can appear into the description, but also the coordination
structure through the temporal sequences of interaction events. This means
that an initial description of the system behaviour can be described.

The elaboration of the Goal and Scenario Models are two intertwined
processes. The Goal Model is operationalized at the next activity by means
of the Scenarios Model. Furthermore, the analysis information provided by
the Scenarios Model helps us to refine and identify new goals at the next
iteration. Therefore, both models are coupled, as in (Rolland et al., 1999),
with a meaningful advantage in terms of traceability. This activity is detailed
in chapter 7.

Activity 3. Synthesize and transform.

It aims at obtaining a proto-architecture for the concrete system thorough
scenarios synthesizes and using related Architectural Styles and interaction
patterns. The transformation from scenarios to proto-architecture is
achieved by means of a set of transformation rules. They are described by
means of a language that provides with meaningful advantages in terms of
the generated Architectural Model, the incorporation of Architectural
Styles, etc. This activity is detailed in chapter 8.

 3.4 Conclusions 77

As ATRIUM is intended to be iterative and incremental, a feedback is provided
from Activity 3 to 1. In this way, all the models are up-to-date all over the
process. This process is supported by a tool called MORPHEUS that is
presented in chapter 9.

3.4 CONCLUSIONS

In this chapter, a summary of the most well known proposals focused on the
definition of Requirements and Architectures has been introduced. It can be
observed in the evaluation performed, that a reduced number of proposal have
oriented its efforts to provide support to the traceability of the SoC from the
early stages of development to the SA definition, taking into account both
functional and non-functional requirements. It has been shown as well, that
nearly none of them introduces automation in this process, what can difficult
its acceptance and deployment.

Finally, we have introduced ATRIUM as a methodology to address the iterative
development of requirements and architectures during the development of
software systems. ATRIUM guides the analyst, from an initial set of
requirements to an instantiated proto-architecture. It uses the strength provided
by the coupling of scenarios and goals systematically to guide through the
iterative process. Moreover, it supports the traceability between both artifacts
to avoid lacks of consistency providing support to the SoC. Finally, it also
introduces mechanisms for the automatic generation of the proto-architecture.
It must be also highlighted that a tool, which helps throughout the process of
its application, supports this proposal. All these topics constitute the main
proposal of this work and are developed in the following chapters.

The work related to the motivation and initial description of ATRIUM has
been presented in the following publications:

− E. Navarro and I. Ramos, “Requirements and Architecture: a marriage for
Quality Assurance”, VIII Jornadas de Ingeniería del Software y Bases de
Datos, Alicante, Novembre 12-14, 2003, ISBN 84-688-3836-5, pp. 69-78.

− E. Navarro, I. Ramos, J. Pérez Benedí, “Software Requirements for
Architectured Systems”, Proceedings of 11th IEEE International
Requirements Engineering Conference (RE’03), Monterey, California,
USA, September 8-12, 2003, IEEE Computer Society 2003, ISBN 0-7695-
1980-6, pp. 365-366 (short paper).

-79-

“If knowledge can create problems, it is not through
ignorance that we can solve them.”

Isaac Asimov

CHAPTER 4

4 Preliminaries

4.1 INTRODUCTION

Despite presenting in the previous chapter several proposals and approaches
for Requirements Engineering and Software Architecture, some more detailed
information related to the field have to be presented before introducing how
ATRIUM proceeds. For this reason, this chapter contains some introductory
material that will facilitate the comprehension of ATRIUM.

Because always an explanation through examples facilitates the legibility and
comprehensibility of the work, the case study that was used for validation
purposes is introduced in section 4.2. Specifically, the EFTCoR system and the
Teachmover are introduced. The former was the seed for the work presented in
chapter 5 because it presents a complex system with demanding needs in terms
of requirements specifications. The latter is a reduced case study that will
facilitate the introduction of examples for the remainder chapters.

As was described in the previous chapter, PRISMA is the AO-ADL used for
the description of the proto-architecture. In order to make it clear what the
meaning of each term related to PRISMA is, a brief description of its
Metamodel is presented in section 4.3. This is especially useful for the
comprehension of chapter 8.

4.2 TELE-OPERATED SYSTEMS

It is more and more frequently the case that Robots are used to perform tasks
in critical domains such as rescue, military battles, mining and bomb detection,
scientific exploration, etc. The behaviour of these robots must be controlled

80 CHAPTER 4 Preliminaries

according to the requirements of the domain and by the practitioners of the
system.

It is in this context where tele-operated systems have appeared. They try to
provide the practitioners with an effective communication and interaction
medium between robots and humans. Robots work in environments and/or
perform tasks that are highly dangerous for humans. For this reason, humans
are taken away from the areas where robots work.

These systems are characterized by having always two basic components in
their construction: sseennssoorrss and aaccttuuaattoorrss. Both components are the
actual interface between the control software and the hardware elements of the
systems. Actuators are responsible for sending operations to the joints of the
robot. Sensors are in charge of reading the results of such operations to check
whether they have been properly executed. Depending on the system, the
number of sensors and actuators can vary.

Environmental Friendly and cost-effective Technology for Coating Removal
(EFTCOR, 2003) is one of these tele-operated systems. The EFTCoR system is
a tele-operated platform for non-pollutant ship hull maintenance operations
that is described in the following section.

4.2.1 EFTCoR: Environmental Friendly and cost-effective Technology for
Coating Removal

The main scenario of the EFTCoR is a family of systems for hull maintenance
operations. Mainly, it addresses operations of coating removal, washing and re-
painting of hull of ships by using a family of robots that performs either
different operations or the same operation but in a different way.

Because it is a family of systems, the benefits of a product-line approach have
been detected in the EFTCoR. Previous projects, such as (GOYA, 1999) or
(LARLASC, 2002), have helped to detect a great number of commonalities with
valuable assets which could be reused and exploited to deploy several products.
These assets include both hardware and software components and an
architecture of reference. The introduction of this product-line approach would
allow not only an increase of productivity in terms of development but also of
maintenance costs.

These maintenance operations have a high impact in both, economical and
environmental terms. The former is related to the time that the ship must go
into the dry dock and to the costs derived of its maintenance. This means that a
high performance is demanded for these operations, so that this time can be

 4.2 Tele-operated Systems 81

reduced to the minimum. The latter is due to the generated residues along the
operations. They are paint, iron, etc, whose recycling is always required.

Figure 4-1. Primary Positioning System with both arm joint (yellow) and joint on tracks

(green) of the EFTCoR

Furthermore, these processes are very hazardous for operators. Not only
residues can come off and damage the operator, but also the self-movement of
the robots can be very risky. Figure 4-1 shows an example of a primary
positioning system. It has a height of twelve meters and a weight of twenty tons
that make inevitable the consideration of safety requirements for the movement
of the robot. The crane has in its central zone an articulated arm of two tons
with a secondary positioning system at its end (an XYZ-table that includes a
cleaning tool). It is indispensable that the system ensures a safe movement of
the arm according to the received commands from the operator.

Figure 4-2 Tele-operation Robotic System for Hull Maintenance Operations

82 CHAPTER 4 Preliminaries

The identified robotic tele-operation platform consists of the following
subsystems (illustrated in Figure 4-2):

− Robotic Devices: are in charge of both the movement of the EFTCoR and the
cleaning task to be performed, that is, full blasting, spot blasting, etc.,
according to the commands introduced by the operator. Primary and
Secondary positioning systems integrate the positioning devices. The former are
in charge of the movement of the tele-operated platform across wide areas,
in order to place the secondary system. The latter are in charge of the
movement of the cleaning tools. Both Primary and Secondary systems are
integrated by several joints to facilitate the movement. For instance, Figure
4-1 depicts an example of a primary system formed by an arm joint and a
joint on tracks.

− Vision System: allows the inspection of the working areas in order to
determine the areas of the hull to be cleaned and its state before and after
the maintenance. In addition, it provides information for the automatic
movement of the robotic devices across the hull surface.

− Monitoring System: encompasses the functionality concerning to the
informational and managerial needs related to the ship maintenance
operation that is going to be accomplished. In order to accomplish such
task it exploits the information supplied by the Vision System.

− Recycling System retrieves the residues from the working areas and recycles
them. As these residues have to be retrieved on line, there is a strong
relation between the functioning of the blasting tool and the functioning of
the recycling system. In fact, it is possible to consider the cleaning head as
part of this system, though it is partially controlled by the Robotic Devices
Control Unit (RDCU, Figure 4-2). This means that the RDCU and
recycling systems must exchange a significant amount of signals.

− Robotic Devices Control Unit: interacts with the other robotic devices with the
aim of getting the needed information to control the different devices
(positioning systems and cleaning tools) to be used in the maintenance
tasks. Control operations are accomplished according to the commands
introduced by the operator.

Our case study focuses on the RDCU because it is not only software, but it is
software-intensive. Its architectural definition is highly relevant because of the
fact that several constraints have to be satisfied such as the support for dynamic
behaviour of the system. This dynamism allows the EFTCoR to replace, at run
time, each cleaning tools and positioning devices. For this reason, the RDCU
should supply mechanisms for configuring both the systems and the tasks to be

 4.2 Tele-operated Systems 83

performed. In addition, the system must move during the operation so that it
can go along the ship hull surface looking for spots, cleaning the surface and
painting whenever it is needed. This means that the RDCU is in charge of
commanding and controlling in a coordinated way the positioning of devices
together with the tools attached to them.

Every operation has to be scheduled to accomplish strict deadlines. This comes
out from the high cost derived not only from the budget required for these
operations but also from the lack of incomes when the ship is in dry dock.

RDCU has also rigorous constraints in terms of reliability. It must work during
hundreds of hours without stop in order to achieve the hard deadlines of the
process. This implies that it should be reliable enough as to avoid the ship to
stay in the dock more time than the needed for the maintenance operation.
Furthermore, the RDCU should allow the system keep on working despite
some failures, that is, it should admit degraded modes of operation.

Regarding availability and reliability, it is also recommendable that diagnosis
services are provided by the RDCU. They are not only responsible for notifying
if anomalous states arise but they should check as well, whenever the system is
reconfigured, if the system remains working properly.

Any change or operation has to be safe, providing a means to stop it if any
damage can be produced to the equipment, the environment or the operator.
The RDCU must be fault tolerant in such a way that the system should be led
to a safe and known state. These recommendations, among others, must be
established by the safety regulations of the RDCU. They must be compliant
with the standards and safety rules applicable to industrial installations such as
(ANSI/RIA, 1999).

4.2.2 TeachMover

The Microbot TeachMover is a durable, affordable robotic arm used for the
teaching of robotic fundamentals. It has been specifically designed to simulate
industrial robot operations. This is why it has been also used in the context of
this work to exemplify some terms and scenarios that would be too complex if
the RDCU of the EFTCoR was used. This means that this will be the only
robotic system that is considered in this work. However, similarly to the
EFTCoR is the RDCU the final goal of our work.

84 CHAPTER 4 Preliminaries

Figure 4-3 An illustrative view of the Teachmover

Figure 4-3 shows how the Teachmover looks like. It can be observed what the
main joints of the robot are: the tool used to catch any necessary instrument; the
wrist employed to articulate the movement of the instrument; the wrist, elbow,
shoulder and base operated to close the robot to the working area. These five
joints are the five axes of movement of the robot. The TeachMover’s possible
motions include base rotation, shoulder bend, elbow bend, wrist pitch and wrist
roll, so it can simulate the motions of most industrial units in production
situations. It must be mentioned that each joint and the tool are controlled by
an actuator and monitored by a sensor.

Figure 4-4 depicts each joint along with its possible movements. Two kinds of
movements are supported by the Teachmover:

− Movement by steps is specified by establishing the number of half-steps that a
joint must move.

− Movement by inverse kinematics allows the Teachmover going to a specific
point by specifying (x, y, z). These coordinates are translated to a set
rotation angles. These angles are used for bending the base, shoulder, and
elbow, the pitch and roll movements of the wrist and the open of the tool.
These angles specify the degrees that each joint must have in relation to the
Teachmover axis.

 4.3 An Introduction to PRISMA 85

Figure 4-4 Geometry of joints of the Robot Arm

Both kinds of movements are performed according to a speed that can be
changed if it is need. It must be highlighted that although both movements are
allowed, the actuator internally communicates the movement to the joint by
half-steps. This implies that the control unit to be developed must translate
properly the movements.

Similarly to the EFTCoR, the Teachmover has rigorous constraints in terms of
safety. Each movement must be safe before it can be performed. This means
that if a movement can put in danger any element of the environment or the
robot itself, it must not be executed.

4.3 AN INTRODUCTION TO PRISMA

As was described in section 3.3 PRISMA has been selected as AODL to
describe the proto-architecture, that is, the final artifact of ATRIUM. PRISMA
has been defined as an extension of a formal language called OASIS (Letelier et
al., 1998), to provide semantics expressiveness for architectural models and
allow the compilation and automatic generation of code schemas to be
implemented. PRISMA is intended to design a great diversity of complex
information systems, with a very dynamic nature such as on-line applications.

86 CHAPTER 4 Preliminaries

In PRISMA, type specifications include a set of elements, which are first order
citizens: components, connectors, systems and aspects. Components are
compositional units that provide specific functionalities to the system. Ports,
whose types are interfaces, are their connection points to describe their
interaction with the rest of the system. Connectors have connection points
called roles and are typed by an interface. They are defined in terms of
interactions among components and other connector. For this reason they
provide a high cohesion and a loose coupling. Moreover, the separation of
concerns, together with the difference among components and connectors,
facilitates maintenance and reuse of large and complex software systems.

Components and connectors are defined in terms of composition aspects:
functional, distribution, coordination, etc, following the Aspect Oriented
Software Development approach. Crosscutting between concerns is managed
because the integration is carried out at a high abstraction level, generating code
separately for each aspect.

A system is a collection of components and connectors, together with a
specification of how specific roles and ports are engaged with each another. All
of the PRISMA elements – systems, components, connectors, ports, and roles
– may be given specific properties. These are used to convey any non-
topological properties of the described architectures.

In the following sections, a more detailed description of these elements is
introduced. They briefly introduce the PRISMA metamodel. Sections 4.3.1 to
4.3.5 describe the types that can be used when a PRISMA model is being
defined. Section 4.3.6 describes the mechanisms to build an architectural
model. This description will facilitate the comprehension of the terms and
metamodel elements used along this work. A more detailed description of both
the PRISMA language and the PRISMA model can be found in (Pérez, 2006).

4.3.1 PRISMA Interfaces

In order to describe the visibility of services Interfaces are used in PRISMA. A
PRISMA Interface describes a set of services to be published, InterfaceServices,
whose behaviour is not defined. That is, an Interface only describes the
signature of the InterfaceServices by identifying their names and parameters
(Figure 4-5). Parameters are declared in a specific order describing its name and
kind (input/output) (Figure 4-6).

 4.3 An Introduction to PRISMA 87

Figure 4-5 Describing PRISMA Interfaces (extracted from (Pérez, 2006))

Figure 4-6 SignatureOfService of the PRISMA metamodel (extracted from (Pérez, 2006))

The PRISMA Interface metaclass has two services: newInterface for the creation
of new interfaces; and addService for the addition of new services to the
interface.

4.3.2 PRISMA Aspects

As was stated above, PRISMA exploits aspects as its main characteristic for the
separation of concerns while defining a system. They are the minimal
computation units that can be described in PRISMA according to some specific
concern such as functionality, distribution, safety, etc.

88 CHAPTER 4 Preliminaries

Figure 4-7 The metaclass Aspect of the package Aspect of the PRISMA metamodel

(extracted from (Pérez, 2006))

Figure 4-7 shows how an Aspect is defined in the PRISMA metamodel. It can
be observed that during its description the architect can describe:

− AAttttrriibbuutteess which store any needed information to perform
successfully the Aspect computation.

− SSeerrvviicceess that describe the computation of an Aspect. Every Aspect
must describe begin and end services in order to start and finish the
execution of the aspect, respectively. Any other service performs the
necessary computations of the aspect. When a service is being described
the kind of behaviour of the service, in the context of the Aspect, must be
specified, that is, it must be described if it is a provided (server behaviour),
required (client behaviour) or provided/required (client/server behaviour)
service. This is specified by preceding the service with the reserved words
in, out and in/out respectively.

− IInntteerrffaacceess are used to describe the service-level visibility of the
Aspect.

− PPrreeccoonnddiittiioonnss, VVaalluuaattiioonnss, PPllaayyeedd__rroolleess and PPrroottooccoollss
are in charge of describing the semantics of the Aspect services. A
precondition describes what condition must be satisfied to perform a
specific service. A Valuation specifies how the computation proceeds for a
Service. A Played_role describes the orchestration process of the services
of a specific Interface imported by the Aspect. Finally, a Protocol details
the coordination process of the Aspect Services.

 4.3 An Introduction to PRISMA 89

In order to describe each element, the Aspect provides a set of services, such as
AddInterface, AddAttribute, etc, that allow its evolution.

While describing a SA several concerns can appear which crosscut across its
definition, concretely, at the Aspect level. Concerns such as Distribution,
Safety, Coordination, Functionality, etc, are clear examples in this sense. In
order to describe to which concern an Aspect belongs to, an attribute called
concern has been included in the Aspect metaclass.

4.3.3 PRISMA Architectural Elements

In PRISMA, there are three kinds of architectural elements: components,
connectors, and systems. Because they share several commonalities, the abstract
metaclass AArrcchhiitteeccttuurraallEElleemmeenntt has been included in the PRISMA
metamodel.

Figure 4-8 Describing Architectural elements (extracted from (Pérez, 2006))

Figure 4-8 depicts the main elements used while describing an
ArchitecturalElement. Every ArchitecturalElement has at least a PPoorrtt to
describe the interaction of the ArchitecturalElement with its surroundings (see
below PRISMA Port section). The Aspect has also an imports relation to
specify which Aspects are to be imported for describing the computation of the
ArchitecturalElement. How these imported Aspects are synchronized is
described by means of WWeeaavviinnggss relationships (see below Weaving section).

Figure 4-9 shows the hierarchy of architectural elements, where components
and connectors are described by inheriting from Architectural element.
Component and Connectors are described separately to distinguish the
coordination role that Connectors must play when a SA is described. They are
the only ones importing coordination aspects. In addition, each of them
includes a service for the instantiation of these architectural elements.

90 CHAPTER 4 Preliminaries

Figure 4-9 KindsOfArchitecturalElements of the PRISMA metamodel (extracted from

(Pérez, 2006))

Figure 4-9 shows that another kind of ArchitecturalElement is SSyysstteemm.
Systems are used to describe complex Components, this is why they have been
described by inheriting from the metaclass Component (see section 4.3.4 for
more details).

PRISMA Port

As was stated above, Ports are in charge of describing how the interaction of
the architectural element with its surrounding is. For this reason, when a Port is
defined it is typed by an Interface to describe which services are public for the
architectural element in that Port. In addition, its behaviour must be described
as well by specifying which is its Played_Role (Figure 4-10).

Figure 4-10 Describing PRISMA Ports (extracted from (Pérez, 2006))

 4.3 An Introduction to PRISMA 91

PRISMA Played Role

It describes the behaviour associated to an Interface by establishing how its set
of services can be executed. It means that it describes the execution process for
one Interface, for this reason it inherits from Process. It should be taken into
account that the services to be executed are defined by the Aspect which is
using that Interface and is playing that Played_Role(see Figure 4-7).

Figure 4-11 Describing PRISMA Played_Role (extracted from (Pérez, 2006))

PRISMA Weaving

Both Components and Connectors are internally described by importing
Aspects and establishing the proper Weavings relationships. A Weaving
relationship establishes a synchronization between two services described in
two different Aspects. One of these services, which plays the role of the
pointcut service, triggers the execution of the advice Service because the
weaving establishes a causality relationship between them. The weaving
methods that are typical of the AOP, and included in PRISMA, are the
following:

− after: aspect1.service is executed after aspect2.service

− before: aspect1.service is executed before aspect2.service

− instead: aspect1.service is executed in place of aspect2.service

In addition, PRISMA extends the weaving operators with their respective
conditionals:

− afterif (condition): aspect1.service is executed after aspect2.service if the
condition is satisfied.

92 CHAPTER 4 Preliminaries

− beforeif (condition): aspect1.service is executed before aspect2.service if the
condition is satisfied.

− insteadif (condition): aspect1.service is executed in place of aspect2.service if
the condition is satisfied.

Figure 4-12 Describing the Weaving metaclass (extracted from (Pérez, 2006))

It is worth noting that Weaving relationships are described in the architectural
element, not in the Aspect. Since, Aspects are specified in an independent way
of the architectural elements that will use them. This is one of the main
strengths of PRISMA because it facilitates not only the reuse of Aspects in
different architectural elements, but also that architectural elements can change
dynamically its behaviour by changing its weaving relationships.

4.3.4 PRISMA Systems

As was stated above, a System is a complex Component. Figure 4-9 shows that
the PRISMA System metaclass is described by inheriting from Component.
This means that when a System is specified it can import and weave Aspects
for its description and it has Ports to describe its interaction with its
surroundings.

However, more elements emerge during its description as Figure 4-13 depicts.
A PRISMA System has a composition relation of a set of architectural elements
connected by means of AAttttaacchhmmeennttss (see below 4.3.5 section). Whenever
the services of a Component in a PRISMA System must be published externally
to the System a BBiinnddiinngg relationship is established between that architectural
element and a System Port (see below PRISMA Attachments section).

 4.3 An Introduction to PRISMA 93

Figure 4-13 Describing System metaclass (extracted from (Pérez, 2006))

PRISMA Bindings

PRISMA Bindings are used to describe when the port of a Component in a
System is connected to a System Port (Figure 4-14). In addition, when a
Binding is being specified the cardinality on each end must be described.
Minimum and maximum cardinalities on each end constraint how many
instances of a specific Binding can be connected to a Port of a composing
Component and a Port of the composed System.

Figure 4-14 Bindings of the PRISMA metamodel (extracted from (Pérez, 2006))

4.3.5 PRISMA Attachments

An Attachment is employed to describe a communication channel between the
port of a component and the port of a connector (Figure 4-15). This is because
PRISMA intends a low coupling between Components, so they cannot directly
connect but by means of a Connector. In addition, a minimum and maximum
cardinality can also be described on each end so that the number of instances of
that Attachment that can be connected to one instance of a Component and a
Connector can be constrained.

94 CHAPTER 4 Preliminaries

Figure 4-15 Describing Attachment metaclass (extracted from (Pérez, 2006))

4.3.6 Instantiating a PRISMA model

In the previous sections, the collection of types defined by PRISMA has been
presented. These types are available to the architect for the description of the
architectural model. In order to carry out such a specification a metaclass
PRISMAArchitecture has also been defined in the PRISMA metamodel (Figure
4-16). In this sense, the architectural model is defined in terms of the
Components it includes, the Connectors it synchronizes, the Interfaces it uses,
the Aspects it imports, and the Attachments it connects. With this aim, a set of
services has been defined in PRISMAArchitecture to allow the addition of the
previous elements. In addition, a PRISMAArchitecture is identified by means
of its name.

Figure 4-16 Describing a PRISMA architecture (extracted from (Pérez, 2006))

-95-

“The real voyage of discovery consists not in seeking
new landscapes, but in having new eyes. “ —

Marcel Proust

CHAPTER 5

5 Goals: why the system will be

5.1 INTRODUCTION

IEEE 830-1998 (IEEE, 1998) recommendations are the milestone concerning
the contents that are mandatory in a Software Requirements Specification
(SRS). This standard involves a number of challenges related to quality
characteristics that must be achieved by any SRS, such as correctness,
unambiguousness, completeness, and consistency, ranked for importance
and/or stability, verifiability, modifiability, and traceability. Regardless of the
followed approach used for requirements specification, it must always be
compliant with these requirements.

Requirements organization and presentation are crucial to facilitate their
maintenance and ensure the quality characteristics stated above. In this sense,
the IEEE 830-1998 describes different alternatives for the organization of the
SRS that are based on ““operation modes of the system””, ““user classes””,
““objects””, ““characteristics””, ““stimuli””, ““responses”” or ““functional hierarchies””.
However, in practice, when the number of requirements and/or the level of
complexity (due to the high number of relationships between them) are
significant, those recommendations are not enough. Finally, IEEE 830-1998
does not provide any assistance to the process of elaboration or analysis of the
requirements.

Along the requirements elicitation and specification process, several
stakeholders are involved (both from the customer and technical side) every
one with their own interests and views of the system, which ought to be rightly

96 CHAPTER 5 Goals: why the system will be

represented and reconciled in the SRS. This means that the followed approach
should appropriately address this issue.

A clear example of complexity can be found in the EFTCoR project (see
section 4.2.1). This project exhibits several specific needs in terms of
requirements specification, such as, the variability inherent in the family of
robots to be handled; the high incidence of non-functional requirements
(reliability, performance, safety, etc) which crosscut functional ones; the need to
evaluate alternative designs meeting system requirements; and, finally, a large
specification where an appropriate organization is unavoidable.

Taking into account these needs, a requirements model had to be defined. The
first obstacle to overcome was to select what the best approach was. As was
introduced in section 2.2.1, the Goal-Oriented approach exhibits several
advantages that make it appropriate for our purposes as its capability for
traceability and its ability for reasoning. However, it does not provide any help
for dealing with the aspect-oriented approach nor with an effective
management of variability (see section 2.2.6). This implied that this approach
had to be adapted to deal with such concerns.

In addition, as was described in the chapter 1, an Action-Research methodology
was applied throughout the definition of ATRIUM. This meant that change
was an ever-present issue during this process. Practitioners were changing their
needs of expressiveness very frequently, with their related drawbacks. This
made emerge a metamodelling approach as a way to deal with such a wide
diversity of terms and concepts and to manage properly the unavoidable
change. This proposal is presented in section 5.2.

How the metamodelling proposal was put into practice for the ATRIUM Goal
Model definition is described in 5.3. The process that has been defined for the
construction of an ATRIUM Goal Model is introduced in section 5.4. Section
5.4.2 presents one of the main strengths of the Goal Models and how it has
been accomplished in ATRIUM: reasoning.

5.2 A PROPOSAL FOR CUSTOMIZING RE METAMODELS

We must, firstly, point out that this proposal was defined in a wider context,
i.e., not only goal-oriented and aspect oriented approaches were considered
during its definition. On the contrary, most of the approaches described in
section 2.2 and their needs of expressiveness were used during the process.
Specifically, the Goal-Oriented, Aspect-Oriented, variability management and
Use Cases were used for this work.

 5.2 A proposal for customizing RE metamodels 97

The first obstacle to overcome when integrating these approaches and their
notations is the wide diversity of terms and concepts, with many overlaps
among them. We have realized that a consensus would be very difficult if we
had attempted to define a global notation so as to cope with the whole included
expressiveness. Therefore, we have decided to organize our work in two parts.
The first part, described in section 5.2.1, defines a metamodel for the essential
concepts that allow us to deal with the generic expressiveness. By doing so, we
could get a consensus more easily. The second part (see section 5.2.2) describes
a process which specifies how this core metamodel can be tailored according to
the specific needs of expressiveness.

5.2.1 A Metamodel for Requirement Specification

The core concepts and their relationships, which are taken from the described
approaches, are shown in Figure 5-1. AArrttiiffaaccttss are the essential concept in
a requirement specification; they represent any kind of specification at a certain
level of granularity. An Artifact can be a complete SRS document, a section in a
document, a piece of text representing a requirement, etc. In addition to the
artifacts, it is also necessary to establish relationships among artifacts of the
SRS. Therefore, we have identified several kinds of relationships that are
described below.

Figure 5-1 Metamodel for the Core Concepts.

Table 5-1 OCL Constraint for Refinement relationship

Relation Constraint

Refinement context Refinement inv
 Self.leaves->forAll(a:Artifact | a <> Self.root)

An artifact can be refined through other artifacts, forming a hierarchical
structure. This has leaded us to introduce the RReeffiinneemmeenntt relationship. This
kind of relationship would allow the analyst to define hierarchy
decompositions, refinements relationships, etc. In addition, it can be observed
in the Table 5-1 that cycles are not allowed while defining a refinement

98 CHAPTER 5 Goals: why the system will be

relationship. This is especially meaningful for the propagation process that is
introduced in section 5.4.2.

 It can be observed that Refinements are related to Artifacts by means of an
association class. It allows the analyst to attribute the relation between the
leaves artifacts and the refinement relationship. We have observed this need
after studying several proposals and it facilitates, for instance, that rationales to
describe the relation are included.

In addition to this refinement relationship between artifacts, the dependency
relationship has also been included in the metamodel. Perhaps this is the most
conflictive relationship for consensus. As (Robinson et al., 2003) have
described, this relationship is critical for what is known as RReeqquuiirreemmeennttss
IInntteerraaccttiioonn MMaannaaggeemmeenntt (RIM):

“The set of activities directed toward the discovery, management, and disposition of
critical relationships among sets of requirements.”

RIM is a crucial activity to obtain a proper requirements specification. In this
work, an extensive survey of the kind of dependency relationships has been
described along with different techniques and tools for its exploitation. It
illustrates the large set of semantics interpretations that the dependency
relationship has in the RE field. For this reason, we have preferred to represent
it in its most generic form, i.e., by means of DDeeppeennddeennccyy which is applicable
to artifacts in the core concepts. Several kinds of dependency relationships are
allowed between artifacts of different hierarchies. For example, non-functional
requirements constrain functional requirements or goals, data are used for
requirements, actors interact with use cases, variants require another variants,
etc. Some kinds of dependencies between artifacts are bidirectional, such as
those used to specify conflicting goals or mutual exclusion between variants.
However, others are unidirectional, such as Extension dependencies between
Use Cases or Requires dependencies between variants. Therefore, although, in
general terms, we consider that dependencies are unidirectional, the Metamodel
also permits the specification of dependencies that in some cases may imply
their inverse. Table 5-2 describes a constraint related to the Dependency
relation because it does not make any sense that a reflexive dependency could
be established in a requirements model.
Table 5-2 OCL Constraint for Refinement relationship

Relation Constraint

Dependency context Dependency inv Self.to <> Self.from

Table 5-3 Mapping concepts: from concepts of Approaches to RE (rows) to our
Metamodel (columns)

 5.2 A proposal for customizing RE metamodels 99

Approaches to RE Proposed Metamodel

 Concept Artifact Dependency Refinement
Use Case Extending
Generalization
Communication
Include Extending

U
se

 C
as

e

Extend Extending
Goal Extending
Agent Extending
Refinement
Relationship

AND Extending

G
oa

l-O
rie

nt
ed

OR/XOR Extending

Variant An artifact with a
Variability or
relationship

Variation point Extending
Time link Using an attribute

on relation Variation
Multiplicity Using an attribute

on relation Variation
Types of Variability Using an attribute

on relation Variation
Require Extending

V
ar

iab
ili

ty
 M

an
ag

em
en

t

Exclude Extending
Concern Extending

A
O

RE

Crosscutting Extending

Table 5-3 summarizes the main concepts of each studied approach and how the
mapping between them and those described in the proposed Metamodel
(Figure 5-1) was established. We have to point out that some concepts do not
appear in the core Metamodel but they are described by extending it according
to the process described in section 5.2.2.

5.2.2 A process for customizing the core

Once we have described the metamodel, it has to be tailored according to the
specific needs of expressiveness. With this purpose, we suggest the following
steps to adapt and/or extend the metamodel, which must not necessarily be
applied sequentially, but following the analyst preferences:

100 CHAPTER 5 Goals: why the system will be

I. To define the types of artifacts which are relevant to the model. This
permits the inclusion of the needed artifacts by means of specialization. In
this sense, whenever a new artifact has to be defined a specialization is
specified using as base class Artifact or another artifact already defined. The
child artifact inherits any attribute that had been defined by its parent.

II. To establish the refinement relationships of interest. The essential
metamodel provides the relationship Refinement. If necessary, any
additional refinement type could be added as a specialization of any of the
existing ones or as a new and independent one.

III. To establish the types of dependency relationships between artifacts. This
allows the definition of the relevant relationships between artifacts from
the metaclass Dependency or any other already defined by means of
specialization.

IV. To include the attributes considered relevant to the types of artifacts, types
of refinements and types of dependencies. It is necessary to bear in mind
that, whenever a new kind of artifact, refinement relationship or
dependency relationship is defined, all the attributes defined by its parent
are inherited so that their semantics should be considered to avoid
inconsistencies. Regarding Refinement relationships, the relation Leaf could
be extended if it is necessary to describe any attribute in the link between
the leaves Artifacts and Refinement.

V. To formalize artifacts and relationships. Those constraints to be applicable
on artifacts and relationships have to be described by means of OCL
(OCL Specification, 2005) (Object Constraint Language). This language
has been selected for this purpose because it is a well-known and extended
proposal. In addition, there are a wide set of tools (OCL tools, 2005) that
allow for simple consistency checks and type checking in terms of defined
OCL constraints.

As it can be observed in Figure 5-1, there is not a direct connection between
the described relationships and the artifacts on which they have to be applied,
but artifacts and relationships are specified independently. This alternative
provides us with an improved readability and comprehensibility of the
Metamodel. However, it means that whenever a new relationship is defined, the
analyst has to constrain the set of artifacts on which the relationship can be
applied by means of OCL following the step (V).

5.3 DESCRIBING THE ATRIUM GOAL MODEL

 5.3 Describing the ATRIUM Goal Model 101

Section 3.3.1 introduces why a Goal Model was selected as the main approach
for ATRIUM requirements specification, specifically, for its ability for back-
tracing low-level details and reasoning about alternatives. However, there is no
standard proposal to follow but several proposals have been introduced up to
date, such as GBRAM, KAOS, NFR-Framework, etc (see section 3.2 for more
details about them). This means that they were considered instead of describing
our own approach from scratch, taking into account that they must provide
support to both:

− FFuunnccttiioonnaall rreeqquuiirreemmeennttss.. They describe services that the
software provides, i.e., the transformations the system performs on the
inputs.

− NNoonn--FFuunnccttiioonnaall rreeqquuiirreemmeennttss.. They describe conditions or
constraints that the software must satisfy. They refer to how the services
are provided, for instance, in terms of performance, adaptation, security,
etc. We are highlighting them because they are especially meaningful in
terms of software quality.

Among these proposals, KAOS and NFR Framework have emerged as the
ones with greater impact in research and practice. KAOS provides a detailed
framework for dealing with functional requirements, where verification
capabilities can be exploited thanks to the temporal logic (Manna & Pnueli,
1992) used to formalize the goals. For this reason, how a Goal is specified in
this proposal has been adopted in ATRIUM. In addition, this proposal has a
meaningful help because a catalogue of refinement patterns have been defined
in (Letier & Lamsweerde, 2002) which are first steps towards the automatic
generation of operationalizations for those formalized goals.

However, it does not provide detailed enough mechanisms for dealing with
non-functional requirements. This deficiency exhibited by KAOS has been
overcome by the introduction of some concepts proposed by the NFR
Framework. This proposal has another advantage that makes it especially
suitable for its use in ATRIUM: it has several mechanisms for helping in the
analysis of alternatives, which constitutes the main aim of ATRIUM. In the
following sections, it is presented how each concept has been adopted.

In addition, it must be considered that ATRIUM is intended to follow an
Aspect Oriented Software Development strategy. This means that aspects must
be detected and traced from the early stages to implementation. For this reason,
mechanisms for defining concepts of AORE had to be described. The Goal
Model obtained from the integration of KAOS and NFR Framework was
extended by integrating the aspect-oriented approach, in order to achieve both

102 CHAPTER 5 Goals: why the system will be

the efficient management of the crosscutting and the correct organization of
the SRS.

Moreover, some special needs are demanded for the EFTCoR case study as
was presented in 4.2.1. That is, EFTCoR is oriented to the description of a
family of tele-operated systems, with common services and elements for several
systems and different and specific ones for each one of them. For this reason,
mechanisms for the variability management had to be introduced in order to
apply the ATRIUM Goal Model to the definition of product lines.

Finally, we detected from the early use of the proposal, that practitioners faced
problems for the application of the described Goal Model. Mainly, because they
did not know what the appropriate point to start the specification was. This
motivated that an initial framework for the selection of concerns was
established as well, that is based on the standard ISO/IEC 9126 (ISO/IEC
9126). It also provides us with a strategy for the separation of concerns.

All these topics make emerge the ATRIUM Goal Model as an integrated
proposal. Figure 5-2 shows how each approach provides us with a different
view of the SRS along with the more meaningful concepts each one has
provided us with.

Figure 5-2 An integrated proposal for the Goal Model of ATRIUM

Taking into account these approaches the metamodel of the ATRIUM Goal
Model shown in the Figure 5-3 was described. The artifacts and the identified
relationships shown in the figure come from the application of steps described
in section 5.2.2 extending the core metamodel of Figure 5-3. The building
blocks of the Goal Model that have been defined applying the step (I) are

 5.3 Describing the ATRIUM Goal Model 103

described in section 5.3.1. These blocks are related to each other using a set of
relationships that are described in section 5.3.2. These relationships have been
described by means of the steps (II) and (III) of the metamodelling process.

The integrity constraints of the whole model when step (V) is executed are
applied in addition to those determined by associations and multiplicities
defined in the metamodel. In the ATRIUM Goal Model, these constraints refer
to the types of artifacts that can be related by means of a specific kind of
dependency or refinement. For this reason, while defining each relationship, its
related constraints are also specified.

104 CHAPTER 5 Goals: why the system will be

Figure 5-3 Metamodel of the ATRIUM Goal Model

5.3.1 Building Blocks for the Goals Model

As was stated above, the ATRIUM Goal Model provides a number of
abstractions in terms of which constraints on the software system have to be
defined. Mainly goals, requirements and operationalizations are the building

 5.3 Describing the ATRIUM Goal Model 105

blocks used during the ATRIUM Goal model construction, which are
presented in the following sections.

106 CHAPTER 5 Goals: why the system will be

Defining goals

A key element introduced in the model is a ggooaall. It is defined as an objective
that the system-to-be should achieve (Lamsweerde, 2001a), i.e., a constraint or
obligation that the system should meet. As can be observed in Figure 5-3, it was
described by extending from Artifact, which means dependency and refinement
relationships can be applied on them. Due to this inheritance relationship a goal
also has in its definition attributes for its name, which helps to identify it, and
description to explain using natural language which intention it prescribes. These
two attributes can be observed in the textual description of a goal:
Table 5-4 BNF for textually describing a goal

GOAL
NAME <identifier> — unique identifier of the goal
DESCRIPTION <expression> — textual description of the goal intention
[FORMALDEF <expression>] — formal definition of the goal
PATTERN achieve | cease | maintain | avoid | optimize
 —pattern of description of the goal
CONCERN suitability | accuracy | interoperability | security | …
 —concern to classify the goal
PRIORITY High | Normal| Low — priority of the goal
AUTHOR <expression> — who first describes the goal
CREATIONDATE <expression> — when the goal was specified

Table 5-4 depicts that the formal definition of the goal can also be introduced
when it is defined. As was stated above, the temporal logic is used to
accomplish such a definition following the recommendations of KAOS. By
adopting such an approach, not only the capabilities provided by KAOS for the
verification of the specification can be exploited but also the available tool
called FAUST (Ponsard et al., 2004). This temporal logic uses some operators
to formalize the definitions that are presented in the Table 5-5 along with their
description.
Table 5-5 Describing the temporal logic operators

Operator Description

° In the next state

• In the previous state

◊ Sometime in the future
 Always in the future

W Always in the future unless
U Always in the future until
A⇒C In every future state A implies C

 5.3 Describing the ATRIUM Goal Model 107

@P P holds in the current state and not in the previous state, i.e., • ¬P ∧ P
◊≤kuP P holds in some future state within k times units u

≤dP P holds in every future state up to some deadline d

Table 5-4 depicts that the property concern must also be described. It describes
the type of need or expectation it refers to, i.e., suitability, accuracy,
interoperability, security, etc. It is similarly described in KAOS by means of the
property category. This property is specially significant for the analysis process
as described in the section 5.4.2.

In addition, while describing a goal a pattern can also be used that specifies the
required temporal behavior of the goal. With this aim, KAOS distinguishes the
following four goal patterns (Letier, 2001):

− Achieve: this pattern specifies that the goal requires a property to be
eventually hold.

− Cease: this pattern specifies that the goal requires a property to be eventually
stopped.

− Maintain: this pattern specifies that the goal requires a property to be always
hold.

− Avoid: this pattern specifies that the goal requires a property to be never
hold.

Additionally, other aspects have to be stated when a goal is defined. Each goal
has to be classified according to its priority, from high to low, for the system-to-
be. This classification helps the analyst to focus on the important issues. These
priorities can arise from several factors: organizational ones when they are
critical to the success of the development, constraints on the development
resources, etc. In addition to these properties, author and creation are also
described to facilitate the trace of the goals. An example of a goal for the
EFTCoR is described in the following:
Figure 5-4 Example of a Goal description

GOAL
NAME approachToTheArea
DESCRIPTION robot is close to the area for the treatment
FORMALDEF (∀r : EFTCoR, ∀s: Ship) move® ⇒ ◊ close(r,s)
PATTERN achieve
CONCERN suitability
PRIORITY High
AUTHOR Elena Navarro
CREATIONDATE 01/10/06

108 CHAPTER 5 Goals: why the system will be

It should be highlighted that we are not distinguishing between functional and
non-functional requirements as KAOS does using goals and softgoals. Even
some works, such as (Bass et al., 2001), state that the use of the term softgoal
for quality requirement is not appropriate. This is because they can be specified
clearly and a process can be defined to determine whether they can be satisfied.
We do not think this distinction can make a significant contribution to the SRS
but it is more relevant the priority that concerns have in the system-to-be. This
idea has been described in several proposals such as (Moreira et al., 2005),
where the use of an appropriate taxonomy of concerns and the priority of the
goals is more significant especially in domains where security, safety,
performance, etc, are highly demanded.

Defining Requirements

Similarly to goals, other used elements for the Goals Model construction are
the rreeqquuiirreemmeennttss. They also specify a need or constraint on the system-to-
be, although its main difference with respect to goals is its capability to be
operationalized, i.e., to be assigned to and realized by a set of agents. This
constitutes the main difference between a goal and a requirement. The fact that
a requirement can be made operational means that it can be verifiable in the
system to be.

While defining a requirement, some more details may be provided in addition
to those described for goals. These are a set of pprreeccoonnddiittiioonnss and
ppoossttccoonnddiittiioonnss. Preconditions establish which conditions must be hold
before some operation is performed. Postconditions define the conditions that
have to be satisfied after some operation is performed. Their evaluations help
us to determine the best design alternatives among those that satisfy the post-
conditions for the established goals. The temporal logic, similarly to goals, is
used for their description. This means that the textual notation for a
requirement is described in the following table.
Table 5-6 Describing a Requirement

REQUIREMENT
NAME <identifier> — unique identifier of the goal
DESCRIPTION <expression> — textual description of the goal intention
[FORMALDEF <expression>] — formal definition of the goal
PATTERN achieve | cease | maintain | avoid | optimize
 — pattern of description of the goal
CONCERN suitability | accuracy | interoperability | security | …
 — concern to classify the goal
PRIORITY High | Normal| Low — priority of the goal
AUTHOR <expression> — who first describes the goal
CREATIONDATE <expression> — when the goal was specified
[PRE-CONDITION] <expression>

 5.3 Describing the ATRIUM Goal Model 109

 — condition to be hold before the requirement is
met
[POST-CONDITION] <expression> — wwhheenn tthhee ggooaall wwaass ssppeecciiffiieedd
 — condition to be hold after the requirement is
met
AUTHOR <expression>
CREATIONDATE <expression>

Considering how a requirement is specified, Table 5-7 presents an example of a
requirement of the EFTCOR system. We can appreciate that there is no
specification for pre and post-condition because they are considered optional
when a requirement is defined. It must be included if a verification process is
going to be accomplished but this is currently out of the scope of ATRIUM.
We should remind that this process has been borrowed from the KAOS
proposal.
Table 5-7 Example of a requirement

REQUIREMENT
NAME moveArm
DESCRIPTION in order to close the arm of the robot to the area to be cleaned it has to
be moved to the indicated coordinates.
PATTERN achieve
CONCERN suitability
PRIORITY High
AUTHOR Elena Navarro
CREATIONDATE 01/10/06

KAOS also employs requirements during the construction of its Goal Model.
However, they make a distinction between requirements and aassssuummppttiioonnss.
This is because each one distinguishes a different assignment of responsibility.
That is, when the responsibility of its achievement is assigned to an
environmental agent they speak about assumptions. However, when this
responsibility is to be assigned to the system-to-be, they employ requirements.
ATRIUM does not make this distinction to provide more flexibility to the
specification. As shown in the following, it is at the operationalization level
when this distinction is accomplished, that is, at this level it is decided who is in
charge of performing such a requirement. In this way, we are following the
(Lauesen, 2003)’s recommendations because premature decisions would limit
our ability to define different systems depending on time, costs, available
resources, etc.

Defining operationalizations

Aside from goals and requirements, another building block for the Goal Model
is the OOppeerraattiioonnaalliizzaattiioonn. When an analyst has refined the initial set of
goals, he/she must offer a set of solutions that allow the system to achieve the

110 CHAPTER 5 Goals: why the system will be

established goals. An operationalization is a solution, i.e., an architectural design
choice for the system-to-be to meet the users’ needs and expectations. They are
called operationalizations because they describe the operation of the system,
i.e., the system behaviour, to meet the requirements either functional or non-
functional. Operationalizations are textually described as Table 5-8 indicates:
Table 5-8 Describing operationalizations

OPERATIONALIZATION
NAME <identifier> — unique identifier of the operationalization
DESCRIPTION <expression> — textual description of the operationalization
 intention
AUTHOR <expression> — who describes the operationalization
CREATIONDATE <expression> — when the operationalization is described

It can be noticed that there is only a section in the textual notation to define
briefly the alternative solutions for satisfying a given requirement. It is in the
Scenario Model (chapter 7) where these solutions are expressed in a detailed
form. However, operationalizations are introduced in the Goal Model to
represent conceptually each solution, so that relationships among the different
alternatives can be established within the Goal Model. Operationalizations
establish a coupling between the Scenario Model and the Goal Model, and
traceability between operationalizations and a specific view of the Scenario
Model is established.

We can observe, in the textual notation, that operationalizations are not
characterized with the concern they are related to. This is because the same
solution can be associated to different requirements. This implies that
operationalizations can be classified according to different concerns.

We must emphasize that this concept has been partially borrowed from the
NFR-Framework. It also describes partial solutions for the system-to-be by
means of its use. However, it does not make a special distinction about which
kind of solution operationalizations can describe. Instead, it is used to describe
any kind of alternative that should be analyzed for the design of the system.
Examples of these alternatives are the kind of ordering algorithms, kinds of
accounts to be used in a system, etc. In ATRIUM, they are specifically used to
describe architectural solutions for the system because it aims at obtaining the
proto-architecture of the system-to-be. On the other hand, operationalizations
in KAOS are not buildings blocks but relations that are employed to link a
requirement or assumption with the operations to be performed by the system
or the environment. It is when operations are defined when pre-conditions and
post-conditions are described in a similar way as we describe requirements.

 5.3 Describing the ATRIUM Goal Model 111

5.3.2 Relationships: An Element in the Refinement Process

The stated building blocks, goals, requirements and operationalizations, are
inter-related by means of a set of relationships. They are in charge of gluing the
different elements to complete the model and enhance its cohesion. Moreover,
their relevance is not only restricted to this gluing but also they allow the
analyst to introduce the rationale of the system design. In order to describe
each identified relationship they are introduced according to the applied step of
the process described in section 5.2.2. That is, firstly, the established refinement
relationships are introduced and then dependency relationships are described.
In addition, the necessary constraints are introduced along with each
relationship.

Describing refinement relationships

When a Goal Model is being built, an intentional refinement is performed. It
describes how a goal can be reduced into a set of subgoals/requirements via
AND/OR relationships. These building blocks and relationships are structured
as an acyclic graph, where the refinement is achieved along the structure, from
the higher to the lower level, by applying intentional refinements.

Every goal, which is too coarse-grained to be operationalized, is refined into a
set of subgoals that are a decomposition of the original one. In this way, an
AANNDD relationship between a goal GoalX and a set of sub-goals G1, …, GN or
requirements R1, …, RN is established if the whole set of sub-goals has to be
satisfied in order to satisfy GoalX. We say that a goal is satisfied if the system-
to-be is able to achieve it by means of the behaviour it describes. The textual
description and its related OCL constraint are introduced in Table 5-9 and
Table 5-10, respectively. It can be observed that only goals can play the role of
root when this relationship is used. This is because requirements are employed
in the last step of the refinement process when a seamless transition from
intentional to operational refinement is going to be performed.
Table 5-9 Describing AND relationships

AND <identifier> — unique identifier of the refinement,
 it is internally specified
ROOT <identifier> — identifier of the goal or requirement which
 plays the role of root
LEAVES <identifier> {<identifier>} — identifier of the goals or requirement
 which plays the role of leaves

112 CHAPTER 5 Goals: why the system will be

Table 5-10 OCL Constraints for refinement relationships

Relation Constraint

AND context AND inv
 Self.root. oclIsTypeOf (Goal) and
 Self.leaves->forAll(a:Artifact |
 a.oclIsKindOf (Requirement))

During this refinement process, it is also possible that the set of subgoals are
not mandatory to be met by the system-to-be but only some of them are
necessary. This set of subgoals would be considered alternatives in the
refinement process. For this reason, this relationship is key in the process of
alternative analysis. In this context is where the relationship OORR is employed. A
goal GoalX is related to a set of sub-goals G1, …, GN via an OR relationship
when GoalX is satisfied if at least one sub-goal or requirement is satisfied. It is
textually described as:
Table 5-11 Describing OR relationships

OR <identifier> — unique identifier of the refinement,
 it is internally specified
ROOT <identifier> — identifier of the goal or requirement which
 plays the role of root
LEAVES <identifier> {<identifier>} — identifier of the goals or requirement
 which plays the role of leaves
MIN <number> — minimum number of variants to select
MAX <number> — maximum number of variants to select

Table 5-12 OCL Constraints for OR relationship

Relation Constraint

OR context OR inv
 Self.root.oclIsKindOf(Goal)
 and
 Self.leaves->forAll(a:Artifact |
 a.oclIsKindOf (Requirement))
 and
 Self.max >= Self.min
 and
 self.max >= Self.leaves→size()

 context OR:: min: Integer init 1

 context OR:: max: Integer init leaves→size()

We should draw your attention to some peculiarities that make the OR
relationship different from the AND. As can be observed, the OR relationship
is inherently specifying a variability in the specification because it describes
alternative goals or requirements that can be met or not for the final system.

 5.3 Describing the ATRIUM Goal Model 113

This means that this relationship can be used to manage the variability as was
presented in section 2.2.6, that is, either for dynamic architectures or product
lines. For this reason, whenever an OR relationship is described, it must be
understood that the root goal is going to play the role of a variation point, i.e., the
point where the variability must be resolved. Moreover, each leaf of the
relationship is described as a variant for the system-to-be, i.e., an alternative
description of the system-to-be.

It can be noticed that it not only identifies which are the goals/requirements
root and leaves but also other unusual attributes in the Goal-Oriented
Approach. They are min and max. As was introduced in section 2.2.6, there are
some needs in terms of expressiveness that are mandatory when dealing with
the variability management. Specifically, the notation must provide means to
identify when and how the variability must be resolved, i.e., when it must be
decided which variants are to be introduced in the final product or dynamic
architecture. Thus, these attributes are going to be established according to the
following rules:

− Leaves goals and requirements are going to be considered as variants. This
means that they are an intention or need that can be present or not in the
final system, i.e., they can be met or not by the final product or dynamic
architecture.

− According to (Trigaux & Heymans, 2003), it is mandatory to specify when
the variability is resolved, i.e., when it is decided which variants are to be
present in the system-to-be. In the ATRIUM Goal Model, when an OR
relationship is specified, the variability has to be resolved in specification Time,
i.e., it must be decided which needs or expectations must be satisfied by the
system-to-be. This could mean a limitation because it does not specify the
variability at run-time, which is so necessary to describe dynamic
architectures. However, as it is described in section 5.4.1, ISO/IEC 9126
(ISO/IEC 9126) quality standard is used as a framework to identify the
concerns of the system-to-be. In this standard, the quality characteristic
called AAddaappttaabbiilliittyy is described as:

The capability of the software product to be adapted for different specified
environments without applying actions or means other than those provided for the
software considered.

This means that any requirement or goal that describes such a kind of
capability will be described as a requirement/goal of adaptability. Some
examples of this use are presented in the case study in chapter 6. In
addition, it must be highlighted that one of the advantages of using OR

114 CHAPTER 5 Goals: why the system will be

relationships is that they can be used as evidences to detect the adaptability
necessary for the system-to-be.

− Min and max speak about how many variants must be selected when the
variability is resolved. On the one hand, min is assigned to a value in order
to establish how many variants must be selected as a minimum. On the
other hand, max determines the maximum number of variants that can be
present when the variability is resolved. The number of variants obtained
by refinement is the value by default for max. These constraints have been
introduced in the Table 5-12.

The Goal-Oriented Approach has been recently applied to modelling and
analyzing variability. Meaningful works in this area are those presented by
(Gonzales-Baixauli et al., 2004) and (Hui et al., 2003). However, these proposals
have some deficiencies from the point of view of the required expressiveness
for variability; for example, they lack the concept of multiplicity or specific
dependencies between variants, which are very important when the analysis
activity and the product derivation are performed. However, they do provide
sophisticated mechanism for analyzing alternatives that have been used to select
the optimum variant for each product by (Gonzales-Baixauli et al., 2004) or for
each profile/ability of the user by (Hui et al., 2003). The idea of including such
capability in ATRIUM was to cover the needs exhibited by the EFTCoR
project, overcoming the limitations exhibited by those approaches in terms of
expressiveness.

Describing dependency relationships

We have defined a complete and disjoint hierarchy of types of dependencies by
applying step (III) that can be observed in Figure 5-3. They were identified to
deal with the expressiveness needs previously stated in terms of variability along
with the aspect-oriented and goal-oriented approaches. They are described in
the following:

− It is frequently the case that while defining a product line or a dynamic
architecture some binary relationships must be established between the
requirements. They are in charge of describing which combination of
variants is allowed or not for some products or dynamic architectures.

This has motivated the inclusion of the IInntteerrvvaarriiaanntt dependency in
the Metamodel. This has been extended to express properly the two kinds
of possible relations among variants that are more widely used:
RReeqquuiirreedd and EExxcclluuddee.. When a goal/requirement describing a
variant needs that other goals/requirements are also selected during the
product derivation the relationship Required must be used to link them. If

 5.3 Describing the ATRIUM Goal Model 115

the selection of a variant implies that another variant cannot be selected
during the product derivation the Exclude relationship must be employed to
relate them. How these relationships are textually described is presented in
Table 5-13. As can be observed, an attribute called rationale has been
included as well. It is thought to describe why the relationship is being
defined, as (Bühne et al., 2003) recommends. It must also be considered
that the relationship, in our proposal, is established from the required
goal/requirement to the requiring goal/requirement. This relationship is
mandatory in order to describe properly the analysis.

Table 5-13 Describing Intervariants relationship

REQUIRED | EXCLUDE <identifier> — unique identifier of the relationship,
 it is internally specified
RATIONALE <expression>
FROM <identifier> — identifier of the source requirement
TO <identifier> — identifier of the destination requirement

In addition, it must be considered that while the variability is being defined,
there are three kinds of interrelations that can emerge between variants
and/or variation points, as (Halmans & Pohl, 2003) have stated:

a) Dependency between variant and variation point. A variant is obviously related
to one or several variation points to describe an alternative to deal with
such variability (see Figure 6-11).

b) Dependency between variant and variant. It must be taken into account that
this dependency can be described in two different context: i) when
both of them are related to the same variation point; ii) when they are
related to different variation points (see Figure 6-10).

c) Dependency between variation point and variation point. This dependency
arises when the variability must be resolved considering both variation
points, because the variant/s to be selected from one of them depends
on the variant/s to be selected from the other.

All of them are described by means of Intervariant (either Required or
Exclude) relationships. Considering these kind of interrelations and the
above description of Intervariant the following constraints were defined:

Table 5-14 OCL Constraints for Intervariant relationship

Relation Constraint

Intervariant context Intervariant inv
 ((Self.from.oclIsKindOf(Requirement) implies
 Self.to.oclIsKindOf(Requirement)) or
 (Self.from.oclIsTypeOf(Operationalization) implies

116 CHAPTER 5 Goals: why the system will be

 Self.to.oclIsTypeOf(Operationalization)))
 and (
 -- describing dependency a)
 (((Self.from.refLeaf→size()>0)and
 (Self.from.refLeaf.oclIsTypeOf(OR))
 and
 (Self.to.refRoot →size()>0)and
 (Self.to.refRoot.oclIsTypeOf(OR))))
 or
 -- describing dependency b)
 (((Self.from.refLeaf→size()>0)and
 (Self.from.refLeaf.oclIsTypeOf(OR))
 and
 (Self.to.refLeaf→size()>0)and
 (Self.to.refLeaf oclIsTypeOf(OR))))
 or
 -- describing dependency c)
 (((Self.from.refRoot→size()>0)and
 (Self.from.refRoot.oclIsTypeOf(OR))
 and
 (Self.to.refRoot →size()>0)and
 (Self.to.refRoot.oclIsTypeOf(OR))))
)

Table 5-14 describes the constraints applicable to Intervariant and its refined
relationships. As can be observed, they can only be established among
goals/requirements or operationalizations but not mixing both types of
artifacts. This is because it does not make any sense that a requirement
could need that an operationalization was included. If this were the case, a
Contribution relationship would be defined instead.

It was also considered that by means of Exclude or Require only the kinds of
inter-relationships b and c can be described. For this reason, the comments
mark that either among variants or among variation points the Intervariant
can be employed.

− As was stated in section 3.3, ATRIUM is intended to provide traceability
for crosscutting concerns throughout the whole lifecycle. This implies that
mechanisms to detect and specify the crosscutting must be specified. These
mechanisms are especially necessary in the context of our case study, where
safety, performance, etc, appear in the specification crosscutting the main
functionality of the EFTCoR.

In order to address this issue a CCrroossssccuuttttiinngg dependency was
included. It is employed whenever a goal/requirement crosscuts another
goal/requirement. This crosscutting is usually detected as a constraint or

 5.3 Describing the ATRIUM Goal Model 117

extension that is applied on the target goal/requirement, for instance, when
a performance constraint is applied on a functional requirement. This
permits to incorporate the (Moreira et al., 2002)’s recommendations,
because it provides a mechanism to systematically integrate this quality
requirements within the whole specification and allows traceability during
later stages of the development (chapter 7).

In AOSD, it is frequently observed that crosscutting relationships,
especially during the design and implementation stages, are characterized to
express weaving operators. We could find in most of the proposals before,
instead, and after as alternatives to describe the causality of the weaving
services, so that: a) after: aspect1.service is executed after aspect2.service;
before: aspect1.service is executed before aspect2.service; and, c) instead:
aspect1.service is executed in place of aspect2.service.

In the context of AORE, (Rashid et al., 2002) have proposed a different set
of operators, which they have called ccoonnssttrraaiinnttss aaccttiioonnss. Some
examples are: Enforce which describes an additional condition over a set of
viewpoints; or Ensure which asserts that a condition should exist for a set of
viewpoints. However, as (Rashid et al., 2002) recognize, this set of
operators have not been widely validated up-to-date, even they think that
some combination are only valid for the developed case study. On the
other hand, they do presume that these operators are highly readable and
understandable for any stakeholder because of its abstraction level.

This has led us to describe Crosscutting in its more generic form, i.e.
describing a composition of goals/requirements without indicating
anything else. It can be considered that its meaning is highly related to the
concept of Extension (from Use Cases) because a base behaviour is
extended with another one. We suggest that, in case special needs emerge
from the domain, this relationship should be extended for its consideration.
It was not necessary such an extension in the EFTCoR nor in the
Teachmover.

Related to AORE, we should draw your attention to another work that
combines the Goal-Oriented and Aspect-Oriented approach: (Yu et al.,
2004). They have introduced the use of Goal Models to detect candidate
aspects. In order to do so, they use those tasks (how a goal is
operationalized) that contribute to more than a goal as candidates in the
process. However, it does not solve a problem that is addressed with our
proposal: the tangled specification. We are firmly convinced that it is always
more convenient in terms of maintainability and legibility of the

118 CHAPTER 5 Goals: why the system will be

specification to specify separately the requirements since the crosscutting is
detected and not later. This is why this alternative was selected.

Table 5-15 Describing Crosscutting relationship

CROSSCUTTING <identifier> — unique identifier of the CROSSCUTTING,
 it is internally specified
FROM <identifier> — identifier of the source artifact
TO <identifier> — identifier of the destination artifact

Table 5-16 OCL Constraints for Crosscutting relationship

Relation Constraint

Crosscutting context Crosscutting inv
 Self.from.oclIsKindOf(Requirement) and
 Self.to.oclIsKindOf (Requirement)

Table 5-15 describes the textual description for Crosscutting relationships.
Table 5-16 describes the applicable constraint that specifies that only
requirements and goals can be related by means of this kind of relationship.

It could be thought that Crosscutting and Require have an overlapped
semantics. In both cases, for a dependency relation from an artifact A to an
artifact B, A can be satisfied if B is satisfied as well. However, when
Crosscutting is used, it is denoted there is a dependency on the specification,
that is, the specification of A is not complete if B is not also specified. On
the other hand, when Require is employed it refers to a dependency of
existence because it is just at the moment of resolving the variability when
both A and B have to be present in the final product or dynamic
architecture.

− The refinement relationships described in the previous section are
introduced by the Goal-Oriented approach to specify that an intentional
refinement is iteratively applied to the set of goals ending up when every
sub-goal is refined as a requirement. Once the requirements have been
specified, the operationalizations, i.e., how to provide such requirements,
have to be described. It means that a seamless transition to an operational
refinement is performed. In addition, it must be considered that, usually,
there is not only a possible operationalization for a requirement but several
alternatives can be applicable; each one with advantages and disadvantages
not only for a specific requirement but also for any other established in the
Goal Model. In such a case, it is up to the analyst to examine the impact of
such methods on other requirements and decide on what and how many
operationalizing methods must be applied via the proper relationship.

 5.3 Describing the ATRIUM Goal Model 119

In order to cope with these needs the CCoonnttrriibbuuttiioonn dependency has
been introduced. It is a binary relationship to denote how an
operationalization contributes to the accomplishment of a requirement.
When an alternative is introduced several degrees of contribution can be
established. For this reason, a set of symbols [++|+|#|-|--] are used to
characterize the relationship. They denote how an operationalization
collaborates to satisfy a requirement. Symbols ++ and + describe a strong
positive and positive collaboration, i.e., it provides a sufficient or partially
sufficient solution, respectively, to satisfy the related requirement. On the
other hand, symbols—and - describe a strong negative or negative
collaboration, i.e., the operationalization prevents or partially prevents,
respectively, the satisfaction of the related goal. The # symbol is introduced
to specify operationalizations whose impact (positive or negative) is
unknown at that moment. The Contribution can be described as indicated
in the Table 5-17. Table 5-18 establishes by means of a constraint that only
requirements and operationalizations can be target and source, respectively,
of a contribution relationship. It must be underlined that this relationship
has been taken from the NFR Framework. It was mandatory to allow the
analysis of alternatives, so necessary in the context of ATRIUM.

In addition, it must be considered that while describing the
goals/requirements influences can arise among them both positive and
negative. This situation has been specially detected in the specification of
product-lines and dynamic architectures by means of the called hhiinnddeerr
and hhiinntt dependencies. The former is used to describe when a variant
has a negative influence on another one and the latter when the influence is
positive. With the aim of avoiding an overloaded Metamodel and the
overlapped semantics, it was decided that Contribution was employed to
describe this dependency also among goals/requirements.

Table 5-17 Describing Contribution relationships

CONTRIBUTION <identifier> — unique identifier of the CONTRIBUTION,
 it is internally specified
FROM <identifier> — identifier of the source operationlization
TO <identifier> — identifier of the destination requirement
CONTRIBUTES ++|+|#|-|-- — kkiinndd ooff ccoonnttrriibbuuttiioonn

Table 5-18 Constraint for Contribution dependency

Relation Constraint

Contribution context Contribution inv
 ((Self.from.oclIsTypeOf(Operationalization) implies
 Self.to.oclIsTypeOf (Requirement)) or
 (Self.from.oclIsKindOf(Requirement) implies

120 CHAPTER 5 Goals: why the system will be

 Self.to.oclIsKindOf (Requirement))

Table 5-18 depicts those necessary constraints that were explained above: if
the origin of the dependency is an Operationalization then its destination
must be a requirement; but if the source is a goal/requirement, then the
sink must be a goal/requirement as well. In this way, Contribution represents
the hinder and hint dependencies.

It can be observed that there is no notation for the CCoonnfflliicctt relationship in
Figure 5-2. This relationship can be set up between two goals if an
incompatibility appears between them, in other words, whenever the
satisfaction of a goal prevents the satisfaction of another goal. For instance,
KAOS provides support for such a relationship. However, it has not been
included in the Metamodel because both Conflict and Contribution would have an
overlapped semantics. Both of them describe a conflicting situation that must
be resolved in case it appears. For this reason, only Contribution has been
included.

5.4 A PROCESS FOR THE ATRIUM GOAL MODEL

In order to define properly an ATRIUM Goal Model, a process was defined,
providing the analyst with the necessary guidelines. SPEM (Software Process
Engineering Metamodel, see Appendix A) was used for its definition. SPEM
provides a Metamodel for describing methodologies or software processes.
Figure 5-6 sketches the main activities of the defined process. Similarly to any
process in RE, there is a first step devoted to the Elicitation and Specification
of the ATRIUM Goal Model, which is more detailed in section 5.4.1. During
this activity, the standard ISO/IEC 9126 (ISO/IEC 9126) acts as a framework
for the initial selection of the concerns, which are to be provided by the system-
to-be. This standard along with its exploitation in ATRIUM, is described in
section 5.4.1 (ISO/IEC 9126: Selecting and Identifying Concerns).

Once this initial version of the Goal Model is obtained an analysis process is
performed as described in section 5.4.2. The evaluation results of this activity
are used as a feedback for the previous activity so as to refine and improve the
Goal Model. This activity is critical for ATRIUM because one of its main aims
is to exploit the Goal Model for the analysis of architectural alternatives.

Finally, the Validation activity is performed in order to confirm that the Goal
Model, once analyzed, actually describes the needs and expectations of the
stakeholders. It helps in a development technically correct and satisfactory from
the point of view of the stakeholders. In case misalignments appear between

 5.4 A Process for the ATRIUM Goal Model 121

the Goal Model and the needs and expectations, new iterations on the process
would be performed.

Figure 5-5 Process for describing the ATRIUM Goal Model

5.4.1 Elicitation and Specification of ATRIUM Goal Models

Figure 5-6 establishes the set of steps for the Goals Model elaboration along
with the input artifacts needed for its realization. Although Figure 5-6 shows
only a sequential flow to apply the tasks, in practice, its application is iterative
facilitating a progressive refinement of the ATRIUM Goal Model. As was
stated in section 3.3.2, SPEM has been used as the process specification
language to describe this activity of ATRIUM. For this reason, a refined activity
diagram is used where each actionstate of the diagram is describing a step of the
activity Elicitation/Specification identified in Figure 5-5. Below, each step is
extensively described.

122 CHAPTER 5 Goals: why the system will be

Figure 5-6 Workflow to specify goals and requirements

In addition, as can be observed, one of the artifacts used as an input for the
process is the standard (ISO/IEC 9126). It is highly relevant for the final
description of the Goal Model. For this reason, its implication in the process is
described in the following section.

ISO/IEC 9126: Selecting and Identifying Concerns

Quality criteria, used for the software products assessment, are highly related to
the requirements specified in their SRS. This means a practical binding with the
global organization of the SRS in order to facilitate the subsequent evaluation
of the software quality. In this sense, the ISO/IEC 9126 standard is an
important reference as a software quality model. It defines a set of features that
are mandatory for any software system that is built following the highest quality
levels. This reason makes the ISO/IEC 9126 especially suitable as taxonomy of
concerns. It provides an initial framework to elicit and organize goals and
requirements. In this way, as the informal software needs are elicited, they can
be analyzed, broken down and organized. This allows one to manage the
specification crosscutting, by reducing or removing other drawbacks such as:
redundancy, inconsistencies, etc. At the same time, crosscutting relationships
can be defined in order to re-establish a tangled representation whenever it is
needed.

 5.4 A Process for the ATRIUM Goal Model 123

Table 5-19 Quality Characteristics of the ISO/IEC 9126

Quality Type Characteristic Sub- Characteristic

Suitability
Accuracy
interoperability
Security

functionality

Compliance
maturity
Fault tolerance
recoverability

reliability

compliance
understandability
learneability
operability
attractiveness

usability

compliance
Time behaviour
resource utilisation

efficiency

compliance
analysability
changeability
stability
testability

maintainability

compliance
adaptability
installability
co-existence
replaceability

So
ftw

ar
e

Pr
od

uc
t Q

ua
lit

y

portability

Compliance
Effectiveness
Productivity
Safety

Q
ua

lit
y

in
 u

se

Satisfaction

ISO/IEC 9126 determines three software quality aspects: process quality,
product quality and product in use quality. The main aim for ATRIUM is just
the latter, i.e., to notice the product quality through the effect that its use
causes. The quality in use depends on or is influenced by the internal and
external characteristics of the software product. The software construction

124 CHAPTER 5 Goals: why the system will be

process affects these characteristics. With regard to the specific requirements,
described in the SRS, we are interested in the characteristics defined for the
software product quality and for the quality in use. These characteristics are
listed in the Table 5-19, although more details about their description can be
obtained from (ISO/IEC 9126).

We have to notice that from the software requirements perspective, this
taxonomy goes beyond the traditional classification of functional and non-
functional requirements that is not a meaningful contribution to the
requirements organization. In fact, most of the typical functional requirements
can be set with the suitability sub-characteristic. On the other hand, the software
product capacity to satisfy the standards, conventions or regulations are broken
down as sub-characteristics of type ““compliance”” below each quality software
product sub-characteristic. Although the ISO/IEC 9126 provides us with a
wide set of concerns, this set can be extended if needed. In this case, we
propose the following alternatives:

a) Considering a new dimension for organizing additional goals/requirements,
to the taxonomy proposed by ISO/IEC 9126. This option could be of
interest whenever the additional characteristics are as relevant as those
already considered and whether the crosscutting with them could be high.

b) Including a new characteristic/sub-characteristic for extending the
taxonomy. This alternative would be recommended when the aspects,
which are dealt with, are not as relevant as those considered and/or it is
not expected that the crosscutting could be so high.

c) Dealing with this element as an attribute of the goal/requirement. This
option is suggested when it is coped with aspects which are not so relevant
(they are neither exactly goals nor requirements) or do not involve an
important crosscutting. However, they are particularly interesting to group
and present goals/requirements.

As was stated in the introduction, the IEEE 830-1998 offers several criteria and
guidelines to organize specific requirements. It recognizes that there is not an
optimal organization to be applicable to every system. Among the mentioned
organization criteria are: operation system mode, user type, problem entities,
system services, stimulus, answer and/or functions hierarchies. Therefore, as it
is recommended by the c) alternative, those elements can be dealt as attributes
of goals/requirements instead of extending the taxonomy. In this way, it is
possible to offer a view related to the joins based on these elements, although
they are not elements of the initial taxonomy. For instance, we could deal with
the section ““logic requirement of the database”” (included in the IEEE 830-
1998) as an additional dimension (called data). Figure 5-7 illustrates the

 5.4 A Process for the ATRIUM Goal Model 125

framework extension with new dimensions and how the SRS can be unfold
according to different dimensions.

Figure 5-7 Unfolding a Software Specification

Although all the quality characteristics listed in Table 5-19 can have some
impact on the Software Architecture, some of them exhibit a more relevant
role. According to (Bosch, 2000) we can select performance, maintainability,
reliability, safety and security as the most relevant for this task. Therefore, we are
going to focus on this set of quality requirements since this moment.

Elicitation and Specification of the ATRIUM Goal Model

Considering the implication of the ISO/IEC 9126, the elicitation and
specification is carried out by means of the following steps, depicted in the
Figure 5-5:

− Identify/Specify Main Goals is the first task to deal with. As we can observe in
Figure 5-6, the standard ISO/IEC 9126 is an input for this task. This
model provides an initial view of the concerns that could be meaningful for
the system. Available Information is another input for this task. It collects any
information related to the system-to-be such as business goals, user needs,
interviews, etc. They help the analyst to identify which concerns can be
relevant for the system-to-be.

In this way, those concerns described in the standard (Table 5-19)
considered as relevant for the system-to-be are identified and specified as
goals of the Goal Model. This means that every goal, established by means
of this step, is aligned with the specification of concerns determined by the
ISO/IEC 9126 model, and acts as a node for the Goal Model definition.
This will provide us with a twofold advantage: on the one hand to facilitate
the understanding of the specification, and, on the other hand, to drive the
elicitation and analysis process.

The analyst must fully describe the goals, being especially relevant the
establishment of the priority attribute. In this way, those goals that are
highly relevant for the stakeholders are the first selected to proceed with

126 CHAPTER 5 Goals: why the system will be

the process. As we elicit the requirements, it could be convenient to
incorporate new concerns to include properly additional goals/requirements,
according to the recommendations of the previous section.

− Once the main goals of the system-to-be have been identified and
specified, it is just the moment to refine such goals. The task Identify/Select
Goal is in charge of identifying new goals of the system-to-be being always
catalogued according to the main goals. During this activity, the analyst also
employs the available information of the system-to-be for this gathering
process. This is a crucial task because the discovery of goals is not a
straightforward task. Most of the works on Goal Model tackle the problem
of goal achievement more than the Goal identification. For this reason, it is
highly suggested the use of the existing guidelines. One of the main
contributions in this field has been presented by (Antón, 1997). She has
described a set of fourteen heuristics based on a question-guided process.
An example of that set is described as follow:

HIG 3. Action words that point to some state that is or can be achieved once the
action is completed are candidates for goals in the system. They are identified by
considering each statement in the available documentation by asking:

(a) Does this behaviour or action denote a state that has been achieved, or a desired
state to be achieved?

If the answer is yes, then express the answer to these questions as goals that
represent a state that is desired or achieved within the system.

As can be observed, it is mainly oriented to analyze the available
information of the system-to-be by making questions about its content and
how it can be interpreted.

− In the task Specify Goal, their attributes, such as its name, priority, etc., are
not only established but also the necessary refinement relationships
(AND/OR) towards its parent. We have to bear in mind that whenever a
goal is too coarse to be verifiable, it is decomposed into a set of sub-goals
by means of these relationships facilitating a progressive comprehension of
the system-to-be. However, when this task is performed it must be
determined if the goal to be specified is verifiable, that is, whether a process
to determine is achievement for the system can be described. If this is the
case, a goal is not specified but a requirement. It means that it is a starting
point to perform an operational refinement instead of an intentional one.

− When the Refine Specification task is performed, a deeper analysis of the goal
or requirement is carried out. This task is mainly devoted to establishing

 5.4 A Process for the ATRIUM Goal Model 127

every kind of necessary dependency relationship between the specified
goal/requirement and other goals/requirements in the model.

It must be described any necessary Intervariant relationship. We have to
include those necessary Require dependencies from/to the
goal/requirement being specified and any other one when the former needs
the latter. On the contrary, if Exclude is used, both goals/requirements
cannot be simultaneously present when the variability is resolved. The main
problem when modeling this kind of dependencies is to find out where
they are needed. Most of the existing work is focused on the mechanisms
for modeling dependencies (Halmans & Pohl, 2003), possible taxonomies
of dependencies (Bühne et al., 2003), etc. However, as far as we know there
is no work for helping during this process. It depends on the analyst
capability their correct specification.

In addition, it is also during this task when the Crosscutting relationship is
established. It is in charge of identifying and specifying the crosscutting
inherent to any requirements specification. This relationship is used to
describe how the behavior associated to a goal/requirement is constrained
by or extended with that expressed by another one. Although Crosscutting
was described in the Metamodel of the Figure 5-3 as a kind of Dependency
relationship, similarly to Intervariant, they are two disjoint relationships, i.e.,
they do not have an overlapped semantics (see section 5.3.2, Describing
dependency relationships).

In a similar way to the Intervariant dependencies, most of the works on
candidate aspect identification during the requirements stage are oriented
to analyze the requirements specification once it has been performed.
(Baniassad & Clarke, 2004) have presented one of the most well-known
works supporting this approach called Theme/Doc. Its proposal allows one
to analyze the specification looking for TThheemmeess, that is, features of the
system under development following an aspect-mining point of view. It is a
powerful proposal, because those themes that appear tangled and scattered
in the requirements specification can be identified and specified properly.

However, this proposal cannot be applied in ATRIUM, at least directly.
Perhaps, as a previous step where the available information is analyzed,
providing some notions about the existing crosscutting. But, our approach
intends to describe a requirements specification, where those tangled and
scattered requirements are properly specified since the very beginning. It
could be convenient to provide the analyst with a set of heuristics which
help him/her to identify when these Crosscutting relationships can emerge, in
a similar way to that presented by (Antón, 1996). Unfortunately, to the best

128 CHAPTER 5 Goals: why the system will be

of our knowledge there is no work helping in this task. Therefore, the
analyst is recommended to include such a relation when he/she detects that
the goal/requirement, which is being defined, extends or constraints
another one. This situation is usually detected when concerns such as
safety, efficiency, or usability are dealt with. A clear example of this
situation is introduced in the case study (section 6), where the proposal is
put into practice.

− This refinement process of goals goes on until the goal is verifiable, i.e., we
can describe scenarios of operationalization. At this moment, we change
from an intentional refinement to an operational refinement, and
consequently, to the specification of an operational solution from the
system-to-be point of view. The task Specify Operationalization is responsible
for identifying and specifying what elements, either from the environment
or the system-to-be, collaborate to realize one requirement.

During the Goal Model construction, the operationalization is a description
of the proposed solution for the realization of a requirement, working this
description as an input for the ATRIUM activity Define Scenarios (Figure
3-13). The latter cope with the whole definition of the solution through the
relevant scenario specification. It is introduced in the Goals Model in order
to allow us to describe the relationships between that solution and the
already defined requirements in the Model. In this way, we can denote how
a solution can contribute to positively realize some requirement and
negatively to others. Thanks to these relationships, we achieve a more
exhaustive analysis of the set of possible solutions and the establishment of
the necessary traceability relationships. Therefore, this is a crucial step in
the definition of ATRIUM. This has motivated that it is more exhaustively
defined than the previous steps, in the following section.

The described process is iteratively applied across the full set of steps,
facilitating that, at the end, an ATRIUM Goal Model of the system-to-be is
described. It must be taken into account that a later activity must be performed,
thought to analyze the model looking for conflicts, determining the satisfiability
of the model, etc. This will facilitate that a proper model is used for the
following process of ATRIUM. This activity is introduced in section 5.4.2.

Operationalizating the ATRIUM Goal Model

As was described in section 5.3.1, operationalizations are used in the ATRIUM
Goal Model as a way of tracing the architectural alternatives from the
established requirements. Therefore, this is a crucial step in ATRIUM. It entails
several steps that Figure 5-8 depicts. They are iterated over mainly two phases.

 5.4 A Process for the ATRIUM Goal Model 129

The first phase focuses its efforts on requirements classified under the concern
suitability. The second one only considers the remaining ones. This is because
the remaining requirements are usually analyzed as constraints, for instance,
efficiency and safety. These relationships are specified in the Goal Model as
crosscutting relationships, as was described above. In this way, it is introduced
the transformation recommended by Bosch (Bosch, 2000), i.e., integrating
quality requirements into functional solutions. Consequently, this extends the
architecture with functionality that is not related to the problem domain but
used to fulfil the requirement.

Figure 5-8 Operationalizing the Goal Model

In addition, we should also bear in mind that crosscutting detected during the
Goal Model elaboration does not necessarily imply the use of a specific aspect
in the final architecture description but it can be traced to an architectural
element, environment element, etc. The analyst must make a decision about
what the best alternative is, without loosing the required traceability.

Taking into consideration these two phases, each step is described as follows:

− The initial activity is to Select Architectural Style. The Architectural Styles have
a high impact on the final description of the architecture because they have
an impact throughout the whole architecture or a great part (Bosch, 2000).
In the bibliography several works have addressed this issue. For instance,
(Shaw & Clements, 1997) offer a proper taxonomy where styles as Layered
architecture, Blackboard, etc., have been described. However, domain

130 CHAPTER 5 Goals: why the system will be

driven Architectural Styles are lately suggested because they provide
analysts with more information and guidance for the architectural
description as they are not so oriented to a technological solution. An
example in this sense has been the work of (Niemela et al., 2005) that have
analysed several Architectural Styles to determine the most appropriate one
for describing wireless services. (Fuxman et al., 2001) is an example
following this approach. In this sense, they describe organizational
Architectural Styles for multi-agent systems. Other examples can be found
in other domains, for instance ACROSET (Ortiz et al., 2005). It is an
architectural framework for the development of the control units of tele-
operated service robots and it has been used in our case study. It promotes
a concrete decomposition of the system and identifies some specific kind
of components and interaction while defining this kind of systems. All
these works have been used to fill in Table 5-20, where one Architectural
Style per work has been included.

For this reason, before describing any possible operationalization, the
analyst has to make a decision about what Architectural Style should be
used for the system-to-be. Because the Goal Model uses the quality model
ISO 9126 as the initial framework of concerns, along with their assigned
priorities, it can be employed for the selection of the Architectural Style.
Therefore, we can evaluate the impact of the Architectural Styles over the
ISO characteristics/sub-characteristics, included in the Goal Model. In
Table 5-20, three Architectural Styles have been classified according to
their positive and negative contributions to every quality characteristic. It is
worthy of note that the sub-characteristic suitability has been decomposed
into several sub-kinds in order to describe if an Architectural Style is
appropriate for a specific domain. For instance, it can be observed that
ACROSET contributes positively towards the Tele-operated domain.

Table 5-20 ISO 9126 for selecting Architectural Styles

Characteristic Sub- Characteristic Layer Joint Venture ACROSET

tele-operated + -- ++
wireless ++ -- --
Multi-agent ++

suitability

… … … …
accuracy + + +
interoperability + +

functionality

security -
maturity reliability
fault tolerance

 5.4 A Process for the ATRIUM Goal Model 131

recoverability
understandability ++
learneability ++
operability ++

usability

attractiveness ++
time behaviour + efficiency
resource utilisation
analysability + +
changeability + + +
stability + +

maintainability

testability + +
adaptability + +
installability
co-existence

portability

replaceability +
effectiveness
productivity
safety +
satisfaction

− Select requirement to operationalize. Analysts have to select from the Goal
Model a requirement that has not been operationalized yet. It is suggested
that those requirements attributed with higher priority should be selected
first in this step.

− Search into the Design Pattern Catalogue. Whenever a new system has to be
developed, several problems can emerge if the analyst does not have the
appropriate knowledge. This deficiency means that poor decisions -and
poor designs- can result. In this sense, patterns represent distilled
experiences that, through their assimilation, enable expert analysts to
convey their knowledge and insight to inexpert ones. For this reason, we
have included in our proposal both domain and technologic patterns by
describing them into a catalogue. These patterns have been indexed
according to the following: the concerns of the ISO 9126 it positively or
negatively contributes to; and, the Architectural Styles it is more
appropriate for. Thus, the analyst can select a pattern or set of patterns that
are instantiated to operationalize the selected requirement.

− Specify alternative operationalizations. Several alternatives can operationalize the
same requirement, just like several alternative programs can implement the
same specification. For this reason, the analyst must specify each detected

132 CHAPTER 5 Goals: why the system will be

operationalization considering it has to fulfill the requirement. During the
specification of an operationalization, the analyst has to do two different
tasks: he/she makes a textual description of how it can make operational
the related requirement; and, he/she identifies software, hardware and
environment elements that collaborate in the operationalization. It is
worthy of note that the splitting of the work between the system-to-be and
its environment is delayed until the operationalization specification. This
avoids taking premature decisions which would limit our ability to define
different systems depending on time, costs, available resources, etc,
following the (Lauesen, 2003)’s recommendations.

− Specifiy contribution relationships In order to obtain the best global solution,
operationalizations have to be analyzed caring if conflicts exist among them
and other requirements included in the Goal Model. A positive
contribution relationship is introduced from each alternative
operationalization, identified in the previous step, towards the requirement
that has motivated its definition. In addition, if their inclusion means that
other requirements can be negatively/positively affected then
negative/positive contributions are introduced as well. In case the analyst
would want to make a deeper evaluation of any operationalization, it is also
possible to describe its associated scenarios, by means of the activity Define
Scenario explained in chapter 7.

Once the last step has finished, the analyst has to decide if the
operationalization process has finished, i.e., if every described requirement has
associated operationalizations by means of contributions. The process is
iterated repeatedly until there are not more requirements to be operationalized.
However, it is not necessary a whole specification to continue the process. On
the contrary, a partial description would be enough to proceed with ATRIUM,
that is, to analyze the architectural alternatives by applying the activity described
in the following section and obtain a draft generation of the architecture.

5.4.2 Analyzing Goal Models

A primary benefit of modeling requirements is the opportunity it provides for
analyzing them in order to offer an adequate definition of the system-to-be to
the following activities of development. Several techniques have been proposed
in the literature, but (Nuseibeh & Easterbrook, 2000) have selected as the most
relevant and widely used those described subsequently. It is also explained their
applicability in the context of ATRIUM and the decisions made in this sense.

 5.4 A Process for the ATRIUM Goal Model 133

− RReeqquuiirreemmeennttss aanniimmaattiioonn (Balzer et al., 1982) is a well-established
technique for checking whether software specifications meet the real
intentions and expectations of stakeholders. It tests the correspondences of
the specification with the real world problem. Up to date, several
approaches have been introduced to deal with animation. Most available
tools suggest the specification of design behavior models to be executed.
This alternative is widely used despite the fact that mismatches can arise
between requirements specification and these models.

In the context of the Goal-Oriented approach, a proposal has been
described by (Van et al, 2004). They propose an animation tool whose aim
is to animate a goal-oriented behavior model that is automatically generated
from the specification. In this way, it faces the problem of misalignment
between animated model and requirements. In addition, it checks whether
the requirement specification is appropriate regarding users’ needs. In order
to exploit this proposal it is mandatory that the model is formalized. This
means a problem in terms of non-functional requirements because most of
them cannot be formalized.

− AAuuttoommaatteedd rreeaassoonniinngg is an approach for exploitation of RE
specification that several proposals have followed. CCaassee BBaasseedd
RReeaassoonniinngg (CBR) is one of these proposals as for instance that
presented by (Leake, 1996). In CBR, the primary knowledge source is not a
set of generalized rules but a memory of stored cases recording specific
prior episodes. By using CBR new solutions can be generated by retrieving
the most relevant cases from memory and adapting them to fit new
situations.

In the context of RE, CBR has been used with a clear purpose:
requirements specification. During this stage, the ability of reusing similar
cases to specify the requirements of new systems exhibits good benefits in
terms of cost, time and reliability. Several proposals have been described
following this idea such as (Maiden, & Sutcliffe, 1992) or (Massonet &
Lamsweerde 1997). The latter could be very helpful in the context of
ATRIUM because it has been specifically defined for its use in Goal-
Oriented proposals. During the Elicitation/Specification activity, this
technique could be used as a guideline to help in this process.

KKnnoowwlleeddggee bbaasseedd ccrriittiiqquuiinngg is a technique that has been
mainly used for Deficiency Drive Design Requirements Analysis (DDRA),
where a design process is performed looking for a design free of
deficiencies. This technique focuses on the exploitation of a base of
knowledge where heuristics, design state and design operators are

134 CHAPTER 5 Goals: why the system will be

described. Requirements are formally specified (usually by means of
temporal logic) in such a way that can be used as constraints to be checked.
Based on those formal requirements the design of a system is proposed.
This design is the input for an iterative process that refines such design by
progressively removing ddeeffiicciieenncciieess, that is, failures of the design to
satisfy the requirements or constraints. This process uses the design
operators to refine the design according to the recommendations of the
established heuristics. The process stops when there are no deficiencies on
the design. KAREN, proposed by (Fickas & Nagarajan, 1988), is one of
most known proposals in this field.

Other approach related to automated reasoning is known as
SSaattiissffiiaabbiilliittyy AAnnaallyyssiiss. According to this approach, the
reasoning is performed by propagating the satisfaction from the leaf goals
towards root goals of the graph according not only to goal evaluations but
also to refinement and contribution relationships. These propagation
techniques have been used in the Artificial Intelligence field since the
sixties (Newell & Simon, 1963), for problem solving. In this case, agents
are cooperating for addressing a specific goal. They are provided with a set
of beliefs, admissible states and actions to look for a specific plan for its
satisfaction. Since some years ago, these techniques have started to be
applied in the RE arena for modeling and analyzing requirements. In RE,
this reasoning is carried out to determine whether the goals of the system-
to-be will be met mainly for defining, reasoning about and resolving design
problems (Louridas & Loucopoulos, 2000), alternative designs (Chung et
al., 2000), business goals (Yu & Mylopoulos, 1995), etc.

− CCoonnssiisstteennccyy cchheecckkiinngg approach is oriented to determine whether
the formal requirements specification satisfy a set of properties needed for
the system-to-be. Properties to be checked are, for instance, type
correctness for each defined variable; reachability of every state defined in
the specification (so necessary when safety requirements are being defined);
etc. One of the most widely known proposals has been presented by
(Heitmeyer et al., 1996). They propose an automated alternative that
exploits SCR, a tabular specification technique for specifying reactive
systems as finite-state machines.

In order to decide which technique is the most appropriate to be used in
ATRIUM, two key factors should be borne in mind. Firstly, ATRIUM does not
pay special attention to the taxonomy of functional and non-functional
requirements but to a proper separation of concerns by using the (ISO/IEC
9126) as initial framework for requirements specification. However, when
concerns, such as fault tolerance or adaptability, are introduced in an ATRIUM

 5.4 A Process for the ATRIUM Goal Model 135

Goal Model several problems emerge related to the analysis of the model.
Techniques with formal foundations exhibit problems for dealing with such
kind of concerns, therefore, they are not applicable, at least, in a straightforward
way. This means that approaches such as animation, Knowledge based
critiquing, and Consistency checking are not recommendable because they are
based on formal foundations. Secondly, the main aim of ATRIUM is the
analysis of architectural alternatives. Therefore, CBR, knowledge based
critiquing or completeness checking are not helpful to address this topic
because they are focused on different topics as was described above. This
makes emerge Satisfiability Analysis as the most useful approach for our
purposes, and thus, it was the selected alternative for the analysis of the
ATRIUM Goal Model. Its basis and its customization in the context of
ATRIUM are introduced in the following section.

Satisfiability Analysis: a Technique for Automated Reasoning

As was stated above, the Goal-Oriented approach has become highly relevant
in the Requirements Engineering arena mainly because of the advantages it
provides for requirements analysis. Its ability to specify and manage positive
and negative interactions among goals allows the analyst to automatically reason
about alternatives of the system-to-be.

Following the (Robinson et al., 2003) notation, we could describe the main aim
of the satisfiability analysis to hold true the logic statement:

Operationalizations GM

This means that the set of selected Operationalizations exhibits the behavior
required by the Goal Model (GM). We can state that the analysis proceeds to
hold true the set of formulae (1)-(2). In this formulae, ⎯→⎯sat is used to
describe that an operationalization is satisfying a goal; and, sat(gi) is a function
that informs whether a goal is satisfied. (1) describes that there are not
operationalizations conflicts, that is, every operationalization o1 satisfying a goal
g1 can be combined with any other operationalization o2 satisfying another goal
g2, in such a way that both goals are also satisfied. In addition, (2) describes that
there are no conflicts among goals, that is, there is not a goal whose satisfaction
implies that another goal is not satisfied.

1111 :, goGgOo sat⎯→⎯∈∈∃ (1)

2222 :, goGgOo sat⎯→⎯∈∈∃

2121 rroo sat ∧⎯→⎯∧

)()(:, 2121 gsatgsatGgg ¬⇒∈¬∃ (2)

136 CHAPTER 5 Goals: why the system will be

This technique for satisfiability analysis performs a propagation of satisfiability
from the leaves up to the root of the Goal Model looking that the above
formulae hold true throughout the process. The propagation is computed
throughout the set of refinements and dependency relationships that structure
the Goal Model as a directed graph.

However, whenever fault-tolerance or adaptability are concerns of the system-
to-be, techniques for reasoning about ppaarrttiiaall ggooaall ssaattiissffaaccttiioonn
must be introduced. This is because this kind of concerns cannot be said as
totally satisfied but that only degrees of satisfaction (d) can be achieved. In this
case, we cannot use the satisfaction relation as in formula (1), but

dsat⎯→⎯ is
used instead. In this case, the propagation can be carried out by means of two
different approaches:

a) QQuuaalliittaattiivvee aapppprrooaacchh. The idea is to establish positive or negative
influences (for instances by means of ++, +, #, -, --) of alternatives on
goals in the Goal Model. In this sense, the degree of satisfaction does not
have a precise interpretation, i.e., it is not based on domain or system
properties but on the analyst criteria. (Chung et al., 2000) and (Giorgini et
al., 2003) are examples of this approach.

b) QQuuaannttiittaattiivvee aapppprrooaacchh. In this case, weights are set for
contribution relationships describing the satisfaction degrees that goals
have among them. The propagation performs in a similar way to the
previous one, but now a specific value of satisfiability is achieved. Those
weights can be assigned according to quite different criteria:

iii. Subjective assignment where only the analyst criteria is used to decide.
(Giorgini et al., 2003) is a clear example following this approach;

iv. Objective assignment, which is based on domain properties. Some examples
in this category are, for instance, (Letier & Lamsweerde, 2004) for
reasoning about partial satisfiability of requirements, by using probability
density functions; fault trees (Hansen et al., 1998) to analyze if the
system-to-be will break the safety constraints; or queues models (Schopf
& Berman, 1998) for performance evaluation.

We should point out that the quantitative approach takes a wide
background from the Bayesian Network research because they provide a
probabilistic reasoning mechanism. Their ability to reason about the beliefs
that can be held under uncertainty means an ability to model the
uncertainty nature of non-functional requirements.

The main problem, when looking for a proposal for goal analysis is that,
currently, there is not a standard notation for goal-oriented specification but a

 5.4 A Process for the ATRIUM Goal Model 137

diversity of proposals that have emerged. (Kavakli & Loucopoulos, 2005) have
described a comparative framework where more than fifteen proposals
following the Goal-Oriented approach have been studied.

However, there are not only differences among the proposals themselves but
also about how they are applied. If we had a look to the proposals we would
realize that they use different rules to evaluate the satisfiability and/or
deniability of the goals. It does not only depend on the different kinds of
artifacts and relationships but also on how these rules are applied, i.e., what the
result of the evaluation is. In these terms, Table 5-21 shows an example of
several goal-oriented proposals, concretely, (Chung et al., 2000), (Giorgini et al.,
2003), (Letier & Lamsweerde, 2004) and (Yu & Mylopoulos, 1995). We can
appreciate their different notation and some examples of how their rules look
like.

138 CHAPTER 5 Goals: why the system will be

Table 5-21 Mapping between proposals for propagation

Y
U

 e
t

al
.’s

G
oa

l
So

ftg
oa

l

≈T
as

k
 ≈A

ct
or

 ≈R
ef

in
em

en
t

N
ot

 d
ef

in
ed

≈D
E

PE
N

D
E

N
CY

La

be
l∈

{±
Δ∇

}

 N
ot

 d
ef

in
ed

L
et

ie
r

et
 a

l.’
s

G
oa

l
So

ftg
oa

l
Re

qu
ire

m
en

t

E
xp

ec
ta

tio
n

 ≈A
ge

nt

 A
N

D

O
R

N
ot

 d
ef

in
ed

Sa
t(g

d)=
m

in
(g

1,
 g 2

)
w

he
re

g i∈
{S

, D
, U

}

N
ot

 d
ef

in
ed

G
io

rg
in

i e
t

al
.’s

G
oa

l
N

ot
 d

ef
in

ed

N
ot

 d
ef

in
ed

N
ot

 d
ef

in
ed

 E
ve

nt

A
N

D

O
R

La
be

l∈
{+

+
, +

, #
, -

, -
-,D

? ,
S?

 }

? ∈
{+

+
, +

, #
, -

, -
-}

Sa
t(g

d)=
m

in
(g

1,
 g 2

);
D

en
(g

d)=
m

in
(g

1,
 g 2

)
w

he
re

g i∈
{F

,P
,N

}
w

he
n

lab
el=

+
S

Sa

t(g
d)=

m
in

(S
at

(g
s),

 P
);

D
en

(g
d)=

N

w

he
re

g i∈

{F
,P

,N
}

G
h

u
n

g
et

 a
l.’

s

 So
ftg

oa
l

≈S
of

tg
oa

l

≈S
of

tg
oa

l
Cl

aim
s

≈O
pe

ra
tio

na
liz

at
io

n

 A
N

D

O
R

La
be

l∈
{M

A
K

E
+

+
, S

O
M

E
+

,
=

, S
O

M
E

-,
BR

EA
K

--}

Sa
t(g

d)=
m

in
(g

1,
 g 2

)
w

he
re

g i∈

{D
, W

- ,
U

, W
+
,S

,
C}

lab
el=

SO
M

E
+

Sa

t(g
s)=

D
 ⇒

 S
at

(g
d)=

W
-

Sa
t(g

s)=
C
⇒

 S
at

(g
d)=

C
Sa

t(g
s)=

U
 ⇒

 S
at

(g
d)=

U

Sa
t(g

s)=
S
⇒

 S
at

(g
d)=

W
+

C
on

ce
p

t

G
oa

l
So

ftg
oa

l
Re

qu
ire

m
en

t

E
xp

ec
ta

tio
n

Cl
aim

s
A

ge
nt

 (s
of

tw
ar

e,
en

vi
ro

nm
en

t)
E

ve
nt

A

N
D

O
R

CO
N

TR
IB

U
TI

O
N

CO
N

TR
IB

U
TI

O
N

 Nodes Relationships Rules

 5.4 A Process for the ATRIUM Goal Model 139

It can be appreciated that the rules applied to determine the satisfiability of a
goal are dependent on the proposal that is followed. For instance, it can be
appreciated that when the satisfiability for a root node of an AND relationship
is determined, Chung et al.’s proposal use the minimum of an enumerated set
whose values are denied, weakly denied, undecided, weakly satisfied, satisfied or conflict
(the goal is satisfiable and deniable simultaneously). However, Giorgini al.’s
proposal propagates separately the satisfiability and deniability, so the values
can be fully, partially or none. There is no notation for conflict but it can be
detected whenever a goal is satisfied and denied (fully or partially) at the same
time. Although all of them have been defined to analyze the satisfiability, each
one describes a different proposal that could be additionally constrained by the
application domain.

Furthermore, these rules could also be specific for the project or could even be
modified in the same project in order to reflect some additional consideration
during the analysis. Therefore, whereas many algorithms about reasoning with
goal models already exist, the integration of one of them would spoil the
dynamic possibilities and freedom any analyst would want for their projects.
For this reason, a proposal for customizing these techniques according to
his/her specific needs will improve the analysis and decision making process.

For this reason, the followed proposal was to introduce a framework for
exploiting Goal Models that allows the analyst to customize the analysis
mechanisms according to the project needs. This framework is based on the
propagation algorithm proposed by (Giorgini et al. 2003), which establishes the
essential computation of propagation. In addition, the metamodeling technique,
introduced in section 5.2, constitutes a valuable asset to the definition of the
framework. It provides the analyst with extensibility and customization
mechanisms to specify the types of artifacts and relationships of the particular
Goal Model being analyzed. These types are used to describe the necessary
rules that are customized according to the application domain, business rules,
etc. In the following section, it is introduced how this approach has been
defined.

A customizable analysis process

As was stated above (Giorgini et al., 2003)’s algorithm has been selected to
describe the main computation of our proposal because, as far as we know, this
is the only proposal which clearly states this issue. In their proposal, they have
specified that Satisfiabiliaty and Deniability, Sat(gi) and Den(gi) respectively, for
each goal gi is performed separately according to a defined set of rules. Both
Sat(gi) and Den(gi) take their values from the ordered set {None, Partially,
Fully}.

140 CHAPTER 5 Goals: why the system will be

Table 5-22 Qualitative Propagation rules described by (Giorgini et al., 2003), where

⎯⎯→⎯++ S , ⎯⎯→⎯−− S , etc. are describing contribution relationships.

 () 132, ggg and⎯⎯→⎯
12 gg S⎯→⎯+ 12 gg S⎯→⎯− 12 gg S⎯⎯→⎯++

12 gg S⎯⎯→⎯ −−

sat(g1)

⎩
⎨
⎧

⎭
⎬
⎫

)(
),(

min
3

2

gsat
gsat

⎩
⎨
⎧

⎭
⎬
⎫

P
gsat),(

min 2 N sat(g2) N

den(g1)

⎩
⎨
⎧

⎭
⎬
⎫

)(
),(

max
3

2

gden
gden N

⎩
⎨
⎧

⎭
⎬
⎫

P
gsat),(

min 2
N sat(g2)

Table 5-22 shows an example of how these rules look like. For instance, it can
be observed that the contribution relationship cannot be symmetric, that is,
only satisfaction (or denial) is propagated, which is indicated by means of the
attribute S on the relationship (D for denial). This means that only when g2 is
satisfied the contribution relationship propagates its value. For instance,

12 gg S⎯→⎯− means that if g2 is satisfied, then there is some evidence that g1 is
denied. For this reason, it can be appreciated that a rule has been defined for
the deniability of g1 but not for its satisfiability.

Giorgini et al. have also described a proposal to perform a quantitative
propagation of the satisfiability. As was described above, in this case the
satisfaction is not evaluated in an enumerated set but a numeric degree of
satisfaction is determined. It proposes a subjective assignment of the
satisfiability. The reader is referred to the Giorgini et al.’s work to obtain more
details about this proposal.

In addition, Giorgini et al. have also described an algorithm for the propagation
of the satisfiability, which is introduced in Table 5-23. The function
Label_Graph iterates over the set of artifacts of the graph being analyzed to
update the labels, where each label describes the values of satisfiability and
deniability. The iteration ends when the set of labels does not change from
iteration to another. Update_Label is in charge of determining the satisfiability of
the goal Gi. In order to do so, for each relationship having Gi as destination,
new values of satisfiability and deniability are derived applying the rules
(partially described in Table 5-22).
Table 5-23 Giorgini et al.’ algorithm for propagation of the satisfiability

1 label_array Label_Graph(graph (G, R) label_array Initial)
2 label_array Current=Initial;
3 do
4 Old=Current;
5 for each Gi ∈ G do
6 Current[i] = Update_Label(i, (G, R) Old);

 5.4 A Process for the ATRIUM Goal Model 141

7 until not (Current==Old);
8 return Current;

9 label Update_Label(int i; graph (G, R) label_array Old)
10 for each Rj ∈ R s.t. target(Rj) == Gi do
11 satij = Apply_Rules_Sat(Gi, Rj, Old);
12 denij = Apply_Rules_Den(Gi, Rj, Old);
13 return (max (maxj (satij);Old[i].sat), max(maxj(denij);Old[i].den))

In order to allow the analyst to customize the rules to be used during the
propagation process an extension to the algorithm proposed by (Giorgini et al.,
2003) has been defined. In this sense, the customization allows the analyst to
include any kind of relationship and artifact along with their attributes to
describe the propagation rules.

Table 5-24 shows how Giorgini et al.’s algorithm has been modified for
customization purposes. It can be appreciated that lines 11 to 13 of the initial
algorithm have been dropped. Instead, lines 11 to 22 have been added. As can
be noticed, the initial proposal only describes the valuation for two attributes
(sat and den) with a fixed set of rules (lines 11-12 of the Giorgini et al.’s
algorithm). However, with our proposal the set of rules to be evaluated can be
customized according to the specific needs of the project, as will be described
below.
Table 5-24 Propagation algorithm based on (Giorgini et al., 2003)’s proposal

1 label_array Label_Graph(graph (G, R); label_array Initial)
2 Current=Initial;
3 do
4 Old=Current;
5 for each Gi ∈ G do
6 Current[i] = Update_Label(i, (G, R) Old);
7 until (Current==Old);
8 return Current;

9 label Update_Label(int i; graph (G, R); label_array Old)
10 for each Rj ∈ R s.t. target(Rj) == Gi do
11 rules= applicable_rules (Gi; Rj)
12 for each rulek ∈ rules //added
13 if applicable (rulek, Gi, Rj, Old) then //added
14 valuate (rulek, Gi, Rj, Old)
15 return set_valuable_attributes(rules, Gi) //added

16 rules_array applicable_rules(Artifact Gi; Relation Rj)
17 //returns the set of rules that are applicable to the type of artifact of Gi and
18 //the type of relationship of Rj

19 boolean applicable(Rule rulek; Artifact Gi; Relation Rj; label_array Old) //added

142 CHAPTER 5 Goals: why the system will be

20 //it checks whether rulek holds true or not

21 valuate (Rule rulek; Artifact Gi; Relation Rj; label array Old) //added
22 // it applies rulek to compute the valuate of one of the valuable attributes of Gi

It is shown in Table 5-24 that Update_label has one more loop to iterate over the
set of applicable rules for a given relationship Rj having Gi as destination. For
each rule, two steps must be performed. First, applicable determines whether the
condition holds true. If it is true, valuate specifies the computation of the
propagation for the artifact Gi, as a second step. In addition, Update_label
returns a label that is formed by the set of valuable attributes of Gi.

As can be observed, line 13 of the Giorgini et al.’s algorithm specifies that the
maximum values between the old and new value of sat and den are returned.
However, this is not indicated in the proposed alternative. This means that we
are not selecting, by default, the maximum value between the new computed
value and the old value for the attribute being valuated, but the analyst can
decide whatever he/she needs.

In addition, it can be appreciated that rules have been split into two parts for
their definition. The first one describes which condition must hold true to
apply the rule. For the Giorgini et al.’s proposal, these conditions are those
described in the first row of the Table 5-22. The second part describes how the
computation is performed. For the Giorgini et al.’s proposal, it is specified in
the following rows of the table. In view of this detail, Backus-Naur Form
(BNF) notation has been employed to specify the grammar of the condition
and the valuation in Table 5-25 and Table 5-26, respectively.

 Table 5-25 describes two different grammars for the condition. Table 5-25 (b)
describes the grammar when the rule for a dependency relationship is
described. It can be appreciated that logic and relational operators can be
employed to describe the condition. In addition, some functions are also made
available to determine the minimum, maximum, etc, between two values by
means of <pairfunction>. In addition, the <Attribute> is used to describe the
attributes of the source and destination artifacts, and the attribute of the
dependency relationship for which the rule is being described.

Table 5-25 (c) describes the grammar when the rule for a refinement
relationship is described. It must be considered that a refinement relationship
implies that several leaves artifacts are related to a root artifact (for instance,
when the AND relationship is applied in the ATRIUM Goal Model). This
means that group functions could be applied to determine the minimum,
maximum, etc., value of the set of leaves artifacts. These group functions are
described by means of <Function>. It can be appreciated that they can be
applied either on <Attribute> or <LeafAttribute>, that is, the attributes of the

 5.4 A Process for the ATRIUM Goal Model 143

leaves artifacts; or the attributes of each relation between the leaf artifact and
the refinement relationship. As was presented in section 5.3, this expressiveness
can be very helpful when any information regarding this link must be recorded
in the model to be lately used.

Both in (b) and (c), there is no mention to whether a quantitative or a
qualitative approach is applied. When the condition is being described any type
of attribute, artifact, and relationship can be needed to describe which
condition must be hold, providing the analyst with more expressive power. For
this reason, any restriction has been considered to describe the BNFs of the
condition.
Table 5-25. BNFs for describing condition grammar

(a) Sets and Terminals for the condition grammars
! --- Sets
{ID Head} = {Letter} + [_]
{ID Tail} = {Alphanumeric} + [_]
{String Chars} = {Printable} + {HT} - ["]
! --- Terminals
Identifier = {ID Head}{ID Tail}*
StringLiteral = '"' {String Chars}* '"'
DecLiteral = {Digit}+ ([UuLl] | [Uu][Ll] | [Ll][Uu])?
RealLiteral = {Digit}*'.'{Digit}+

(b) Describing BNF for condition grammar when a dependency relationship is
implied
"Start Symbol" = <conditionDependency>
! --- Rules
<conditionDependency> ::= <OrExp>

<OrExp> ::= <OrExp> '||' <AndExp>
 | <AndExp>

<AndExp> ::= <AndExp> '&&' <Expression>
 | <Expression>

<Expression> ::= <Add Exp> '>' <Add Exp>
 | <Add Exp> '<' <Add Exp>
 | <Add Exp> '<=' <Add Exp>
 | <Add Exp> '>=' <Add Exp>
 | <Add Exp> '==' <Add Exp> !Equal
 | <Add Exp> '<>' <Add Exp> !Not equal
 | '(' <OrExp> ')'

<Add Exp> ::= <Add Exp> '+' <Mult Exp>
 | <Add Exp> '-' <Mult Exp>
 | <Mult Exp>

<Mult Exp> ::= <Mult Exp> '*' <Value>

144 CHAPTER 5 Goals: why the system will be

 | <Mult Exp> '/' <Value>
 | <Value>

<Value> ::= <pairfunction>
 | <Literal>
 | <Attribute>
 | '(' <Add Exp> ')'

<pairfunction> ::= <KindFunction> '(' <Value> ',' <Value> ')'

<KindFunction> ::= 'max' | 'min' | 'avg' | 'sum'

<Literal> ::= StringLiteral
 | DecLiteral
 | RealLiteral

<Attribute> ::= Identifier'.'Identifier

(c) Describing BNF for condition grammar when a refinement relationship is
implied
"Start Symbol" = <conditionRefinement>
! --- Rules
<conditionRefinement> ::= <OrExp>
<OrExp> ::= <OrExp> '||' <AndExp>
 | <AndExp>

<AndExp> ::= <AndExp> '&&' <Expression>
 | <Expression>

<Expression> ::= <Add Exp> '>' <Add Exp>
 | <Add Exp> '<' <Add Exp>
 | <Add Exp> '<=' <Add Exp>
 | <Add Exp> '>=' <Add Exp>
 | <Add Exp> '==' <Add Exp> !Equal
 | <Add Exp> '<>' <Add Exp> !Not equal
 | '(' <OrExp> ')'

<Add Exp> ::= <Add Exp> '+' <Mult Exp>
 | <Add Exp> '-' <Mult Exp>
 | <Mult Exp>

<Mult Exp> ::= <Mult Exp> '*' <Value>
 | <Mult Exp> '/' <Value>
 | <Value>

<Value> ::= <function>
 | <pairfunction>
 | 'count' '(' <Attributes> ',' <Literal>')'
 | <Literal>
 | <Attribute>
 | '(' <Add Exp> ')'

 5.4 A Process for the ATRIUM Goal Model 145

<Function> ::= <KindFunction> '(' <Attributes> ')'

<pairfunction> ::= <KindFunction> '(' <Value> ',' <Value> ')'

<KindFunction> ::= 'max' | 'min' | 'avg' | 'sum'

<Literal> ::= StringLiteral
 | DecLiteral
 | RealLiteral

<Attributes>::= <LeafAttribute>
 | <Attribute>

<LeafAttribute> ::= Identifier'.Leaf.'Identifier

<Attribute> ::= Identifier'.'Identifier

Table 5-26 shows the BNF for the valuation grammar. It can be appreciated
that in this case, a distinction has been made not only for the relationship but
also for the type of artifact being evaluated. Both the qualitative and
quantitative approaches for propagation are supported, so that both
enumerated and numeric attributes can be used when the valuation of a rule is
described. For this reason, the arithmetic operators (+, -, *, /) are available only
for numeric attributes in Table 5-26 (b) and (d), but not for the enumerated
ones in Table 5-26 (c) and (e). In a similar manner to the condition, group
functions are also available when the valuation of a rule for a refinement
relationship is described. However, relational and logic operators cannot be
applied in the valuation of any rule. It must be highlighted that the attribute
being evaluated can be employed when the rule is described. Because of this,
the analyst can establish if the new value of the attribute being evaluated will be
the minimum or the maximum between the old and the new value.
Table 5-26 BNF for describing valuation grammar

(a) Set and Terminals for the valuation grammars
! --- Sets
{ID Head} = {Letter} + [_]
{ID Tail} = {Alphanumeric} + [_]
{String Chars} = {Printable} + {HT} - ["]

! --- Terminals

Identifier = {ID Head}{ID Tail}*
StringLiteral = '"' {String Chars}* '"'
DecLiteral = {Digit}+ ([UuLl] | [Uu][Ll] | [Ll][Uu])?
RealLiteral = {Digit}*'.'{Digit}+

146 CHAPTER 5 Goals: why the system will be

(b) Valuation when a refinement relationship has as destination artifact with a
Numeric attribute being valuated
"Start Symbol" = <valuationNumericRefinement>
! --- Rules
<valuationNumericRefinement> ::= <Add Exp>

<Add Exp> ::= <Add Exp> '+' <Mult Exp>
 | <Add Exp> '-' <Mult Exp>
 | <Mult Exp>

<Mult Exp> ::= <Mult Exp> '*' <Value>
 | <Mult Exp> '/' <Value>
 | <Value>

<Value> ::= <function>
 | <pairfunction>
 | 'count' '(' <Attributes> ',' <Literal> ')'
 | <Attribute>
 | <Literal>
 | '(' <Add Exp> ')'

<Function> ::= <KindFunction> '(' <Attributes> ')'

<pairfunction> ::= <KindFunction> '(' <Value> ',' <Value> ')'

<KindFunction> ::= 'max' | 'min' | 'avg' | 'sum'

<Literal>::= DecLiteral
 | RealLiteral

<Attributes>::= <LeafAttribute>
 | <Attribute>

<LeafAttribute> ::= Identifier'.Leaf.'Identifier

<Attribute> ::= Identifier'.'Identifier

(c) Valuation when a Refinement relationship has as destination artifact with an
Enumerated attribute being valuated
"Start Symbol" = < valuationEnumeratedRefinement >
! --- Rules
<valuationEnumeratedRefinement> ::= <Value>

<Value> ::= <function>
 | <pairfunction>
 | 'count' '(' <Attributes> ',' <Literal> ')'
 | <Attribute>
 | <Literal>

<Function> ::= <KindFunction> '(' <Attributes> ')'

<pairfunction> ::= <KindFunction> '(' <Value> ',' <Value> ')'

 5.4 A Process for the ATRIUM Goal Model 147

<KindFunction> ::= 'max' | 'min'

<Literal>::= StringLiteral
 | DecLiteral
 | RealLiteral

<Attributes>::= <LeafAttribute>
 | <Attribute>

<LeafAttribute> ::= Identifier'.Leaf.'Identifier

<Attribute> ::= Identifier'.'Identifier

(d) Valuation when a Dependency relationship has as destination artifact with a
Numeric attribute being valuated
"Start Symbol" = < valuationNumericDependency >
! --- Rules
<valuationNumericDependency> ::= <Add Exp>

<Add Exp> ::= <Add Exp> '+' <Mult Exp>
 | <Add Exp> '-' <Mult Exp>
 | <Mult Exp>

<Mult Exp> ::= <Mult Exp> '*' <Value>
 | <Mult Exp> '/' <Value>
 | <Value>

<Value> ::= <pairfunction>
 | <Attribute>
 | <Literal>
 | '(' <Add Exp> ')'

<pairfunction> ::= <KindFunction> '(' <Value> ',' <Value> ')'

<KindFunction> ::= 'max' | 'min' | 'avg' | 'sum'

<Literal>::= DecLiteral
 | RealLiteral

<Attribute> ::= Identifier'.'Identifier

(e) Valuation when a Dependency relationship has as destination artifact with
an Enumerated attribute being valuated
"Start Symbol" = < valuationEnumeratedDependency>
! --- Rules
<valuationEnumeratedDependency> ::= <Value>

<Value> ::= <pairfunction>
 | <Attribute>
 | <Literal>

148 CHAPTER 5 Goals: why the system will be

<pairfunction> ::= <KindFunction> '(' <Value> ',' <Value> ')'

<KindFunction> ::= 'max' | 'min'

<Literal>::= StringLiteral
 | DecLiteral
 | RealLiteral

<Attribute> ::= Identifier'.'Identifier

It is worthy of note that a sugar syntax has also been used to facilitate the
description of the source and destination artifacts. Concretely, ““_S”” is used as a
post-fix for the source artifact; ““_i”” is employed when source artifacts are
leaves; and, ““_D”” is used to specify the destination artifact. It facilitates the
legibility of the rule and it enables that the destination artifact can be employed
when the condition and the valuation are described.

For instance, considering how the CONTRIBUTION relationship (Table 5-22)
is evaluated by Giorgini et al. we can appreciate that both the state of this
relationship and the source Goal (GS) are used to determine if the rule can be
applied or not. In this sense, the condition could be described as: GS(satisfied)
&& label=--S, i.e., GS has an attribute that describes if GS is satisfied. It is
similarly applied to label, i.e., CONTRIBUTION relationship needs an attribute
for specifying—S as its kind of contribution. In these terms, the best alternative
is to represent these attributes following a syntax as described in Table 5-26 for
<identifier>, i.e., by prefixing the attribute name with the name of the artifact or
the relationship (see (3)).

(Goal_S.satisfied=‘Full’) and (CONTRIBUTION.contributes)= ‘–S’ (3)

In addition, when refinement relationships are considered, for instance an
AND relationship, group functions can be used to determine the condition
being applied to the set of artifacts G1 to Gn. For instance, (4) describes that
the valuation is performed when the destination Goal has Performance as
concern, its priority is high and, at least, it has two fully satisfied leaves goals.
 (Goal_D.concern=‘Peformance’) and (Goal_D.priority=‘High’) and

count(Goal_i.satisfied,‘F’)>=2
(4)

As was stated above, only enumerated attributes are made available to the
analyst while describing qualitative valuations. This restriction is straightforward
so that possible valuations are always constrained to a set of values. For
instance, when considering the satisfiability, as described by Giorgini et al., the
set {Full, Partial, None} is used. It also facilitates the valuation of this kind of
attributes by describing functions for enumerations (<pairfunction>). This
requires the set to be defined as an ordered set in order to apply properly these

 5.4 A Process for the ATRIUM Goal Model 149

functions (min and max). This means that the valuation for an AND
relationship could be easily described as appears in (5).

Goal_D.sat = min(Goal_i.satisfied) (5)

Related to the artifacts involved in a refinement relationship, aggregated
functions (<function_enum>) can be used for its treatment as described in (6),
where the satisfiability is the sum of the satisfiabilities of its leaves goals minus
the product of their satisfiability.

Goal_D.sat = sum(Goal_i.sat)- prod(Goal_i.sat) (6)

Taking into account how the grammar for valuation and condition has been
defined, the rules established by Giorgini et al.’s are easily described using the
proposal. Table 5-27 presents an example of how the rules shown in Table 5-22
can be described by means of this proposal.
Table 5-27 Describing the Giorgini et al.’s rules using the proposal

Relationship Condition Valuation

Sat (() 132, ggg and⎯⎯→⎯) GoalD.Sat =
max((min(Goali.Sat),
GoalD.Sat)

Den (() 132, ggg and⎯⎯→⎯) GoalD. Den =
max(max(Goali.Den),
GoalD. Den)

Sat(12 gg S⎯→⎯+)

(Contribution.contributes=’+S’) GoalD.Sat =
max(min(GoalS.Sat, ’P’),
GoalD.Sat)

Den(12 gg S⎯→⎯+) (Contribution.contributes =’+S’) GoalD.Den =
max(‘N’, GoalD.Den)

Sat(12 gg S⎯→⎯−) (Contribution.contributes =’-S’) GoalD.Sat =
max(‘N’, GoalD. Sat)

Den(12 gg S⎯→⎯−) (Contribution. contributes =’ -S) GoalD. Den =
max(min(GoalS.Sat, ’P’)),
GoalD. Den)

Sat(12 gg S⎯⎯→⎯++) (Contribution.contributes =’ ++S’)

GoalD.Sat =
max(GoalS.Sat , GoalD.
Sat)

Den(12 gg S⎯⎯→⎯++) (Contribution.contributes =’++S’) GoalD.Den =
max(‘N’, GoalD. Den)

Sat(12 gg S⎯⎯→⎯ −−) (Contribution.contributes =’—S’) GoalD.Sat =
max(‘N’, GoalD. Sat)

Den(12 gg S⎯⎯→⎯ −−) (Contribution.contributes =’—S’) GoalD.Den =
max(GoalS.Sat , GoalD.
Den)

150 CHAPTER 5 Goals: why the system will be

These rules would be included in the preceding algorithm, in such a way that
applicable includes the condition to determine if the valuation can be performed,
and valuate includes the valuation associated to each rule. It must be highlighted
that this is not a theoretical proposal, but it can be put into practice by means
of an add-in of MORPHEUS, the ATRIUM support tool. How this add-in has
been developed using the facilities of dynamic compilation of code is presented
in section 9.3.3 along with the capabilities it provides. However, Figure 5-9
depicts how the tool shows the results of the propagation performed using the
Giorgini et al.’s rules. It describes the initial values before the propagation, and
the computed values after the propagation. On the right side appears the type
of artifacts and relationships used for describing the rules.

Figure 5-9 Propagation results for a simplified model of the Teachmover

However, it must be emphasized that the proposal is more powerful than it was
thought at the beginning. As can be noticed, the computation can be performed
using any type of artifact or relationship along with any attribute they have.
This means that the satisfiability analysis can be customized, for instance, to
take into account the variability expressiveness of the ATRIUM Goal Model,
described in the section 5.3. In this case, it has to be considered that to describe
a variation point its multiplicity must be specified, i.e., how many variants must
exist at the same time in a product or architecture when the variability is being
resolved. Table 5-28 shows how the rules for the OR relationship has been
modified for dealing with variability expressiveness.
Table 5-28 Describing variability rules using the proposal

Relationship Condition Valuation

Sat (() 132, ggg or⎯→⎯) (count(Goal_i.Sat, ““+S””) + Goal_D.Sat =

 5.4 A Process for the ATRIUM Goal Model 151

count(Goal_i.Sat, ““++S””)) >=
OR.multiplicity.min) &&
(count(Goal_i.Sat, ““+S””) +
count(Goal_i.Sat, ““++S””)) <=
 OR.multiplicity.max)

max (max(Goal_i.Sat),
Goal_D.Sat)

Den (() 132, ggg or⎯→⎯) (count(Goal_i.Sat, ““+S””) +
count(Goal_i.Sat, ““++S””)) <
OR.multiplicity.min) ||
(count(Goal_i.Sat, ““+S””) +
count(Goal_i.Sat, ““++S””)) >
OR.multiplicity.min)

Goal_D.Den=
min(max(Goal_i.Sat),
““P””)

Analysing architectural alternatives

We should draw your attention to a key point. ATRIUM has been described to
provide the analyst with guidance in the process of architectural specification. It
was presented in section 5.3.1 that operationalizations are a building block in
the construction of the ATRIUM Goal Model. Each operationalization
describes an architectural alternative that is introduced to satisfy at least one
requirement.

Considering this, the propagation, as was described in the previous section, can
be applied with a straightforward purpose: FFoorrwwaarrdd rreeaassoonniinngg, i.e., it
takes into account that certain leaf goals are fulfilled to determine whether all
root goals are also fulfilled. Specifically, a set of Operationalizations could be
set as Satisfied to determine if the ATRIUM Goal Model is satisfied and,
consequently, the requirements are met.

This means that the activity Analysis, introduced in the Figure 5-5, could be
applied as described in Figure 5-10. Firstly, the set of rules to compute the
propagation must be selected, if it was previously described, or specified, using
the Goal Model as an input for the activity. In case the rules are being specified,
the Metamodel of the Goal Model is used to describe properly the rules
providing the analyst with the types of artifacts, dependencies and refinements
used in its definition. In addition, any additional information, such as standards,
recommendations, etc, could also be used for the description of the rules.

Once the rules are available, the analyst must set the satisfiability of the
operationalizations, according to the specific rules that are in use. For instance,
it could be set to ““F””, ““P”” or ““N”” if the Giorgini et al.’s proposal was used.
These values are used as an input to trigger the propagation, as described in the
previous section, and obtain the valuation results, i.e., a table where each
artifact, along with its initial and computed values, is shown.

152 CHAPTER 5 Goals: why the system will be

Figure 5-10 Describing the Analyze activity

The valuation results are used as an input to determine whether the rules
should be modified, reinitializing the process, or the operationalizations
satisfaction should be changed to try with different architectural alternatives.
However, if the analyst considers the results are the expected ones, he/she can
proceed to the next activity of the methodology (chapter 7). In order to
determine which alternative must be selected in the decision node, the analyst
looks for conflicts in the results. For instance, when a goal is simultaneously
satisfied or denied; or, if there are goals that have not been satisfied.

There is an alternative to that proposed in this section called BBaacckkwwaarrdd
rreeaassoonniinngg.. It tries to determine the set of leaf goals that together fulfil all
root goals. In this case, the analyst does not have to specify the satisfiability of
the operationalization prior to computing the propagation, but an automatic
process is performed. It is oriented to iteratively change the value of
satisfiability of the operationalizations, propagate their values and detect how
much conflicts exist for a specific set. This process converges when there are
no conflicts, a reduced number is detected, or, there are no more alternatives to
try. This kind of reasoning has not been included because the main

 5.5 Conclusions 153

computation to be used is the same as the one previously described. The
difference comes from the computation to select the alternatives and iterating
repeatedly over them.

5.5 CONCLUSIONS

Goal Models are a very promising technique to improve requirements
elicitation. Thanks to their especial capabilities to analyze goals/requirements,
they can be used at early stages of the requirements engineering process, when
alternatives are explored, conflicts are identified and, in general, the project
phase is the requirement negotiation. However, Goal Model techniques must
face a common obstacle in RE: the diversity of proposals with an evident lack
of integration and the specific needs of the project (or domain) which usually
requires a customization of the requirement method and its notation.

One of the main challenges for RE is to prove in practice the advantages of the
proposed techniques, providing facilities for the integration and adaptation of
RE technology to real-life projects. Each project has its specific needs and
requires to select, integrate and customize suitable techniques to define its RE
method. In this chapter, we have presented an approach based on
metamodeling to offer such an integration and adaptability.

We have dealt with the two challenges, the diversity of approaches and the need
of adaptation, by using metamodeling. However, one important problem when
defining highly expressive models (which can handle a wide range of types of
artifacts and/or dependencies) is achieving a consensus with respect to their
semantics. In order to establish a global set of RE concepts and the required
expressiveness, we have studied four representative techniques for
requirements specification. The main features of our approach are:

− Definition of a metamodel that includes the core set of concepts that
corresponds to the essential expressiveness of some of the most popular
and/or advanced approaches in requirements engineering. It allows us to
adapt and extend a core set of concepts keeping a suitable level of
semantics consistence.

− Establishment of guidelines for adapting the metamodel to specific needs,
according to the required expressiveness. In this way and according to the
project specific needs, it is provided a proper integration as well as
scalability from simpler up to other more sophisticated RE techniques.

154 CHAPTER 5 Goals: why the system will be

We consider that our proposal constitutes a step forward in achieving a
successful application of RE techniques in real-life projects. We have obtained
a preliminary validation of our proposal through its application in the medium-
size project EFTCoR with satisfactory results. In addition, we believe that our
proposal provides the analyst with an additional advantage: traceability between
different requirements specifications. Because any type of artifact and
relationship can be described, it would be possible, for instance, to introduce
specifications following a goal-oriented approach and its traceability to a
viewpoint approach to analyze the specification from different perspectives and
techniques.

Using the described proposal, the ATRIUM Goal Model has been defined. This
Goal Model offers a relevant improvement for the specification of
requirements: it integrates the advantages of three prominent and modern
approaches: Goal-Oriented and Aspect-Oriented Requirements Engineering,
and Variability Management.

The Goal-Oriented approach provides us with the necessary capabilities for
analyzing architectural alternatives: the main aim of ATRIUM. It also facilitates
the backward traceability because each architectural alternative is related to the
requirements that have determined its definition. In addition, the use of the
operationalizations allows a delayed decision of how to split the work between
the system-to-be and the environment. This idea is highly powerful because it
provides us with more flexibility to define different systems depending on our
resources, time, etc., and, thus, following the (Lauesen, 2003)’s
recommendations.

The introduction of concepts from the AORE field facilitates that the
crosscutting inherent to any requirements specification can be properly
specified and managed. This is also a step ahead to the proper management of
the called quality requirements. It must be emphasized that, in our proposal, the
aspect concept does not explicitly appear as a constructor, as in other works.
Instead, the candidate aspects implicitly arise on those goals/requirements with
crosscutting relationships. This is because the aspect concept is specified in
another model of the ATRIUM approach, as will be described in the next
chapter.

The introduction of the expressiveness for variability management was also
compulsory in the description of the proposal. The EFTCoR has been the
context that has motivated the definition of ATRIUM. This project exhibits
specific needs in terms of product lines and dynamic architectures that must be
specified just from the very beginning of the specification.

 5.5 Conclusions 155

Another advantage that offers our proposal is the use of the ISO/IEC 9126 as
a starting point to establish the possible concerns of the system-to-be.
Additionally, it is possible to tailor, in terms of content, the SRS to the IEEE
830-1998 but with meaningful advantages for elaboration and organization of
the requirement specification.

We have exploited our metamodeling proposal to provide customizable
support in Goal Model propagation analysis. We have illustrated how the
propagation rules can be customized according to the needs of expressiveness
of the project. It has been used to assist in the process of selecting which
architectural alternatives contribute more positively and with fewer conflicts to
the satisfaction of the requirements of the system to be. It must be taken into
account, that rules can be described for any kind of artifact or relationships.
This means that its use is not only constrained to the satisfiability analysis but
also aims that are more ambitious can be achieved with their application. For
instance, they could be used to determine the propagation of changes in the
specification. We consider that they are just a first step towards describing an
analysis process which could be called concern-oriented, i.e., a process where
the rules to be applied depend on the concern that is being considered.

In addition, it should be mentioned that this is not a theoretical proposal but a
tool, called MORPHEUS, gives assistance along the process. It allows the
analyst to describe both the Metamodel and its immediate use for modelling
purposes. It also facilitates the proper support for describing the rules analysis
and its later propagation.

In order to facilitate the specification and analysis of the ATRIUM Goal Model
a detailed process has been defined. It details the set of steps to be performed,
the guidelines that can help in the process, the exploitation of the ISO/IEC
9126, etc.

The work related to the definition of the metamodeling proposal and its use for
the definition and exploitation of the ATRIUM Goal Model has been presented
in the following publications:

− E. Navarro, P. Letelier, J. A. Mocholí, I. Ramos, “A Metamodeling
Approach for Requirements Specification”, Journal of Computer
Information Systems, 46(5): 67-77, Special Issue on Systems Analysis and
Design, ed. Keng Siau.

− E. Navarro, P. Letelier, D. Reolid, I. Ramos, “Configurable Satisfiability
Propagation for Goal Models using Dynamic Compilation Techniques”,
Information Systems Development Advances in Theory, Practice, and
Education (to be published).

156 CHAPTER 5 Goals: why the system will be

− E. Navarro, P. Letelier, I. Ramos, “Integrating Expressiveness of Modern
Requirements Modeling Approaches”, Proceedings 3rd International
Conference on Software Engineering Research, Management &
Applications (SERA 2005), Mount Pleasant, Michigan, USA, August 11 -
13, 2005, IEEE Computer Society, ISBN 0-7695-2297-1.

− E. Navarro, P. Letelier, I. Ramos, “Goals and Quality Characteristics:
Separating Concerns”, Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop, collocated to OOPSLA
2004, Monday, October 25, 2004, Vancouver, Canada.

− E. Navarro, P. Letelier, I. Ramos, “UML Visualization for an Aspect and
Goal-Oriented Approach”, The 5th Aspect-Oriented Modeling Workshop
(AOM’04), collocated to UML 2004 Conference, Monday, October 11,
2004, Lisbon, Portugal.

− E. Navarro, I. Ramos, J. Pérez, “Goals Model Driving Software
Architecture”, Proceedings 2nd International Conference on Software
Engineering Research, Management & Applications (SERA 2004), Los
Angeles, California, USA, May 5-17, 2004, ISBN 0-97007769-6, pp. 205-
212.

− E. Navarro, P. Letelier, I. Ramos, “Un Marco de Trabajo para Integrar y
Adaptar Múltiples Enfoques para Especificación de Requisitos”, Jornadas
de trabajo DYNAMICA, Archena, Spain, Novembre 17-18, 2005.

− E. Navarro, P. Letelier, I. Ramos, P. Sánchez, B. Alvarez, “Variabilidad en
un marco de requisitos basado en orientación a objetivos”, Jornadas de
trabajo DYNAMICA, Almagro, Spain, April 21-22, 2005.

− E. Navarro, P. Letelier, I. Ramos, B. Alvarez, “Especificación de requisitos
software basada en características de calidad, separación de concerns y
orientación a objetivos”, IX Jornadas de Ingeniería del Software y Bases de
Datos (JISBD’2004), Málaga, Novembre 10-12, 2004.

− E. Navarro, P. Letelier, I. Ramos, B. Alvarez, “Orientación a aspectos y
Orientación a objetivos: una propuesta para su integración”, Desarrollo de
Software Orientado a Aspectos, collocated to IX JISBD’2004, Málaga,
Spain, Novembre 9, 2004.

− E. Navarro, P. Letelier and I. Ramos, ATRIUM, Arquitecturas Software a
partir de Requisitos - El Modelo de Objetivos”, Jornadas de trabajo
DYNAMICA, Málaga, Spain, Novembre 11, 2004.

-157-

“Although nature commences with reason and ends
in experience it is necessary for us to do the

opposite, that is to commence with experience and
from this to proceed to investigate the reason”—

Leonardo da Vinci.

CHAPTER 6

6 Playing with ATRIUM Goal Models

6.1 INTRODUCTION

In order to offer a proper solution from the perspective of RE to the tele-
operated domain, it was necessary to understand what problematic exists in this
domain. For this reason, the document ““Remote Control Unit Requirements””
of the EFTCoR (RDCU, 2003) was the starting point to gain an overview of
this kind of systems. This document exhibits requirements of both the tele-
operated systems and the Robotic Devices Control Unit (RDCU, Figure 4-2).
This study allowed us to identify several key points for the validation of our
proposal. These points are described in the following:

− Establishment of System Requirements. It is necessary to take into account that
while describing the tele-operated systems it is usual that several types of
hardware/software components can be employed to satisfy the same
requirements but with a different assignment of responsibilities
hardware/software. Each one has different “qualities” in terms of
performance, safety, and, specially, cost. This means that to delay the
selection of this assignment to later stages provides the development
process with greater flexibility. This leads to a decision: not to perform a
premature decision of hardware or software requirement but to work with
system requirements. This delayed decision about the elements to be
included in the system-to-be is facilitated by means of the
operationalizations. They describe how the requirements are met by the

158 CHAPTER 6 Playing with ATRIUM Goal Models

system-to-be. This means that while describing the requirements of the
system, no decision about which services are to be performed by each part
of the system or the environment is made.

− Organization of the Specification. The analysis of the RDCU document
highlighted how tangled the requirements of the system were. This means
that a proper organization of the specification was unavoidable for its
appropriate exploitation. This point was crucial because of the high number
of requirements of the EFTCoR. In this sense, (Lemos & Saeed, 1995)
have highlighted that it is highly recommendable to organize the
specification according to the operation mode of systems. This
recommendation was also taken into consideration for the specification of
the requirements.

− Product families. When the document describing the EFTCoR project was
analysed, it was frequent to find generic requirements so that they facilitate
the description of several specific systems. This kind of requirements is
usually employed in the definition of product lines. This was the reason to
perform the specification of the EFTCoR from this perspective,
elaborating a specification for a family of products exploitable for the
derivation of products. Some sentences, found in the reference documents,
as for instance:

The RCU should be adaptable to different positioning systems. OR/AND.
Different RDCUs should be developed for the different positioning systems.

The RDCU should be adaptable to different combinations of primary and
secondary positioning systems. OR/AND. Different RDCUs should be developed
for the primary and secondary positioning systems and they should be capable of
working in a coordinated way.

It must be highlighted that EFTCoR is hardware intensive because they are to
be formed by robotic units in charge of specific tasks. Software is usually used
to control the behaviour of these robotic devices. Figure 4-2 sketches how
EFTCoR is formed by five sub-systems. Cleaning Tools, Recycling System,
Vision System, and Positioning Systems, both Primary and Secondary, are the
mechanical components of the EFTCoR. The aforementioned RDCU
integrates all the required functionality to manage the EFTCoR. We focused
our efforts on the RDCU mainly because its Software Architecture is highly
relevant to be compliance with the constraints described in section 4.2.1.

Figure 5-5 depicts the activities for the ATRIUM Goal Model. In the following
sections, the accomplished specification of the EFTCoR is presented to
provide a better understanding of both the process and the model. The full

 6.2 Elicitation and Specification 159

description of the RDCU is not presented in this section because it is very
extensive and it would not help to the understanding of the work. This has
motivated that only a partial view of the specification is introduced but
providing enough details as to put into practice the proposal and comprehend
its advantages.

6.2 ELICITATION AND SPECIFICATION

According to the process described in Figure 5-5, the first activity to perform
was the Elicitation&Specification. This activity is oriented to describe the Goal
Model and is unfolded in several steps (Figure 5-6) guiding this process. The
first step was the identification of the concerns of the EFTCoR system using
the ISO/IEC 9126. As was described in section 5.4.1(ISO/IEC 9126: Selecting
and Identifying Concerns), five quality characteristics (maintainability, performance
–efficiency in the ISO9126–, reliability, safety and security) are going to be selected
to apply this process. This is because according to the (Bosch, 2000)’s
recommendations they have the greatest impact on the SA. In addition,
suitability is also employed along the process because the user objectives and
needs are going to be described under this characteristic.

The following sections introduce the description that was performed for each
of the selected quality characteristics and sub-characteristics. It will facilitate a
better guidance of the explanation and a proper organization of the
specification. In addition, it must be underlined that the step Operationalization is
especially meaningful for the ATRIUM aim: Software Architecture description.
For this reason, it is presented at the end of this section.

6.2.1 Functionality

Suitability

The ISO/IEC9126 describes this software quality as:

“The capability of the software product to provide an appropriate set of functions for
the specified tasks and user objectives.”

Taking into account this definition, it seems obvious that the description of the
main goals of the EFTCoR had to be defined as refinements of this
characteristic. Considering the described patterns we could state that one of the
goals of the system would be:

160 CHAPTER 6 Playing with ATRIUM Goal Models

GOAL
NAME GOA.1
DESCRIPTION RDCU should be suitable for the user needs
PATTERN 6 achieve
CONCERN suitability
PRIORITY High
AUTHOR Elena Navarro
CREATIONDATE 10/10/2006

In order to obtain the goals of the EFTCoR, the (EFTCOR, 2003) document
was used as available information. Several works for dealing with robotic
specifications were also employed as an input for the process. Especially, it was
taken into account the (Lemos & Saeed, 1995)’s recommendations to split the
specification according to the operation modes of systems. During the
elaboration of the specification, six operation modes were detected: working,
calibration, learning, diagnosis and configuration (these four are maintenance modes)
and safe stop. This means that six goals were described as refinements of the one
described above. For a better understanding of the case study, we only include
the Working Mode. This means that all the goals, which are described in the
following, are catalogued according to this operation mode. Figure 6-27 shows
how these sub-goals are refining GOA.1 by means of an AND refinement
relationship. This means that all of them must be met by the system-to-be. All
of them use the pattern Achieve because they describe a property to be
eventually held by the goal.

GOAL
NAME GOA.2
DESCRIPTION RDCU allows working operation
PATTERN achieve
CONCERN suitability
PRIORITY High

6 In the following, both AUTHOR and CREATIONDATE are not described because they are

not going to be exploited for the process. It can also be observed that the formalization of the
Goals was not considered either.

7 In the following, the graphical notation is used instead of the textual one.If any attribute, such
as pattern or concern, changes, the textual notation will be introduced

 6.2 Elicitation and Specification 161

GOAL
NAME GOA.3
DESCRIPTION RDCU allows safe stop
PATTERN achieve
CONCERN suitability
PRIORITY High

GOAL
NAME GOA.4
DESCRIPTION RDCU allows maintenance operation.
PATTERN achieve
CONCERN suitability
PRIORITY High

GOAL
NAME GOA.5
DESCRIPTION RDCU allows learning
PATTERN achieve
CONCERN suitability
PRIORITY High

GOAL
NAME GOA.6
DESCRIPTION RDCU allows calibration
PATTERN achieve
CONCERN suitability
PRIORITY High

GOAL
NAME GOA.7
DESCRIPTION RDCU allows diagnosis
PATTERN achieve
CONCERN suitability
PRIORITY High

GOAL
NAME GOA.8
DESCRIPTION RDCU allows configuration
PATTERN achieve
CONCERN suitability
PRIORITY High

162 CHAPTER 6 Playing with ATRIUM Goal Models

Figure 6-1 Refining the GOA.1 RDCU should be suitable for the user needs.

Considering the EFTCoR document, we wondered why the EFTCoR was
necessary, and as a result, two new goals emerged refining the goal GOA.2.
Figure 6-2 shows how the refinement proceeds.

Figure 6-2 Refining GOA.2 RDCU allows working operation

Related to GOA.2, it is clear that the main goal to be achieved by the RDCU is
to be able to clean the hull surface. While this cleaning is performed, several
operations can be performed, such as: fresh water washing previous to blasting
and painting after blasting. This means that a family of tools can be attached to
the RDCU to either perform different operations (i.e. blasting or painting) or
the same operations in a different way (i.e. coating removal by blasting or by

 6.2 Elicitation and Specification 163

pressured water). This means that the previous GOA.9 could be refined in
several goals. It can be observed that an OR relationship was used to describe
the refinement so that GOA9 is to be satisfied if any one of them is satisfied.
This means that at least one of the goals must be met by the system-to-be.
Taking into account the description of an OR, presented in Table 5-4, two
attributes were described: min that was set to 1; and, max that was set to 5, i.e.,
the maximum number of alternatives.

Figure 6-3 Refining GOA.9 RDCU allows cleaning operations

When this level of refinement is achieved, requirements can be described for
the RDCU, that is, goals which are verifiable in the system-to.-be. In this sense,
the GOA.15 could be refined as described in Figure 6-4. Considering that it
describes the management of objects, the robot could open and close the tool
attached to it to manage these objects, for this reason, REQ.1 and REQ.2 were
described.

Figure 6-4 Refining GOA.15 RDCU allows handling objects

GOA.10 states that RDCU should coordinate positing systems. It must be
considered that EFTCoR is a family of robots that should be able to work with

164 CHAPTER 6 Playing with ATRIUM Goal Models

a wide diversity of hulls such as tankers (ships designed to carry bulk liquids,
particularly oil) or frigates (ships smaller and faster than a ship-of-the-line, used
for patrolling and escort work). This diversity also implies that the EFTCoR
should be able to move in different areas such as vertical surfaces or bows (the
foremost point of the hull of a ship or boat). For this reason, it seems obvious
that the EFTCoR should be able to move across wide surfaces but also to make
precise movements.

Figure 6-5 Refining GOA.10 RDCU allows coordinate positioning systems

GOA.11 describe that EFTCoR has to move across wide areas, although they
can be either horizontal, such as the bows or the dockyard, or vertical. This
means that the following goals can be described:

Figure 6-6 Refining GOA.18 RDCU allows movement across wide areas

As described in Figure 6-7, GOA.19 can be refined. But, similarly to GOA.15
(Figure 6-4), it is refined into requirements. We should consider that in
EFTCoR systems, when dealing with such kind of precise movements, the
secondary system is employed. The requirements, described in Figure 6-7, are
introduced to facilitate the movement of the secondary system, mainly, to bring
the tool closer to the required area. REQ.6 and REQ.8 are directly related to
bring the tool closer and farther of the area being treated. The secondary

 6.2 Elicitation and Specification 165

system is integrated by several joints, for this reason, REQ.3 and REQ.9 are
described to facilitate the movement of a specific joint either using a delta
increment or an angular increment. Because most of the movements are
described as an increment from the current position, REQ.7 describes the
capability to set the start point for a joint. It is also possible to describe, co-
ordinately, the arm to an angular destination as REQ.4 prescribes.
Independently of the movement being performed, it must be possible for the
RDCU to stop such movement, as REQ.5 states.

Figure 6-7 Refining GOA.19 movements in a precise way.

Security

The ISO/IEC9126 describes the SSeeccuurriittyy as:

“The capability of the software product to protect information and data so that
unauthorised persons or systems cannot read or modify them and authorised persons
or systems are not denied access to them.”

The reference document was analysed to gather the goals and requirements
related to this sub-characteristic. However, no details or comments were
detected indicating any necessity in these terms. It must be taken into account
that this kind of systems operate in areas where the access is restricted to
authorised personnel. This means that there are physical mechanisms

166 CHAPTER 6 Playing with ATRIUM Goal Models

responsible for these tasks. This has motivated that no goal or requirement was
included under this sub-characteristic.

6.2.2 Reliability

The ISO/IEC9126 describes the RReelliiaabbiilliittyy as:

“The capacity of the software product to maintain a specified level of performance
when used under specified conditions.”

This characteristic is split into threes sub-characteristics:

MMaattuurriittyy. “The capability of the software product to avoid failure as a result of
faults in the software”

FFaauulltt TToolleerraannccee. “The capability of the software product to maintain a
specified level of performance in cases of software faults or of infringement of its
specified interface.”

RReeccoovveerraabbiilliittyy. “The capability of the software product to re-establish its
level of performance and recover the data directly affected in the case of a failure.”

While analyzing the (RDCU, 2003) AAvvaaiillaabbiittyy emerges as an important
need for the RDCU and is described in this document as:

“The proportion of time the system is up and running.”

In the case of the RDCU, the practitioners stated that it admissible a large rate
of failures if the mean time to repair is short. However, the ISO/IEC 9126
describes that availability is a combination maturity, fault tolerance and recoverability.
This means that the need of availability can be described in terms of recoverability
for the RDCU. Therefore, the availability has been specified by means of these
three sub-characteristics.

Taking the above into account, several goals for the RDCU can be described as
refinements of maturity, fault tolerance and recoverability. GOA.28 states that
the RDCU must be available to work during hundreds of hours. GOA.29
describes that in case of failure the RDCU repair time should be as short as
possible; it must be highlighted that a high rate of failures is allowed if the
repair time is short. GOA.30 describes that the RDCU admits degraded modes
of operations that allows operators to perform the maintenance operations in
case of partial failures of the RDCU or failures of the external systems
connected to the RDCU. This goal can be refined into REQ.11 that describes
that it should be possible to separately operate each joint of the system if the
system fails.

 6.2 Elicitation and Specification 167

Figure 6-8 Describing Reliability goals of the RDCU

6.2.3 Efficiency

The ISO/IEC9126 describes RReelliiaabbiilliittyy as:

“The capability of the software product to provide appropriate performance, relative
to the amount of resources used, under stated conditions.”

This characteristic has been split into two sub-characteristics:

“Time behaviour. The capability of the software product to provide appropriate
response and processing times and throughput rates when performing its function,
under stated conditions.”

“Resource utilisation. The capability of the software product to use appropriate
amounts and types of resources when the software performs its functions under stated
conditions.”

In the case of the EFTCoR, only Time behaviour can be established as a goal for
the RDCU. In general terms, it is required that the time that a ship can stay in

168 CHAPTER 6 Playing with ATRIUM Goal Models

the shipyard should not be longer than the time that it stays using the current
maintenance methods. It means that the ship should not be in the shipyard if
any operation is to be performed. This general goal of the EFTCoR must be
translated to the goals and requirements of the RDCU.

Requirements related to time behaviour for the RDCU come from the operations
of maintenance, that is, the positioning of the cleaning tools and their task are
those to constraint the time required for the system, but not the time required
for the RDCU. This means that no concrete requirements neither goals have
been established as refinement of Performance.

6.2.4 Maintainability

The ISO/IEC9126 describes the MMaaiinnttaaiinnaabbiilliittyy as:

The capability of the software product to be modified. Modifications may include
corrections, improvements or adaptation of the software to changes in environment,
and in requirements and functional specifications.

There were no specific goals neither requirements related to this characteristic,
but to the next one: Portability. This was because the analysed documents refer
to changes in the functionality to adapt the system to specific needs.

6.2.5 Portability

The ISO/IEC9126 describes the PPoorrttaabbiilliittyy as:

“The capability of software product to be transferred from one environment to
another.”

There is a sub-characteristic, called AAddaappttaabbiilliittyy, which is highly
important for the RDCU description:

“The capacity of the software product to be adapted for different specified
environments without applying actions or means other that those provided for this
purpose for the software considered.”

This sub-characteristic is highly relevant during the application of ATRIUM. As
was previously stated, the variability that must be resolved at run time must be
described as a goal o requirement described as a refinement of adaptability. It
does not only provide a proper organization of the specification, but also an
important guidance for the selection of operationalizations. These
operationalizations are going to instantiate architectural patterns that provide
support for variability at run time.

 6.2 Elicitation and Specification 169

Therefore, both the portability characteristic and the adaptability sub-
characteristic can be stated as goals GOA.32 and GOA. 33 of the RDCU
shown in Figure 6-9. As can be observed, GOA.33 has been defined by means
of an OR refinement, because it can be present or not in the RDCU, depending
on the specific needs of the instance of the EFTCoR to be developed.

Figure 6-9 Describing RDCU goals related to portability

The adaptability required to the RDCU is mainly focused on changes in the
functionality of the EFTCoR, that is, maintenance operations. For this reason,
three requirements have been introduced: REQ.14 describes the possibility of
using the RDCU to control different maintenance tasks; and, REQ.16 and
REQ.17 describe that the RDCU should be able to support different
combinations of primary and secondary positioning systems, respectively. They
have been introduced by means of an OR relationship because it can be present
or not in final system. In addition, these requirements have a Require
relationship with two variation points. Figure 6-10 depicts the relation between
the variant described by the REQ.14 and the variation point described by the
GOA.9. This means that if the system provides support for adaptability of
different maintenance operations, it requires providing support for the different
alternatives already described. However, this support must be given at run time
because REQ.14 is a requirement of adaptability.

170 CHAPTER 6 Playing with ATRIUM Goal Models

Figure 6-10 Describing a Require relationship between a variant REQ.14 and a variation

point GOA.9

Figure 6-11 Describing Required relationships between variants REQ.14 and REQ.17 and

variants GOA.19 and GOA.18

Figure 6-11 shows how a Require relationship is established between variants.
This means that to provide support for different primary and secondary
systems, the system must support the movements across wide areas and in a
precise way.

6.2.6 Safety: being one step ahead

Robotics systems are substantially different from other software applications
because it is mandatory to consider aspects such as interaction with the
environment, presence of perturbations, etc. Moreover, if their use has an
important impact on persons and equipment when errors arise then safety

 6.2 Elicitation and Specification 171

aspects must be considered during their development. Besides the risks
inherent to their use, make work places higher risk areas. (Douglass, 2003)
gives, among others, the following list of damage sources: errors in the
execution of the control system (hardware and software), people who access to
forbidden walking areas, human errors, broken mechanical parts, liberation of
stored energy, and so on.

Nowadays, when we analyze the development of tele-operated systems, we can
observe that there is no well-known integration of safety requirements within
the process of requirements specification as a whole and there are no
methodologies supporting it in an integrated way.

It must be noticed that one of the most popular approaches to identify,
evaluate and manage safety requirements is the technique named ffaauulltt
ttrreeeess (Hansen et al., 1998). These trees provide a graphical notation and a
formal support that facilitate the analysis from the perspective of the system
failures and their causes. Nevertheless, they do not offer a global framework for
requirement specification as a discipline. Despite this deficiency, they are widely
used to analyze safety specifications. From the point of view of requirement
refinements, our proposal is analogous to the use of fault trees; however, in our
work the analysis of safety requirements is integrated and derived from the set
of functional requirements of the system.

(Letier & Lamsweerde, 2002) have also proposed the use of KAOS for safety
related requirements specification. They have introduced the concept of
oobbssttaaccllee as a set of non-desirable behaviours, the presence of those obstacles
imply the obstruction in the fulfilment of the objective. At the same time, the
negation of the obstacle generates the preconditions needed for the satisfaction
of the requirements. The safety goals of the system being developed are
formally specified by using temporal logic, and the obstacles (similar to hazards)
are automatically obtained by the negation of the safety objectives and
following the patterns given in their proposal (Lamsweerde & Letier, 2000).
However, the KAOS proposal does not provide a specific process for dealing
with safety goals in the context of safety requirement specifications, nor does it
consider factors such as severity, exposition time, etc, to be exploited during
the analysis of the safety specification.

In order to cope with these deficiencies, we have considered the goal oriented
ATRIUM framework for guiding the requirement engineering process. This
framework has been extended for considering safety requirements by following
the ANSI/RIA R15.06-1999 standard (ANSI/RIA, 1999). Furthermore, our
proposal has been enriched both with the ideas by (Lemos & Saeed, 1995) for
the division of operation modes of systems, and the patterns and heuristics

172 CHAPTER 6 Playing with ATRIUM Goal Models

given by (Douglass, 2003) for the consideration of this kind of requirements. It
is mandatory in our proposal because the kind of system described in the
EFTCoR, by its nature, entails a greater probability of danger. Thus, a precise
identification, specification and trace of safety requirements turn out essential.

In order to clarify the following discussion, the main used concepts are defined
in the following. Hence, it is mandatory to define which meaning of SSaaffeettyy
rreeqquuiirreemmeenntt has been used from the set of definitions in the bibliography.
ANSI/RIA R15.06-1999 standard, main basis for this work, defines Safety
requirements as:

“those to be satisfied for any industrial robotic system to assure the safety of
personnel associated with its use.”

In this work, this definition has been extended, with (Leveson, 1995)’s ideas, by
including damage or destruction of property or injury or damage to any living
being, especially, human beings.

When the behaviour of a system is being described, ttaasskkss to be provided by
any system component, whether software or hardware, have also to be
described. The execution of these tasks is the potential source of damage or
injuries the system can cause, so that the most serious risks for safety arise from
deficiencies of functionality, reliability or usability as ISO/IEC 9126 standard
(ISO/IEC 9126) states.

The early detection of HHaazzaarrddss is a challenge during the specification of
Safety requirements. A hazard is any potential source of damage or injury to an
entity of the system, from an operator to an entity of the environment or the
system itself. In this way, during the gathering and specification of Safety
requirements, the analyst has to identify the likelihood of the system hazards
and analyze them to determine which strategy is the most appropriate for their
management. For this analysis, the rriisskkss related to each hazard have to be
established, i.e., the damage or injury to any entity.

These concepts indicate that, although the process of gathering and identifying
this kind of requirements is quite similar to those applied in other contexts, it
does show some meaningful differences. Furthermore, the fact that tele-
operated systems are Safety Critical emphasizes how important it is to provide
the analyst with both a specific process and a specific notation.

Identifying and Specifying Safety Requirements

Both the ANSI/RIA R15.06-1999 standard and the approaches proposed by
Douglass and Lemos have been integrated to establish a process for
identification and specification of Safety Requirements in Tele-operated

 6.2 Elicitation and Specification 173

environments. The Goal Model of ATRIUM is the notation used during the
process. This model exploits the standard ISO/IEC 9126 as a starting point to
organize the requirements specification.

The established process entails several steps. The first ones (i-ii) are related to
the behaviour specification of the system:

i. To identify system operation modes, according to Lemos’ recommendations for
control systems. These operation modes are specified as system goals and
have a refinement relationship towards the characteristic ISO/IEC 9126
Suitability. Considering these system goals, an intentional refinement
process is triggered, as was described in the section 5.4.1, repeatedly until
goals have enough granularities to allow the identification of tasks, i.e.,
requirements to be met.

ii. To identify Tasks (Ti) associated to each operation mode. In the Goal Model, these
tasks are specified as requirements which have an AND/OR refinement
relationship towards their parent goal. In addition, it provides an improved
visibility of which hardware/software components of the system are
involved in which operation modes because of their traceability to
operationalizations, i.e., it provides scenarios that describe how these
components interact to fulfil a requirement.

Both the identification of operation modes and tasks provide the system
behaviour specification. This identification must be performed before Safety
requirements are identified, so that no injury or damage is caused when the
system is performing these tasks. Once this view of the system has been
established, Safety requirements are determined by using the ISO/IEC 9126
Safety category. Therefore, the following steps are added to the process:

iii. Determine Safety Goals of the system. For each identified task Ti its capacity to
cause any damage is evaluated. If this happens, a Safety goal, Safe (Ti), will
be specified as to safeguard Ti. This implicitly means a crosscutting
relationship between a Safety requirement Safe (Ti) and a Functional
requirement Ti at the task level.

iv. Determine System Hazards. For each safety goal Safe (Ti) its related hazards are
identified and specified as a sub-goal Avoid (Hzj). An AND/OR
relationship is established between Safe (Ti) and its set of hazards to be
managed. The relation to apply depends on whether the whole set of
hazards or some of them, respectively, have to be avoided to safeguard the
task Ti. We have to bear in mind that the same hazard can be specified as a
refinement of several Safety goals. In addition, according to Douglas’
evaluation of risks, this rationale also entails some necessary information
for the risk specification: identification of causes (software, hardware,

174 CHAPTER 6 Playing with ATRIUM Goal Models

human, …) which can result in a hazardous situation, reaction required for
its management and maximum deadlines of exposure, detection and
tolerance.

v. Identify Risks (Rk) associated to each pair Safe (Ti)— Avoid (Hzj). The associated
risk Rk has to be identified, so that the appropriate strategy for the
management of Hzj is selected. A Hazard can be related to several risks
depending on which task is to be evaluated.

vi. Determine the Risk Reduction Category (RRC) to apply to each relation Safe (Ti)—
Avoid (Hzj), taking into account its associated risks R1 … Rn. RRC
determines which actions must be performed in order to properly manage
the hazard. With this aim, the following three attributes must be firstly
evaluated:

a. Severity. Level of damage that an entity of the environment or the
system itself can suffer. The table which is provided by ANSI/RIA
R15.06-1999 for evaluation has been modified so as to deal with the
widest sense of the term, i.e., including not only damages to the
health or the environment but also to the system itself. Therefore,
the meanings associated to both the S1 and S2 categories are
described now as follow.

Level Description

S2 Serious injury to the operator requiring more than
first-aid.
Damage of a system component which is
irreplaceable both in time and cost.

S1 Serious injury to the operator only requiring first-
aid.
Damage of a system component which is
replaceable both in time and cost

b. Exposure. Frequency of exposure to the hazard. ANSI/RIA R15.06-
1999 defines two categories: E2 as frequent and E1 as infrequent.

c. Avoidance. Likelihood of avoiding the exposure to the hazard.
ANSI/RIA R15.06-1999 defines two categories: A2 as not likely and
A1 as likely

ANSI/RIA R15.06-1999 describes eight combinations of these values, which
are specified in Table 6-1, as Risk Reduction Categories (RRCs) along with the
recommended actions to manage properly the Hazard. It can be observed that
there are actions such as eliminating the Hazard, i.e., it is not allowed that such a
Hazard can emerge while the system is working; preventing that it can arise, etc.
Table 6-1 Risk Reduction Categories

 6.2 Elicitation and Specification 175

Exposure Avoidance Severity RRC Action on Hz

S2 R1 Eliminate/Substitute A2
S1 R2C Prevent/Cease
S2 R2A Cease

E2

A1
S1 R3A Isolate
S2 R2B Prevent/Cease A2
S1 R3A Isolate
S2 R3B Isolate

E1

A1
S1 R4 Warning/Training/Protect

It must be highlighted that the Metamodel presented in Figure 5-3 cannot be
used as it is. It is not expressive enough to describe the risk associated to each
pair Safe (Ti)—Manage (Hzj), or the severity, exposure and avoidance necessary
to determine the RRC. This means that an extension, which is shown in Figure
6-12, using the process of section 5.2.2, had to be accomplished. In the
following it is described how each step was performed to extend the
Metamodel:

I. A new type of artifact, Hazard, was specified to describe any potential
source of damage or injury to an entity of the system, from an operator to
an entity of the environment or the system itself, to deal with the step (iv).

Another type of artifact, Risk, was also included to specify any damage or
injury an entity of the system can suffer when a Hazard arises.

II. Both AND and OR refinement relationships were specialized, as
ANDsafety and ORSafety, because it was necessary to describe some
attributes applicable to the link between the leaves (hazards to manage)
and the refinement relationship. In this way, it is provided the
expressiveness described in the steps (v-vi).

III. Several attributes were added to the description of both artifacts and
relationships:

a. The enumeration PatternType was extended to include safe as another
available pattern for the specification of goals.

b. Several attributes were included in the description of Risk to consider
its cause, expected reaction, and maximum exposure, detection and
tolerance allowed.

c. For each pair Safe(Ti)—Avoid(Hzj), the attributes severity, exposure,
avoidance and risk were included by means of the extension of Leaf
as LeafSafety. It must be taken into account that they cannot be
established on Avoid (Hzj) because, depending on the task being

176 CHAPTER 6 Playing with ATRIUM Goal Models

performed different risks can arise. In addition, the RRC was also
included as an attribute of this link because several RRC are going to
be established for each Avoid(Hzj), one for each task it is related to.

Figure 6-12 Extension to the ATRIUM Goal Model

IV. Some additional constraints were also introduced to describe which kinds
of relations are allowed. In addition, Leaf was extended to describe the
necessary information, i.e., severity, exposure, etc. They are described in
the following table.

Relation Constraint

ANDSafety context ANDSafety inv

 6.2 Elicitation and Specification 177

 Self.root.concern =““Safety”” and
 Self.leaves->forAll(a:Artifact |
 a.concern =““Safety””)

ORSafety context ORSafety inv
 Self.root.concern =““Safety”” and
 Self.leaves->forAll(a:Artifact |
 a.concern =““Safety””)

LeafSafety context LeafSafety inv
 Self.refLeaf..oclIsTypeOf(ANDSafety) or
 Self.refLeaf..oclIsTypeOf(ORSafety)

Hence, the evaluation of the values (Severity, Avoidance, Exposure) is carried
out on each pair Safe (Ti)—Avoid (Hzj) using as an input its associated risks Rk.
According to the RRC an action has to be selected to eliminate, substitute,
prevent, isolate or cease the Hzj. If different RRCs are applicable for the same
pair Safe (Ti)—Manage (Hzj), the severest will be the selected one to apply the
recommended action. These actions mean that different operationalizations can
be included in the Goal Model to incorporate safety mechanisms; other can be
modified to prevent or cease a hazard; or, even they can be totally eliminated
because they are not appropriated for the safety levels that are necessary for the
system-to-be.

The application of the actions, determined by the RRC, can imply that some
hazards can be eliminated, risks can be avoided, the severity of the damage can
change, etc. Therefore, it is mandatory to re-evaluate the set of RRC for the
Goal Model to analyze those changes. This procedure must be repeated until all
the hazards are considered ““tolerable””, i.e., risk level for the system is
acceptable. These hazards are to be considered residual risks of the system.

178 CHAPTER 6 Playing with ATRIUM Goal Models

Applying the process

This section illustrates how the stated proposal was put into practice to gather
the safety requirements of the industrial project EFTCoR. In the section 6.2.1,
the operation modes of the system were already established, along with the
behaviour of the system to be safeguard. For this reason, the step (iii) can be
now applied. With this aim, those tasks to be safeguarded are specified as Safety
goals, Safe (Ti), of the system.

Figure 6-13 Describing safety goals

As can be observed in Figure 6-13, the goal GOA.40 is established to describe
safety as a concern of the RDCU. It is refined in several goals, for the different
operation modes, as for instance the GOA.41 describes that the working mode
must be safe. Considering this goal, each requirement related to that operation
mode was analysed to determine if its realization could have associated hazards.
If it was the case, it means that they had to be safeguarded. In Figure 6-13, each
safeguarded requirement is established as a goal Safe (Ti). It can be observed
that a crosscutting relationship has also been established between the safety
goals and the suitability goals in order to describe that their behaviour must be
constrained by the safety requirements.

 6.2 Elicitation and Specification 179

Once the requirements to safeguard were established, the hazards Hzj of the
RDCU were determined by applying step (iv). Figure 6-13 shows that they were
described as sub-goals Avoid (Hzj) refining, by means of ANDSafety
relationships, those requirements to safeguard. Therefore, a relationship exits
between Safe (Ti) and Avoid (Hzj) because during the execution of Ti is when
Hzj can arise. As can be observed, the same hazard can be related to several
tasks to safeguard. A summary of the hazards that can arise, when the RDCU is
controlling the Secondary Positioning Subsystem, is shown in the following.

HAZARD
NAME HZ.1
DESCRIPTION Tool touches the hull of the ship
PATTERN avoid
CONCERN safety
PRIORITY High
SOURCE Breakage or error in the control of approach of the tool
REACTION To stop the joint and separate the tool

HAZARD
NAME HZ.2
DESCRIPTION End of range of a joint of the secondary is overrun.
PATTERN avoid
CONCERN safety
PRIORITY High
SOURCE Breakage of the sensor of end of range or error of

control software
REACTION To stop the electrical supply

HAZARD
NAME HZ.3
DESCRIPTION End of range of a joint of the secondary is overrun.
PATTERN avoid
CONCERN safety
PRIORITY High
SOURCE Breakage of the sensor of end of range or error of

control software
REACTION To stop the electrical supply

HAZARD
NAME HZ.4
DESCRIPTION Joint of Secondary touches the hull of ship.
PATTERN avoid

180 CHAPTER 6 Playing with ATRIUM Goal Models

CONCERN safety
PRIORITY High
SOURCE Error of control software to compute the path.

Breakage of the sensor of end of range.
Breakage of the joint.
Breakage of the electricity supply.

REACTION To stop the joint and the electrical supply

HAZARD
NAME HZ.5
DESCRIPTION Secondary does not stop.
PATTERN avoid
CONCERN safety
PRIORITY High
SOURCE Error of control software of the joint

Breakage of the wiring.
REACTION To stop the electrical supply.

Emergency stop.

Applying the step (v), the risks of each pair Safe (Ti) — Avoid (Hzj) were
established. Figure 6-14 depicts the risks associated to each pair, specifically for
the requirements associated to the control of the Secondary Positioning System.

Figure 6-14 Specifying risks for each pair Safe(Ti)-Avoid(Hzj)

 6.2 Elicitation and Specification 181

Table 6-2. Summary of Risks for the Secondary Positioning System

 Risk Description

 Rsk1 Damage of the tool or any mechanical
component of the Secondary Positioning
subsystem.

 Rsk 2 Mechanical damage to the arm joint.

 Rsk 3 Damage to the hull surface.

 Rsk 4 Mechanical damages to the Secondary
Positioning subsystem.

Once the risks are determined, the step (vi) was applied to determine the RRCs
to be used in each specific case. As was indicated in the previous section, it is
necessary to determine the Severity, Exposure and Avoidance on each pair Safe (Ti)
— Avoid (Hzj) to establish the appropriate RRC. Several RRCs can be
associated to a specific Hazard, for this reason, the severest is the one to be
applied. Table 6-3 shows the evaluation of the RRCs after the attributes
severity, exposure, and avoidance were established. As can be observed, most
of the identified RRCs do not determine any important modification on the
system. For instance, the RRC R2A established for the HZ1 determines that
mechanisms to cease that hazard if it appears have to be included. However, if
the R1 RRC had been established then the hazard would have to be eliminated.
Each time this modification is performed a re-evaluation of the graph must
proceed in order to determine if the residual risks are tolerable for the system.
However, for the RDCU it was determined that the residual risks are tolerable.
Table 6-3 Determining the RRC for each established Hazard

Hazard Risk Severity Exposure Avoidance RRC

HZ1 Rsk1 S2 E1 A2 R2B
HZ2 Rsk2 S1 E1 A1 R4
HZ3 Rsk3 S1 E2 A1 R3A
HZ4 Rsk1

Rsk4
S2 E1 A2 R2B

HZ5 Rsk3 S1 E1 A1 R4

Related to the analysis of residual risks of the system, the customizable analysis
process described in section 5.4.2 can be exploited. A set of rules were
described to determine if any hazard had a RRC greater than R2A, propagating
its values to the safety root goal. Table 6-4 shows the rules to determine the
current level of tolerance. They determine that if any RRC is R1, the safety
root node is denied.

182 CHAPTER 6 Playing with ATRIUM Goal Models

Table 6-4 Describing safety rules to determine actual tolerance level

Relationship Condition Valuation

Sat (() 132, ggg and⎯→⎯) GoalD.Concern=““Safety”” GoalD.Sat =
min(Goali.Sat)

Den (() 132, ggg and⎯→⎯) GoalD.Concern=““Safety”” GoalD.Sat =
max(Goali.Den)

Sat () 132, ggg or⎯→⎯) GoalD.Concern=““Safety”” GoalD. Sat =
max(Goali.Sat)

Den () 132, ggg or⎯→⎯) GoalD.Concern=““Safety”” GoalD. Den =
min(Goali. Den)

Sat(() 132, ggg andSafety⎯⎯⎯ →⎯)

(GoalD.Concern=““Safety””) &&
(min(Hazardi.RRC)< ““R1””)

GoalD.Sat = ’F’

 (GoalD.Concern=““Safety””) &&
(min(Hazardi.RRC)== ““R1””)

GoalD.Sat = ‘N’

Den(() 132, ggg andSafety⎯⎯⎯ →⎯)

(GoalD.Concern=““Safety””) &&
(max (Hazardi.RRC)== ““R1””)

GoalD.Sat = ’F’

 (GoalD.Concern=““Safety””) &&
(max (Hazardi.RRC)< ““R1””)

GoalD.Sat = ‘N’

Sat(() 132, ggg orSafety⎯⎯⎯ →⎯)

(GoalD.Concern=““Safety””) &&
(max (Hazardi.RRC)< ““R1””)

GoalD.Sat = ’F’

 (GoalD.Concern=““Safety””) &&
(max (Hazardi.RRC)== ““R1””)

GoalD.Sat = ‘N’

Den(() 132, ggg orSafety⎯⎯ →⎯) (GoalD.Concern=““Safety””) &&
(min(Hazardi.RRC)== ““R1””)

GoalD.Den = ’F’

 (GoalD.Concern=““Safety””) &&
(min(Hazardi.RRC)< ““R1””)

GoalD.Den = ’N’

By employing the described rules, the propagation of satistiability was
performed for the safety goals. As can be observed, all the safety goals were
fully satisfied because any hazard has R1 as RRC.
Table 6-5 Propagation results according to the described rules

 Goal Sat Den

 GOA.40 F N

 GOA.41 F N

 6.2 Elicitation and Specification 183

 GOA.36 F N

 GOA.38 F N

 GOA.37 F N

 GOA.33 F N

 GOA.35 F N

6.2.7 Operationalizing the model

Once the goals and requirements have been established, the Goal Model can be
operationalized, that is, the description of how the requirements can be made
operational by the system-to-be is performed. With this aim, for every
requirement described in the previous sections, their possible
operationalizations are specified. In order to facilitate the guidance of the
process they are described in the following according to the different identified
concerns of the RDCU.

As was described in Figure 5-8, the first step to perform, previously to describe
the operationalizations, is to select the Architectural Style to apply. In this
sense, the ACROSET (Ortiz et al., 2005) was selected because it has been
defined for the description of robotic families, as the RDCU is. This
Architectural Style proposes an initial assignment of responsibilities in layers:

− The first layer is devoted to actuators and sensors, the elements in charge
of controlling joints of the systems, tools, and any robotic devices existing
in the system.

− The second layer, called Simple Unit Controller (SUC) consists of actuators
and sensors for every joint, tool and device element.

− The third layer, called Mechanism Unit Controller (MUC), is employed to
command a set of SUCs. The set is described to accomplish a specific aim,
for instance, a coordinated movement of the joints.

− The fourth layer, called Robotic Unit Controller (RUC), is in charge of the
coordination of the whole system by means of its access to the MUCs of
the system.

Therefore, this Architectural Style guides the analyst in the assignment of
responsibilities that must be performed during the operationalization activity.
In addition, some patterns have been defined along with this Architectural Style

184 CHAPTER 6 Playing with ATRIUM Goal Models

that facilitate the proper definition of operationalizations that contribute
towards non-functional requirements. It is presented in the following how these
patterns have been applied.

In addition, it must be mentioned that the following sections are going to focus
their attention on the Teachmover (presented in the section 4.2.2). This is one
of the systems that must be controlled by the RDCU. It has been selected
because although it presents the main requirements of any system of these
characteristics, it is simple enough to facilitate the comprehension of the
explanation. Besides, the Teachmover provides a COTS component that can be
used to facilitate the interaction with it.

Suitability

A wide set of requirements have been described regarding this concern. An
example is showed in Figure 6-4 were two requirements, REQ.1 and REQ.2 to
open and close the tool, respectively, were described. Both requirements can be
operationalized as:

Figure 6-15 Operationalizing the requirements of the tool

 6.2 Elicitation and Specification 185

It can be observed that two alternatives have been described for each
requirement. One of them considers that the RDCU has direct access to the
SUC, and the other one establishes that the control must be performed by
using the MUC. However, the second alternative, as is also described in the
figure, has a negative contribution towards the other described goals. This is
because if the MUC controls the tool, the number of operations that can be
performed are limited to only the active tool. This limitation implies that the
requirement REQ.14 has a negative contribution from OPE.3 and OPE.5.

Figure 6-16 Operationalizing the requirements of movement of the secondary system

As can be observed in the Figure 6-16 each requirement was operationalized by
using the same pattern, that is, using the control provided by the RUC-MUC-
SUC, but each one of them is going to be described to perform a different
operation.

Reliability

As was described in section 6.2.2, several goals were specified related to
reliability. However, only goals and requirements related to recoverability were
specified. Specifically, the REQ.11, i.e., the ability to operate separately the
devices, was established as a refinement of recoverability. Figure 6-17 shows
how the REQ.11 has been operationalized. As can be observed, some

186 CHAPTER 6 Playing with ATRIUM Goal Models

operationalizations, which were already specified for requirements of suitability,
are positively contributing towards this requirement. They provide an
operational description in the system-to-be to meet that requirement too.

Figure 6-17 Operationalizing the requirement of recoverability

Safety

In the context of the ACROSET, several architectural patterns have been
defined related to the safety concern. They have been described in the domain
of the tele-operated domain so that they can be very helpful for the
operationalization step. In the following, two patterns have been used as
alternatives to operationalize the safety requirements that were described, that
is, the hazards to avoid in the system-to-be. They are described as:

a) Introduction of a Safety Aspect in the SUC connector. This aspect is going to
factorize the safety mechanisms to avoid that hazards may arise. It is
defined by means of a set of services that will check if every movement has
safety parameters, i.e., they are not going to force the system for a position
located out of its reach.

b) Introduction of a Redundant Node Control in the SUC. This node is going to
check if every step performed by the system is executed according to the
ones initially calculated, in such a way that if any difference is detected then
the movement is automatically stopped. It must be considered that the
introduction of alternatives means a decrement of the efficiency in terms of
time response and resource utilization. Every step of every joint must be
checked after it is performed thus the system reduces its speed to perform

 6.3 Analyzing the Atrium Goal Model 187

a maintenance task. In addition, a software connector is always heavier, in
terms of memory, than an aspect.

Figure 6-18 Operationalizing safety requirements

Considering both patterns, the specification of the Figure 6-18 was performed
to operationalize the safety requirements. It can be observed that the two
patterns described above were used to describe each operationalization,
considering the requirements that have to be safeguarded and the
operationalization to modify to deal with the safety concern. It is worthy of
note that there is no contribution from these operationalizations towards the
suitability requirements. It must be taken into account that they are not
describing an operationalization of the suitability concern but they are defined
to meet the safety requirements.

188 CHAPTER 6 Playing with ATRIUM Goal Models

6.3 ANALYZING THE ATRIUM GOAL MODEL

Once the Goal Model has been operationalized, it is just the moment to
perform the analysis. According to the process described in the Figure 5-10,
the first step to perform is to describe the set of rules that must be used for the
propagation. The set of used rules are described in Table 6-6. It must be noted
that the Giorgini’s rules have been extended to take into account the set of
artifacts and relationships described in this proposal.
Table 6-6 Rules for reasoning Analysis

Relationship Condition Valuation

Sat (() 132, ggg and⎯⎯→⎯)

 GoalD.Sat =
max((min(Goali.Sat),
GoalD.Sat)

Den (() 132, ggg and⎯⎯→⎯) GoalD. Den =
max(max(Goali.Den),
GoalD. Den)

Sat (() 132, ggg andSafety⎯⎯⎯ →⎯)

 GoalD.Sat =
max((min(Goali.Sat),
GoalD.Sat)

Den(() 132, ggg andSafety⎯⎯⎯ →⎯) GoalD. Den =
max(max(Goali.Den),
GoalD. Den)

Sat (() 132, ggg or⎯→⎯)

 GoalD.Sat =
max((max(Goali.Sat),
GoalD.Sat)

Den (() 132, ggg or⎯→⎯) GoalD.Den =
max((min(Goali.Sat),
GoalD.Sat)

Sat(12 gg ⎯→⎯++)

(Contribution.contributes=’++’) GoalD.Sat =
max(GoalS.Sat,
GoalD.Sat)

Den(12 gg ⎯→⎯++) (Contribution.contributes=’++’) GoalD.Den =
max(GoalS.Den,
GoalD.Den)

Sat(12 gg ⎯→⎯+)

(Contribution.contributes=’+’) GoalD.Sat =
max(min(GoalS.Sat, ’P’)),
GoalD.Sat)

Den(12 gg ⎯→⎯+) (Contribution.contributes =’+’) GoalD.Den =
max(min(GoalS.Den,
’P’)), GoalD. Den)

 6.3 Analyzing the Atrium Goal Model 189

Sat(12 gg ⎯→⎯−) (Contribution.contributes =’-’) GoalD.Sat =
max(min(GoalS.Den,
’P’)), GoalD.Sat)

Den(12 gg ⎯→⎯−) (Contribution.contributes =’-’) GoalD.Den =
max(min(GoalS.Sat, ’P’)),
GoalD.Den)

Sat(12 gg ⎯→⎯−−) (Contribution.contributes =’--’) GoalD.Sat =
max(GoalS.Den,
GoalD.Sat)

Den(12 gg ⎯→⎯−−) (Contribution.contributes =’--’) GoalD.Den =
max(GoalS.Sat,
GoalD.Den)

Sat(12 gg required⎯⎯⎯ →⎯) GoalD.Sat =
min(GoalS.Sat,
GoalD.Sat)

Den(12 gg required⎯⎯⎯ →⎯) GoalD.Den =
max(GoalS.Den,
GoalD.Den)

Table 6-7 shows an example of the propagation applying the previous rules. As
can be observed, most of the goals are not denied nor satisfied. Most of them
do not have associated operationalizations, and they have not been refined to
avoid a complex example that could be difficult to follow. A noticeable
example is the GOA.1, which is not satisfied neither denied. The reason is that
it has been refined by means of an AND relationship into the different working
modes. Only the working mode (GOA.2) has been included in the propagation
so that the positive propagation ends in this goal.
Table 6-7 Propagation results: values of satisfiability (Sat) and deniability (Sat) before (t0)

and after (t1) the propagation

Artifact Sat(t0) Den(t0) Sat(t1) Den(t1)

GOA.1 RDCU be suitable for the user needs N N N N

GOA.2 RDCU allows working operation N N F N

GOA.3 RDCU allows safe stop N N N N

GOA.4 RDCU allows maintenance operation N N N N

GOA.5 RDCU allows learning N N N N

GOA.6 RDCU allows calibration N N N N

GOA.7 RDCU allows diagnosis N N N N

GOA.8 RDCU allows configuration N N N N

GOA.16 RDCU allows coating removal by blasting N N N N

190 CHAPTER 6 Playing with ATRIUM Goal Models

GOA.17 RDCU allow coating removal by pressured water N N N N

GOA.10 RDCU coordinate positing systems N N F N

GOA.9 RDCU allows cleaning operations N N F N

GOA.11 RDCU allows coating removal N N N N

GOA.12 RDCU allows fresh water washing N N N N

GOA.13 RDCU allows blasting N N N N

GOA.14 RDCU allows painting N N N N

GOA.15 RDCU allows handling objects N N F N

OPE.1 Operational closing by Teachmover Control
accessing RUC-SUC

F N N N

OPE.10 Operational incremental movement by
Teachmover Control accessing RUC-MUC-SUC

N N N N

OPE.2 Operational opening by Teachmover Control
accessing RUC-SUC

F N N N

OPE.3 Operational opening by Teachmover Control
accessing RUC-MUC-SUC

N N N N

OPE.5 Operational closing by Teachmover Control
accessing RUC-MUC-SUC

N N N N

REQ.1 RDCU allows tool opened N N F N

REQ.2 RDCU allows tool closed N N F N

GOA.18 RDCU allows movement across wide areas N N N N

GOA.19 RDCU allows movements in a precise way N N F N

GOA.20 RDCU allows movement across horizontal N N N N

GOA.21 RDCU allows movement across vertical surface N N N N

OPE.11 Operational movement of the joint to the start
point by Teachmover Control accessing RUC-MUC-SUC

F N N N

OPE.12 Operational movement of the work point from
origin by Teachmover Control accessing RUC-MUC-SUC

F N N N

OPE.13 Operational movement of the work point from
current position by Teachmover Control accessing RUC-
MUC-SUC

F N N N

OPE.7 Operational stop by Teachmover Control accessing
RUC-MUC-SUC

F N N N

OPE.8 Operational angular movement of the joint by
Teachmover Control accessing RUC-MUC-SUC

F N N N

 6.3 Analyzing the Atrium Goal Model 191

OPE.9 Operational angular movement by Teachmover
Control accessing RUC-MUC-SUC

F N N N

REQ.3 Move joint of the secondary to an angular
destination from its current position

N N N N

REQ.4 Move the arm of the secondary to an angular
destination from its current position

N N N N

REQ.5 Stop Movement of the secondary N N N N

REQ.6 Move work point to a target from its current
position

N N N N

REQ.7 Move joint of the secondary to the start point N N N N

REQ.8 Move work point to a target from the origin of the
coordinate system

N N N N

REQ.9 Move joint a given delta increment from its current
position

N N N N

GOA.24 RDCU is reliable N N F N

GOA.25 RDCU is mature N N N N

GOA.26 RDCU is fault tolerance N N N N

GOA.27 RDCU is recoverable N N F N

GOA.28 RDCU is available during hundred of hours N N N N

GOA.29 RDCU repair time is as short as possible N N N N

GOA.30 RDCU admits degraded modes of operation N N F N

GOA.31 RDCU admits to operate s N N N N

REQ.11 RDCU admits to operate separately the devices, if
the coordination fails

N N F N

GOA.32 The RDCU is portable N N N N

GOA.33 The RDCU is adaptable N N N N

REQ.14 The RDCU supports different maintenance
operations

N N N N

REQ.16 The RDCU supports different primary possitioning
systems

N N N N

REQ.17 The RDCU supports different secondary
possitioning systems

N N N N

GOA.33 Safe[REQ.7] N N F N

GOA.36 Safe[REQ.5] N N F N

GOA.37 Safe[REQ.3] N N F N

GOA.38 Safe[REQ.4] N N F N

192 CHAPTER 6 Playing with ATRIUM Goal Models

GOA.35 Safe[REQ.9] N N F N

GOA.40 The RDCU is safe N N F N

GOA.41 The working mode is safe N N F N

HZ.1 Tool touches the hull N N F N

HZ.2 End of range of a joint of the secondary is overrun. N N F N

HZ.3 Overexposed tool N N F N

HZ.4 Joint of Secondary touches the hull of ship. N N F N

HZ.5 Secondary does not stop. N N F N

OPE.15 Add a safety aspect to the conector of the SUC of
the Teachmover to check if the movement of the arm is safe

F N F N

OPE.16 Add a Redundant Safety Node to the SUC of the
Teachmover to check if the movement of the arm is safe

N N N N

OPE.18 Add a safety aspect to the conector of the SUC of
the Teachmover to check if the Secondary does not stop

F N F N

OPE.19 Add a Redundant Safety Node to the SUC of the
Teachmover to check if the movement of the joint a delta
increment is safe

N N N N

OPE.20 OPE.24 Add a safety aspect to the conector of the
SUC of the Teachmover to check if the movement of the
joint a delta increment is safe

F N F N

OPE.21 Add a Redundant Safety Node to the SUC of the
Teachmover to check if the movement of the joint to the
start point is safe

N N N N

OPE.22 Add a safety aspect to the conector of the SUC of
the Teachmover to check if the movement of the joint to
the start point is safe

F N F N

OPE.23 Add a Redundant Safety Node to the SUC of the
Teachmover to check if the movement of the joint is safe

N N N N

OPE.24 Add a safety aspect to the conector of the SUC of
the Teachmover to check if the movement of the joint is
safe

F N F N

6.4 CONCLUSIONS

A case study has been presented where every described concept, step and
process has been put into practice. It was appreciated that the ISO9126 has
been the framework of concerns to guide the elicitation process.

 6.4 Conclusions 193

Specially meaningful has been how the safety concern, so relevant for the
EFTCoR, has been managed by means of the extension of the process of
ATRIUM and the extension of its Metamodel to deal with issues such as
hazards, risks, etc. The consideration of very relevant standards and practical
approaches (ANSI, Douglass and Leveson) for the domain of safety
requirements has been the source to establish some methodological guidelines
for safety requirements specification of tele-operated robotic systems.

As was stated above, the specification of safety requirements is a major
challenge for the tele-operated systems due to both the combination of
hardware/software components and the presence of potential injury to people
or equipment. The use of the ATRIUM Goal Model allows the analyst to use a
unified proposal for requirement specification in this domain, which provides
the integration and derivation of safety requirements with the remaining
requirements of the specification. In addition, adopting a goal-oriented
approach is convenient due to the obvious benefits for analysis and evaluation
of alternatives. Moreover, although it has not been presented in the example,
the formal base of the goal-oriented approach allows the verification of several
properties when goals and requirements are formalized.

Most of the publication presented in the previous chapter included a case study
section where the work presented in this chapter was published. In addition,
the work related to the exploitation of ATRIUM for defining safety
requirements has been presented in the following publications:

− E. Navarro, P. Sánchez, P. Letelier, J. A. Pastor, I. Ramos, “Sistematizando
la Especificación de Requisitos Safety en Aplicaciones Teleoperadas”,
Proceedings of X Jornadas de Ingeniería del Software y Bases de Datos
(JISBD’2005) Granada, September 14-16, 2005, Toval, A. Hernández, J.
(eds). Thomson Paraninfo, Spain, pp. 35-42, ISBN:84-9732-434-X.

− E. Navarro, P. Sánchez, P. Letelier, J.A. Pastor, I. Ramos, “A Goal-
Oriented Approach for Safety Requirements Specification”, Proceedings
13th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS’06), Postdam, Germany,
March 27th-30th, 2006, pp. 319-326.

-195-

“The worst is not to make a mistake but to seek a
justification instead of using it as a providential

warning of our flippancy and ignorance.”—
Santiago Ramón y Cajal.

CHAPTER 7

7 Scenarios to run Aspect-Oriented Software
Architectures

7.1 INTRODUCTION

Scenario-based proposals, such as that presented by (Maiden, 1998) and (Leite
et al., 2000), have been used to describe and reason about large-grained
behaviour patterns in systems, as well as the coupling of these patterns. For this
reason, the specification of scenarios is a proper first step towards the
description of the system-to-be. They provide a way to reason about partial
views of the architecture, facilitating an improved comprehension of the
system-to-be and a way to analyse alternatives architectural descriptions.

Most of Scenario-based proposals needs for an artifact establishing the
requirements of the system-to-be to trigger their definition. In this sense, a
massive amount of work on linking goals and scenarios together can be found
in the literature. The obvious reason is that scenarios and goals have
complementary characteristics because, as (Lamsweerde, 2001a) states:

“The former are concrete, narrative, procedural, and leave intended properties
implicit; the latter are abstract, declarative, and make intended properties explicit.”

“Goals can be validated by identifying or generating scenarios that are covered by
them. One may even think of enacting such scenarios to produce animations.”

In this sense, several proposals can be found in the literature. For instance,
GRL (Liu & Yu, 2004) have been defined by using a Goal Model approach

196 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

along with its traceability, from goals towards UUssee CCaassee MMaappss (UCM).
However, these UCM are close far of the Architectural Scenarios that are used
in our work because their abstraction level is much higher. In addition, they
made an early splitting of the work between the system-to-be and the
environment because the responsibility is assigned at the goals level.

Both GBRAM (Antón, 1996) and CREWS l’Escritorie (Rolland et al., 1999) are
also quite similar to our proposal because they use scenario as
operationalization of the specified goals. However, as in these proposals they
are not architectural scenarios for the higher abstraction level.

(Araujo et al., 2004) have introduced the crosscutting management during the
definition of scenarios. However, their motivation has been different because
they try to describe scenarios that crosscut other scenarios as interaction
patterns using the (Kim et al., 2004)’s proposal. This means that their
motivation is quite distant of that proposed in this work. In addition, they do
not provide any notation for aspect description nor traceability through the
lifecycle of the system-to-be.

In addition, we would like to highlight that none of the mentioned proposals, as
far as we know, face an open issue: the separation of concerns and its proper
traceability from the very beginning of the software lifecycle. This has been the
main motivation for the introduction of ATRIUM, introducing this separation
at the requirements, scenarios, architecture and code level.

In our approach, both Goals Model, presented in the previous chapter, and
Scenarios Model elaboration are two intertwined processes, in order to
overcome some of their deficiencies and limitations when used in isolation. The
ATRIUM Goal Model describes the goals and requirements to be met by the
system-to-be. Therefore, it is the main input used for the description of the
ATRIUM Scenario Model. It facilitates the traceability among them can be
rightly established and maintained. In this sense, operationalizations are going
to play a key role. As was described in the chapter 5, they are prescriptions of
the scenarios to be described during the activity Define Scenarios. However, these
operationalizations are only textual; they do not identify the necessary
collaboration nor the process. It should be taken into account that a software
system is highly cooperative, that is, there are software components,
connectors, humans, and, even, environmental elements which collaborate in
the process of meeting the requirements. For this reason, the employment of
scenarios is a meaningful advantage.

The ATRIUM Scenario Model has been defined to capture which elements,
both architectural and environmental, are collaborating to satisfy the established
requirements in the ATRIUM Goal Model. By specifying the Scenario Model,

 7.2 Elements of the Scenarios Model 197

what their responsibilities are into this task and how their interactions are to
achieve them are described. Thus, this model operationalizes the Goal Model
by assigning the responsibilities for the elements in the system-to-be.

In addition, ATRIUM follows an Aspect Oriented approach. This means that
ATRIUM Scenario Model must provide enough expressiveness for identifying
and specifying aspects. It has been one of the key points when the notation for
this Model was defined.

The exploitation of Design Patterns and Architectural Styles is very important
because it means the reuse of quality solutions. They represent distilled
experience that, through their assimilation, enable expert analysts to convey
their knowledge and insight to inexpert ones. It seems obvious that the analyst
must be provided with facilities to describe that patterns and instantiate them.
For this reason, it seems obvious the introduction of patterns presents a
meaningful advantage related to other approaches.

This chapter is structured as followed. Sections 7.2 and 7.3 describe the
elements that are necessary for the scenario description and the specified
language for this goal, respectively. Section 7.4 presents a proposal for dealing
with Architectural Styles and Design patterns. The established process for
scenario description is presented in section 7.5. Finally, the last section presents
the main conclusions of the chapter.

7.2 ELEMENTS OF THE SCENARIOS MODEL

We should bear in mind that traceability throughout the lifecycle is one of the
main concerns of ATRIUM. For this reason, once the Goal Model has been
defined (as was described in chapter 5) it is expected that every identified
requirement has its scenario/s associated to it, providing us with partial views
of the behaviour of the system-to-be. These allow the analyst to reason about
the system-to-be with a proper granularity level.

In the ATRIUM Scenario Model, a sscceennaarriioo is used to describe the system
behaviour associated to one or several requirements and under certain
operationalization decision. This decision establishes how the scenario is going
to be described in terms of both architectural and environmental elements
along with a specific choreography they stick to. Unlike classic scenarios
proposals, ATRIUM Scenarios specify architectural elements interaction instead
of objects along with the environmental elements which played a role in that
scenario. This is due to the fact that ATRIUM aims at describing a proto-
architecture which meets the established requirements.

198 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Thus, considering that usually a requirement, which is met by the system-to-be,
it is provided by the collaboration of several kinds of elements of both
architecture and environment, the following interacting elements must be
specified:

− SShhaallllooww ccoommppoonneennttss.. They describe computational elements
which are candidate to appear as PRISMA software components in the
final Software Architecture description. They are called shallow because we
do not provide a full description of them but an initial one. They are to be
completely described if they finally appear in the final Software
Architecture.

− SShhaallllooww ccoonnnneeccttoorrss.. They are in charge of the coordination
between architectural elements and are candidates to be PRISMA software
connectors. Its introduction allows a loose coupling between them with the
benefits it encompasses in terms of maintainability and reuse. Like shallow
components, only a rough description is performed for shallow connectors.

− SShhaallllooww ssyysstteemmss.. One of the needs to be satisfied, whenever a
system-to-be is being described, is the ability to decompose its description
in such a way that several granularity levels can be used. For this reason,
shallow systems can be used when a scenario is being defined. A shallow
system is a complex component that is internally described by means of
components and connectors.

− EEnnvviirroonnmmeennttaall eelleemmeennttss.. Usually systems cannot be described
by themselves but in the context where they are executed. Especially,
because it is becoming very frequent that they are highly hardware
intensive. This implies that the ability to identify and specify such elements
is almost mandatory whenever a scenario is described. An example of such
a demand can be found in the EFTCoR system, our case study, where
hardware has a high impact on the final description of the system

− HHuummaannss.. Most of the current systems can be described as interactive
systems because they detect and react to the behaviour of users. In
addition, it is frequently the case that users can be a meaningful source of
information in the process of gathering requirements. For this reason, this
kind of elements has been included for the description of scenarios.

− CCoommmmeerrcciiaall ooffff--tthhee--SShheellff ((CCOOTTSS)).. Actually is becoming
almost compulsory the introduction of COTS to reduce development costs
and time. Because of that, the identification of those COTS while
describing a scenario is needed. This will allow us to identify the
interoperability requirements i.e. the requirements that must be satisfied for

 7.2 Elements of the Scenarios Model 199

the cooperation between different products in order to facilitate their
integration (Lauesen, 2006).

As can be observed a distinction has been established between humans and the
remainding environment elements. It is due to the fact that interaction is usually
quite different and with different results in the final description of the
architecture, as will be described in chapter 8.

It is worthy of note that the identification of not only the involved elements but
how their interactions are it is highly relevant when a Software Architecture is
being defined. These interactions are described by the sequence of interaction
mmeessssaaggeess between different elements in accordance with its specific
choreography. Every message is in charge of describing which service is
required from a specific element.

Taking into account that ATRIUM promotes the separation of ccoonncceerrnnss
from the very beginning of the lifecycle, it is important to provide support to
their detection and specification from the requirements stage and to the
maintenance of their proper traceability throughout the full lifecycle. In this
sense, (Rashid et al., 2002) have stated that a concern (candidate aspect in their
proposal) can have a range of different impacts on later development stages.
For this reason, they have identified a set of mappings from these concerns to
functions, decisions or aspects which will impact the final system specification.
Table 7-1 shows an example of some mappings they have identified.
Table 7-1 Example of mappings specification (extracted from (Rashid et al., 2002))

Candidate Aspect Influence Mapping
Compatibility Specification architecture,

design, evolution
Function

Response time Architecture, design Aspect
Legal issues Specification architecture,

design
Function

Correctness Architecture, design Aspect
Security Architecture, design Aspect
Availability Architecture Decision
Multi-user system Architecture, design Aspect

In ATRIUM this characteristic is also considered, i.e., a crosscutting concern
can have a diversity of mappings on the final description of the system. It is up
to the analyst to make the final decision about this matter. This means that a
crosscutting concern can be realized as a service, an architectural or
environmental element or an aspect, depending on the scenario that is
described. However, ATRIUM provides the analyst with a set of alternatives, as
described in section 7.5, to help him/her during this process.

200 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

In addition, we have to consider that ATRIUM generate by applying the
Synthesize and Transform activity, an architectural specification. In the next
chapter, it is shown how it proceeds by using PRISMA (see chapter 4) as AO-
ADL. PRISMA model, manages the crosscutting at the architectural level by
using aspects and employs them to describe the internal view of components and
connectors. Figure 7-1 shows an example of the external view and internal view
of the SUCConnector. We can observe that a coordination aspect “FSensor”, a
safety aspect “SMotion”, and a distribution aspect “DRobotLocation” integrate
it. As can be observed in the figure, every one of these PRISMA aspects is
described as a collection of services aggregated from the point of view of a
specific concern, concretely, coordination, safety and distribution in the
example. Whenever this connector is used, its interacting context does not care
whether it aggregates these aspects but only the services it provides.

Figure 7-1 Internal and external view of a PRISMA connector

As described above, ATRIUM scenarios can accomplish the traceability
towards architectural or environmental elements, and even services. However, a
key issue to address is how the trace from those crosscuttings identified while
eliciting the requirements to PRISMA aspects, or aspects in general, can be
specified. Due to the fact that ATRIUM scenarios are the joint point between
the requirements model and the Software Architecture, they are responsible for
incorporating the capability to specify such traceability. Therefore, considering
that a message is requiring a service that belongs to a specific aspect, whenever
the analyst needs to specify it, he/she can do it by using an aspectual message.
This kind of message is in charge of identifying the concern that the required
service belongs to. This alternative improves the legibility of the scenarios
because it does not include other kind of element for their description as
(Cooper et al., 2005) do. This facility is highly meaningful because it is essential
for the generation of the proto-architecture as described in chapter 8.

 7.3 Graphical notation 201

Figure 7-2 summarizes the main elements identified for the scenarios model
description. It shows how interacting elements can collaborate by means of
messages. In addition, it can be observed that an interaction can be described as
an aspectual message as well if it is necessary.

Figure 7-2 Metamodel for ATRIUM Scenarios Model

7.3 GRAPHICAL NOTATION

As graphical language for scenarios, Sequence Diagrams (SD) of UML 2.0
(UML, 2005) has been selected. SDs help to identify the coordination structure
of the involved architectural and environmental elements through the process
of their construction. This time-based interaction shall help us to define the
choreography always necessary while defining the Software Architecture.

An UML profile based on the UML 2.0 Sequence Diagram metamodel has
been defined so that it provides us with the needed expressiveness to identify
and specify the elements described in section 7.2. For that specialization two
steps were performed:

− Stereotyping the UML metamodel classes to describe those entities we
need for our purposes.

− Defining those OCL constraints needed to ensure a proper semantics of
our proposal.

Figure 7-3 depicts the outcome of first step by including those elements needed
for our proposal. It shown in the figure in orange colour which elements of the
UML metamodel have been extended with the needed stereotypes and tagged
values in order to provide notation to that concepts included in section 7.2. In
the following sections, a more detailed description of the most important
elements of the metamodel is introduced. It pays special attention to those
elements of UML that have been subtyped or are highly relevant for our
proposal. The added elements are described along with the elements that have

202 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

been subtyped. A full description of the UML metamodel is introduced in
(UML, 2005). In this work, only those terms and concepts necessary for the
comprehension of chapter 8 are introduced.

 7.3 Graphical notation 203

Figure 7-3 Metamodel for Scenarios Model: UML entities and Added Entities

204 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

7.3.1 Lifelines

LLiiffeelliinnee are used to represent an individual participant either architectural
or environmental involved in the scenario being modelled. Each kind of
element is represented by means of a different UML stereotype, i.e., that
according to the metamodel described in Figure 7-3, five kind of lifelines can be
used in a scenario.

− «component» is used to represent shallow components in a scenario, i.e.,
the main computation elements which are candidates to appear in the final
description of the architecture.

− «connector» is employed to describe shallow connectors, i.e., coordination
elements which are candidates to appear in the final description of the
architecture.

− «environment» is incorporated to the scenario notation to describe
elements which are in the environment where the system-to-be has to
perform its activity.

− «human» is in charge of describing which operators are going to have
interactions with the final system.

− «COTS» is used to describe which components of the self are planed to be
incorporated into the system-to-be and which their collaboration is with
the others elements.

Figure 7-4 Graphical representation for Lifelines

As can be noticed, most of the interacting elements identified in section 7.2 are
described by means of lifelines. Figure 7-4 depicts an example of a Lifeline
which is stereotyped as a «connector». A specific colour is also used to enhance
the legibility of the scenario. Table 7-2 describes the code colour used to
specify each kind of element. In addition, every kind of lifeline has an attribute
called ““role”” employed to describe if the element is going to play a specific role,
that is, if it is going to have some specific assignment of responsibility. This
kind of information can be provided according to the Architectural Style or

 7.3 Graphical notation 205

Domain-Specific Software Architectures (DSSA) that is being applied during
the scenario description (see section 7.4.1).
Table 7-2 Code colour and graphical notation for lifelines

Concern Code Colour and notation

«component»

«connector»

«environment»

«human»

«COTS»

7.3.2 Messages

ATRIUM scenarios use messages to specify a communication between
architectural and/or environmental elements. This communication can describe
both a service to be provided by the requested element or the creation or
destruction of an architectural element. UML 2.0, as observed in Figure 7-5,
uses MMeessssaaggeess to describe a communication between Lifelines and/or
IInntteerraaccttiioonnFFrraaggmmeennttss describing this interaction by means of the
MMeessssaaggeeEEnnddss. If a Lifeline is one of the interacting elements a
MMeessssaaggeeOOccccuurreenncceeSSppeecciiffiiccaattiioonn appears as the MessageEnd. On the
contrary, if an InteractionFragment is described as interacting then a GGaattee is used
to specify such a connection.

206 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-5 Describing Message and its extension as Aspectual Message

Messages are used in ATRIUM in a similar way to that defined in UML 2.0.
However, it is necessary to consider two issues. The first is that the
identification of aspects is mandatory in our proposal to provide the proper
traceability. The second is that it has no sense to introduce aspects as another
kind of interacting element in a scenario because they are in the internal view of
the architectural elements, with a different abstraction level. To address these
issues, a new kind of message has also been included in our metamotel (Figure
7-2). This message is described in UML 2.0 by means of the stereotype
«AspectualMessage». It can be observed in Figure 7-5 that the tagged value
concern has been included in its description, which is typed by ConcernKind. It is
employed for the description of the concern the messages belongs to. Thus,
whenever the analyst considers that a service should be included in the
specification of a specific kind of aspect, this service will be pre-fixed with the
name of the concern it refers to.

Figure 7-6 shows an example of how the service ““secure check()”” has been
prefixed with ““C{Safety}”” to indicate that it will be included in a safety aspect
which composes the ““WristCnct”” connector.

 7.3 Graphical notation 207

Figure 7-6 Describing a Safety Concern

We have to point out that a constraint has to be satisfied when an
«AspectualMessage» is defined. It establishes that the connectable element,
which receives the receiveEvent, can only be an ArchitecturalElement. This is due
to the fact only architectural elements need to describe the concerns they are
affected by.
Table 7-3 OCL Constraints for AspectualMessages

Element Constraint

AspectualMessage context AspectualMessage inv
def allowedConnectableElements:Boolean
Self.receiveEvent.covered.stereotype.name=’Component’ or
Self.receiveEvent.covered.stereotype.name=’Connector’

7.3.3 ExecutionSpecification

An EExxeeccuuttiioonnSSppeecciiffiiccaattiioonn is used to illustrate the behaviour of a
Lifeline that lasts between two
EExxeeccuuttiioonnOOccccuurrrreenncceeSSppeecciiffiiccaattiioonn (see Figure 7-7): start which
fires its existence and finish which finalizes it.

208 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-7 Extending BehaviorExecutionSpecification to support concern specification

UML uses ExecutionSpecification as an abstraction to describe either an AAccttiioonn
or a BBeehhaavviioouurr associated to a Lifeline. The former describes an an atomic
change of state of the Lifeline. The second can be used to describe changes of
state that take place over time. For ATRIUM Scenarios, the second alternative
has been selected since a message is in charge of describing the request of a
service that can be a complex one.

In addition, these BehaviorExecutionSpecification has been customized in ATRIUM
scenarios to facilitate the legibility of the scenario, concretely, to provide more
information about system concerns. For this reason the stereotype
«AspectualExecutionOccurrence» along with its concern tagged value, typed by
the enumeration ConcernKind, have been included in the metamodel of the
Figure 7-3. This permits to describe that a service execution occurrence can be
catalogued according to a specific concern. This AspectualExecutionOccurrence is
graphically described by means of a code colour which is presented in Table
7-4, though it can be customized according to the user preferences by adding
new kinds of concerns.

 7.3 Graphical notation 209

Table 7-4 Concerns for ATRIUM

Concern Prefix Code Colour
Context Awareness C{Context}
Coordination C{Coordination}
Distribution C{Distribution}
Functional C{Functional}
Presentation C{Presentation}
Quality C{Quality}
Safety C{Safety}

An example of how an AspectualExecutionOccurrence is used appears above in
Figure 7-6. We can observe how the ExecutionOccurrence, which is fired by
the event occurrence of the message ““C{Safety} secure check()””, is coloured
with orange to highlight it is related to a safety concern.

In a similar way to the Messages, «AspectualExecutionOccurrence» can only be
used when they describe the execution of a service in an architectural element.
This means that the following constraint must be fulfilled:
Table 7-5 OCL Constraints for AspectualMessages

Element Constraint

BehaviorExecutionOccurrence context BehaviorExecutionOccurrence inv
def allowedConnectableElements:Boolean
Self.receiveEvent.covered.stereotype.name=’Component’ or
Self. receiveEvent.covered.stereotype.name=’Connector’

7.3.4 Guards

It is frequently the case that some services cannot be executed unless a given
condition is satisfied. In order to provide such expressiveness UML 2.0 uses
GGuuaarrddss. They describe when a condition must be satisfied for a message to be
sent.

To describe a Guard, the condition must be enclosed among brackets and be
stated just as prior to the occurrence event of firing a message. During its
description only values local to the interaction scenario can be employed. An
example of its use is shown in Figure 7-8. It is part of a scenario where safety
features are dealt with. In this case, a ““SafetyNode”” has been included, in such
a way that both ““SafetyNode”” and ““SUCCnct”” check if the final position
where the robot has moved is different from that is expected. In this case, a

210 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

““FAIL”” has to be sent. We can observe the guard ““[FinalPos<>Estimated]””
express such a condition. The full description of Guard syntax can be found in
(UML, 2005).

Figure 7-8 Describing Guards in a Scenario

7.3.5 Interaction

An IInntteerraaccttiioonn encapsulates a unit of behaviour which is described by
means of the connectable elements (InteractionFragments, Lifelines and
InteractionUse) along with the set of messages they interchange. Taking into
account that every message has associated a pair (SendEvent, ReceiveEvent) of
OccurrenceEvent, the set of messages described in an interaction establish a set of
OccurenceEvents. The set of OccurenceEvents is the ttrraaccee of the Interaction. This
trace is highly meaningful because it gives semantics to the Interaction. The
semantics of the Interactions are compositional, that is, the semantics of an
Interaction is mechanically built from the semantics of its constituent
InteractionFragments. These fragments are described by means of the set of
OccurenceEvents.

 7.3 Graphical notation 211

Figure 7-9 Extension of Interaction for specifying systems

As was described in section 7.2, one of the interacting elements necessary for
scenarios description are Systems, because they provide the analyst with the
ability to decompose the description of a Software Architecture with different
granularity levels. It could have been represented like a lifeline in a similar way
to components and connectors. However, the main problem is that their
description is performed by means of a set of architectural elements that
interact to provide the system behaviour. Due to this fact, the most
straightforward notation to specify them is by means of a specialization of
Interaction so as to introduce them as another interacting element.

With this aim, a new stereotype, called «systemFrame», has been included as an
extension of Interaction that contains in its definition three tagged values:
systemName, scenarioName and role. The systemName is used to call the system and
the scenarioName to name the scenario. We have to take into account that a
system can have associated several scenarios, in terms of the collection of
services it has to provide.

An example of this notation is shown in Figure 7-10. It depicts a system called
““MUC””, which is composed by the shallow-components ““WristActuator”” and
““WristSensor”” and the shallow connector ““WristCnct””. In addition, Figure
7-10 shows how this system provides the service Move(Joint, step, speed) by
means of the interaction of those architectural elements.

212 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-10 Describing the MUC system for the teachMover

7.3.6 InteractionOccurrence

It is a facility of UML 2.0 that helps the analyst to make an Interaction more
legible and reusable. In this sense, an Interaction fragment can be factorised as
an Interaction or CombinedFragment facilitating their reuse in several Interactions,
i.e., in several ATRIUM scenarios. Whenever its content has to be copied to an
Interaction, an InteractionOccurrence is used to reference it. The only restriction to
be satisfied is that set of actual gates (see section 7.3.8 for more details about
gates) of the InteractionOccurrence must match the formal gates of the referred
Interaction.

Figure 7-11 shows an example of an InteractionUse, which is depicted by means
of a frame labelled with ref, has been used to refer the Interaction ““systemFrame.
Base.Move(BaseHalfSteps, speed)””. As can be observed the name of the
InteractionUse has to match the name of the Interaction. In addition, we can
observe that the actual gates, which appear on the InteractionUse, are coincident
with the formal gates described in the ““systemFrame.
Base.Move(BaseHalfSteps, speed)”” Interaction.

 7.3 Graphical notation 213

Figure 7-11 Using an InteractionOccurrence to refer the Base.Move(BaseHalfSteps,

speed) systemFrame

7.3.7 Combined Fragments

CCoommbbiinneedd FFrraaggmmeennttss are a new addition of the UML 2.0 notation to
describe a graphical boundary for a diagram. Concretely, they are used to
provide analysts with notations that help them to simplify the specification of
scenarios. They exploit a new graphical element called ffrraammee to specify this
boundary, as Figure 7-12 shows. This notation has different uses that are
described below.

Figure 7-12 Frame description in UML 2.0

Alternative interactions

A notation used with frames is the interaction operator aalltt. It designates that
each combined fragment represents a choice of behaviour within the system-to-
be where at least one of the services will be executed. Several fragments can be
introduced to specify an alternative. Each one must have a guard expression at
top that if it is positively evaluated then the corresponding fragment is
executed. A fragment guarded by else must always be included. It designates a
guard which negates the disjunction of all other guards. An example of how alt
can be used is shown in Figure 7-13. Two fragments are included: the first is

214 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

guarded by the condition ““Joint<> ““Tool”” so that the service ““Move(Joint,
step, speed)”” of the MUC system is executed if this condition is positively
evaluated; the second fragment is guarded by ““else”” so that the service
““Move(step, speed)”” of the ToolSuc system is executed if ““Joint<> ““Tool””““ is
negatively evaluated.

Figure 7-13 Alternative behaviour when defining the movement of a joint

Optionality

In a similar way to alternative interaction optional interactions, defined by
means of the interaction operator oopptt, can be used to specify a behaviour
which happens only if the condition is positively evaluated; otherwise, there is
no alternative behaviour to happen. Therefore, it is used to model a ““if then””
selection of behaviour with no ““else”” alternative.

Parallel composition

While describing Software Architecture it is frequent the case that concurrent
tasks have to be described. It facilitates that computation to perform a complex
task can be split into the processing required to perform several more simple
tasks. They are handled in parallel by the system. This means that the behaviour

 7.3 Graphical notation 215

of the system is the merge between the behaviours performed by the set of
more simple tasks.

In order to offer notation for parallel composition, UML 2.0 employs the
combined fragment element by using ppaarr as interaction operand. This
interaction operand is placed into the sequence diagram’s label. In addition, the
diagram’s context is divided into as many fragment interaction as need. Each
fragment represents a thread of execution done in parallel.

Figure 7-14 Parallel composition

An example of how this combined fragment can be used is presented in the
Figure 7-14. It shows four fragment interactions that execute in parallel the
services ““Move”” provided by the systems ““Base””, ““Shoulder””, ““Elbow”” and
““Wrist””. As observed in the figure, these systems are referred by means of an
Interaction Occurrence.

Iterations

UML 2.0. has introduced a notation to describe when a fragment interaction
has to be executed a number of times until a condition is positively evaluated.

216 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

In this case, the interaction operand, which is placed in the diagram’s label, is
lloooopp. Inside the diagram’s context area, a guard is placed to describe the
condition that determines the end of the execution. Under the guard, the
fragment iteration to be iterated over is specified.

Figure 7-15 Describing a loop for the movement of the Base System

In addition, a loop can have two more special conditions: minint and maxint.
These conditions and the boolean condition are jointly evaluated to determine
if the next iteration can be performed. minint condition is employed to establish
that the interaction fragment has to be executed at least the number of times
indicated; whereas maxint determines that the number of executions cannot
exceeds that number. Once the fragment interaction has been executed minint
times, if the boolean expression is negatively evaluated the loop terminates;
else, the iteration continues until it iterates maxint times or the boolean
expression is negatively evaluated. Figure 7-15 describes an example of loop
use. As is observed, the service ““MoveStep”” is requested to the ““BaseAct””
component, until the response OK is not true.

7.3.8 Gates

When an ATRIUM scenario is being defined is usual that it can not be defined
by itself but interacting with its context. This implies that is necessary a
mechanism to describe what information is passing between them. With this
aim, UML 2.0 has introduced the concept of GGaattee. It is in charge of describing
the connection point of a message, concretely, when an end, which is actually
the gate, of a message is connected to the sequence diagram frame’s edge and
its other end is connected to a lifeline.

 7.4 Architectural Styles and Patterns 217

A gate can have different roles depending on the sequence diagram frame’s
edge is covering (Figure 7-16). It can be a formalGate when it is described on an
Interaction. This kind of gates is not going to be used, at least not usually. It is
because an ATRIUM Scenario can describe several InteractionFragments. The
messages they interchange do not use the gates to establish the communication
but directly can be connected to the lifelines that the InteractionFragments
enclose (see Figure 7-34). It can also be an actualGate when it is described on an
InteractionOccurrence. Its use is appreciated in the Figure 7-14, where the message
““Move(BaseHalfSteps,speed)”” has the InteractionOccurrence named
““«systemFrame» Base.Move(BaseHalfSteps,speed)”” as one of its ends. Finally, a
cFragmentGate when it is described on a CombinedFragment.

Figure 7-16 Describing Gate in UML 2.0

7.4 ARCHITECTURAL STYLES AND PATTERNS

The exploitation of Software Patterns is a current trend in Software
Engineering. It represents a meaningful way to reuse knowledge in software
development, especially, when the analyst does not have a proper background
in the area. For this reason, their introduction means a meaningful advantage in
terms of costs, time and quality of the final product. As (Schmidt et al., 2000)
state:

“Patterns expose knowledge about software construction that has been gained by
many experts over many years. All work on patterns should therefore focus on
making this precious resource widely available. Every software developer should be
able to use patterns effectively when building software systems. When this is
achieved, we will be able to celebrate the human intelligence that patterns reflect, both
in each individual pattern and in all patterns in their entirety.

They are generative. They tell us what to do; they tell us how we shall, or may,
generate them; and they tell us too, that under certain circumstances, we must create

218 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

them. Each pattern is a rule which describes what you have to do to generate the
entity which it defines. (pp. 181-182)”

Patterns have been defined to several levels. The most well known proposal in
this sense has been presented by (Gamma et al., 1995). They describe a set of
patterns, at the design level, for managing object creation, composing objects
into larger structures, and assigning responsibilities to objects, in the context of
object-oriented systems.

However, how does this reuse of the knowledge is applicable while specifying
the Software Architecture? Several alternatives state the advantages of its
application at this stage. Among them, the use of AArrcchhiitteeccttuurraall
SSttyylleess is a meaningful and widely extended approach. (Shaw & Garlan,
1994) have described an Architectural Style as follows:

“An Architectural Style, then, defines a family of such systems in terms of a pattern
of structural organization. More specifically, an Architectural Style determines the
vocabulary of components and connectors that can be used in instances of that style,
together with a set of constraints on how they can be combined. These can include
topological constraints on architectural descriptions (e.g., no cycles). Other
constraints—say, having to do with execution semantics—might also be part of the
style definition.”

We can find this concept with a different name: AArrcchhiitteeccttuurraall
PPaatttteerrnn. They have quite similar as can be observed by the (Douglass,
2003)’s definition:

“An architectural pattern expresses a fundamental structural organization or
schema for software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them.”

Both of them refer to recurring solution described at the architectural level.
However, some authors have established some differences among them, mainly
in terms of how they have described because Architectural Patterns follow a
problem-solution approach, similar to (Gamma et al., 1995), whereas the
Architectural Styles focus on the architectural description. (Avgeriou & Zdun,
2005) give a deeper insight about this topic.

As may be observed, the definitions described above consider the application
of an Architectural Style as an important decision in terms of the final
configuration of the system-to-be. This is because it influences the way the
relationships between the subsystems must be established. As (Eden &
Kazman, 2003) set out, an Architectural Style pervades all the parts of the system
because it defines a set of properties that must be satisfied by every element

 7.4 Architectural Styles and Patterns 219

used in its definition. Among these properties, it is especially relevant the ability
to assign responsibilities to the subsystems collaborating in the specification.
The identification of the employed Architectural Style conveys much
information about the system and the made decision to the stakeholders.
(Abowd et al, 1995) describe a clear example when given a description, as
Figure 7-17 shown, it can have different interpretations respect to the applied
Style. They describe that if it were with interpreted respect to a client-server
Style, it would mean that there are two kinds of elements: client and server. If it
were interpreted using a blackboard style, it would describe a blackboard
accessed by three sources of knowledge, etc.

Figure 7-17 Software Architecture Description

However, the reuse of past experience, while defining the Software
Architecture, cannot be limited to the application of Architectural Styles but it
is also necessary to introduce partial solutions to deal with specific problems.
For this reason, the introduction of DDeessiiggnn PPaatttteerrnnss at the architectural
level emerges as mandatory to help the analyst in this process. As opposed to
(Gamma et al., 1995)’s proposal, the Design Patterns here described are oriented
to identify which architectural elements can collaborate to offer a solution to a
specific problem. Their application does not reorganize the architecture, but
rather extends and changes partially its behaviour. In this sense, they usually
add one or a few components (or aspects) that realize that behaviour provided by
the patterns. In this sense, these patterns are going to deal with features such as
distribution, persistence, concurrency, etc, i.e., those other concerns of the
system.

The Design Patterns are not predominant in the architectural definition so that it
can be merged with Architectural Styles without problems. They can emerge
when the same architectural elements are affected by more than a Design Pattern,
especially, if they are dealing with the same concern.

The definition of the Define Scenarios activity (section 7.5) of ATRIUM allows
for the exploitation of Architectural Styles and Design Patterns. For this reason,
some of the most well known Architectural Styles and some examples are

220 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

presented in the following sections. It is described its use and impact in the
architectural specification along with the problem they face.

7.4.1 Architectural Styles

Several works have tried to define and catalogue the existing Architectural
Styles, such as (Garlan et al., 1994) or (Shaw & Clements, 1997). However, they
do not provide a common framework for its identification. In this sense, (Bass
et al., 2003) have identified the following set of features that can be used to
characterize an Architectural Style:

− a set of elements types (e.g., data repository, process, procedure) that
perform some function at runtime,

− a topological layout of these elements indicating their interrelationships,

− a set of semantics constraints (for example, two knowledge sources in a
blackboard style can not communicate directly),

− a set of interaction mechanisms (e.g., subroutine call or remote procedure
call (Mehta et al., 2000)) that describes how the elements communicate,
coordinate, or cooperate through the established topology.

Considering these features, they have described five types of Architectural Styles.
They are introduced below along with their most representative example,
described more exhaustively in the following sections.

− DDaattaa--CCeennttrreedd. This type of Style is related to those systems exploiting
a central repository of data to facilitate the communication and
synchronization of their multiple components. An example of this type is
the BBllaacckkbbooaarrdd SSttyyllee.

− DDaattaa FFllooww.. This type of Style deals with those systems focused on
how streams of data are successively processed or transformed by
components. PPiippee--aanndd--FFiilltteerr is a clear example of this type.

− CCaallll--aanndd--RReettuurrnn deals with how complex and heterogeneous
systems must be decomposed into interacting parts to facilitate their
comprehension and implementation. The most well known and widely
used example of this type is the LLaayyeerreedd SSttyyllee..

− IInnddeeppeennddeenntt CCoommppoonneennttss focuses on systems whose individual
components exchange messages to perform the main computation but
keep their independence. EEvveenntt SSttyyllee is an example of this type.

 7.4 Architectural Styles and Patterns 221

− VViirrttuuaall MMaacchhiinnee.. This type of Style is concerned with how systems
offer an abstraction layer that is exploited by the computation
infrastructure. IInntteerrpprreetteerr SSttyyllee is a realization of this type.

These types of Styles have been defined in a general way, without considering a
particular domain or application. However, lately another type of Style is getting
more and more attention, called DDoommaaiinn--SSppeecciiffiicc SSooffttwwaarree
AArrcchhiitteeccttuurreess ((DDSSSSAA)) (Mettala & Graham, 1992). This kind of Style
is based on the idea of identifying common elements that are shared by a family
of systems so that new systems can be created by instantiating them. This
means that a pre-assignment of responsibilities, in terms of the constraints they
have to preserve, is given to the architectural elements they identify. This type
of Style has also been considered in the description of ATRIUM. For this
reason, an example is introduced. Specifically, the ACROSET style, described
by (Ortiz et al., 2005), is presented, because it has been put into practice for the
Teachmover and the EFTCoR definition.

Blackboard Style

Some research fields, as for instance the Artificial Intelligence in the context of
problem solvers, are demanding mechanisms of coordination able to deal with
the heterogeneity of the coordinated processes and the high load due to the
volume of processes. In this context, the Blackboard Style offers a solution by
exploiting a common structure for the insertion and removal of information
that facilitates an inter-process communication and a decoupling between the
communicating elements. (Pfleger and Hayes-Roth, 1997) provides a good
overview of this Style from the point of view of the Software Engineering.

Typically, an Architecture realizing this style is separated into a central and fully
reachable data structure that is called blackboard. This is a global data structure
employed as communication medium. It can store a wide range of different
kinds of information, although information related to the solution or a partial
solution is the most usual. A variable number of architectural elements, named
knowledge sources (KS), access to this structure to perform their computation
based on its content and modifying it as needed. In this way, the solution is
build by modifying the information store in the blackboard. These KSs can
operate on the blackboard only when they are enabled. The control is in charge of
this task. It decides which element or elements are enabled to be executed
depending on the kind of strategy to apply, that is, if several KSs can operate in
parallel or only one KSs can operate at a time.

222 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-18 A common structure for the Blackboard Style

Figure 7-18 shows what the typical layout looks like. It can be observed that the
knowledge sources are directly connected to the Control. This element is in charge
of deciding which ones are enabled to monitorize the access to the Blackboard.
Taking into account that layout, the Figure 7-19 shows an archetype of an
ATRIUM Scenario while instantiating this Style. It shows how the architectural
elements interact and which roles are playing each one. In this example, each
KS maintains its own state and evaluates the precondition using it. The Control
determines which KS must be enabled taking into account such preconditions
and the current state of the blackboard.

Figure 7-19 ATRIUM Scenario applying a Blackboard Style

Several constraints must be applied when this Style is applied:

− KSs cannot communicate directly but by means of the blackboard. This
means a high decoupling between the implied elements, without any
information about how they have defined.

 7.4 Architectural Styles and Patterns 223

− KSs operate by self-invocation when there is a specific state of the solution
that enables them to work. This means that they are not explicitly called but
they wait for a set of conditions to operate.

− There is not an explicit order of execution of the KSs nor the examination
or manipulation of the items in the blackboard. This implies that it is up to
the run-time to decide which execution order to apply using the current
state established in the blackboard.

Taking into account how this Style has been described, the used
communication mechanism is obviously by means of direct data access. It is
because all the communication and coordination of the KSs is supported by
means of the blackboard.

Pipe and Filter Style

This Style is exploited when there is a need in terms of the abstraction of the
route between two elements with a dependency relationship between them, that
is, one of them has an attribute whose value must be bound to the value of an
attribute of the other element. The main goal of this abstraction is to establish
the appropriate synchronization mechanisms. It also provides a low decoupling
between the elements because if one of the elements suffers any modification
their surrounded elements are not affected by it. (Abowd et al, 1995) offers a
good description and formalization of this Style.

When this style is used, two kinds of elements are defined: pipes and filters. The
source is a filter element forwarding the data sourceData to be processed, i.e., the
required values. The destination is a filter element that processes the received
data destData. Both elements are connected by means of a binary relationship
1:1 called pipe that abstracts the transportation mechanism.

Figure 7-20 Main structure of the Pipe and Filter Style

224 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-21 Applying the Pipe and Filter Style in an ATRIUM Scenario

This Style does not impose any topological constraint, that is, every filter can be
connected to any other but always using a filter as communication medium, as
the Figure 7-20 shows. For this reason, its instantiation in an ATRIUM
Scenario is quite simple. Figure 7-22 shows that only the interacting filters must
appear in the scenario description. The pipe is implicitly represented by the
sequence of messages that both filters interchange.

Several constraints have been defined that any Software Architecture applying
this Style must satisfy:

− Pipes cannot process the data that are being transferred from one element
to the other.

− Pipes do not allow (by default) full duplex communication between filters,
only one-way.

− Filters are in charge of transforming the input data by a single computation
step. This processing is performed following the specific order of arrival of
the data.

− Their control mechanism is asynchronous facilitating that pipes can work
in parallel in an independent way.

There is no a specific interaction mechanism for this Style. However, the most
well know approach is to reuse Unix operating system primitives to handle task
scheduling, synchronization, and communication through Unix pipes.

Layered Style

This Style provides an abstraction for systems having specific needs in terms of
dependencies between components. Specifically, when high-level components
are dependent on lower-level components to perform their main computation.
Thus, a vertical decoupling between these components is mandatory to provide

 7.4 Architectural Styles and Patterns 225

these systems with the necessary modifiability, portability and reusability.
Usually, a horizontal structure, in addition to the vertical one, is employed to
describe specific assignment of responsibilities as well.

In order to provide these vertical and horizontal structures Layers are used.
Each layer is composed by a set of components, having all of them the same
abstraction level, that interact by means of connectors. Each layer can use the
services of the layers immediately above and below it through their clearly
defined interfaces.

The main layout of this Style is shown in the Figure 7-22. It depicts the
horizontal structure that is integrated by several components and connectors. It
also illustrates that each layer access to the layer beneath through a clear
interface. Figure 7-23 shows what an ATRIUM Scenario looks like when a
Layered Style is applied. It can be observed that architectural elements beloging
to different layers can interact between them. It means that interfaces must be
described between those layers to facilitate that interaction.

Figure 7-22 Layout for the Layered Style

The main constraint exhibited by this Style is related to the access between
layers. Each layer should access to the layer just bellow it. If this constraint is
not satisfied the main benefits of this Style, as its modifiability, would not be
achieved.

Several communication mechanisms can be used for this Style. However, the
most widely used is the procedure call to perform the transfer of data by means
of parameters. This mechanism also provides facilities for the coordination of
the interacting components.

226 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-23 Layer Style applied to an ATRIUM Scenario

Event-based Style

Event-based Style has been widely accepted for the academia and industry and
extensively used in the design of distributed systems. This has been mainly
motivated for the low coupling it provides. In an Event-based Style, the
components communicate by generating and receiving event notifications. The
powerful of this Style is that neither the generation nor the reception of events
is directed to a specific component. This means that components are not
designed to work with other specific components, which facilitates a low
decoupling between them. It also provides a high degree of adaptability because
any specific component must be introduced to generate or receive the
produced events. In addition, this Style facilitates the integration activities by
using the implicit invocation of tools, subsystems or components as response
to the notification of an event. Finally, it also can provide meaningful
advantages in terms of scalability, but depending on how the notification
service is designed. (Fiege, 2005) give a good overview of systems applying this
Style.

A connector named EventService is one of the main elements of this Style. This
element is in charge of dispatching the event notification, that is, when an event
has been generated. The interacting components can play two different roles. If
they play as subscribers then they advise the EventService their interest in the
reception of event notification by sending a subscribe request. If they play as
publishers then they notify the occurrence of an event by sending a publish
request to the EventService. As response, the EventService is in charge of
dispatching the event notification to all the subscribers to that event.

Figure 7-24 depicts the typical layout for an Event-based Style. It can be
observed how the publish request flows to the EventService and how it is notified
to every subscriber. Figure 7-25 illustrates an ATRIUM Scenario applying this

 7.4 Architectural Styles and Patterns 227

Style. It can be observed that subscribers do not interact directly but by means of
the Event Service. It notifies to the subscriber when a subscribed event has been
published.

Figure 7-24 Typical layout for an Event-based Style

Figure 7-25 Event-based Style applied to an ATRIUM scenario

This Style has as main constraint how the components are specified. They
cannot have any reference to any existing or predetermined component in their
definition. Otherwise, the adaptability of this Style would not be achieved.
Other constraint to be satisfied is the dispatching assurance, i.e., every
subscriber must have an instantaneous notification of those events it has
subscribed for.

Events are used in systems applying this Style as a communication medium. It
is because they can content a wide range of information such as time, source, or
any other domain-related information. They are also the coordination
mechanism used for these systems because they are the base to model the
control flow in these systems.

Interpreter Style

Whenever the configurability is a concern of the system, this Style offers an
appropriate solution facilitating the adaptation of the system to unexpected
situations. The main idea exploited by this Style is to convert the functionality
of the system into data, usually, in a Metamodel. This Metamodel can be
interpreted in a way that can be changed as needed and thus, the behaviour of

228 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

the system, by modifying the Metamodel. However, this Style exhibits a severe
performance penalty for its use.

The typical structure of this style is described by means of one interpreter. It is
the execution engine in charge of reading and modifying the Metamodel as
needed. Three memories are also used in their description: program that
describes the Metamodel being interpreted; program state that represents the
current state of the program; and, the engine state that describes the current state
of the interpreter.

Figure 7-26 Layout for an Interpreter Style

There is not a typical layout for this Style. Figure 7-26 identifies the main
elements previously described, but there is no constraint about how this Style
must be decomposed. In this sense, there are not specific constraints for its
application either. This is also applicable to the communication and
coordination mechanisms. An ATRIUM Scenario applying this Style is
presented in Figure 7-27. It describes how the interaction proceeds by
evaluating the next Expression and determining the next state of the Interpreter
based on its current state and the state of the program being evaluated.

Figure 7-27 An ATRIUM Scenario with the Interpreter Style

ACROSET DSSA

Tele-operated systems cover a broad range of mechanisms and missions, such
as hull ships cleaning, bomb deactivation, etc. However, they share some

 7.4 Architectural Styles and Patterns 229

common characteristics as, for instance, a behaviour controlled by an operator;
or working areas fixed and well known, etc. These characteristics facilitate the
description of a Domain Specific Software Architecture. An example of this
approach is ACROSET (Ortiz et al., 2005). It has been described as a
specialization of a Layered Style where an assignment of responsibilities to each
layer has been established.

Figure 7-28 Main layout of ACROSET

ACROSET identifies four layers that Figure 7-28 depicts. The lower abstraction
layer is the Hardware Layer that is integrated by a set of sensors and actuators,
usually implemented by means of hardware components. The sensors are
components that provide information that is required for controlling the active
elements of the system. The actuators are components in charge of modelling
these active elements, for instance, one of the joints of the Teachmover (see
section 4.2.2).

The next layer is called Simple Unit Controller (SUC). It controls the actuator and
processes the data received from the sensors that are in the layer beneath it. For
instance, in the Teachmover there will be a SUC for every joint generating the
commands for the actuator according to the information it receives from the
sensors. This layer must describe clearly the control policy it implements.

The Mechanism Unit Controller (MUC) is at the third level. This layer is defined by
means of an aggregation of SUCs that it must control according to the
information they provide and the control policy it implements. It provides a
control for a whole mechanism. For instance, in the Teachmover, it is in
charged of controlling the arm of the robot.

Finally, the last layer is called Robot Unit Controller (RUC) and controls the
whole behaviour of the robotic unit by managing the set of MUCs below it. For
instance, it controls the wrist and the arm in the Teachmover example. It is also
in charge of implementing the control policy of the robotic unit.

230 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-29 shows a typical scenario while applying this DSSA. It can be
observed that an environment element it is included to represent the active
elements that must be controlled. In addition, it typically uses two software
components, actuator and sensor, to establish the communication with it.

Figure 7-29 ACROSET Style in an ATRIUM Scenario

7.4.2 Design Patterns

They address smaller reusable designs than Architectural Styles, such as the
structure of subsystems within a system. For this reason, they are referred to as
microarchitectures sometimes. They differ from Architectural Styles in they do not
affect the fundamental structure of the application, although they can have a
strong influence on the structure of a subsystem. Their description is usally in
terms of communicating elements that play a customized role to solve a specific
problem.

In the next section, some design patterns are introduced in order to provide an
overview about how their definition must be to be incorporated in ATRIUM.
However, we should emphasize that the design patterns introduced in the next
section are not similar to that presented by (Gamma et al., 1995). On the
contrary, the following design patterns are described in terms of shallow
components and connectors because they are the elements used in an
ATRIUM Scenario. The described patterns also incorporate the exploitation of
the Aspect-Oriented techniques as a lightweight solution. They are specially
indicated when some concerns of the system-to-be, such as performance or
safety, must be faced.

ATRIUM is aimed at the need of using patterns as a way to describe quality
solutions for the scenarios description. However, ATRIUM does not propose

 7.4 Architectural Styles and Patterns 231

an elaborated catalogue of patterns because we have detected that they are
highly dependent of the specific domain. For this reason, the described patterns
were those detected in the context of the tele-operated systems, thanks to both
the development of the EFTCoR and the collaboration of the UPCT. We can
call them patterns because they have been used and re-used during the
EFTCoR project. They are introduced in the following section to illustrate how
these patterns must be described for its applicability in ATRIUM. In addition,
one of these patterns is instantiated in section 7.5 to illustrate how it can be
exploited.

For the description of these patterns, we have used an adaptation of the Role-
Based Metamodeling Language (RBML) for patterns specification, proposed by
(Kim et al., 2004). It defines a sub-language for several types of UML diagrams.
Specifically, we have exploited the Interaction Pattern Specifications (IPSs) that
is used to characterize Interaction Diagrams. An IPS is employed when it is
necessary to constraint the allowed interaction between the interacting
elements. The two key elements of this notation that have been used are:

− The expression |s:|Subject represents an instance s of an architectural
element that conforms to the classifier role Subject.

− The expression |message() represents a message that conforms to the feature
role message.

If messages or lifelines do not employ that kind of expression, they describe
concrete elements that must be present when the pattern is instantiated.

Safety Patterns

As was presented in the chapter 6, Safety is one of the main concerns of the
teleoperated systems. The Industrial Robots and Robot Systems - Safety
Requirements standard (ANSI/RIA, 1999) was used as guidance for the
elicitation of this kind of requirements. However, what happens when scenarios
meeting these requirements must be described? (ANSI/RIA, 1999) tries to give
some guidelines to help in this process.

Table 7-6 describes the strategy to apply according to the Risk Reduction
Category R2A. As can be observed, this recommendation is not enough to
develop concrete systems such as EFTCoR and, in consequence, more detail is
needed in order to facilitate this process. Thus, we propose to establish a
catalogue of patterns for the reduction or elimination of risks, classified by the
ANSI RRC. In order to facilitate its comprehension, we give two concrete
examples of patterns considered in the context of the EFTCoR system.

232 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Table 7-6 Description of the ANSI Risk Reduction Category R2A

R2A: Control reliable safety circuitry (based on hardware or software controller or
firmware)
The monitoring shall generate a stop signal if a fault is detected. A warning shall be
provided if a hazard remains after cessation of motion
Safe state shall be maintained until the fault is cleared.
Common mode failures shall be taken into account.
The single fault should be detected at time of failure.

Figure 7-30. Primary Positioning System with both arm joint (yellow) and joint on tracks

(green) of the EFTCoR system

The primary positioning system (see Figure 7-30) has a height of twelve meters
and a weight of twenty tons that make inevitable the movement of the robot
without the consideration of safety requirements. The crane has, in its central
zone, an articulated arm of two tons with a secondary positioning system at its
end (an XYZ-table that includes a cleaning tool). It is mandatory that the
system ensures a safe movement of the arm according to the received
commands from the operator. A detailed analysis of the hazard HZ.7 (““the
arm of the primary system does not stop””) leads us to associate the following
sources of error:

− Any sensor integrated with motors, which move the secondary, fails.

− The electrical power is off.

− The control unit does not run correctly (a hardware fail or a software
error).

 7.4 Architectural Styles and Patterns 233

The hazard HZ.7 may imply the breakage of mechanical parts, the precipitation
of components to the floor or damages to the human operator (risks R6, R7,
R8, respectively). Taking into account the severity of the injury, the frequency
of the exposure and the probability of avoidance, the RRC is R2A, which
establishes the risk must cease if it arises because of its severity.

A pattern was identified to deal with this kind of RRC whose main idea is to
introduce a Safety Node to check the movement. It has been defined by means
of three ATRIUM Scenarios (Appendix C, section C.1). Figure 7-31 shows one
of them. The following description gives a good idea of the way the hazard has
been considered:

− When a movement command is received, the ““cnct””, which is the
connector to be ““Monitored””, forwards it simultaneously to the redundant
node dedicated to monitor possible hazards (““SafetyNode””).

− The ““cnct”” node reads from a sensor the current position of ““acE””, which
play the role of the ““activeElement””, and controls directly its functioning
by means ““acE””, which plays the role of the ““actuator””. The ““SafetyNode””
will stop the motor if it detects a malfunction of the motor.

− Just before the execution of any command, the ““Monitored””connector
sends a message to the ““SafetyNode”” to notify the starting of the
movement. From this time, the ““Monitored”” connector sends to the
““SafetyNode”” the current value just read from the ““Sensor””. The
““SafetyNode”” computes the curve of the discrete positions that must be
reached by the ““activeElement””. This timed discrete calculus is done by
taking into consideration the initial value of the sensor and the command
to be executed. Any difference between the calculated values implies an
anomaly in the function of the ““activeElement”” movement. Whenever the
““SafetyNode”” detects a discrepancy in this value, with respect to the
estimation of the position values, an emergency signal is generated and the
movement is stopped.

− The ““Monitored”” connector whose behaviour is similar also does the
checking performed by the ““SafetyNode””. That is, it also stops the
movement and generates an emergency signal (see Figure C. 2 in Appendix
C, section C.1).

− If there is no error, the movement goes on until the ““activeElement”” gets
the position (see Figure C. 3 in Appendix C, section C.1).

234 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-31. Partial description of a safety pattern for R2A Risk Reduction Category

The different error conditions, which could lead to a safe stopping of the robot
in the previous example, are the following:

a) Both the design and construction of the robot are done in such a way that,
if a global fail of the system occurs then the robot will be mechanically
fixed and returned to a safe mechanical state;

b) If any computing node does not work well (due to software or hardware
errors) or the communication link fails then the other one will detect the
discrepancy in the values.

In this last case, it is essential that the ““Monitored”” connector periodically
reads the sensor data, although there was no current ““Monitored”” command in
execution.

In the chapter 6, when the Safety specification was presented, it was detected
that the Risk Reduction Category R2C must be applied. This category deals
with those hazards that must be prevented (or ceased) but whose severity is not
very high. This means that the system should introduce some mechanism able
to manage properly that hazard but it does not need to introduce so strong

 7.5 Process for Scenarios Modelling 235

constraints as the previous one. A pattern that was detected, which can be
associated with that category, is the introduction of a Safety Aspect. The main
idea is that this aspect would check if the movement is safe, before it is
performed.

Figure 7-32 An aspect for managing Safety concerns

Figure 7-32 shows the interaction described by this pattern. As can be
observed, whenever it must be checked if the movement associated to a service
““|ServiceToBeSafeguarded()”” must be safe, then the architectural element
““Safeguard”” must contain a Safety Aspect with a service called check() in charge
of checking the movement. The movement,
““|ProvidedServiceToBeSafeguarded()””, will proceed only if it is safe, that is the
guard ““secure”” is possitively evaluated.

7.5 PROCESS FOR SCENARIOS MODELLING

The objective of the activity Define Scenarios is mainly related to the description
of the ATRIUM Scenario Model, that is, a set of scenarios described by means
of our profile based on UML Sequence Diagrams that describe the main
behaviour of the system-to-be. Each scenario is going to provide a partial view
of the system.

236 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-33 depicts the main tasks to be performed. As can be appreciated, the
ATRIUM Goal Model is the main input for the process. Specifically, the
operationalizations that were selected by means of the analysis performed in the
previous activity (see section 5.4.2). These operationalizations describe textually
how these scenarios must be defined.

The process is carried out in two different phases. The first takes into account
those operationalizations described for those operationalization contributing to
requirements without crosscutting relationships and the second for the
remainders. These requirements are going to be, usually, those described as
refinements of the Functionality concern. This is because the ATRIUM Goal
Model specifies when a crosscutting exists between two requirements. Usually,
this crosscutting arises between functional (Functionality) and quality
requirement, as (Moreira et al., 2002) set out. For this reason, one of the
alternatives to provide a solution for these requirements is transforming the
Functional scenarios, i.e., to modify these scenarios by introducing architectural
elements, messages, etc, to meet the quality requirements.

Figure 7-33 Process for Scenarios Description

Therefore, during the first phase, the analyst selects one operationalization,
related to one or several functional requirement, and describes its scenario/s.
This step has the Design Patterns as one of the inputs. They are going to describe
solutions that can be reused, as those already presented in section 7.4.2. It must
be taken into account that the operationalization already describes that a
specific pattern must be introduced, if it was the decision taken, for the

 7.5 Process for Scenarios Modelling 237

definition of the scenarios because the analysis of the alternatives was
performed in the previous activity. For this reason, in the step Specify/Refine
Interaction Scenarios the analyst uses the template that describes the pattern to be
reused in order to instantiate it properly.

As can be observed, the Selected Architectural Style is another input for the step
Specify/Refine Interaction Scenarios. This is due to the fact that it is going to give us
a sketched view of the system and how the scenarios must be defined. In
addition, it gives us a proper detail about the semantics associated to the
Software Architecture description.

During the second phase, for each requirement having a crosscutting
relationship with a quality requirement we have to enrich the established
scenario. The operationalization selected for the non-functional requirement
will extends the scenario, adding lifelines (architectural elements),
systemFrames and/or messages, as needed. This strategy provides the necessary
traceability because it guarantees that every crosscutting relationship is
considered and explicitly integrated in the scenarios.

For instance, taking the Teachmover example, it can be observed in the Figure
6-15, the REQ.1 ““RDCU allows tool opened”” has associated the
operationalization OPE.2 ““Operational opening by Teachmover Control
accessing RUC-SUC””. Associated to this operationalization, the following
scenario has been described where the architectural elements and systemFrames
are identified.

This scenario is used to describe the opening of the tool by sending the
appropriate parameters. It can be observed that two systemFrames were
described, following the prescription established by the ACROSET DSSA
(section 7.4.1). ““ToolRUC”” plays the role of the RUC layer, that is, the layer in
charge of controlling all the joints of the Teachmover. ““ToolSUC”” plays the
role of the SUC layer, i.e., the layer that has direct access to the Hardware Layer.
Two components ““ToolActuator”” and ““ToolSensor”” were introduced, as the
Style recommends, to control the mechanical active element ““Tool””. It is
described in the scenario as an environment lifeline because it is an external
element that the system-to-be must collaborate with. The set of suitability
scenarios, that have been defined for the TeachMover, were described in a
similar manner (see Appendix C, section C.2).

238 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

Figure 7-34 Describing the operationalization for requirement MoveWrist

It can be appreciated that describing the scenario as a functional scene, where
every interacting shallow system along with its shallow architectural elements is
identified and specified, provides a better comprehension of how the system-
to-be is structured, and how every element collaborates to provide the expected
behaviour. If a different scenario were described for every shallow system, the
analyst would not have an overall idea of the behaviour of the system-to-be.

During the specification of the Safety concern, a crosscutting relationship was
established between the REQ.1 and the safety requirement ““REQ.85
Safe[REQ.1]””. The analysis of this Safety requirement determined R2B as the
RRC for this requirement. For this reason, it was introduced as an
operationalization of ““REQ.85”” the use of the pattern described in the
previous section, that is, the introduction of a Safety Aspect to check in
advance whether the movement is going to be safe. Figure 7-35 shows how the
scenario was modified to introduce the Safety Aspect. The set of safety
scenarios described by the Teachmover were described in a similar way (see
Appendix C, section C.2).

 7.6 Conclusions 239

Figure 7-35 Applying a Safety Pattern

Once the set of scenarios has been described, the next activity of ATRIUM,
Generate proto-architecture (chapter 8), can proceed. It must be taken into account
that a whole description of the set of scenario is not necessary to carry out the
next activity, but a partial description is enough to obtain a draft of the proto-
architecture. In this manner, the analyst can obtain a view of the proto-
architecture and perform the evaluation he/she considers more appropriate.
This is thanks to the automation supported in the next activity, facilitating it
can be performed without additional effort.

7.6 CONCLUSIONS

In this chapter, another model has been included in the definition of ATRIUM:
ATRIUM Scenario Model. The main idea behind its exploitation is to facilitate
the analyst a mechanism to study and analyze the main behaviour of the
system-to-be. For this reason, each ATRIUM scenario is going to depict a
partial view of the system-to be coping with an operationalization decision.
This means that each scenario is traced from an operationalization (see section
5.3.1) and, thus, from a set of specific requirements. This facilitates the
maintenance of the traceability throughout the lifecycle.

240 CHAPTER 7 Scenarios to run Aspect-Oriented Software Architectures

In order to provide support for the definition of the ATRIUM Scenario Model,
its main elements have been identified and described. These architectural and
environmental elements interact according to a specific choreography.
Regarding their description, it should be emphasized that in our proposal they
are specified at enough detail level as to be used for the proto-architecture
generation by synthesising the behaviour from the set of scenarios. In order to
facilitate their description, a graphical notation has been specified by defining a
Profile based on the UML 2.0 Sequence Diagrams.

In addition, it is worth noting that the operationalization decisions consider
both functional and non-functional requirement along with their identified
crosscutting. For this reason, the notation had to be adapted to manage
properly this constraint. In this sense, the Aspect-Oriented approach has meant
an improved advantage. A notation for the enrichment of scenarios has been
defined, using this technique, has been introduced. This alternative allows the
analyst to introduce lightweight solutions for specific problems, as was
presented for the Safety concern in section 7.4.2. It should be also highlighted
that the proposed alternative does not overload the expressiveness of the
ATRIUM Scenario because it does not describe Aspects by means of Lifelines
but by means of annotations of the messages. Otherwise, elements with
different granularity levels would have the same representation and it could lead
to confusion and misunderstandings. In addition, it provides a systematic way
of dealing with early aspects and their traceability to Software Architecture.

Another advantage of the proposed ATRIUM Scenarios is that they provide a
transversal view of the system-to-be. This allows the analyst to obtain the
overall idea of the behaviour of the system-to-be and its structure. In this sense,
the introduction of Architectural Styles, especially DSSAs, are very useful
because they give the analyst some templates of how to define the scenario
because they describe elements to use, allowed interactions, etc.

A process for the description of the ATRIUM Scenarios has also been
described. It is worthy of note that, in addition to the Architectural Elements,
the Design Patterns are another inputs. They have been recognized as a
valuable asset for the description of quality solutions. Some Safety patterns,
which have been detected and used during the project, have been presented for
explanation purposes. In this way, how these patterns could be described in a
catalogue, and how they could be exploited has been presented.

The work related to the definition of ATRIUM Scenarios model and the study
of the Architectural Styles has been presented in the following publications:

− E. Navarro, P. Letelier, I. Ramos, “Requirements and Scenarios: playing
Aspect Oriented Software Architectures”, Proceedings Sixth Working

 7.6 Conclusions 241

IEEE/IFIP Conference on Software Architecture (WICSA 2007),
Mumbai, India, January 6 - 9 2007 (short paper).

− E. Navarro, P. Sánchez, P. Letelier, J.A. Pastor, I. Ramos, “A Goal-
Oriented Approach for Safety Requirements Specification”, 13th Annual
IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS'06), Postdam, Germany, March 27th-
30th, 2006, pp. 319-326.

− J. Jaén, J. H. Canos, E. Navarro, “A Web-Based Coordination
Infrastructure for Grid Collective Services”, 5th International Conference
on Web-Age Information Management (WAIM 2004), Dalian, China,
July15 - 17, 2004, Proceedings in Lecture Notes in Computer Science 3129
Springer 2004, ISBN 3-540-21044-X, pp. 449-458.

− J. Jaén, E. Navarro, "An Infrastructure to Build Secure Shared Grid
Spaces", VI International Conference on Coordination Models and
Languages (COORDINATION 2004), Pisa, Italy, February 24-27, 2004,
Proceedings in Lecture Notes in Computer Science 2949 Springer 2004,
ISBN 3-540-21044-X, pp. 170-182.

-243-

“The whole history of science has been the gradual
realization that events do not happen in an

arbitrary manner, but that they reflect a certain
underlying order, which may or may not be divinely

inspired.” —
Stephen Hawking

CHAPTER 8

8 Towards a first view of the Architecture

8.1 INTRODUCTION

One of the main outcomes of ATRIUM is the description of a proto-
architecture using the set of scenarios description as input of the process. This
is the aim of the Synthesize and Transform activity of ATRIUM. In order to
provide a proper solution to carry out this activity, we have to take into account
several facts:

− The solution to be obtained has to support the whole set of the defined
scenarios. The definition of scenarios, performed by the previous activity,
provides us with traceability to the set of requirements to be met by the
system-to-be. Thus, if a partial set of scenarios were used to obtain the
proto-architecture then only a partial fulfilment of the requirements would
be achieved.

− The use of Architectural Style has an high impact throughout the final
description of the architecture. It is inherently different from a design
pattern because it is going to affect across the whole definition of the
architecture. This point is highly relevant because the Architectural Style
selection, performed during the scenario description process, cannot be just
an initial help to browse in the catalogue of patterns but it must be
considered and used to obtain the proto-architecture. Thus, the process to
be defined must employ the Architectural Style as one of its inputs.

244 CHAPTER 8 Towards a first view of the Architecture

− Considering that ATRIUM aims at analyzing alternatives to describe the
Software Architecture of the system-to-be, is it possible to identify any
mechanism that allows the analyst to evaluate how appropriate is the proto-
architecture being obtained? Could this mechanism be automated to obtain
several alternatives along with their related evaluation?

These were the challenges that were considered when a solution to describe the
Synthesize and Transform activity of ATRIUM was established. In the following
section, it will be shown how they were addressed.

8.2 CONTEXT AND ALTERNATIVES FOR OUR PROPOSAL

Before thinking of a proposal to the Synthesize and Transform activity of
ATRIUM, it must be taken into account that ATRIUM has been defined as a
Model-Driven Architecture (MDA) proposal according to the two (Mellor et
al., 2004) considerations. First, ATRIUM clearly specifies its objectives, the set
of artifacts to be produced (Goal Model, Scenario Model and PRISMA model),
along with guidelines and techniques to build them. In addition, ATRIUM is
supported by a CASE tool called MORPHEUS, presented in chapter 9, which
provides high levels of automation for different tasks and activities. Figure 8-1
shows how ATRIUM can be viewed from this point of view. In this context, a
remaining question to be solved is: how a PRISMA model can be generated
from the described scenarios?

Figure 8-1 ATRIUM following the MDD approach: where a solution has to be described

In this context, transformation languages have been described as a solution to
increase the productivity, improve traceability relationships between models,
improve the quality because patterns can be specified as transformations,
improve maintainability because traceability throughout the lifecycle is
consistently described, etc. Several surveys, such as (Gerber et al., 2002),

 8.2 Context and alternatives for our proposal 245

(Sendall & Kozaczynski, 2003) (Czarnecki & Helsen, 2006), identify the
requirements that a transformation language model-to-model has to satisfy in
order to realize the MDA initiative. However, as far as we know, it is the latter
the one that has a more detailed study and has been more widely accepted. This
is why we have used this work to help us in the selection of a solution for the
Synthesize and Transform activity of ATRIUM.

(Czarnecki & Helsen, 2006) have presented a bi-dimensional taxonomy of
approaches and proposals for model transformation in the MDA context. In
the first dimension, their work describes which features to support are desirable
for a transformation proposal. In the second dimension, they identify which
approaches are currently used. We have exploited this taxonomy according to
the ATRIUM specific needs. The first step we have performed has been to
select which features are necessary according to our needs. In the following, it
is described why these features are necessary in the context of ATRIUM:

− Transformation rules. The language to be used must provide some ability of
transformation either by means of rewriting rules or functions of
transformation.

− Rule application control. It is necessary to provide the analyst with mechanisms
to select which instances of the model are selectable to apply the rules. This
is highly relevant because, as will be described in the following section,
there are transformations that have to be applied if some conditions are
satisfied.

− Rule organization. The facilities to reuse the transformations are also
desirable for our purpose because they decrease the definition efforts and
enhance the maintainability of the transformations.

− Source-target relationship. The ability to describe if more than a model can be
used as target model is decidedly pertinent. We must take into account that
one of the challenges to be faced is to provide mechanism that help in the
evaluation of the generated proto-architecture. For this reason, it would be
desirable that not only an instantiated PRISMA model was generated
during the transformation but also a model that specifies if there are faults
in the specification. It would facilitate the analysis of the resulting
architecture.

− Incrementality. Since changes in the source model can arise due to changes in
the requirements, it is necessary to provide the ability to update existing
target models based on those changes.

246 CHAPTER 8 Towards a first view of the Architecture

− Directionality and Tracing. If the transformation could be executed in both
directions and information of the transformation could be recorded, it
would be a first step towards the traceability top-down and bottom-up
between the Scenario Model and the PRISMA model.

(Czarnecki & Helsen, 2006) have identified eight approaches to model-to-
model transformation. In the following, a brief description of those approaches
(reader is referred to that work for more details) along with the language we
have selected in each category, that meets more of the established features.
Another requirement that was used to make such a selection was the existence
of a supporting environment for the language. The current approaches are:

− Direct-manipulation approaches. They are usually object-oriented frameworks
that provide facilities for model representation and its manipulation. The
main problem is that they are not oriented to model transformation so that
most of the tasks have to be developed from scratch with any support of
the framework. (JAMDA, 2006) is a framework following this approach. It
takes as input an UML model that is added with more classes to generate
code.

− Structure driven approach. This kind of languages is oriented to generate the
target model into two phases: first, its structure, and second, its attributes
and references. (OptimalJ, 2005) is a framework that provides an
environment for UML modelling where business models can be described
and next transformed into the structure of a working application.

− Relational approaches. This category refers to declaratives languages that
express the transformations usually by means of constraints. (QVT, 2005)
is the most popular proposals following the approach. It proposes a bi-
directional framework whose specifications are non-executable.

− Graph-Transformation based approaches. They are based on the theory of graph
transformations, where the left and right side of each transformation rule is
described by means of a graph. According to (Mens et al., 2005) evaluation
of graph transformation technology, GReAT (Sprinkle et al., 2003) is the
proposal with more facilities for model transformation such as vertical
transformations to generate more than a model, control structure and OCL
to describe restrictions on the transformation, etc.

− Template-based approach. This approach proposes to compute the
transformation by using an annotated syntax of the target model to address
how the instantiation of the template is performed. Although most of the
proposals, such as MoMoT (Schippers et al., 2004), are more oriented to
code generation, there are some proposals as that given by (Czarnecki &

 8.2 Context and alternatives for our proposal 247

Antkiewicz, 2005), that provide the analyst with facilities for model
transformation.

− Operational approach. This approach is quite similar to the structure driven
approach because it follows an imperative proposal to describe the
transformation. However, they are more oriented to model transformation.
(QVT, 2005), by means of the operational mappings, provides an
imperative language that uni-directionally describes transformations.

− Hybrid approach. There are proposals that combine some of the previous
approaches as, for instance, (QVT, 2005). It describes a proposal exploiting
both operational and relational transformations.

− Other approaches. There are other approaches as Extensible Stylesheet
Language Transformation (XSLT, 1999) and meta-programming for model
transformation (Tratt, 2006).

Table 8-1 shows the evaluation that we have performed using two dimensions:
requirements and approaches. As can be observed, the relational approach is
the one that has more facilities for our purposes, unlike the other approaches,
because:

− It facilitates that we can generate an error model during the transformation,
if it was required, by using the source-target relationship feature.

− It permits that a target model can be updated after an initial execution has
been performed, i.e., the incrementality.

− It smoothes the progress of defining traceability top-down and bottom-up
between the Scenario Model and the PRISMA model by means of the
directionality and traceability features.

All the previous considerations have led us to its selection to describe the last
activity of ATRIUM, concretely, by using MOF 2.0
Query/View/Transformation (QVT, 2005). This language along with its
capabilities and the decisions that were made regarding its use are described in
the following section.

248 CHAPTER 8 Towards a first view of the Architecture

Table 8-1 A framework for selecting the most proper approach for ATRIUM models
transformation

T
ra

ci
n

g

D
ir

ec
ti

on
al

it
y

In
cr

em
en

ta
lit

y

So
u

rc
e-

ta
rg

et

re
la

ti
on

sh
ip

R
u

le

or
ga

n
iz

at
io

n

R
u

le

ap
p

lic
at

io
n

co

n
tr

ol

T
ra

n
sf

or
m

at
io

n

ru
le

s

 D
ire

ct
-

m
an

ip
ua

tio
n

ap

pr
oa

ch

St
ru

ct
ur

e

dr
iv

en

ap
pr

oa
ch

Re
lat

io
na

l
ap

pr
oa

ch

G
ra

ph
-

Tr
an

sf
or

m
at

io
n

ba

se
d

ap
pr

oa
ch

Te
m

pl
at

e-

ba
se

d

ap
pr

oa
ch

O
pe

ra
tio

na
l

ap
pr

oa
ch

H
yb

rid

ap
pr

oa
ch

O
th

er

ap
pr

oa
ch

 8.2 Context and alternatives for our proposal 249

8.2.1 QVT: a proposal for model transformation in ATRIUM

QVT has been defined as a proposal to the request launched by the Object
Management Group (OMG) to describe a standard transformation language.
This transformation language comes out to solve a recurrent requirement in
MDA, that is, to define deterministic mapping and transformation mechanisms
between elements belonging to different meta-models.

QVT is intended to provide mainly three competences for model
transformation: Query, View and Transformation. Their meanings along with
their specific use in ATRIUM are described in the following:

− QQuueerryy: A query is an expression that is evaluated over a model. The result
of a query is one or more instances of types defined in the source model, or
defined by the query language. As described in the following section,
transformations cannot be described generically but elements to be
transformed have to be selected according to some specific characteristics
they have. For instance, section 8.1 describes that the shallow-components
interacting with humans, have to be selected to generate PRISMA
components having an interaction aspect in its definition.

− VViieeww: A view is a model that is completely derived from another model in
such a way that changes to the base model cause corresponding changes to
the view. These Views are generated via transformations. This is mandatory
for our purposes because our last goal is to have a view of the architecture
generated from the Scenario Model.

− TTrraannssffoorrmmaattiioonn A transformation generates a target model from a
source model. Depending on how transformations were described, they
may cause independent or dependent models. If models are independent, it
means that the relationship between them is not maintained once the target
model has been generated. If models are dependent, the source and target
models are coupled, so that every change on any of them affects the other.
The second case is highly relevant for our purpose since it could be a first
step to maintain the traceability, both top-down and bottom-up, between
the Scenario Model and the Software Architecture.

250 CHAPTER 8 Towards a first view of the Architecture

Figure 8-2 Describing QVT

QVT has been defined by means of three languages (Figure 8-2):

− RReellaattiioonnss is a declarative language. One of its main characteristics is
its ability to describe oobbjjeecctt tteemmppllaattee eexxpprreessssiioonnss. A template
expression is used to describe patterns of domain variables whose matching
is the result of binding elements from typed model to variable declared in
such a domain. A relation can define several object template expressions to
match patterns in the candidate models. It provides facilities for the
creation and deletion of objects in order to generate those necessary
elements in the target model if they do not exist. The trace management is
automatically performed because a trace class is derived from each
Relation. It is annotated with as many properties as domains are used in the
relation. In addition, a graphical syntax has been introduced to facilitate the
legibility of the transformations.

− CCoorree is a declarative language that, unlike Relations, does not allow one to
describe object patterns. It limits the expressiveness of the proposal
because expressions that are more verbose have to be introduced to
describe the same transformation. It is based on EMOF and OCL, in such
a way that transformations and trace information are introduced as a MOF
metamodel.

− OOppeerraattiioonnaall MMaappppiinnggss is an imperative Domain Specific Language
that has OCL as query language. OCL has been extended with imperative
features to provide the necessary capabilities to perform the
transformations. As described in Table 8-1, this language does not provide
support for features as needed as directionality and tracing.

Taking into account the characteristics supported by the three languages, the
Relations language was eventually selected. This is because it is more expressive
and user-friendly than the core language and it has more capabilities than those
supported by the Operational Mapping. For instance, Operational Mapping
does not provide support for directionality and tracing that does provide
Relations.

 8.3 Describing QVT transformations 251

8.3 DESCRIBING QVT TRANSFORMATIONS

Using the Scenarios Model specification, the generation of the PRISMA proto-
architecture is carried out. It has to be emphasized that the Scenarios Model
provides us with partial views of the architecture, where only shallow-
components, shallow-connectors and shallow-systems have been identified
along with their behaviour expressed through interaction. They are called
shallow because we do not need their complete definition but an initial one that
can be refined for their later compilation to code if needed. Therefore, before
proceeding to such a compilation a synthesis process must be performed to
create these shallow-architectural elements from their collaboration throughout
the set of scenarios.

In order to describe the needed transformations QVT Relations have been
used, as was presented previously. The set of transformation rules has been
catalogued as aarrcchhiitteeccttuurraall ttrraannssffoorrmmaattiioonn ppaatttteerrnnss,,
AArrcchhiitteeccttuurraall SSttyyllee--oorriieenntteedd ttrraannssffoorrmmaattiioonnss and
iiddiioommss--oorriieenntteedd ttrraannssffoorrmmaattiioonnss. The first are used to describe
those transformations applicable to most of the existing ADLs because they are
focused on the generation of components, connectors and systems. The second
are defined to take into account the Architectural Style to be satisfied by the
proto-architecture to be generated. The third are following the (Schmidt et al.,
2000) definition:

“An idiom is a low-level pattern specific to a programming language. An idiom
describes how to implement particular aspects of components or the relationships
between them using the features of the given language.”

For this reason, those transformation that are oriented to generate a PRISMA
specification will be described as idioms. However, if the transformation is
applicable to any architectural model, it will be considered a generation pattern.
This distinction will help in the process of generating any necessary
architectural model only by means of the description of its specific idioms.
With this aim, and thanks to the Rules Organization feature of QVT, several
transformations have been defined that can be imported and used depending
on the expected outcome of the generation process. For instance, a
transformation has been described for architectural transformation patterns,
other for the PRISMA idioms and another for the Architectural Style. It
facilitates that using the same set of scenarios, different proto-architectures
could be generated depending on the selected Architectural Model and its
specific idioms. Table 8-2 describes how the transformation has been declared
specifying two typed models to be transformed: scenarios that represents a model
that conforms the ATRIUM Scenarios meta-model (described in chapter 7) and

252 CHAPTER 8 Towards a first view of the Architecture

archModel that represents a model that conforms the Architectural meta-model.
Specifically, the PRISMA Metamodel (described in chapter 4) has been used for
executing the transformations. We have described the transformations using
the ArchitecturalModel domain thinking of their use with other architectural
models.
Table 8-2 Declaration of the transformation

transformation ScenariosToArchModel (scenarios: ATRIUMScenarios,
archModel: ArchitecturalModel)

Every transformation is defined by means of a set of relations that must hold if
the transformation is successfully applied. Every relation declares several
domains. For instance, the relation ““FragmentToSystems”” (Table 8-3) specifies
the scenarios and the archModel domain, which where previously specified in the
transformation (Table 8-2). The relation specifies how the elements belonging
to one domain are matched to the elements belonging to the other domains. In
the relation, FragmentToSystems a matching is performed between the
elements belonging to the scenarios domain and those belonging to the archModel
domain. For this reason, every relation specifies in each domain a pattern that
must be satisfied by every element that is going to be used for the matching. In
the examples described in the following sections, a pattern is described in the
scenarios domain and another one in the archModel domain. In the relation
““FragmentToSystems””, the scenarios domain describes a pattern consisting of a
““systemFrame”” with an attribute ““fragment”” that must refer to a
““systemFrame”” having an attribute ““systemName””. It can be observed that an
OCL expression can also be defined to filter out those elements of the
Scenarios model that do not satisfy a condition. In the archModel domain, the
pattern describes a ““System”” that has an attribute ““name””. It can be observed
that the matching between the elements belonging to the each domain is
established by means of the variable ““cn””, because both ““systemName”” and
““name”” are bound to this variable.

When a relation is described, additionally to the domains, two clauses more can
be included that define OCL expressions or other relations: when and where. The
former specifies the conditions that must be hold to the relation be satisfied,
i.e., the matching established by the relation will not be performed if the when
clause is not hold without reporting any inconsistency. The latter specifies the
conditions that must be hold by all the elements participating in the relation.
For instance, the relation ““FragmentToSystems”” describes that three relations
more must be satisfied.

Thanks to the Directionality feature of QVT, a transformation can be executed
for enforcement selecting the target domain. This means that selecting

 8.3 Describing QVT transformations 253

archModel as target model the proto-architecture is generated. The execution of
the transformation checks, whether there are elements in the target model that
satisfy the relations and if that was not the case then the elements will be
created, deleted or modified in the target model to enforce the relations. With
this aim, each pattern can be evaluated using two different modes:
cchheecckkoonnllyy that only checks if the pattern is not satisfied reporting an
inconsistency in this case; and, eennffoorrccee that checks whether the pattern is
satisfied and modifies, deletes or creates elements, as necessary, in the target
model if that was not the case. This allows the analyst to both generate the
proto-architecture and check if inconsistencies between the generated proto-
architecture and the scenario model emerge.

It is worthy of note that it is not necessary to provide as input a full set of
scenarios required to describe the system behaviour. On the contrary, with only
one scenario the generation can proceed. However, the Incrementality feature of
QVT facilitates that as new scenarios are defined or modified, the proto-
architecture can be automatically updated.

In the following sections, the most relevant relations are described along with a
graphical example to improve its comprehension. Their full description is
presented in the Appendix C. Before presenting them, it must be highlighted
that every ATRIUM Scenario is defined as an Interaction enclosing one or
several SystemFrames.

8.3.1 Architectural transformation patterns

In order to describe the transformation between the two models, the first
relation to be described is that oriented to the creation of Systems in the
architectural model, called ““FragmentToSystems””. For this reason, it has been
declared as a top relation. This relation is checked for every SystemFrame
existing in the ATRIUM Scenarios Model. If it fails, that is, there is no a system
whose ““name”” bounds to the same variable ““cn”” that is bounded by
““systemName”” of the SystemFrame, then a new System is created. In the
Figure 8-3, it can be observed that a new System called ““WristSuc”” will be
created because a SystemFrame called ““WristSuc”” exists. It must be taken into
account that ““System.name”” has been defined as an identifying property to
avoid creating duplicated Systems.

254 CHAPTER 8 Towards a first view of the Architecture

Figure 8-3 Establishing mappings between an ATRIUM Scenarios systemFrame and a

System

Table 8-3 Describing the transformation from an ATRIUM systemFrame to a System

top relation FragmentToSystems
{
 cn: String;
 c: ArchitecturaModel::Component;

 checkonly domain scenarios p:SystemFrame{
 fragment=sf:SystemFrame {systemName=cn}

 }{p.fragment->notEmpty()};

 enforce domain archModel s:System
 {
 name=cn
 };
 where{
 MessageToArchElements(sf, s);
 MessageBetweenComponentsToArchElements(sf, s);
 GeneralOrderingToWeaving(sf, s);
 }
}

The relation ““FragmentToSystems”” is constrained by the where clause specifying
that whenever it holds, other three relations must hold. One of these relations
is ““MessageToArchElements”” (see Table 8-4) that specifies a pattern for the
scenarios domain that retrieves all the objects of type Message connecting two
named Lifelines. It is constrained by an OCL expression to filter out those
Messages that are not connecting a Component Lifeline and a Connector
Lifeline. The template expression valuates ““l1”” and ““l2”” with the Lifelines that
act as Sender and Receiver respectively on each Message. Then, the where clause
determines which of these Lifelines, ““l1”” and ““l2””, is a Component
(““NameComponent””) and which is a Connector (““NameConnector””). Once

 8.3 Describing QVT transformations 255

this is done, a Component and a Connector are created by evaluating the
relations ““LifelineComponentToComponent”” and
““LifelineConnectorToConnector”” respectively. Thus, the
““MessageToArchElements”” relation enforces the creation of Components and
Connectors. The template expression associated to the archModel domain
determines that both domain variables, ““comp”” and ““con””, are bound to the
properties ““containsComp”” and ““containsCnct””. This determines that both
architectural elements will be referred by the system ““s””.

For instance, Figure 8-4 depicts how the message ““wristmovejoint”” connecting
two lifelines ““wristCnct”” and ““wristActuator”” and belonging to the
systemFrame ““WristSUC”” will be transformed in the architectural model into
two components with the same name and referred by the System ““WristSUC””.
The where clause also evaluates other relations that must hold.
““MessageToAttachmentComponent”” and ““MessageToAttachmentConnector””
are described below. ““LifelineToServiceAspectComponent”” and
““LifelineToServiceAspectConnector”” are detailed in section 8.1.

Figure 8-4 Establishing mappings between ATRIUM Scenarios Messages and

Architectural Elements

Table 8-4 Describing the transformation from an ATRIUM Message to an architectural
element

256 CHAPTER 8 Towards a first view of the Architecture

relation MessageToArchElements
{
 cn: String; cn1: String; cn2: String;
 comp:ARCHMODEL::Component;
 con:ARCHMODEL::Connector;
 lcon:ATRIUMScenarios::Lifeline;
 lcom:ATRIUMScenarios::Lifeline;

 checkonly domain scenarios sf:SystemFrame{
 message=m:Message
 {
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{name=cn1}
 },
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{name=cn2}}
 }
 }{(l1->oclIsKindOf(Connector)
 and l2->oclIsKindOf(Component))
 or (l1->oclIsKindOf(Component)
 and l2->oclIsKindOf(Connector))};

 enforce domain archModel s:System
 {
 containsComps= comp ,
 containsCnct= con
 };
 where
 {
 lcom=NameComponent(l1, l2);//which is the Component Lifeline
 lcon=NameConnector(l1, l2); //which is the Connector Lifeline
 LifelineComponentToComponent(lcom, comp);
 LifelineConnectorToConnector(lcon, con);
 MessageToAttachmentComponent(lcom, s, lcon.name, lcom.name);
 MessageToAttachmentConnector(lcon, s, lcon.name, lcom.name);
 LifelineToServiceAspectComponent(lcom, comp);
 LifelineToServiceAspectConnector(lcon, con);
 }
}

relation LifelineComponentToComponent
{
 cn: String;

 checkonly domain scenarios l:Lifeline{
 name=cn
 }{l->oclIsKindOf(Component)};

 enforce domain archModel con :Component{
 name=cn
 };
}

The relation "MessageToAttachmentComponent”” has been defined to generate
Attachments, i.e., the connections between Components and Connectors. In

 8.3 Describing QVT transformations 257

Figure 8-4, it can be observed that the message ““wristmovejoint”” is mapped to
a connection between ““wristCnct”” and ““wristActuator””. An Attachment is
defined by means of the connection between two ports belonging to two
different architectural elements. In addition, the Attachments are defined in the
context of Systems. Therefore, the relation will pass the evaluation if both the
““name”” property of the Lifeline and the ““name”” property of the Component
are bound to the same domain variable ““cn””. Considering this matching, an
attachment will be enforced that has a name property bound to the domain
variable ““attName””. This domain variable is resolved in the where clause, where
is set by the concatenation of the Component and the Connector name. The
relation establishes the connection of the Component to the attachment. For
this reason the property ““linkPort”” is bound to the domain variable ““p”” that
defines the Port of the Component being attached. In a similar way, the relation
““MessageToAttachmentConnector”” proceeds for the connection of the
Connector. It must be highlighted that an identifying property has been defined
for the Attachment, as the name of the Attachment and the System where it is
being defined. This facilitates that if the same Lifelines are connected by
different messages there are no new attachments defined between them.
Table 8-5 Describing the transformation from an ATRIUM Message to an Attachment

relation MessageToAttachmentComponent
{

 cn:String;
 nComp:String;
 attName:String;

 checkonly domain scenarios l:Lifeline{name=cn};

 enforce domain archModel s:System{
 connect=a:Attachment{
 name=attName,
 linkPort=p:Port{
 name=nComp,
 ArchitecturalElement=c:Component{name=cn}
 }
 }
 };
 primitive domain portComp:String;
 primitive domain portCon:String;
 where{
 attName=portComp+portCon;
 nComp=portComp;
 }
}

258 CHAPTER 8 Towards a first view of the Architecture

8.3.2 Applying the Architectural Style

The selected Architectural Style, which is applied in the process of the scenarios
specification, is a deciding factor for the configuration of the proto-
architecture. For this reason, transformation rules must be described that
exploit this decision for its generation. With this aim, these rules use Bindings
and Attachment because they determine the compositionality of the system-to-
be, i.e., which architectural elements are composed by others or which
architectural elements are connected to others.

Figure 8-5 Establishing mapping between ATRIUM Scenarios Interaction connecting

Connectors in different Systems and Bindings

An example in this sense is the ACROSET, a layered style that clearly describes
an assignment of responsibilities and a configuration. In this style, the System
MUC is composed of several SUC Systems and, similarly, the RUC System is
composed of several MUC Systems. This means that attachments must be
established between the architectural elements owned by the composed System
and the component System. Figure 8-5 illustrates this situation. Two
connectors, ““RobotMUC”” and ““WristCnct””, have a message ““wristmovejoint””

 8.3 Describing QVT transformations 259

connecting them. Both Connector Lifelines belongs to different SystemFrames.
The mapping to the architectural model determines that:

− a Port is created for “WristCnct” to facilitate the communication; this port
is connected, by means of a Binding, to the Port of the System
“WristSUC”.

− an Attachment must be established between the port of “WristSUC” and
the port of “RobotMUC” because “WristSUC” is contained in the
definition of the System “WristMUC”.

In order to apply these mappings, several relations have been defined, as can be
observed in the following. The first relation is ““Transformation
ApplyingACROSET”” described as a top relation because it is in charge of
retrieving all the messages that are going to be used for the application of the
ACROSET Style. These ATRIUM Scenarios Messages do not belong to any of
the interacting SystemFrames but to the Interaction that encloses them. For
this reason, the template expression in the scenarios domain retrieves those
messages ““m”” defined in the Interaction ““i””. This template expression also
obtains the Lifelines (““l1”” and ““l2””) connected by means of these messages
along with the SystemFrames (““i1”” and ““i2””) they belong to. It was described
in the previous chapter that a SystemFrame has an attribute called ““role”” that
determines its played role regarding the employed Architectural Style. This
attribute is used by the OCL expression, in the scenarios domain, to make sure
that the relation is only applied between MUCs and SUCs or RUCs and MUCs.

In the archModel domain, the template expression determines that the domain
variable ““s”” of type System, will bind its property ““name”” to the name of the
Architectural Element having the port ““ps1””. This variable will have a binding
because of the where clause expression
““LifelineToArchitecturalElementBinding””, that is described below. In addition,
this template also describes that the property ““name”” is bound to the domain
variable ““att”” of kind Attachment. This domain variable has a property ““name””
which is bound to ““attName”” that is evaluated in the where clause by the
concatenation of the Systems and Lifelines names. It avoids the creation of
different Bindings connecting the same Ports because it has been defined as an
identifying property. The property ““linkPort”” is also bound to the variable
““ps1””, resolved in the where clause by
““LifelineToArchitecturalElementBinding””. In the example of the Figure 8-5,
this means the connection of the Port owned by ““SystemMUC””.

260 CHAPTER 8 Towards a first view of the Architecture

Table 8-6 Describing the transformation for dealing with the ACROSET

 top relation TransformationApplyingACROSET
 {
 cn: String;
 ln1: String;
 sn1: String;
 ln2: String;
 sn2: String;
 attName:String;
 s1: ARCHMODEL::System;
 s2: ARCHMODEL::System;
 ps1: ARCHMODEL::Port;

 checkonly domain scenarios i:Interaction
 {
 message= m:Message{
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{
 name=ln1,
 interaction=i1:SystemFrame{
 systemName=sn1
 }
 }
 },
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{
 name=ln2,
 interaction=i2:SystemFrame{systemName=sn2}
 }
 }
 }{i.message->notEmpty() and
 ((i1.role='MUC' and i2.role ='SUC') or
 (i1.role ='RUC' and i2.role='MUC'))};

 enforce domain archModel s:System{
 name=ps1.ArchitecturalElement.name,
 connect=att:Attachment{
 name=attName,
 linkPort=ps1
 }
 };
 where{
 attName=sn1+ln1+sn2+ln2;
 LifelineToArchitecturalElementBinding(l1, ps1, sn2+ln2);
 MessageToBinding(l2, s, sn1+ln1, sn2+ln2);
 }
 }

The relation ““MessageToBinding”” establishes, in the archModel domain, a
template expression that specifies a property ““connect”” for the domain variable
““s””. This is bound to a domain variable ““att”” of kind Attachment to describe

 8.3 Describing QVT transformations 261

an Attachment that is internal to the System. Its property ““linkPort”” is bound
to ““ps2”” that is resolved in the where clause by the relation
““LifelineToArchitecturalElementBinding””. The property ““name”” of the
Attachment filters the proper Attachment because ““attName”” is a variable
bound by the evaluation performed in the where clause. This means the
establishment of the attachment of the Port owned by ““RobotCnct”” in the
example of the Figure 8-5.
Table 8-7 Transforming a Message to a Binding

relation MessageToBinding
{
 attName:String;
 ps2: ARCHMODEL::Port;

 checkonly domain scenarios l2:Lifeline{};

 enforce domain archModel s:System{
 connect=att:Attachment{
 name=attName,
 linkPort=ps2
 }

 };
 primitive domain portName1:String;
 primitive domain portName2:String;
 where{

 attName= portName1 + portName2;
 LifelineToArchitecturalElementBinding(l2, ps2, portName1);
 }
}

The relation ““LifelineToArchitecturalElementBinding””, because of its
application to the example of the Figure 8-5, determines the ““WristSUC”” has a
Port employed for the connection to the same attachment as ““RobotCnct””.
With this aim, the property ““name”” of the Port is bound to a variable ““pn”” that
is assigned in the where clause to ““portName””, a variable of the primitive
domain of the relation. This relation will have a successful evaluation if the
where clause is positively evaluated, that is, ““LifelineToComponentBinding”” or
““LifelineToConnectorBinding”” are positively evaluated, as described in the
following.
Table 8-8 Transforming a Lifeline to an Architectural Element

relation LifelineToArchitecturalElementBinding
{
 cn: String;
 ln: String;

262 CHAPTER 8 Towards a first view of the Architecture

 pn:String;

 checkonly domain scenarios l:Lifeline{
 name=ln,
 interaction=i:SystemFrame{systemName=cn}
 };
 enforce domain archModel p:Port{
 name=pn,
 ArchitecturalElement=s:System{name=cn}
 };

 primitive domain portName:String;

 where
 {
 pn=portName;
 LifelineToComponentBinding(l, p, portName);
 LifelineToConnectorBinding(l, p, portName);
 }
}

The relation ““LifelineToConnectorBinding”” is in charge of creating the binding
that, in the example of the Figure 8-5, connects the Port of the ““WristSUC””
and the port of the ““WristCnct””. For this reason, the archModel domain defines
a template with a domain variable ““p””, of type Port. This is not free but bound
to the port created in the relation ““LifelineToArchitecturalElementBinding””.
Thus, the property ““name”” of the Port and the domain variable ““s””, of type
System, are also bound. The mapping between scenarios domain and archModel
domain is established for the Lifeline ““l”” and the Connector ““c”” because both
have a property ““name”” bound to the same variable ““ln””. It is also described
that they are composing a SystemFrame ““sf”” and a System ““s””, respectively,
whose properties ““name”” are bound to the same variable ““sn””. The Binding
relation is established in the archModel domain because both the property
““isComposed”” of ““s”” and the property ““isComponent”” of ““c”” are bound to
the same domain variable ““b””. This variable is resolved in the where clause by
means of the relation ““LifelineToBinding”” that creates a new Binding if it does
not exist already with that name. The relation ““LifelineToComponentBinding””
proceeds in a similar way, but in this case a Binding with a Component will be
created.
Table 8-9 Transforming a Lifeline to an Architectural Element

relation LifelineToConnectorBinding
{
 sn: String;
 pn: String;
 ln: String;
 a: archModel::ArchitecturalElement;
 b: archModel::Binding;

 8.3 Describing QVT transformations 263

 checkonly domain scenarios l:Lifeline{
 name=ln,
 interaction=sf:SystemFrame{systemName=sn}
 }{l->oclIsKindOf(Connector)};

 enforce domain archModel p:Port{
 name=pn,
 ArchitecturalElement=s:System{
 name=sn,
 containsCnct=c:Connector{
 name=ln,
 has=pc1:Port{
 name=pn,
 isComponent=b
 }
 },
 has=pc2:Port{
 name=pn,
 isComposed=b
 }
 }
 };
 primitive domain portName:String;
 where
 {
 pn=portName;
 LifelineToBinding(l, b, portName+l.name);
 }
}

relation LifelineToBinding
{

 cn: String;
 checkonly domain scenarios l:Lifeline{};

enforce domain archModel b:Binding{
 name=cn
 };

 primitive domain bindingName:String;

 where{
 cn=bindingName;
 }
}

8.3.3 PRISMA idioms

As was introduced in section 8.3, a set of idioms has been described to deal
with the mappings that are inherent to the PRISMA model. Two kinds of
idioms are described. One of them is related to the constraint described in

264 CHAPTER 8 Towards a first view of the Architecture

PRISMA for the relation between architectural elements. The other kinds of
idioms are related to the way the architectural elements are described by a
gluing of aspects.

Idioms for Architectural Elements

Figure 8-6 shows an example of an ATRIUM Scenario where two Component
Lifelines are interacting. One of the constraints of PRISMA is that two
Components cannot be directly attached. For this reason in the figure, the
mapping of this scenario to a PRISMA specification means that a Connector
must be created. To achieve this goal, the relation
““MessageBetweenComponentsToArchElements”” has been defined. This
relation is evaluated in the context of the relation ““FragmentToSystems””, that
is, when a SystemFrame is being mapped to a PRISMA System.

Figure 8-6 Establishing mapping between ATRIUM Scenarios Component-Component

Interaction and Components and Connector

As can be observed, an OCL expression is defined to apply this relation
whenever both Lifelines ““l1”” and ““l2”” are Component Lifelines. A template
expression is defined in the scenarios domain that filters every Message ““m””,
defined in the context of the SystemFrame ““sf””, connecting two Components
Lifelines ““l1”” and ““l2””. In the archModel domain, a pattern describes that for the
domain variable ““s””, of type System, its property ““containsComps”” and
““containsCnct”” will be enforced to the variables ““comp”” and ““con”” resolved in

 8.3 Describing QVT transformations 265

the where clause. The variable ““comp”” is resolved by the relation
““LifelineComponentToComponent””, explained in the previous section, to
determine if a PRISMA Component exists as mapped from the Lifeline ““l1””. In
Figure 8-6, it is checked that the PRISMA Component ““ArmSensor”” exists
(otherwise, it will be created). The variable ““con”” is similarly resolved, as is
represented by the ““ArmSUCCnct”” in Figure 8-6. The attachment between
both ““comp”” and ““con”” is resolved by means of the relations
““MessageToAttachmentConnectorBetweenComponents”” (explained in the
previous section) and ““MessageToAttachmentComponent””. It can be observed
that the relation ““MessageReceiveBetweenComponentsToArchElements”” must
be also positively evaluated, as described below.
Table 8-10 Transforming a Message between Component Lifelines to two Components

and a Connector

relation MessageBetweenComponentsToArchElements
{
 cn: String;
 cn1: String;
 cn2: String;
 comp: archModel::Component;
 con: archModel::Connector;

 checkonly domain scenarios sf:SystemFrame
 {
 message=m:Message
 {
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{name=cn1}},
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{name=cn2}}
 }
 }{(l1->oclIsKindOf(Component) and l2->oclIsKindOf(Component))};

 enforce domain archModel s:System{
 containsComps= comp,
 containsCnct=con

 };
 where
 {
 LifelineComponentToComponent(l1, comp);
 LifelineConnectorToConnectorBetweenComponents(l1, con);
 MessageToAttachmentComponent(l1, s, con.name, comp.name);
 MessageToAttachmentConnectorBetweenComponents(l1, s,
 con.name, comp.name);
 MessageReceiveBetweenComponentsToArchElements(l2, s, cn1);
 }
}

266 CHAPTER 8 Towards a first view of the Architecture

The relation ““MessageReceiveBetweenComponentsToArchElements”” is in
charge of enforcing the mapping, in the example of the Figure 8-6, between the
Lifeline ““ArmActuator”” and the Component ““ArmActuator”” as well as its
connection to the ““ArmSUCCnct””. With this aim, the domain scenario
describes a pattern where the domain variable ““l”” is bound because of the
relation ““MessageBetweenComponentsToArchElements””, i.e., it is bound to
the Lifeline that is receiving the message. A template expression is defined in
the archModel domain that specifies a domain variable ““s””, of kind System and
bound by the relation ““MessageBetweenComponentsToArchElements””, in
order to check (or enforce otherwise) that its properties ““containsComps”” and
““containsCnct”” are bound to ““comp”” and ““con””. Both of them are resolved in
the where clause by means of ““LifelineComponentToComponent”” and
““LifelineConnectorToConnectorBetweenComponents””. Both ““com”” and
““con”” are attached by resolving the last two relations, as was explained for
““MessageBetweenComponentsToArchElements”” in the previous section.
Table 8-11 Transforming a Lifeline to a Component and a Connector

relation MessageReceiveBetweenComponentsToArchElements
{
 comp: archModel::Component;
 con: archModel::Connector;

 checkonly domain scenarios l:Lifeline{};
 enforce domain archModel s:System{
 containsComps= comp,
 containsCnct= con

 };
 primitive domain compName:String;
 where
 {
 LifelineComponentToComponent(l, comp);
 LifelineConnectorToConnectorBetweenComponents(l, con);
 MessageToAttachmentComponent(l, s, con.name, comp.name);
 MessageToAttachmentConnectorBetweenComponents(l, s,
 con.name,comp.name);
 }
}

Idioms for Coordination Aspect identification

One of the characteristics that PRISMA exhibits is the description of
Components and Connectors by means of a gluing of Aspects. This not only
determines how they are internally specified but also how they behave
according to services specified in those aspects. For this reason, in this section

 8.3 Describing QVT transformations 267

some idioms are described to identify what aspects appear during the
architectural synthesis process.

One of the constraints imposed by PRISMA is that every Connector must be
described with a Coordination Aspect that facilitates the coordination process
between the connected Components. For this reason, whenever a message is
received by a Connector Lifeline, it will be mapped to a service belonging to the
Coordination Aspect of a Connector. Figure 8-7 shows a typical example
where the ““WristCnct”” Connector Lifeline sends a message ““writsmovejoint””
to the ““WristActuator””. The MessageOccurrenceSpecification, covered by
““WristCnct””, is mapped to a service ““““wristmovejoint”” in the Aspect
““CoordWristCnct””.

Figure 8-7 Establishing mapping between an ATRIUM Scenarios Message and a

PRISMA Aspect

The relation ““LifelineToServiceAspectConnector”” is evaluated in the context
of the relation ““MessageToArchElements””. This means that, when the relation
is evaluated, ““l”” and ““c”” are not free but they are bound to objects of its
respective types. In the scenarios domain, an OCL expression determines that
the relation will be applied only when the type of ““m”” is Message, that is, the
AspectualMessages are dealt with in a different way. In the archModel domain,
the variable ““c”” of type Connector binds its property ““imports”” to ““as””. It is a

268 CHAPTER 8 Towards a first view of the Architecture

Coordination Aspect that is resolved in the when clause by the relation
““LifelineToAspect””. In the where clause, it is determined the kind of service (in
or out) for its use in the relation ““LifelineToService””. This relation maps the
message to a service of the aspect ““as””.
Table 8-12 Transforming a Lifeline to a Service of an Aspect

relation LifelineToServiceAspectConnector
{
 cn: String;
 cn1:String;
 cn2:String;
 as: archModel::Aspect;

 checkonly domain scenarios l:Lifeline{
 coveredBy=mo:MessageOccurrenceSpecification {
 message=m:Message{}
 }
 }{m->oclIsTypeOf(Message)};

 enforce domain archModel c:Connector{
 imports=as
 };
 when{
 LifelineToAspect(l,as, 'Coordination');
 }
 where{
 cn1=mo.event.name.substring(1,2);
 cn2=KindService(cn1);
 LifelineToService(m, as, cn2);
 }
}

The relation ““LifelineToAspect””, in the archModel domain, defines a template
expression where the variable ““as”” has the properties ““name”” and ““concern””
bound to ““an”” and ““conc”” that are resolved in the where clause. Variable
““conc”” is assigned to the kind of Concern the Aspect is. Variable ““an”” is
assigned to the concatenation of part of the name of the concern and the name
of the Lifeline. Two relations are evaluated in the where clause as well.
““LifelineToBegin”” and ““LifelineToEnd”” that determine the creation of these
services in the PRISMA Aspect to assure its appropriate initialization and
destruction.
Table 8-13 Transforming a Lifeline to an Aspect

relation LifelineToAspect
{
 cn: String;
 an: String;
 conc: String;

 8.3 Describing QVT transformations 269

 checkonly domain scenarios l:Lifeline{
 name=cn
 };

 enforce domain archModel a:Aspect{
 name=an,
 concern=conc
 };

 primitive domain parConcern:String;

 where{
 conc=parConcern;
 an= parConcern.substring(1,4)+ l.name;
 LifelineToBegin(l,a);
 LifelineToEnd(l,a);
 }
}

relation LifelineToBegin
{
 cn: String;

 checkonly domain scenarios l:Lifeline{};

 enforce domain archModel a:Aspect{
 belongsTo= b1:Service{name='begin()'}
 };
}

The relation ““LifelineToService”” describes a pattern in the archModel domain
where the variable ““as”” of kind Aspect has a property ““belongsTo”” that is used
to refer to the Service to be created. In addition, it is also checked (or enforced
if it does not exist already) that the name of the message and the name of the
service being added are equal by means of the bound to the variable ““cn””. The
property ““type”” is bound to ““ks””, a variable resolved in the where clause by its
assignment with ““parType””. This variable determines the kind of service that is
being checked (or enforced).
Table 8-14 Transforming a Lifeline to a Service

relation LifelineToService
{
 cn: String;
 ks: String;

 checkonly domain scenarios m:Message{
 name=cn
 };

 enforce domain archModel as:Aspect{
 belongsTo=s:Service{
 type=ks,

270 CHAPTER 8 Towards a first view of the Architecture

 name=cn
 }
 };

 primitive domain parType:String;

 where{
 ks=parType;
 }
}

Idioms for Presentation Aspect identification

PRISMA provides support for human interaction by means of the use of
Presentation Aspects. The ATRIUM Scenarios Model provides the analyst with
specific notation for this aim by means of the use of Human Lifelines(7.3.1).
Figure 8-8 depicts an example, where the Component Lifeline ““UIRobot””
receives a message ““Move”” from the Human Lifeline ““Operator””. By means of
the relation ““MessageFromHumanToComponent””, explained below, the
MessageOccurrenceSpecification, that is the end of the Message ““Move”” and is
covered by ““UIRobot””, is mapped to a service ““Move”” owned by the Aspect
““PresUIRobot””.

Figure 8-8 Establishing mapping between an ATRIUM Scenarios Operator-System

Interaction and a PRISMA Presentation Aspect

 8.3 Describing QVT transformations 271

The relation ““MessageFromHumanToComponent”” describes, in the scenarios
domain, a template expression that filters every two Lifelines ““l1”” and ““l2””
connected by a message whenever the OCL expression is satisfied, i.e., if one of
them is a Component Lifeline and the other a Human Lifeline. In the archModel
domain, the pattern checks (or enforce if it does not exist already) that the
domain variable ““s”” of type System will be bound to those Systems having a
property ““name”” bound to the variable ““sn””. This facilitates the mapping of
the SystemFrames containing the Lifeline Component with the Systems. In
addition, the property ““containsComps”” is bound to ““comp””, a variable which
is resolved in the where clause by the relation
““LifelineComponentToComponent””, explained in the previous sections. The
where clause also specifies that another relation must be positively evaluated:
““LifelineToServicePresentationAspectComponent””, detailed below.
Table 8-15 Transforming a Messages received from Human Lifeline to a Component

top relation MessageFromHumanToComponent
{
 cn: String;
 ln1: String;
 sn: String;
 ln2: String;
 sn2: String;
 comp: archModel::Component;
 lcom: ATRIUMScenarios::Lifeline;

 checkonly domain scenarios p:Package
 {
 packagedElement= i:Interaction{
 message= m:Message{
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{
 name=ln1
 }
 },
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{
 name=ln2,
 interaction=sf:SystemFrame{
 systemName=sn
 }
 }
 }
 }
 }
 }{i.message->notEmpty()
 and m->oclIsKindOf(Message)
 and ((l1->oclIsKindOf(Human)
 and l2->oclIsKindOf(Component)) };

272 CHAPTER 8 Towards a first view of the Architecture

 enforce domain archModel s:System{
 name=sn,
 containsComps=comp
 };

 where{
 LifelineComponentToComponent(l2, comp);
 LifelineToServicePresentationAspectComponent(m2, comp);
 }
}

The following relation is in charge of describing the mapping from the
Message, in the scenarios domain, to a service of a Presentation Aspect in the
archModel domain. As can be observed, it proceeds similarly to
““LifelineToServiceAspectConnector””, by evaluating the same relations.
However, in this case it is specified that the kind of Aspect is Presentation.
Table 8-16 Transforming a Lifeline to a Presentation Aspect

relation LifelineToServicePresentationAspectComponent
{
 cn: String;
 ks: String;
 as: archModel::Aspect;

 checkonly domain scenarios mo:MessageOccurrenceSpecification{
 covered=l:Lifeline {},
 message=m:Message{}

 };

 enforce domain archModel c:Component{
 imports=as
 };
 when{
 LifelineToAspect(l,as, 'Presentation');
 }

 where{
 ks=KindService(m);
 LifelineToService(m, as, ks);
 }
}

Other relevant Idioms related to Aspects

In the Appendix B more idioms, similar to the previous ones, have been
defined. The reader is referred to that Appendix to have more details about
them. However, it is necessary to sketch some ideas of these idioms to have an
insight of how detailed is the generated model. Some of these idioms are
described in the following:

 8.4 Process for Synthesis and Transformation 273

− By default, every service received by a Component Lifeline is mapped to a
service in a Functional Aspect. This Aspect is imported by the Component
resulting from mapping the Component Lifeline.

− If an Aspectual Message is received by a Lifeline, it will be mapped to a
service belonged by an Aspect that will have the same concern as that
specified in the Aspectual Message. Similarly to the previous one, this
Aspect will be imported by the Architectural Element generated from the
Lifeline.

− If there is an interaction with a COTS Lifeline, a Component will be
enforced with the same name as the Lifeline. In addition, every
send/receive message will be mapped to an Integration Aspect owned by
this Component.

− The sequence of the messages is also analysed in order to determine the
Weaving relations. If two MessageOccurrenceSpecifications are covered by
means of the same BehaviourExecutionOccurrence, they are executed one
after the other and belong to two different aspects, a Weaving relationship
is established between them.

8.4 PROCESS FOR SYNTHESIS AND TRANSFORMATION

In a similar way to the previous activities of ATRIUM a process has been
defined for the Synthesis and Transformation activity that is depicted in Figure
8-9. As can be observed, its definition is straightforward, where only three steps
have been identified.

The first activity is related to the selection or definition of the transformations
to be applied. Because different Architectural Models could be applied for the
generation of the proto-architecture, the analyst should select the
transformations to be applied among that defined. In this sense, we should take
into account that three kinds of transformations where defined: architectural
transformation patterns, Architectural Style-oriented transformations and
idioms-oriented transformations. The first kind of transformation should be
selected by default because it facilitates the generation of those architectural
elements support by most of the existing architectural models. The second kind
of transformation should be selected according to the Architectural Style to be
applied in the system-to-be. Finally, the third kind of transformation should be
selected to take into account the constraints and properties of the target
architectural model that must be defined by means of those idioms.

274 CHAPTER 8 Towards a first view of the Architecture

Figure 8-9 Describing the process for the Synthesis and Transformation activity

It is also possible that if none of the defined transformations is appropriate for
his/her purposes, he/she could define the necessary transformation by using
QVT Relations. It is recommended that analysts define the Architectural
Generative transformation at the beginning, followed by the Architectural
Style-oriented transformations and, finally, the idioms-oriented transformations.
In this sense, the analyst would have more facilities not to introduce
overlapping transformations. In addition, the common Relations should be
included in the Architectural Generative transformation to be reused by the
idioms and Architectural Style-oriented transformations.

The second step is optional, and it must be applied only if the transformations
should be modified. For instance, the analyst could decide to introduce new
idioms he/she has detected, the application of different styles, etc.

The last step of the process is fully automated. Once the analyst has selected
the appropriate transformations, they are applied on the ATRIUM Scenarios
Model to generate the proto-architecture. In this sense, the tool MORPHEUS
plays an important role as is described in the following chapter.

 8.5 Conclusions 275

8.5 CONCLUSIONS

During this chapter, a process has been defined for the last activity of
ATRIUM: Synthesis and Transformation. The main aim of this activity is to
generate a proto-architecture. It is used as a first draft of the SA for the system-
to-be to be refined in a later stage of the software development. It facilitates
that the analysis performed in the previous activity by defining the ATRIUM
Scenarios Model to obtain an improved comprehension of the system, can be
traced to a later stage with an automatic process.

In order to select the best approach for this activity, several applicable
alternatives were studied and evaluated according to a set of defined needs.
Among them, QVT emerged as the most proper solution because it satisfies
most of the established goals.

By using QVT Relations, a set of transformations rules has been defined that
faces the challenges described in the introduction of the chapter. The first was
related to its applicability to the whole set of scenarios. As was observed, QVT
supports the definition of keys to be applied in the process. This support
facilitates the synthesis process by avoiding that objects with duplicated keys
can be created. In addition, the set of transformation has been defined to deal
with a set of scenarios because no constraint in this sense has been included.

Another challenge faced with this alternative was the introduction of styles
during the transformation. As can be observed in section 8.3.2, it was
straightforward the introduction of some restriction imposed by the
ACROSET style by introducing some specific relations. This set of rules was
defined in a different transformation. The main idea is that different
transformations can be described that generate the proto-architecture applying
different Architectural Styles. This means that different proto-architectures
could be generated using the same set of scenarios and taking into account
different Architectural Styles.

It is worthy of note that it is not necessary to provide as input a full set of
scenarios required to describe the system behaviour. On the contrary, with only
one scenario the generation can proceed. However, the Incrementality feature of
QVT facilitates that as new scenarios are defined or modified or selected for
the transformation, the proto-architecture can be automatically updated.

This facility of QVT for using more than two domains rises to the challenge
described in the Introduction: how to establish mechanisms that are able to

276 CHAPTER 8 Towards a first view of the Architecture

evaluate the proto-architecture being obtained. We are focused on the
definition of ffaauulltt stated by (Munson, et al 2006):

“A fault, by definition, is a structural imperfection in a software system that may
lead to the system’s eventually failing.”

They have stated the need of specifying well-defined methods of faults
identification that are repeatable. The main idea we are focusing on is how to
detect such faults at the specification level, that is, while the proto-architecture
is being generated. An early detection of these faults will made meaningful
strides to improve the development in terms of both quality and costs of the
final product. The definition of a FFaauulltt MMooddeell that describes the faults that
can appear at the specification level would mean a first step in this sense. It
could be used not only as a guide for the analysts but also for the evaluation of
the generated proto-architecture. In order to generate this model, it could be
declared as another input domain in the transformations and, consequently, to
obtain automatically a first evaluation. It would facilitate not only the detection
of faults in the proto-architecture but also which scenarios are contributing to
those faults by means of the Traceability feature of QVT. As far as we know
there are not works copying with this issue and, it is currently our first challenge
to be faced.

It must be also pointed out that this activity of ATRIUM has been defined to
provide as much flexibility as possible in terms of the Architectural Model used
for the generation of the proto-architecture. The main goal was to provide the
analyst with facilities to generate it using that Architectural Model he/she
considers more appropriate for his/her aims. For this reason, the set of
Relations have been catalogued as architectural generative patterns,
Architectural Style-oriented transformations and idioms. This facilitates that the
same set of scenarios could be transformed to different proto-architectures by
selecting the idioms that are specific to the desired Architectural Model.

Finally, one of the main challenges not only related to this activity but also to
the whole definition of ATRIUM, is the traceability. This issue was the main
motivation for the definition of ATRIUM and it has been faced in this activity
thanks to the use of QVT. Its use plays a significant role for traceability top-
down and bottom-up. The former is provided because the proto-architecture is
generated automatically by establishing the appropriate transformations.
Although it has not been dealt with in this work, the bottom-up traceability
could be easily achieved as well. It is because QVT Relations derive a Trace
Class from each used Relation in order to generate traceability maps. This
ability is highly meaningful because a mapping is established between every
element in the proto-architecture and its related element/s in the ATRIUM

 8.5 Conclusions 277

Scenarios Model. It must be taken into account that a proto-architecture is
generated from the set of scenarios, not a full specification. This means that it
should be refined during the next stage of the software development. During
this activity, if any change is required it could be traced-back to detect which
scenario/s should be modified, helping to maintain the models up-to-date.

The work related to the transformation of the ATRIUM Scenarios model has
been presented in the following publication:

− E. Navarro, P. Letelier, J. Jaén, I. Ramos, “A generative proposal for proto-
architectures exploiting Architectural Styles”, First European Conference
on Software Architecture (ECSA’07), September 24-26, 2007, Aranjuez
(Madrid), Spain, (submitted).

-279-

“Anyone who has lost track of time when using a
computer knows the propensity to dream, the urge

to make dreams come true and the tendency to miss
lunch.” —

Tim Berners-Lee

CHAPTER 9

9 MORPHEUS: A Tool for ATRIUM

9.1 INTRODUCTION

Nowadays, automation is becoming one of the principal means to achieve a
greater productivity and a higher quality product. This is due to the trend of
increasing acquirer’s satisfaction of the developed and delivered software
product. For this reason, its introduction in this proposal was compulsory to
provide support to the whole set of defined models and assist as much as
possible in the process. In its definition, several facts were considered as is
described in the following.

The main idea behind this tool is to offer a graphical environment for the
description of the different models because it provides the analysts with an
improved legibility and comprehension. It must also be considered that three
models are used in the description of ATRIUM. For this reason, the tool
should provide the facilities proper of each model.

However, the support of the tool would be quite limited if it only provides
graphical notation. For this reason, several mechanisms should also be included
in their definition to facilitate their exploitation. In this sense, the tool should
provide facilitates for analyzing architectural alternatives because this is one of
the main goals of ATRIUM. In addition, it must also provide automatic
support for model transformation.

Considering these facts, a tool called MORPHEUS has been developed. Due to
the fact that it has to manage each model used by ATRIUM three different
environments are provided:

− Requirements Environment provides user with a requirements metamodelling
tool for both describing requirements model customized according to

280 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

project’s specific needs and its later exploitation and analysis. More details
about this environment are presented in section 9.3.

− Scenarios Environment has been expressly developed to describe the
ATRIUM Scenarios. It also supports the generation of proto-architectures
using the defined QVT rules. Section 9.4 presents more details about the
environment.

− Software Architecture Environment makes available a complete graphical
environment for the PRISMA AO-ADL so that the proto-architecture
obtained from the Scenarios Model can be refined. This environment is
introduced in section 9.5.

In the next section, the selected technology for the graphical support is briefly
presented. The main conclusions obtained round up the chapter.

9.2 TECHNOLOGIC DECISSIONS FOR MORPHEUS

In order to provide tool support for this proposal, several alternatives were
studied. The first one was to exploit the use of UML profiles to describe the
established metamodels. The corresponding models could then be elaborated in
a straightforward way by using any CASE tool that supports UML. However,
this alternative exhibits limitations because most of the existing tools provides a
poor support for UML profiles.

For this reason, other analysed alternative was to follow the trends associated to
Meta-CASE and Domain Specific Modelling. They are a promising emergent
technology thrust by current interest into Model Driven Development (Mellor
et al., 2004). In this sense, these Meta-CASE tools, such as MetaEdit+ (Kelly et
al., 1996), have been developed to provide the user with immediate modeling
support according to a customizable metamodel. However, it was detected that
this alternative presents problems when more than a metamodel must be
exploited. This is highly relevant in ATRIUM because three metamodels, with
their corresponding models, are used. In addition, they do not provide support
for the transformation needed for the Synthesize and Transform activity of
ATRIUM.

For this reason, the selected alternative was to develop a tool specific to
ATRIUM. There are several tools oriented to the visual modelling such as Visio
(Visio, 2003). Most of them provide mechanisms to extend their functionality.
This means that there is no need to develop a tool from scratch but extending
any of the existing ones. We considered and reviewed several of these tools as

 9.2 Technologic decissions for MORPHEUS 281

support for ATRIUM modelling, but we finally selected Visio. It is due to the
fact that Visio allows straightforward management, both for using and
modifying, shapes. This characteristic is highly relevant for our purposes
because all the kinds of concepts that are included in our metamodels can easily
have different shapes that facilitate the legibility of the model. It also provides
an additional advantage because Visio can be integrated in other tools
facilitating they can be customized according to the specific needs. With this
aim, the Microsoft Office Visio Drawing Control 2003 has been used. It is a
Microsoft ActiveX control that provides full access to the Visio object model
(API) and its user interface. This drawing control has been embedded in
MORPHEUS to provide it with a drawing surface for displaying, editing and
removing shapes. In addition to this drawing surface, the user is provided with
all the functionalities that Visio has, that is, she/he can manage different
diagrams to properly organize the specification, make zoom to see more clearly
details, print the active diagram, etc.

The basic architecture of MORPHEUS, related to the use of Visio is depicted
in Figure 9-1. MORPHEUS acts a container for the three environments
described in the Introduction. Each one of these environments is a container
that references an instance of the Visio Drawing Control for the graphical
definition of its corresponding model. It must be mention that each instance
loads a Visio document. For this reason, each MORPHEUS project integrates
three Visio documents to define the requirements, scenarios and Software
Architecture of the system-to-be.

Figure 9-1 Sketching the MORPHEUS Architecture

Each environment introduces a component in charge of handling the events
triggered when shapes, and diagrams are managed. It also contains its specific
menu items and toolbar to provide an easy access to its functionality. Some

282 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

components are also contained in each environment to support its
management.

MORPHEUS also provides several menus and toolbars that are shared for all
the environments that facilitate access to the printing, zoom, etc. It also
encapsulates several components to control the whole tool and provide access
to the repository shared for the three environments.

9.3 REQUIREMENTS ENVIRONMENT

With the aim of supporting the metamodeling proposal and its capabilities for
tailoring to the specific project needs described in the chapter 5, the
Requirements environment in MORPHEUS has been developed. It is not only
able to define both new kinds of artifacts and relationships but also to
instantiate and exploit them. For this reasons, its environment has been split
into two different contexts, as shown in Figure 9-2. The first one allows
analysts to establish the metamodel to be used; and, the second one provides
analysts with facilities for modelling according to the defined metamodel. In
this sense, the developed elements are described in the following sections.

Figure 9-2 Requirements Environment

 9.3 Requirements Environment 283

9.3.1 Requirements Metamodel Editor

It allows the definition of types of artifacts and relationships according to the
specific needs of expressiveness. With this purpose, Figure 9-3 shows what
MORPHEUS looks like when this context is activated. It can be observed that
the analyst can access to this context by means of a combo box situated in the
Environments toolbar at the top of MORPHEUS. Depending on the active
context, a different bitmap is shown to facilitate its distinction.

Figure 9-3 Metamodel Editor

Whenever the Requirements Metamodel is being defined, the analyst can define
new kinds of artifacts, refinements and dependencies. In the Figure 9-3, it can be
observed that three kinds of artifacts have been defined. Goal and
Operationalization have been defined as child of Artifact. The environment
provides this kind by default in order to follow the guidelines for meta-
modelling described in chapter 5. If Artifact is defined as parent the attributes
Name and Description are inherited automatically (see section Attributes in Figure
9-3). However, Requirement has been defined as child of Goal inheriting all the

284 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

attributes defined by it. These facilities are also provided to describe new kinds
of refinements and dependencies by means of the types Refinement and
Dependency, respectively.

It can be observed that the Requirements Metamodel Editor environment
supports three operations to specify the Requirements metamodel: New, Edit
and Delete. The first one allows the analyst to create new kinds of Artifacts,
Refinements, and Dependencies. When New is pressed the form depicted in Figure
9-4 is shown. It facilitates the definition of attributes owned by the Artifact
being defined and the inspection of the inherited attributes. The owned
attributes can be created, modified or eliminated. Whenever an attribute is
being created or modified, the form depicted in the Figure 9-5 is shown, to
describe its type and select if it is enumerated and/or multi-valued. It can be
observed that two buttons are situated at the bottom of the form. They are
used to assign a weight to each enumerated value regarding its position in the
list. This facility is highly relevant to facilitate the analysis process presented in
section 9.3.3.

Figure 9-4 Describing Meta-Artifacts for a kind of Artifact

 9.3 Requirements Environment 285

Figure 9-5 Describing a new attribute

When a kind of Artifact is being defined, the analyst must select as well the
shape that will represent it graphically by means of button situated at the
bottom in the Figure 9-4. Whenever it is pressed, the form shown in Figure 9-6
is presented to facilitate their selection.

Figure 9-6 Selecting the shape for the kind of Artifact

286 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Figure 9-7 Describing a kind of Dependency

Figure 9-7 shows how new kinds of dependencies can be specified. It can be
observed that when a new kind of dependency is being defined another kind of
dependency is selected as parent. It means that the new kind will inherit all the
attributes the parent kind has. New attributes can be also defined. The kind of
artifacts that this new kind is going to relate must be also selected. Finally, the
shape to describe the relationship must be selected by means of the button
situated at the bottom.

Figure 9-8 shows how new kinds of refinements can be defined in a similar way to
the previous one. It can be observed that attributes can be in the leaves of the
new kind of refinement. It gives more facilities to include any necessary
information in the leaves of the relation.

 9.3 Requirements Environment 287

Figure 9-8 Describing a kind of Refinement

As soon a new kind of artifact, dependency, or refinement is created, it is
automatically made available for the analyst in the Requirements Editor
environment.

In a similar way, when the operation Delete of the context is applied to a kind of
artifact, dependency, or refinement, both it and all its corresponding instances are
automatically eliminated from Metamodel and the model being defined,
respectively. In this case, the form illustrated in the Figure 9-9 is shown. It is
used not only to confirm if the user wants to eliminate it but also to check if a
cascade erasure must be applied. This means that all the kinds defined as child
of that being erased will be also deleted. Alternatively, the analyst can select that
the inherited attributes of all these kinds only will be erased as well. These
changes are also propagated to the instances of the child kinds. If a kind of
artifact is being eliminated then every kind of dependency and/or refinement
connecting that kind will be also deleted propagating that elimination to their
instances. This avoids that un-connected relationships can appear in the model.

288 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Figure 9-9 Eliminating a kind of Artifact

If the operation Edit is performed on one of the defined kinds then the form of
the Figure 9-4, Figure 9-7 or Figure 9-8 is again shown to edit, delete or create
attributes of the kind of artifact, dependency or refinement, respectively. The
introduced changes are automatically applied to its instances. It is worthy of
note that if the kind of an attribute, of a kind of artifact, dependency or refinement, is
changed then all the instances of that kind reset their value to null unless a
casting between the types can be applied.

9.3.2 Requirements Editor

Figure 9-10 shows how MORPHEUS looks like when this environment is
loaded. It can be observed that it is defined mainly by means of three
components. One of them is the Model Explorer that provides facilities to
navigate through the Requirements model being defined in an easy an intuitive
way. The Model Explorer is shown on the left in the Figure 9-10 where the
different defined artifacts of the EFTCoR project can be examined. Several
elements are identified in this component: dimensions, artifacts, diagrams, and the
project on top of the tree. Dimensions are used to classify the Artifacts that are
being specified as instances of the kinds of artifacts defined in the metamodel. It
can be observed that the defined dimensions for the EFTCoR correspond to the
ISO 9126 taxonomy. The diagrams help to group those artifacts that have some
kind of relationship among them. Each element has a different icon to improve

 9.3 Requirements Environment 289

the legibility of the model. In addition to the navigation through the model, the
Model Explorer allows the management (creation, modification and deletion) of
each kind of element. It also facilitates the modification of the preferences of
the project by selecting the item on top of the tree and showing the form on
Figure 9-11. It facilitates that the name of the project can be changed, the views
can be customized, and the instances of kinds artifacts, dependencies and refinements
can be hidden or make visible in the diagrams depending on their selection.

Figure 9-10 MORPHEUS while loading the Requirements Model Management

environment

Other component included in this environment is the Graphical View that is
situated in the middle of the Figure 9-10. This component is used for graphical
modelling according to the loaded metamodel. For this reason, any defined
relationship or artifact can be graphically created, modified or deleted. By
selecting any element in the graphical view, the form depicted in Figure 9-12 is
activated to facilitate its specification. This form is automatically customized
according to the kind of the instance being specified. This customization takes
into account the kind of the attribute as well. For instance, it can be observed in
the Figure 9-12 that the attribute priority is shown to the user as a combobox
because it was defined as an enumerated attribute.

290 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Figure 9-11 Customizing the preferences of the project

Figure 9-12 Describing the properties of an artifact

Finally, the component situated on the right of the figure makes available the
specified Requirements metamodel to the analyst. It can be observed that each
kind of artifact, dependency and refinement is shown in this component according to
the selected shape that is going to describe them. It facilitates that the analyst
just selects the needed kind and click on the Graphical View to create any
instance he/she needs. It must be highlighted that this component is
automatically updated as soon as the Requirements metamodel is changed.

 9.3 Requirements Environment 291

The Requirements Model Management environment also provides an
alternative way for analysing the model by means of Tabular Views. It can be
observed in the Figure 9-13 that the view called ““Tabular View”” selected on the
Model Explorer is shown in the middle of the form as a bi-dimensional table
where artifacts are situated on the first row and column, and the relationships
among them in the corresponding cells. This alternative is highly useful when
the number of artifacts and relationships is high, facilitating the analyst a proper
way of analysing the specification. The analyst can create as many Views as
she/he needs only by selecting the project in the Model Explorer. These views
can be customized by showing only those dimensions, artifacts and relationships
selected. Figure 9-14 shows that the analyst can also select the colour of the
dimension to improve the legibility of the View.

Figure 9-13 MORPHEUS while loading a Tabular View in the Requirements Model

Manager

292 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Figure 9-14 Configuring the tabular view

In addition, MORPHEUS has been developed with capabilities to extend its
functionality with techniques of analysis and exploitation. The main aim is that
as new metamodels are defined, their related techniques can also be included
and exploited in MORPHEUS. An example of how this capability has been
used is presented in the following section.

9.3.3 An add-in for customizing the analysis process

An add-in for Goal Model analysis based on satisfiability propagation has been
developed. It is based on the recommendations described in chapter 5. It has to
be pointed out that this extension facility is mainly supported by the
MORPHEUS API, an interface that facilitates access to the repository for its
management. Figure 9-15 shows how this add-in has been designed. It has been
split into four main components: a Rules Editor, a Rule Compiler, a Code
Compiler and a Propagation Processor.

 9.3 Requirements Environment 293

Figure 9-15 A sketched view of the Rules add-in

Figure 9-16 MORPHEUS while loading the Rule Editor

Figure 9-16 shows what MORPHEUS looks like whenever the Rule Editor is
loaded. For its development, several alternatives were evaluated. However, the
usability of the proposal was one of the main characteristics to be achieved. For
this reason, a user interface (Rule Editor in Figure 9-15) that allows the analyst
to introduce the rules in a simple and comprehensible manner was developed.
The Rule Editor is split into three main parts: a Browser, a Rules Descriptor and a

294 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Editor. The Browser allows one to navigate through the kinds of artifacts and
kinds of relationships among them. The Rules Descriptor, on the right of the
Browser, displays the applicable rules, for a selected kind of destination artifact,
relationship and source artifact. Figure 9-15 shows that ““GOAL””, ““AND””,
““GOAL”” are the selected destination artifact, relationship and source artifact,
respectively, that only has associated a rule that is described on the Rules
Descriptor. It can be appreciated that the when text box describes the condition
and next to it appears the valuation that must be performed whenever the rule is
applicable. Close to the valuation appears the attribute of the kind of artifact
that must be valuated. Beneath the rules descriptor, the Editor permits to edit
the condition, the valuation, and the attribute to be valuated of a selected rule.
This control provides the analyst with several buttons and capabilities that
prevent him from knowing any detail about how his/her metamodel is
described in the repository or how rules are internally implemented.

In addition, a syntactic checking and the generation of its C# code is
performed when a rule is being defined by using the Rule Compiler generated
using Golden Parser (GOLD, 2005). This is a free parsing system that can be
used to develop one’s own programming languages, scripting languages, and
interpreters by previously writing your grammar using BNF. The BNF, which
was described for the condition (Table 5-25), and the valuation (Table 5-26),
was introduced in GOLD. Then, the GOLD Parser Builder was used to
analyze this grammar and create the Compiled Grammar Table file (CGT) used
by a compilation engine. It uses this CGT file to generate a C# skeleton
program with a custom parser class that acts as a template for parsing any
source satisfying the BNF grammar. By means of this template, the specific
compilation to the objective code can be described. In this case, the Rule
Compiler was developed to perform the translation to C# code making available
artifacts and relationships from the repository, and that computation which was
needed for both condition and valuation. Therefore, for each rule its valuation
and condition description along with their respective compilation to C# is
computed by means of the Rule Compiler and passed to the Rule Editor, which
stores them in a XML rules file to be lately used for the Code Compiler.

The performance could have been seriously compromised due to the necessity
of representing these rules as code for its use in run-time when they are used to
perform the propagation throughout the model. For this reason, the approach
of dynamic compiling, while it is more complex, provides us with a proper
solution. Microsoft .NET Code Document Object Model technology, as
described by (Harrison, 2003), has been used for the implementation of the
Code Compiler. By using Code Compiler (Figure 9-15) a set of assemblies,
containing both the code of the rules and other functionality, is generated at

 9.4 Scenarios Environment 295

run-time. For each rule, which is saved in a XML rule file, a C# class is
generated which inherits from IRule. It is an abstract class with two abstracts
methods to override for each inherited class: applicable function, which checks
if the rule can be applied; and valuate function, which performs the propagation
computation. This class also has a set of functions to perform the minimum,
maximum, etc. Therefore, while generating code, each rule C# class is going to
override the abstract methods with that code stored in the XML rule file. Other
classes are also used for the management of the generated classes, which are
previously pre-compiled to speed up this process.

Afterwards, these assemblies are accessed by the Propagation Processor to perform
the propagation on a specific Goal Model and generate the results. In terms of
integration, the Propagation Processor makes use of the MORPHEUS API to
access the model and pass through the relations and artifacts retrieved from the
repository. Once the propagation is performed, the results are shown to the
user using a specific interface that is shown in the Figure 9-17 where the initial
and computed values of the attributes are displayed.

Figure 9-17 MORPHEUS while loading propagation data

One of the advantages of this add-in is its ability to be customized according to
any kind of artifact, dependency and refinement. It means that its application is not
constrained to Goal Models, but any kind of Metamodel can be exploited by
describing properly its rules.

296 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

9.4 SCENARIOS ENVIRONMENT

This environment has been developed to facilitate the specification and
exploitation of the ATRIUM Scenario Model described in the chapter 7. With
this aim, it has been split into two different contexts as Figure 9-18 depicts.

Figure 9-18 MORPHEUS: Capabilities of the Scenarios Environment

The first context is called the Scenarios Editor. It provides the analyst with
facilities to describe the scenarios according to the notation described in
chapter 7. As can be observed in the Figure 9-19, and similarly to the
Requirements Model Management environment, it includes a Model Explorer to
navigate through the Scenario model being defined in an easy an intuitive way.
It is pre-loaded with part of the information of the Goal Model being defined.
For this reason, the selected operationalizations, catalogued by their dimensions,
are displayed. It facilitates to maintain the traceability between the Goal Model
and the Scenarios Model. Associated to each operationalizations one or several
scenarios can be specified to describe how the shallow architectural elements
collaborate to realize that operationalization. The Model Explorer provides
facilities for the manipulation of these scenarios. In the middle of the
environment is situated the Graphical View where the elements of the scenarios
can be graphically specified. On the right of the environment is situated the

 9.5 Architecture Environment 297

stencil developed for the Scenarios Model. It can be observed that each
concept presented in the chapter 7 has a graphical shape to describe it.

Figure 9-19 MORPHEUS while loading the Scenarios Management environment

The second context is the Synthesis processor. It is in charged of the generation of
proto-architecture. For its development, the alternative selected was the
integration of one of the existing model transformations engines considering
that it has to provide support to the transformations described in chapter 8.
Specifically, (ModelMorf, 2007) was selected because it supports the QVT-
Relations language. It should be mention that this engine supports all the
features described in chapter 8.2. Among them, it must be highlighted its
support for multi-directional transformation specification and incremental
transformations. This engine to perform the transformation accepts as inputs
the metamodels and their corresponding models in XMI format. For this
reason, the Synthesis processor first stores the Scenario Model in this format and,
second, performs the transformation by invoking ModelMorf. The result is an
XMI file describing the proto-architecture that is used by the Software
Architecture environment, for its refinement. An example of a scenario in XMI
format and the generated proto-architecture performed by using ModelMorf is
presented in the Appendix D.

298 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

9.5 ARCHITECTURE ENVIRONMENT

The third environment included in MORPHEUS is the Architecture
Environment, as is described in Figure 9-20. It was developed to allow the
analyst to refine the proto-architecture generated with the environment
described above. Specifically, this environment provides support to the
specification of Software Architecture using PRISMA as AO-ADL. Therefore,
section 9.5.1 introduces the notation that is supported by the environment.
Section 9.5.2 describes some of the capabilities implemented.

Figure 9-20. MORPHEUS: Capabilities of the Architectural Environment

9.5.1 Describing the notation

The PRISMA textual language could be used directly to model Software
Architectures. However, for any modern modelling approach, it is important to
have a visual representation of the specifications. This makes the application of
PRISMA in the context of a modelling tool easier and more practical.
Obviously, a textual representation is more suitable for some details of a
PRISMA specification; for instance, to formulate the changes in the value of

 9.5 Architecture Environment 299

attributes by the execution of aspect services. Thus, only the main concepts and
their relationships are visually specified; the rest of the concepts are represented
in textual form and are included in the definition of the corresponding symbols.

We consider UML to be relevant as a graphical notation for PRISMA because it
is a standard and popular notation. Although UML is intended for object-
oriented modelling, thanks to its extension mechanisms that are associated to
the definition of a UML profile, it can be customized to the particular needs of
PRISMA specifications. These extension mechanisms are stereotypes, tagged
values, and constraints, which are all used to define new derived concepts
(metaclasses) from the standard UML metaclasses. For Software Architecture
modelling, UML 2.0 (UML, 2005) includes the following concepts: component,
connector, port and interface (required or provided). However, the provided
expressivity is too basic in comparison with PRISMA. Furthermore, UML 2.0
does not include the aspect and weaving concepts.

(Perez et al., 2003) defined a profile that includes all the necessary extensions
for using UML as a visual notation for PRISMA specifications. This profile has
been implemented by extending an existing one as we describe bellow.
Throughout the definition process of the PRISMA profile, especially for
AOSD elements, it was taken into account the satisfaction of the requirements
that (Aldawud et al., 2003) stated for defining a UML profile for AOSD:

I. The Profile shall enable specifying, visualizing, and documenting the artifacts of software
systems based on Aspect-Orientation. This requirement has been satisfied by
means of the stereotypes and their visual representation as it is described
below.

II. The Profile shall be supported by UML (avoid ““Heavy-weight”” extension mechanisms),
this allows a smooth integrating of existing CASE tools that support UML. This
requirement is also satisfied due to the UML profile was defined according
to the established construction rules in the UML specification (UML,
2005).

III. The Profile shall support the modular representation of crosscutting concern. The
separation of concerns provided by aspects defining the architectural
elements, along with the defined weaving relationship, allows us to identify
and manage crosscutting in an early stage.

IV. The Profile shall not impose any behavioural implementation for AOSD, however it
shall provide a complete set of model elements (or Stereotypes) that enable representing
the semantics of the system based on Aspect-Orientation. No constraint has been
defined about the implementation, only a proper semantic related to the
way we use the ATRIUM elements at the requirements stage.

300 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Following, we summarize the part of the PRISMA profile that is most related
to aspect orientation. In this case, we are basically interested in representing
aspects and weaving relationships. With this aim, we have derived these
concepts extending the UML metaclasses. Table 9-1 shows the graphical
notation used for representing aspect-oriented modelling in PRISMA. With
respect to reuse, PRISMA allows us to define aspect types. There are some
predefined stereotypes for modelling these aspect types, such as: «Quality»,
«Presentation», «Contex-awareness», «Coordination», «Navegation»,
«Functional», «Distribution», «Safety» and «Replication». As shown in Table 9-1,
they are specializations of the stereotype «AspectPRISMA» and they have a
common notation.

Similarly to other proposals that extend UML with aspect-oriented modelling,
we allow the visualization of aspects and weaving relationships. Perez et al.
have used the metaclass UML Classifier to derive the Aspect stereotype. Thus,
the Aspect stereotype takes advantage of the structural and behaviour features
that are available for UML metaclasses. Dependency has been chosen as the base
class to represent weaving relationships. These selected metaclasses are the
common choice in UML extensions for modelling aspects (Aldawud et al.,
2003)(Suzuki & Yamamoto, 1999). In this sense, the main differences refer to
the context in which aspect orientation is used. In our case, our concern is
Software Architecture modelling according to PRISMA expressivity; however,
in (Aldawud et al., 2003)(Suzuki & Yamamoto, 1999), for example, the
extensions are made in the context of aspect design and programming.
Table 9-1 An extract of the PRISMA profile

Stereotype Base Class Parent Notation

«ComponentPRISMA» Component

«ConnectorPRISMA» Component

«AspectPRISMA» Classifier Not represented explicitly
«AspectType» AspectPRISMA «AspectType»

Name
«AspectType»

Name

«WeavingPRISMA» Dependency «WeavingPRISMA»

 9.5 Architecture Environment 301

Figure 9-21 External view of a connector

Figure 9-21 and Figure 9-22 show diagrams that use the PRISMA profile. The
external view shows components, connectors and their attachments. As an
example, the Figure 9-21 shows the connector. For simplicity, we have decided
to visualize in a separate view (internal view) the aspects of an architectural
element. Thus, Figure 9-22 shows the internal view of the connector
““SUCConnector”” with its two aspects: ““CProcessSUC”” and ““SMotion””, whose
stereotypes are «Coordination» and «Safety», respectively.

Figure 9-22 Internal view of the SUCconnector

9.5.2 Graphical Editor of PRISMA

Our graphical editor, which Figure 9-23 depicts, has not been developed from
scratch. We have used the UML template of Microsoft Office Visio 2003
(Visio, 2003) to support the needs mentioned above and to take advantage of
the functionality that is already provided by this element. Architecture
environment allows us to specify, in a graphical way, PRISMA architectures and
to generate automatically their PRISMA textual specification and/or their XML
document.

It is worthy of note that an add-in is also available for Visio to translate a UML
model to XMI. This means that other tools such as those listed in (Toval et al.,
2003) can be used for semantic analysis. This allows for simple consistency
checks and type checking in terms of defined OCL constraints of the PRISMA
profile.

302 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

Figure 9-23. What MORPHEUS looks like whenever the Architecture Environment is

active

Visual modelling in Visio is accomplished by means of Stencils. They are
galleries of shapes that are organized according to their purposes, uses, etc. In
the development of the Architecture environment, two stencils were specifically
developed using the shapes that the Visio UML template provides. They are
Aspect and interface PRISMA and Main Structure PRISMA. As can be observed in
Figure 9-24, the former has been defined to allow the modelling of those
aspects that are currently supported by PRISMA and the weaving relationships.
It can also be observed that it is also possible the definition of interfaces. The
latter shows the stencil for modelling components, connectors and systems along with
the relationships made available to them, i.e., binding and attachment, to be
properly glued together.

 9.5 Architecture Environment 303

Figure 9-24. Developed Stencils for PRISMA

Each shape on these stencils is the visual representation of a stereotype that is
defined in the PRISMA profile. This means that it inherits all the properties
from the base class used for the stereotype in conjunction with others that are
intrinsic. In this sense, most of the shapes in the Aspect and Interface PRISMA
stencil allow us to model aspects: quality, presentation, context-awareness,
coordination, navigation, functional, distribution and safety. As classifier is the
selected base class, each aspect uses the utilities provided by the Visio UML
template to specify the attributes and services of each aspect as Figure 9-25
shows.

Figure 9-25 Describing attributes (Atributos) and services (operaciones) of an Aspect

Additionally, a new utility has been developed in the Architecture environment
to allow the architect to establish certain properties that are only made available

304 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

to aspects, i.e., to type each service as in, out or in/out, to describe their
preconditions, triggers and played_roles (subprocesses) (Figure 9-26).

Figure 9-26 Developed Form to specify those specific properties to aspects: kinds of

service, preconditions, triggers and subprocesses.

In addition, a shape for representing the weaving relationship is shown in the
same stencil that uses Dependency as the base class. This shape also has a
specific form, shown in Figure 9-24, which not only allows the specification of
both the initial and final services and the kind of weaving relationship (after,
before and instead), but also facilitates the description of an obligation semantic if
it is needed. In this way, afterIf, beforeIf or insteadIf can be easily specified
according to a specific condition (Figure 9-27).

Figure 9-27. MORPHEUS provides support to model weaving relationships.

The Main Structure PRISMA stencil (Figure 9-24) works in a similar manner to
the one previously described. The main difference is its purpose, because it is
intended to model the main elements in PRISMA. Therefore, component, connector

 9.5 Architecture Environment 305

and system are visually represented by means of shapes specified on this stencil
that are the visual representation of the specified stereotypes having Component
as the base class. Other modifiable properties have been added to those
inherited from the Visio UML template. For instance, a connector needs the
definition of its roles by specifying its name, the associated interface, and the
pair aspect-subprocess (Figure 9-28) which provides the role with the semantic.

Figure 9-28 Describing roles when a connector is defined

Another main area in the Architecture Environment is the Model Explorer (see
Figure 9-23 where it is named Explorador de modelos) that is reused from the
Visio UML template. It provides a tree-view of the PRISMA model being
defined to facilitate the navigation through the model, i.e., a hierarchy in which
each PRISMA element or diagram is represented by an icon. The Model
Explorer has been customized to provide the architect with guidance
throughout the process in a similar way to how she/he would have fulfilled the
PRISMA AO-ADL. In this sense, two levels can be distinguished:

− Definition Level that provides the view of the PRISMA repository where
every PRISMA element is defined. For this reason, it is structured in
several packages: Aspects, Components, Connectors and Systems. For
instance, we can observe in Figure 9-22 the SMotion aspect that has been
defined by dragging and dropping a Safety Aspect from the Aspect and
Interface stencil onto the Aspect page. In a similar way, Actuator and Sensor
components and the SUCConnector connector were defined. It also
facilitates the reuse of every element defined on the repository by just
dragging it to the locations where it is needed.

306 CHAPTER 9 MORPHEUS: A Tool for ATRIUM

− Configuration Level which allows the user to access to the instances of the
PRISMA model, i.e., the Architectural Model. For instance, in our case
study we can see on the Model Explorer where the Base system, an instance
of the SUC system, appears. This instance has been defined by means of
the Instance item available on the PRISMA menu.

We would like to point out another functionality that has been added to Visio
by means of the Architecture environment. It is related to the translation from
the graphical model to the textual PRISMA ADL. A new item, called Generate
code, has been added to the PRISMA toolbar; in such a way that the currently
visually defined model is translated into the PRISMA AO-ADL by just clicking
on it. An example of the textual specification generated is shown in the
Appendix D. This means that the developed compiler, introduced in (Pérez,
2006), will allow the generation of C# code from the textual notation
generated.

9.6 CONCLUSIONS

MORPHEUS has been presented in this chapter. It is a tool which assists
throughout the whole application of ATRIUM. It is described by means of
three different environments in order to provide the user with a better
comprehension of the tasks to be performed in each moment.

The Requirements Environment provides support for the description of the
ATRIUM Goal Model. One of the main advantages of this environment is that
it has been split into two different tools. One of them provides support for
describing Requirements Metamodels and the other for its later exploitation. It
means that any other approach of RE could be exploited in this environment.
This facility has been also exploited to provide support for customizable
analysis process. Any defined model can be analysed to determine its
satisfiability, conflicts, etc, using those rules that the user describes for that aim.
This functionality was provided by means of dynamic compilation techniques
that speed up the process.

The Scenarios Environment provides a graphical environment for the
description of the ATRIUM Scenario Model. This environment integrates
ModelMorf, a tool that supports QVT. By means of its integration in
MORPHEUS the ATRIUM Scenario Model can be automatically transformed
into the proto-architecture.

 9.6 Conclusions 307

The Architectural Environment has been defined to complete the architectural
description obtained in the previous environment. Specifically, it provides
support to the description of PRISMA, the selected AO-ADL.

These environments has been applied to the description of the case study
presented along the different chapters.

The work related to the definition of MORPHEUS has been presented in the
following publications:

− E. Navarro, P. Letelier, D. Reolid, I. Ramos, “Configurable Satisfiability
Propagation for Goal Models using Dynamic Compilation Techniques”,
Information Systems Development Advances in Theory, Practice, and
Education (to be published).

− J. Pérez, E. Navarro, P. Letelier, I. Ramos, “A Modelling Proposal for
Aspect-Oriented Software Architectures”, Proceedings 13th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS’06), Postdam, Germany, March 27th-30th, 2006, pp.
32-41.

− J. Pérez, E. Navarro, P. Letelier, I. Ramos, “Graphical Modelling For
Aspect Oriented SA”, Proceedings 21st Annual ACM Symposium on
Applied Computing (SAC’06) Track on Programming for Separation of
Concerns (short paper), Dijon, France, April 23 -27, 2006.

-309-

“The difficulties which I meet with in order to
realize my existence are precisely what awaken and

mobilize my activities, my capacities.” —
Jose Ortega y Gasset

CHAPTER 10

10 Conclusions and further work

10.1 CONCLUSIONS

We have shown how to address the iterative development of Requirements and
Software Architectures during the development of software systems. ATRIUM,
a methodology that guides the analyst from an initial set of Requirements to an
instantiated Software Architecture, has been presented. It uses the strength
provided by the coupling of scenarios and goals systematically to guide through
an iterative process. Moreover, it allows the traceability between both artifacts
to avoid the lack of consistency.

The definition of the Requirements Metamodel to be used in ATRIUM was
performed following an iterative process in cooperation with the UPCT. These
iterations meant many changes on the Metamodel and the integration of several
approaches. This has motivated that we have followed a metamodeling
approach. With this aim, we have defined a metamodel that includes the core
set of concepts that corresponds to the essential expressiveness of some of the
most popular and/or advanced approaches in requirements engineering. It
allows us to adapt and extend a core set of concepts keeping a suitable level of
semantics consistence. In addition, we have established a set of guidelines for
adapting the metamodel to specific needs, according to the required
expressiveness. In this way and according to the project specific needs, it is
provided a proper integration as well as scalability from simpler up to other
more sophisticated RE techniques. The definition of this core Metamodel also
has facilitated the definition of an analyse process that can be customized
according to the kinds of artifacts and relationships.

We consider that our proposal constitutes a step forward in achieving a
successful application of RE techniques in real-life projects. In addition, we
believe that our proposal provides the analyst with an additional advantage:

310 CHAPTER 10 Conclusions and further work

traceability between different requirements specifications. Because any type of
artifact and relationship can be described, it would be possible, for instance, to
introduce specifications following a goal-oriented approach and its traceability
to a viewpoint approach to analyze the specification from different perspectives
and techniques.

The Goal Model is a key artifact used along the guided process of ATRIUM. It
has been designed to allow the analyst to reason about design alternatives by
using the defined relationships. Additionally, the refinement process compels
him/her to focus on a specific view of the system-to-be definition and,
therefore, on a partial view of the architectural model, owing to its ability to
trace low-level details back to high-level concerns. Moreover, one of its main
advantages is it deals jointly with functional and non-functional goals, which
improves consistency and maintainability. The Aspect-Oriented approach has
been integrated in the definition of the ATRIUM Goal Model. It facilitates that
the model can deal with complex and/or large systems whose specification
emerges tangled, i.e., same requirements appear over and over along the
specification, affecting to other ones. The introduction of the expressiveness
for variability management was also compulsory in the description of the
proposal. This is because the EFTCoR project exhibits specific needs in terms
of product lines that must be specified just from the very beginning of the
specification. Another advantage that offers our proposal is the use of the
ISO/IEC 9126 as a starting point to establish the possible concerns of the
system-to-be.

One of the advantages of the Goal-Oriented approach is its facility for tracing
the established requirements to artifacts defined in later stages of development.
It has been exploited to establish the traceability to the defined Scenario Model.
The main idea behind its exploitation is to provide the analyst with a
mechanism to study and analyze the main behaviour of the system-to-be. For
this reason, each ATRIUM scenario is going to depict a partial view of the
system-to be coping with an operationalization decision. This means that each
scenario is traced from an operationalization and, thus, from a set of specific
requirements. This facilitates the maintenance of the traceability throughout the
lifecycle. In order to facilitate their description, a graphical notation has been
defined by extending the Interaction Diagrams of UML 2.0.

It is worth noting that the operationalization decisions consider both functional
and non-functional requirement along with their identified crosscutting. For
this reason, the notation has been adapted to manage properly this constraint.
In this sense, the Aspect-Oriented approach has meant an improved advantage.
A notation for the enrichment of scenarios, using this technique, has been
introduced. This alternative allows the analyst to introduce lightweight solutions

 10.1 Conclusions 311

for specific problems. In addition, it provides a systematic way of dealing with
early aspects and their traceability to Software Architecture.

Another advantage of the ATRIUM Scenarios is that they provide a transversal
view of the system-to-be. This allows the analyst to obtain the overall idea of
the behaviour of the system-to-be and its structure. Therefore, the introduction
of Architectural Styles, especially DSSAs, is a meaningful advantages because it
gives the analyst some templates of how to define the scenario because they
describe elements to use, allowed interactions, etc.

The Scenario Model is the input to generate the proto-architecture. It is used as
a first draft of the SA for the system-to-be to be refined in a later stage of the
software development. It facilitates that the analysis performed by defining the
ATRIUM Scenarios Model to obtain an improved comprehension of the
system, can be traced to a later stage with an automatic process. This automatic
process is applied by a technique of Model Transformation. Specifically, QVT
has been chosen as the most proper solution because it satisfies most of the
established goals.

By using QVT Relations, a set of transformations rules have been defined that
are applicable to the whole set of scenarios. Other challenge faced with this
alternative was the introduction of styles during the transformation. In addition,
it was shown how constraints specifics for some style can be described
introducing some specific relations in a different transformation. The main idea
is that different transformations can be described that generate the proto-
architecture applying different Architectural Styles. This means that different
proto-architectures could be generated using the same set of scenarios but
taking into account different Architectural Styles.

It must be also pointed out that this transformation has been defined to
provide as flexibility as possible in terms of the Architectural Model used for
the generation of the proto-architecture. The main goal was to provide the
analyst with facilities to generate it using that Architectural Model he/she
considers more appropriate for his/her aims. For this reason, the set of
Relations has been catalogued as architectural generative patterns, Architectural
Style-oriented transformations and idioms-oriented transformations. This
facilitates that the same set of scenarios could be transformed to different
proto-architectures by selecting that idioms and/or Architectural-Style-oriented
transformations specifics to the desired Architectural Model and/or
Architectural Style.

In addition, the use of QVT plays a significant role for traceability top-down
and bottom-up. The former is provided because the proto-architecture is
generated automatically be establishing the appropriate transformations. The

312 CHAPTER 10 Conclusions and further work

latter can be achieved because QVT Relations derives a Trace Class from each
Relation used in order to generate traceability maps. This ability is highly
meaningful because a mapping is established between every element in the
proto-architecture and its related element/s in the ATRIUM Scenarios Model.
It must be taken into account that a proto-architecture is generated from the set
of scenario, not a full specification. This means that it should be refined during
the next stage of the software development. During this activity, if any change
is detected as necessary it could be traced-back to detect which scenario/s
should be modified, helping to maintain the models up-to-date.

Finally, it must be pointed out that this thesis is not only a theoretical approach
but it has been exploited with the description of a case study. In its
development, it was key the collaboration of the UPCT in the context of the
DYNAMICA project to improve and refine the results obtained. This case
study was developed thanks to the developed tool: MORPHEUS. This tool
provides support throughout the whole description of ATRIUM.

10.2 RESULTS OF THE PHD

This thesis has had impact both international as national as can be observed in
terms of both publications and conference activities.

10.2.1 Publications

International Journals

− E. Navarro, P. Letelier, J. A. Mocholí, I. Ramos, “A Metamodeling
Approach for Requirements Specification”, Journal of Computer
Information Systems, 46(5): 67-77, Special Issue on Systems Analysis and
Design, ed. Keng Siau.

Book Chapters

− E. Navarro, P. Letelier, D. Reolid, I. Ramos, “Configurable Satisfiability
Propagation for Goal Models using Dynamic Compilation Techniques”,
Information Systems Development Advances in Theory, Practice, and
Education (to be published).

− P. Letelier, E. Navarro, V. Anaya, “Customizing Traceability in a Software
Development Process”, Information Systems Development Advances in
Theory, Practice, and Education, Vasilecas, O.; Caplinskas, A.; Wojtkowski,

 10.2 Results of the phd 313

G.; Wojtkowski, W.; Zupancic, J.; Wrycza, S. (Eds.), Springer
Science+Business Media, Inc., USA, 2005, pp. 137-148.

International Conferences & Workshops

− E. Navarro, P. Letelier, J. Jaén, I. Ramos, “A generative proposal for proto-
architectures exploiting Architectural Styles”, First European Conference
on Software Architecture (ECSA’07), September 24-26, 2007, Aranjuez
(Madrid) – Spain (submitted).

− E. Navarro, P. Letelier, I. Ramos, “Requirements and Scenarios: playing
Aspect Oriented Software Architectures”, Proceedings Sixth Working
IEEE/IFIP Conference on Software Architecture (WICSA 2007),
Mumbai, India, January 6 - 9 2007 (short paper).

− E. Navarro, P. Sánchez, P. Letelier, J.A. Pastor, I. Ramos, “A Goal-
Oriented Approach for Safety Requirements Specification”, Proceedings
13th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS’06), Postdam, Germany,
March 27th-30th, 2006, pp. 319-326.

− J. Pérez, E. Navarro, P. Letelier, I. Ramos,”A Modelling Proposal for
Aspect-Oriented Software Architectures”, Proceedings 13th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS’06), Postdam, Germany, March 27th-30th, 2006, pp.
32-41.

− J. Pérez, E. Navarro, P. Letelier, I. Ramos, “Graphical Modelling For
Aspect Oriented SA”, Proceedings 21st Annual ACM Symposium on
Applied Computing (SAC’06) Track on Programming for Separation of
Concerns (short paper), Dijon, France, April 23 -27, 2006.

− E. Navarro, P. Letelier, I. Ramos, “Integrating Expressiveness of Modern
Requirements Modelling Approaches”, Proceedings 3rd International
Conference on Software Engineering Research, Management &
Applications (SERA 2005), Mount Pleasant, Michigan, USA, August 11 -
13, 2005, IEEE Computer Society, ISBN 0-7695-2297-1.

− E. Navarro, P. Letelier, I. Ramos, “Goals and Quality Characteristics:
Separating Concerns”, Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop, collocated to OOPSLA
2004, Monday, October 25, 2004, Vancouver, Canada.

− E. Navarro, P. Letelier, I. Ramos, “UML Visualization for an Aspect and
Goal-Oriented Approach”, The 5th Aspect-Oriented Modeling Workshop

314 CHAPTER 10 Conclusions and further work

(AOM’04), collocated to UML 2004 Conference, Monday, October 11,
2004, Lisbon, Portugal.

− J. Jaén, J. H. Canos, E. Navarro, “A Web-Based Coordination
Infrastructure for Grid Collective Services”, 5th International Conference
on Web-Age Information Management (WAIM 2004), Dalian, China,
July15 - 17, 2004, Proceedings in Lecture Notes in Computer Science 3129
Springer 2004, ISBN 3-540-21044-X, pp. 449-458.

− E. Navarro, I. Ramos, J. Pérez, “Goals Model Driving Software
Architecture”, Proceedings 2nd International Conference on Software
Engineering Research, Management & Applications (SERA 2004), Los
Angeles, California, USA, May 5-17, 2004, ISBN 0-97007769-6, pp. 205-
212.

− J. Jaén, E. Navarro, “An Infrastructure to Build Secure Shared Grid
Spaces”, VI International Conference on Coordination Models and
Languages (COORDINATION 2004), Pisa, Italy, February 24-27, 2004,
Proceedings in Lecture Notes in Computer Science 2949 Springer 2004,
ISBN 3-540-21044-X, pp. 170-182.

− E. Navarro, I. Ramos, J. Pérez Benedí, “Software Requirements for
Architectured Systems”, Proceedings of 11th IEEE International
Requirements Engineering Conference (RE’03)(short paper), Monterey,
California, USA, September 8-12, 2003, IEEE Computer Society 2003,
ISBN 0-7695-1980-6, pp. 365-366.

− J. Pérez., I. Ramos, J. Jaén, P. Letelier, E. Navarro, “PRISMA: Towards
Quality, Aspect Oriented and Dynamic Software Architectures”,
Proceedings 3rd IEEE International Conference on Quality Software
(QSIC 2003), Dallas, Texas, USA, November 6 - 7, 2003, IEEE Computer
Society 2003, ISBN 0-7695-2015-4, pp. 59-66.

National Conferences & Workshops

− Ángel Roche, P. Letelier, E. Navarro, “Validación incremental de Modelos
usando escenarios y prototipado automático”, XI Jornadas de Ingeniería
del Software y Bases de Datos (JISBD’2006), Sitges, Spain, October 3rd -
6th, 2006.

− E. Navarro, P. Letelier, I. Ramos, “Un Marco de Trabajo para Integrar y
Adaptar Múltiples Enfoques para Especificación de Requisitos”, Jornadas
de trabajo DYNAMICA, Archena, Spain, Novembre 17-18, 2005.

 10.2 Results of the phd 315

− E. Navarro, P. Sánchez, P. Letelier, J. A. Pastor, I. Ramos, “Sistematizando
la Especificación de Requisitos Safety en Aplicaciones Teleoperadas”,
Proceedings of X Jornadas de Ingeniería del Software y Bases de Datos
(JISBD’2005) Granada, September 14-16, 2005, Toval, A. Hernández, J.
(eds). Thomson Paraninfo, Spain, pp. 35-42, ISBN:84-9732-434-X.

− E. Navarro, P. Letelier, I. Ramos, P. Sánchez, B. Alvarez, “Variabilidad en
un marco de requisitos basado en orientación a objetivos”, Jornadas de
trabajo DYNAMICA, Almagro, Spain, April 21-22, 2005.

− E. Navarro, P. Letelier, I. Ramos, B. Alvarez, “Especificación de requisitos
software basada en características de calidad, separación de concerns y
orientación a objetivos”, IX Jornadas de Ingeniería del Software y Bases de
Datos (JISBD’2004), Málaga, Novembre 10-12, 2004.

− E. Navarro, P. Letelier, I. Ramos, B. Alvarez, “Orientación a aspectos y
Orientación a objetivos: una propuesta para su integración”, Desarrollo de
Software Orientado a Aspectos, collocated to IX JISBD’2004, Málaga,
Spain, Novembre 9, 2004.

− E. Navarro, P. Letelier and I. Ramos, ATRIUM, Arquitecturas Software a
partir de Requisitos - El Modelo de Objetivos”, Jornadas de trabajo
DYNAMICA, Málaga, Spain, Novembre 11, 2004.

− E. Navarro and I. Ramos, “Requirements and Architecture: a marriage for
Quality Assurance”, VIII Jornadas de Ingeniería del Software y Bases de
Datos, Alicante, Novembre 12-14, 2003, ISBN 84-688-3836-5, pp. 69-78.

10.2.2 Conference Activities

− Organizing Committee, Workshop de Desarrollo de Software Orientado a
Aspectos (DSOA’06), collocated to XI JISBD’2006, Sitges, Spain, October,
2006.

− Program Committee, 5th IEEE/ACIS International Conference on
Computer and Information Science (ICIS 2006), July 12-14, 2006,
Honolulu, Hawaii, Sponsored by the IEEE Computing Society and
International Association for Computer & Information Science (ACIS).

− Program Committee, 4th ACIS International Conference on Software
Engineering Research, Management & Applications (SERA2006), August
9-11, 2006, Seattle, Washington, USA, Sponsored by the International

316 CHAPTER 10 Conclusions and further work

Association for Computer & Information Science (ACIS) and Software
Engineering and Information Technology Institute (SEITI)

− Additional Reviewer, 5th IEEE International Conference on Quality
Software (QSIC 2006), Beijing, China, October 26-28, 2006.

− Additional Reviewer, Encuentro Mexicano de Computación 2006
(ENC2006), San Luis Potosí, September 20 - 22, 2006

− Program Committee, 3rd ACIS International Conference on Software
Engineering Research, Management & Applications (SERA2005), Central
Michigan University, Mount. Pleasant, Michigan, USA, August 11 - 13,
2005, Sponsored by the International Association for Computer &
Information Science (ACIS)

− Additional Reviewer, 5th IEEE International Conference on Quality
Software (QSIC 2005), Melbourne, Australia, September 19–20, 2005.

− Organizing Committee, Workshop de Desarrollo de Software Orientado a
Aspectos (DSOA’05), collocated to X JISBD’2005, Granada, Spain,
September 14-16, 2005.

− Additional Reviewer, IX Jornadas de Ingeniería del Software y Bases de
Datos (JISBD’2004), Málaga, Novembre 10-12, 2004.

− Additional Reviewer, 3rd IEEE International Conference on Quality
Software (QSIC 2003), Dallas, Texas, USA, November 6 - 7, 2003.

− Additional Reviewer, VIII Jornadas de Ingeniería del Software y Bases de
Datos, (JISBD’2003), Alicante, Novembre 12-14, 2003.

10.3 FURTHER WORK

Considering that ATRIUM has a wide impact along the life-cycle of
development, several open issues remains open. We are introducing them in the
following. To establish a proper reference for them, they are presented
according to the chapter which constitutes their background.

Considering the metamodeling for RE introduced in chapter 5 two topics
constitutes our main work. The first of them is related to studying other
interesting approaches in Requirements Engineering area in the context of our
proposal: View Points (Finkelstein et al., 1992), Problem Frames (Jackson, 2000)
and Cognitive Mappings (Siau & Tan, 2005). Based on the results of our case
study, we think it will be easy to include the additional required expressiveness.

 10.3 Further work 317

Our proposal facilitates a deeper analysis of the specification because proper
traceabilities could be established, for instance, between conceptual maps
described by means of Cognitive Mappings and services of the system-to-be
described using goals models. We consider that they are just a first step towards
describing an analysis process which could be called concern-oriented, i.e., a
process where the rules to be applied depends on the concern that is dealing
with. The second work is focused on providing a formal framework for
analyzing and checking models. It is necessary to specify artifacts and to
provide a precise semantics for the expressiveness provided by the model. The
works by Letier and Lamsweerde’s (Letier & Lamsweerde, 2002) or Katz and
Rashid (Katz & Rashid, 2004) can be useful as a reference to achieve this aim.

In addition, a deep inspection about the associated semantic of weaving
relationships remains as a current challenge. Until now, the traditional ones
have been defined but those introduced by (Rashid et al., 2003) can suggest
new alternatives for our approach. In this sense, we think the equilibrium
between the readability/simplicity of the specification and the versatility of the
weaving relation should be achieved.

Another topic for further work is related to identification of interaction
patterns for several crosscutting concerns in order to manage the possible
interference among them. In the developed case studies, we observed that
several concerns crosscut another one. The associated semantic of this
composition and how the tradeoffs between them has to be faced should be
solved in the next future.

In chapter 7, it was presented the use of design patterns to help in the process
of describing ATRIUM Scenario Model. Despite the apparent abundance and
extensive use of patterns in decision-making, analyst do not always has easy
access to the proper ones. Although, they are organized in catalogues, they are
usually indexed with just a few mnemonic features that do not always indicate a
design’s relevance. Therefore, another of our future concerns is how we can
encompass with those so well known best practices in software engineering
without memorizing all that knowledge. For this reason, we are looking for
alternatives to realize the Hollywood Principle (“Don’t call us, we’ll call you”)
or the Greyhound Principle (“Leave the driving to us.”).

The increased awareness of the importance of an explicit design of the
architecture of a software system has not decreased the importance of the
components that make up the architecture. It was introduced, in the description
of the ATRIUM Scenario Model, the identification of COTS as one of the
architectural elements used. For this reason, the incorporation of some

318 CHAPTER 10 Conclusions and further work

technique, such as CARE (Chung et al., 2004) or GBTCM+ (Ayala & Franch,
2006), for selecting components constitute another of our future works.

In chapter 8, it was presented the introduction of Architectural Styles for the
generation of the proto-architecture. Incompatibilities between Architectural
Styles may appear during their selection. For this reason, the analyst must be
provided with techniques that facilitate the necessary trade-offs.

Once the proto-architecture has been defined another main activity should be
performed: its evaluation respect the established requirements. For this reason
the analysis of the applicability of proposals in this fields, as that presented by
(Babar & Gorton, 2004), are quite appropriate to round up this proposal.

-319-

KEYWORDS

ACROSET Style, 229

Action, 208

Actors. See Use Cases

actuator, 80

advice, 32

Agent, 49

Alt. See Alternative interaction

Alternative. See Variability, See
Feature Model

Alternative interaction, 213

Architectural Aspect, 45

Architectural Pattern, 218

Architectural Prescriptions, 51

Architectural Style, 29, 218

Architecture Description
Languages, 26

Artifact, 97

Aspect

Played_role, 88

Precondition, 88

Protocol, 88

Service, 88

Valuation, 88

aspect code, 31

Aspect-Oriented Programming,
31

Aspect-Oriented Requirements
Engineering, 34

Aspect-Oriented Software
Development, 33

aspects, 31

AspectualExecutionOccurrence,
209

AspectualMessage, 206

Asymmetric model, 34

Attachment, 29, 92

Automated reasoning, 132

Base code, 31

Behaviour, 208

Binding, 29

Blackboard Style, 221

Call-and-Return Style, 220

CBSD. See Component-Based
Software Development

Checkonly, 253

Combined Fragments, 213

Communication. See Use Cases

Component, 27

Component-Based Software
Development, 30

Composability, 66

Concern, 30

Configuration, 29

320 Keywords

connectors, 27

Constraint, 30

Contribution. See Goal Model

Control Machine. See Problem
Frames, See Problem Frames

Core, 250

Crosscutting-concerns, 31

Data Flow Style, 220

Data-Centred Style, 220

decision support, 13

Deficiency Drive Design
Requirements Analysis, 132

Dependency, 24, 98

Exclude, 24

hinder dependency, 118

hints, 118

Require, 24

Design Pattern, 219

Domain-Specific Software
Architectures, 221

DSA. See Dynamic Software
Architectures

Dynamic Software
Architectures, 21, 22

early variability, 23

Early-aspect, 34

Enforce, 253

Event-based Style, 226

Evolvability, 66

Exclude. See Dependency

ExecutionOccurrenceSpecificati
on, 207

ExecutionSpecification, 207

Extend. See Use Cases

Fault Tolerance, 166

Fault Trees, 171

Feature. See Feature Model

Feature Model

Alternative, 22

Feature, 22

Mandatory, 22

Optional, 22

Features Model, 13

Frame, 213

Gate, 216

Generalization. See Use Cases

Goal. See Goal-Oriented
Requirements Engineering

Goal Model

backward reasoning, 151

Contribution, 118

Crosscutting, 115

Intervariant, 113, Read Goal
Model

Operationalization, 108

Goal-Oriented Requirements
Engineering, 13, 15, 336, 337

Goal, 15

Guard, 209

 Keywords 321

Hazard. See Safety

Include. See Use Cases

Independent Components Style,
220

Interaction, 210

InteractionOccurrence, 212

Interface, 28, 86

Interpreter Style, 227

Iterations, 216

Join point, 31

KAOS, 171

Knowledge based critiquing,
132

Layered Style, 224

Lifeline, 204

LLoooopp. See Iterations

Management of change, 14

Mandatory. See Feature Model

Maturity, 166

Mechanism Unit Controller,
183

Model of Joint Points, 32

Monitoring System, 82

Movement

inverse kinematic, 84

step, 84

MUC. See Mechanical Unit
Controller

Object, 49

Object template expression, 250

Obstacle, 171

Operation, 49

Operational Mappings, 250

Operationalization. See Goal
Model

OOpptt. See Optionality

optional. See Variability

Optional. See Feature Model

Optional alternative. See
Variability

Optionality, 214

Par. See Parallel composition

partial goal satisfaction, 135

partial views, 71

Pipe and Filter Style, 223

Played_role, 88

Pointcut, 32

Port, 28

Precondition, 88

Primary Possitioning System, 82

Problem Frames, 13

Control Machine, 19

Domain, 19

Requirements, 19

Property, 30

proto-architecture, 73

Protocol, 88

322 Keywords

Query. See Transformation, See
View, See QVT

QVT, 249

Query, 249

Transformation, 249

View, 249

Recoverability, 166

Recycling System, 82

Refinement, 97

Relations, 250

Reliability, 166, 167, 168

Require. See Dependency

Requirements. See Problem
Frames

Requirements, 12

Functional Requirements, 12

Non-Functional
Requirements, 12

Requirements Engineering

Animation, 132

Requirements Engineering, 12

Risk. See Safety

Robotic Devices, 82

Robotic Devices Control Unit,
82

Robotic Unit Controller, 183

RUC. See Robotic Unit
Controller

Safety

Hazard, 172

Risk, 172

Safety Requirement, 172

Satisfiability Analysis, 133

Scalability, 66

scattering, 31

Scenario-Based, 13, 328, 333

Secondary Possitioning System,
82

Secondary system, 82

sensor, 80

Separation of Concerns, 30

Sequence Diagrams

Messages, 205

Service, 88

Simple Unit Controller, 183

Software Product Lines, 21, 22,
330

SPL. See Software Product
Lines

SUC. See Simple Unit Controller

Symmetric Model, 34

System, 28, 90

tangling, 31

tele-operated system, 80

Theme, 126

Time link. See Variability

Traceability, 14, 66

trade-off, 13

UCM. See Use Case Maps

 Keywords 323

Use Case Map, 55

Use Cases, 13, 17

Actors, 18

Communication, 18

Generalization, 18

Include, 18

Validation, 13

Valuation, 88

Variability

Alternative, 24

Optional, 24

Optional alternative, 24

Time link, 23

Variability Management, 15

variant, 23

variation point, 23

Verification, 13

View, 30

Viewpoints, 13, 20

Virtual Machine Style, 221

Vision System, 82

Weaving, 32, 89

-325-

ACRONYMS

ADL Architectural Description Language

AO-ADL Aspect-Oriented Architecture Description Language

AOP Aspect-Oriented Programming

AORE Aspect-Oriented Requirements Engineering

AOSA Aspect-Oriented Software Architecture

AOSD Aspect Oriented Software Development

APL Architectural Prescription Language

CBR Case Based Reasoning

CBSD Component-Based Software Development

CBSP Component - System – Bus - Property

CIM Computation-Independent Model

COTS Commercial off-the Shelf

DSSA Domain-Specific Software Architecture

DSA Dynamic Software Architecture

FIPA Foundation for Intelligent Agents

FS Feature Space

GM Goal Model

KS Knowledge Sources

IPS Interaction Pattern Specification

MDA Model Driven Architecture

MDSD Model-Driven Software Development

MUC Mechanism Unit Controller

PIM Platform-Independent Model

PSM Platform-Specific Model

RBML Role-Based Metamodeling Language

326 Acronyms

RE Requirements Engineering

RIM Requirements Interaction Management

RDCU Robotic Devices Control Unit

RRC Risk Reduction Categories

RUC Robotic Unit Controller

SA Software Architecture

SM Scenario Model

SPS Structural Patterns Specification

SPL Software Product Lines

SoC Separation of Concerns

SPEM Software Process Engineering Metamodel

SRD Software Requirements Document

SRS Software Requirements Specification

SS Solution Space

SUC Simple Unit Controller

UCM Use Case Map

UPCT University Polytechnic of Cartagena

-327-

REFERENCES

(Abowd et al, 1995) G. Abowd, R. Allen, and D. Garlan. “Using style to understand
descriptions of Software Architecture”. ACM Transactions on Software Engineering
and Methodology, 4(4): 319 – 364, October 1995.

(Andrade & Fiadeiro, 2003) L. F. Andrade, J. L. Fiadeiro, “Architecture Based
Evolution of Software Systems”, Formal Methods for Software Architectures, Springer
Verlang, M. Bernardo and P. Inverardi (eds), LNCS 2804, September 2003

(Alencar et al., 2006) F. Alencar, A. Moreira, J. Araujo, J. Castro, C. Silva, J.
Mylopoulos, “Using Aspects to Simplify iModels”, Proceedings of the 14th
IEEE International Requirements Engineering Conference (RE'06),
Minneapolis, MN, USA, September 11-15, 2006, pp. 139-148.

(ANSI, 2000) ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems.

(ANSI/RIA, 1999) ANSI/RIA R15.06-1999. American National Standard for
Industrial Robots and Robot Systems, Safety Requirements. Robotic Industries
Association, 1999

(Aldawud et al., 2003) O. Aldawud, T. Elrad, and A. Bader, “UML profile for Aspect
Oriented Software Development”. Aspect-Oriented UML Workshop,
Collocated to the Aspect Oriented Software Development Conference, (Boston,
USA March 18, 2003).

(Allen & Garlan, 1994) R. Allen and D. Garlan, Formalizing architectural connection,
16th International Conference on Software Engineering, May 1994.

(Ambriola & Gervasi, 1997) V. Ambriola and V. Gervasi “Processing natural language
requirements,” Proceedings of 12th International Conference on Automated
Software Engineering, pages 36-45, Los Alamitos, November 1997. IEEE
Computer Society Press.

(Antón et al., 2001) A.I. Antón, R.A. Carter, A. Dagnino, J.H. Dempster and D.F.
Siege, Deriving Goals from a Use Case Based Requirements Specification
Requirements Engineering Journal, Springer-Verlag, 6:63-73, May 2001.

(Antón & Potts, 1998) A.I. Anton and C. Potts, “The Use of Goals to Surface
Requirements for Evolving Systems”, Proceedings of the 20th International
Conference on Software Engineering (ICSE-98), Kyoto, April 1998.

(Antón, 1997) A. I. Antón, Goal Identification and Refinement in the Specification of Information
Systems, Ph.D. Thesis, Georgia Institute of Technology, June 1997.

(Antón, 1996) A. I. Antón, “Goal-Based Requirements Analysis”, Proceedings 2nd
International Conference on Requirements Engineering, Colorado Springs, CO
April 15 - 18, 1996.

328 References

(AOSD) AOSD, http://www.aosd.net

(Araujo et al., 2004) J. Araujo, J. Whittle, D. Kim, “Modeling and Composing Scenario-
Based Requirements with Aspects” Proceedings 12th IEEE International
Requirements Engineering Conference, 6-10 September 2004, Kyoto, Japan, pp.
58-67.

(Araujo & Moreira, 2003) J. Araujo and A. Moreira, “An Aspectual Use Case Driven
Approach,” Proceedings VIII Jornadas de Ingeniería de Software y Bases de
Datos (JISBD), Alicante, Spain, 2003.

(Argo, 2005) ArgoUML, http://argouml.tigris.org/

(Atkinson & Kuhne, 2003) C. Atkinson, T. Kuhne, “Aspect-Oriented Development
with Stratified Frameworks,” IEEE Software, 20(1):81-89, Jan/Feb, 2003.

(Avgeriou & Zdun, 2005) P. Avgeriou, U. Zdun, “Architectural Patterns Revisited – A
Pattern Language”, Proceedings of 10th European Conference on Pattern
Languages of Programs, (EuroPlop 2005), Irsee, Germany, July 2005.

(Ayala & Franch, 2006) C. P. Ayala, X. Franch, “A Goal-Oriented Strategy for
Supporting Commercial Off-the-Shelf Components Selection,” Proceedings 9th
International Conference on Software Reuse, ICSR 2006, Turin, Italy, June 12-
15, 2006, LNCS 4039 Springer 2006, pp. 1-15

(Babar & Gorton, 2004) M. A. Babar, I. Gorton, "Comparison of Scenario-Based
Software Architecture Evaluation Methods," 11th Asia-Pacific Software
Engineering Conference (APSEC'04), 2004, pp. 600-607.

(Balzer et al., 1982) R. M. Balzer, N. M. Goldman, D. S. Wile, “Operational
specification as the basis for rapid prototyping,” ACM SIGSOFT Software
Engineering Notes 7(5):3-16, December 1982.

(Baniassad et al., 2006) E. Baniassad, P. C. Clements, J. Araújo, A. Moreira, A. Rashid,
B. Tekinerdogan, “Discovering Early Aspects”, IEEE Software 23(1): 61-70,
January/February 2006.

(Baniassad & Clarke, 2004) E. Baniassad, S. Clarke, “Theme: An Approach for Aspect-
Oriented Analysis and Design”. 26th International Conference on Software
Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, UK. IEEE Computer
Society 2004, pp. 158-167.

(Baresi, 2004) L. Baresi, R. Heckel, S. Thöne, and D. Varró, “Style-Based Refinement
of Dynamic Software Architectures”, 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA’04), June 12 - 15, Oslo, Norway, pp. 155.

(Bass et al., 2003) L. Bass, P. Clements, R. Kazman. Software Architecture in Practice, 2nd
Edition, Addison Wesley Professional, 2003.

(Bass et al., 2001) L. Bass, M. Klein, F. Bachmann, “Quality Attribute Design Primitives
and the Attribute Driven Design Method”, Proceedings of 4th International

 References 329

Workshop Software Product Family Engineering (PFE 2001), Bilbao, Spain,
October 3-5, 2001. LNCS 2290, pp. 169-186.

(Baskerville & Wood-Harper, 1996) R.L. Baskerville, A.T. Wood-Harper, “A Critical
Perspective on Action Research as a Method for Information Systems
Research,” Journal of Information Technology, 11: 235-246, 1996.

(Bergmans & Aksit, 2001) L. Bergmans, M. Aksit, “Composing Multiple Concerns
Using Composition Filters,” Communications of the ACM, 44(10):51-57, October
2001.

(Berry et al., 2003) D. Berry, R. Kazman, R. Wieringa (eds), Proceedings of Second
International Workshop From Software Requirements to Architectures
(STRAW’03), Portland, USA, 2003.

(Bosch, 2000) J. Bosch, Design and Use of Software Architectures Adopting and
Evolving a Product-Line Approach, ISBN 0-201-67494-7, Addison-Wesley,
May 2000.

(Bosch & Molin, 1999) J. Bosch, P. Molin, “Software Architecture design: evaluation
and transformation”, Proceedings IEEE Conference and Workshop on
Engineering of Computer-Based Systems, 1999 (ECBS '99), Nashville, TN,
USA, 7-12, March 1999.

(Brandozzi & Perry, 2001) M. Brandozzi, D.E. Perry, “Transforming Goal-Oriented
Requirement Specifications into Architecture Prescriptions” Workshop “From
Software Requirements to Architectures” (STRAW’01) collocated to ICSE
2001, May 14, 2001, Toronto, Canada.

(Brito & Moreira, 2003) I. Brito, A. Moreira, “Towards a composition process for
aspect-oriented requirements”, Early Aspects 2003: Aspect-Oriented
Requirements Engineering and Architecture Design Workshop, collocated to
2nd Aspect-Oriented Software Development Conference (AOSD), March 17,
2003 - Boston, USA.

(Brichau & Haupt, 2005) J. Brichau and M. Haupt (Eds), “Survey of Aspect-oriented
Languages and Execution Models”, Technical Report AOSD-Europe-VUB-01
deliverable D12, May 17, 2005.

(Bruin & Vliet, 2003) H. de Bruin and H. van Vliet, “Quality-Driven Software
Architecture Composition”, Journal of Systems and Software, 66(3): 269-284, 2003.

(Bühne et al., 2003) Bühne, S., Halmans, G. and Pohl, K. “Modeling Dependencies
between Variation Points in Use Case Diagrams”, 9th International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ’03).
Collocated to CAiSE’03, 16 -17 June 2003, Klagenfurt/Velden, Austria, 59-70.

(Buhr & Casselman, 1996) R. Buhr, R. Casselman, Use CASE Maps for Object-Oriented
Systems. Prentice Hall, Upper Saddle River, New Jersey, 1996.

330 References

(Buschmann et al., 1996), F. Buschmann, R. Meunier, H.Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System Of Patterns. Addison-Wiley,
1996.

(Castro et al., 2002) J. Castro, M. Kolp, J. Mylopoulos, “Towards Requirements-Driven
Software Development Methodology: The Tropos Project,” Information Systems,
June 2002.

(Castro & Kramer, 2001) J. Castro J. Kramer (eds): Proceedings of First
International Workshop From Software Requirements to Architectures
(STRAW’01), 2001.

(Chitchyan et al., 2005) R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto, J.
Bakker, B. Tekinerdogan, S. Clarke, A. Jackson, “Survey of Analysis and Design
Approaches”, AOSD-Europe-ULANC-9, AOSD-Europe Project, May 18,
2005.

(Chung et al., 2004) L. Chung, K. Cooper, S. Courtney, “COTSAware Requirements
Engineering and Software Architecting”. Proceedings of the International
Conference on Software Engineering Research and Practice, SERP '04, June 21-
24, 2004, Las Vegas, Nevada, USA, Volume 1. CSREA Press 2004, pp. 57-63.

(Chung et al., 2000) L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Academic Publishing, 2000.

(Clements & Northrop, 2001) P. Clements, and L. Northrop, Software Product Lines -
Practices and Patterns, Pearson Education, Addison-Wesley, 2001.

(Coad et al., 1999) P. Coad, J. D. , Luca, and E. Lefebvre, “Java Monitoring in Color
with UML”. Chapter 6: Feature Driven Development , Prentice Hall 1999

(Cockburn, 2000) A. Cockburn, Writing Effective Use Cases, Addison Wesley Professional,
2000, p. 304.

(Cooper et al., 2005) K. Cooper, L. Dai, Y. Deng: “Performance modeling and analysis
of Software Architectures: An aspect-oriented UML based approach. Science of
Computer Programming, 57(1): 89-108, 2005.

(Cuesta et al., 2005) C. Cuesta, M. P. Romay, P. de la Fuente, M. Barrio-Solórzano,
“Architectural Aspects for Architectural Aspects”, European Workshop on
Software Architecture(EWSA), Pisa, June 2005, Springer LNCS vol n.3527
2005, pp. 247-262.

(Cuesta, 2002) C.E. Cuesta, Dynamic Software Architecture based on Reflection. Phd
Dissertation, Department of Computer Science, University of Valladolid, 2002.
(In Spanish)

(Czarnecki & Helsen, 2006) K. Czarnecki, S. Helsen: Classification of Model
Transformation Approaches, IBM Systems Journal, 45(3) 2006,
http://researchweb.watson.ibm.com/journal/sj/453/czarnecki.html. Updated
Version from Proceedings of the 2nd Workshop on Generative Programming

 References 331

Generative Techniques in the context of Model Driven Architecture, collocated
to OOPSLA’03, Monday 27, October 2003.

(Czarnecki & Antkiewicz, 2005) K. Czarnecki and M. Antkiewicz, “Mapping Features
to Models: A Template Approach Based on Superimposed Variants,”
Proceedings of the 4th International Conference on Generative Programming
and Component Engineering, Tallinn, Estonia (2005), pp. 422–437.

(Dardenne et al., 1993) A. Dardenne, A. van Lamsweerde, and S. Fickas: “Goal-
directed Requirements Acquisition”. Science of Computer Programming, 20(1-2): 3-
50, 1993.

(Douglass, 2003) B. P. Douglass, Real-Time Design Patterns. Robust Scalable
Architecture for Real-Time Systems. Reading, Addison-Wesley. 2003.

(Dounce & Le Botlan, 2005) R. Douence, D. Le Botlan D, “Towards a Taxonomy of
AOP Semantics”. Technical Report AOSDEurope, Milestone M8.1, July 7 2005,
http://wwwdgeinew.insa-toulouse.fr/~lebotlan/papers/dl05.pdf.

(Duran, 2000) A. Durán, Un Entorno Metodológico de Ingeniería de Requisitos para
Sistemas de Información, Tesis Doctoral del Dpto. de Lenguajes y Sistemas de
Información de la Universidad de Sevilla, septiembre 2000.

(Eden & Kazman, 2003) A. H. Eden, R. Kazman, “Architecture, Design,
Implementation”, Proceedings of 25th International Conference on Software
Engineering, May 03 - 10, 2003, Portland, Oregon

(EFTCOR, 2003) EFTCOR: Environmental Friendly and cost-effective Technology
for Coating Removal. European Project within the 5th Framework Program
(GROWTH G3RD-CT-00794), 2003.

(Egyed et al., 2000) A. Egyed, N. Medvidovic, and C. Gacek, “A Component-Based
Perspective of Software Mismatch Detection and Resolution,” IEE Software
Engineering, 147(6), December 2000, pp. 225-236.

(Elrad et al., 2001a) T. Elrad, R. E. Filman, A. Bader, “Aspect-oriented programming:
Introduction”, Communications of the ACM, 44(10), October 2001 pp. 29 - 32

(Elrad et al., 2001b) T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and H. Ossher,
“Discussing aspects of AOP”, Communications of the ACM, 44(10): 29 – 32,
October, 2001.

(Ferrari & Madhavji, 2007) R. Ferrari and N. H. Madhavji, “The Impact of
Requirements Knowledge and Experience on Software Architecting: An
Empirical Study”, Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA'07), Mumbai, India, January 6 - 9 2007.

(Fickas & Nagarajan, 1988), S. Fickas, P. Nagarajan, “Critiquing Software
Specifications: a knowledge based approach”, IEEE Software, 5(6), 1988.

(Fiege, 2005) L. Fiege, Visibility in Event-Based Systems, PhD Dissertation, Department of
Computer Science, Darmstadt University of Technology, 2005.

332 References

(Finkelstein et al., 1992) A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and M.
Goedicke, “Viewpoints: a framework for integrating multiple perspectives in
system development,” International Journal of Software Engineering and Knowledge
Engineering, 2: 31--57, 1992.

(Filho et al., 2004) I. M. Filho, T. C. de Oliveira, and C. J. P. de Lucena, “A framework
instantiation approach based on the Features Model”, Journal of Systems and
Software, 73(2), October 2004, Pages 333-349.

(France et al., 2004) R. B. France, D.-K. Kim, S. Ghosh, E. Song, “A UML-Based
Pattern Specification Technique,” IEEE Transactions on Software Engineering,
30(3): 193-206, Mar., 2004.

(Fuxman et al., 2001) A. Fuxman, P. Giorgini, M. Kolp, J. Mylopoulos, “Information
systems as social structures”, Proceedings 2nd Int. Conference on Formal
Ontologies for Information Systems (FOIS’01), Ogunquit, USA, October 2001.

(Gamma et al., 1995) E. Gamma, R. Helm, R. Johnson, J.Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

(Garlan, 2001) D. Garlan, “Software Architecture”, Wiley Encyclopedia of Software
Engineering, J. Marciniak (Ed.), John Wiley & Sons, 2001.

(Garlan, 2000) D. Garlan, “Software Architecture: a Roadmap,”, Proceeding of the
International Conference on Software Engineering (ICSE), The Future of
Software Engineering Track, Limerick, Ireland, June 4-11, 2000, ACM, pp. 91-
101.

(Garlan & Perry, 1995) D. Garlan and D. Perry, “Introduction to the Special
Issue on Software Architecture,” IEEE Transactions on Software Engineering, 21(4):
269-274, April 1995.

(Garlan et al., 1994) D. Garlan, R. Allen and J. Ockerbloom. “Exploiting style in
architectural design environments”. Proceedings 2nd ACM SIGSOFT
Symposium on the Foundations of Software Engineering (SIGSOFT’94),
December 1994, ACM Press, pp. 170-185.

(Garlan & Shaw, 1993) D. Garlan and M. Shaw, “An Introduction to Software
Architecture”, Advances in Software Engineering and Knowledge Engineering, V.
Ambriola, G. Tortora (eds), 1993.

(Gerber et al., 2002) A. Gerber, M. Lawley, K. Raymond, J. Steel and A. Wood,
“Transformation: The Missing Link of MDA”. First International Conference
Graph Transformation, (ICGT 2002), Barcelona, Spain, October 7-12, 2002,
LNCS 2505 Springer 2002, ISBN 3-540-44310-X 90-105.

(Giorgini et al., 2003) P. Giorgini, E. Nicchiarelli, J. Mylopoulous, and R.
Sebastiani. Formal reasoning techniques for goal models. Journal of Data
Semantics, 1, 2003.

 References 333

(GOLD, 2005) GOLD Parsing System,
http://www.devincook.com/GOLParser/index.htm, 2005.

(GOYA, 1999) Robot escalador para la limpieza de cascos de buques, respetuoso con el
medio ambiente (GOYA), FEDER TAP IFD97-0823 (1999-2001).

(Gonzales-Baixauli et al., 2004) B. Gonzales-Baixauli, J. C. Sampaio, J.
Mylopoulos, “Visual Variability Analysis with Goal Models”, Proceedings of the
International Conference on Requirements Engineering, Los Alamitos,
California: IEEE Computer Society Press, 2004, pp. 198-207

(Gotel, 1994) O. Gotel and A. W. Finkelstein, “An analysis of the requirements
traceability problem,” Proceedings of the International Conference on
Requirements Engineering, pages 94--102, Colorado Springs, Colorado, 1994.

(Gregoriades, 2005) A. Gregoriades and A. Sutcliffe, “Scenario-Based Assessment of
Nonfunctional Requirements,” IEEE Transactions on Software Engineering, 31(5),
(2005), 392-409.

(Gunter et al., 2000) C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A reference
model for requirements and specifications,” IEEE Software, 17(3), May/June
2000.

(Grünbacher et al., 2001) P. Grünbacher, A. Egyed and N. Medvidovic: “Reconciling
Software Requirements and Architectures: The CBSP Approach”. Proceedings
5th IEEE Int. Symp. RE, 27-31 August 2001, Toronto, Canada, pp. 202-211.

(Grundy, 1999) J. Grundy, “Aspect-Oriented Requirements Engineering for
Component-Based Software Systems”, Proceedings IEEE International
Symposium on Requirements Engineering, June 07 - 11, 1999, Limerick,
Ireland.

(Gurp et al., 2001) J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of
variability in software product lines”, Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, IEEE Computer Society Press, 2001, pp
45—54.

(Hall et al., 2002) J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L. Rapanotti,
“Relating Software Requirements and Architectures using Problem Frames”,
Proceedings of IEEE International Requirements Engineering Conference
(RE’02) , Essen, Germany, 9-13 September 2002.

(Hallal et al., 2001) H. Hallal, A. Petrenko, A. Ulrich, and S. Boroday, “Using SDL
Tools to Test Properties of Distributed Systems”, Proceedings of Formal
Approaches to Testing of Software (FATES’01), A Satellite Workshop of
CONCUR’01, Aalborg, Denmark, August 25, 2001.

(Halmans & Pohl, 2003) G. Halmans, K. Pohl, “Communicating the Variability of a
Software-Product Family to Customers,” Software and Systems Modeling, 2(1): 15-
36, March 2003.

334 References

(Hammond et al., 2001) J. Hammond, R. Rawlings, A. Hall: “Will It Work?,”
Proceedings of Fifth IEEE International Symposium on Requirements
Engineering (RE ‘01), Toronto, Canada August, 2001, pp. 27 - 31.

(Hansen et al., 1998) K.M. Hansen, A.P. Ravn, V. Stavridou, “From Safety analysis to
software requirements,” IEEE Transactions on Software Engineering, 24 (7):573-584,
1998.

(Harrison, 2003) N. Harrison N, “Using the CodeDOM”. O’Reilly Network, February 3rd
2003, http://www.ondotnet.com/pub/a/dotnet/2003/02/03/codedom.html

(Heitmeyer et al., 1996) C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw, “Automated
Consistency Checking of Requirements Specifications,” ACM Transactions on
Software Engineering Methodology 5(3): 231-261, July 1996

(Henninger, 2003) S. Henninger, “Tool Support for Experience-Based Software
Development Methodologies,” Advances in Computers 59: 29-82, 2003.

(HyperJ, 2000) HyperJ, http://www.alphaworks.ibm.com/tech/hyperj.

(Hui et al., 2003) B. Hui, S., Liaskos, J., Mylopoulos, “Requirements Analysis for
Customizable Software Goals-Skills-Preferences Framework”, Proceedings 11th
IEEE International Requirements Engineering Conference, Monterey Bay,
California, USA: September 08 – 12, 2003, pp. 117-126.

(Hursch & Lopes, 1995) W. Hürsch and C. Lopes, “Separation of Concerns”, Technical
report NU-CCS-95-03, the College of Computer Science, Northeastern
University, 1995

(IEEE, 2000) IEEE Recommended Practices for Architectural Description of
Software-Intensive Systems. IEEE Std 1471-2000, Software Engineering
Standards Committee of the IEEE Computer Society, 21 September 2000.

(IEEE, 1998) IEEE Std 830-1998. IEEE Recommended Practice for Software
Requirements Specifications, In Volume 4: Resource and Technique Standards,
The Institute of Electrical and Electronics Engineers, Inc. IEEE Software
Engineering Standards Collection.

(ISO/IEC 9126) ISO/IEC Standard 9126-1 Software Engineering- Product Quality-
Part1: Quality Model, ISO Copyright Office, Geneva, June 2001.

(JAMDA, 2006) JAMDA, Java Model Driven Architecture 0.2,
http://sourceforge.net/projects/jamda.

(Jackson, 2000) M. Jackson, Problem Frames: Analyzing and Structuring Software
Development Problems, Addison-Wesley Pub, 2000.

(Jacobson, 2003) I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with Use
Cases, Addison Wesley Professional, 2005.

(Johnson & Russo, 1991) R. E. Johnson and V. F. Russo, “Reusing Object-Oriented
Designs” University of Illinois technical report UIUCDCS 91-1696, 1991.

 References 335

(Kaiya et al., 2002) H. Kaiya, H. Horai, M. Saeki, “AGORA: attributed goal-oriented
requirements analysis method,” Proceedings of the IEEE International
Conference on Requirements Engineering, Essen, Germany, 2002, pp. 13- 22.

(Kande, 2003) M. M. Kande, A concern-oriented approach to Software Architecture. PhD.
Thesis, Lausanne, Switzerland: Swiss Federal Institute of Technology (EPFL),
2003.

(Kang et al., 1990) K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. “Feature-
Oriented Domain Analysis (FODA) Feasibility Study”. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, November 1990.

(Katara & Katz, 2003) M. Katara, S. Katz, “Architectural Views of Aspects”. The 2nd
International Conference on Aspect-Oriented Software Development (AOSD
2003), Boston, Massachusetts, USA, 2003.

(Katz & Rashid, 2004) S. Katz, and A. Rashid, “From Aspectual Requirements to Proof
Obligations for Aspect-Oriented, Systems”, Proceedings of 12th IEEE
International Requirements Engineering Conference, Kyoto, Japan: September
06 - 10, 2004, pp. 48-57.

(Kazman et al., 2000) R. Kazman, M. Klein, and P. Clements. ATAM: Method for
architecture evaluation. Technical report, CMU/SEI-2000.

(Kazman et al., 1994) R. Kazman, L. J. Bass, M. Webb, G. D. Abowd, “SAAM: A
Method for Analyzing the Properties of Software Architectures”, Proceedings of
International Conference on Software Engineering, Sorrento, Italy, May 1994,
1994: 81-90.

(Kavakli & Loucopoulos, 2005) E. Kavakli, P. Loucopoulos, “Goal Modeling in
Requirements Engineering: Analysis and Critique of Current Methods,”
Information Modeling Methods and Methodologies, John Krogstie, Terry Halpin and
Keng Siau (eds), IDEA Group, pp 102 – 124, 2005.

(Kelly et al., 1996) S. Kelly, K. Lyytinen, M. Rossi: “METAEDIT+ A fully configurable
Multi-User and Multi-tool CASE and CAME Environment”. Proceedings of 8th
International Conference on Advances Information System Engineering,
LNCS1080, Springer-Verlag, 1996, pp. 1-21.

(Kiczales et al., 1997) G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-Oriented Programming”.
Proceedings European Conference on Object-Oriented Programming, Finland.
Springer-Verlag LNCS 1241. June 1997.

(Kickzales et al., 2001) G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G.
Griswold, “An Overview of AspectJ”, Proceedings 15th European Conference
Object-Oriented Programming (ECOOP 2001), Budapest, Hungary, June 18-22,
2001, LNCS 2072, pp. 327-353.

336 References

(Kim et al., 2004) D.K. Kim, R. B. France, S. Ghosh. “A UML-based language for
specifying domain-specific patterns,” Journal of Visual Language and Computing
15(3-4): 265-289, 2004.

(Kock & Lau, 2001) N. Kock and F. Lau, “Information systems action research: serving
two demanding masters,” Information Technology & People, 14(1), Mar 2001.

(Kotonya & Sommerville, 1996) G. Kotonya, and I. Sommerville, “Requirements
Engineering with Viewpoints,” Software Engineering Journal, 11(1):5-18, 1996.

(Lamsweerde, 2004) A. van Lamsweerde, “Goal-Oriented Requirements Engineering:
A Roundtrip from Research to Practice”, Proceedings of 12th IEEE
International Requirements Engineering Conference, Kyoto, Japan 2004, pp. 4-
7.

(Lamsweerde, 2003)A. van Lamsweerde, “From System Goals to Software
Architecture”, Formal Methods for Software Architecture, M. Bernardo, P. Inverardi
(eds), LNCS 2804, Springer-Verlag, 2003, pp. 25-43

(Lamsweerde, 2001a) A. van Lamsweerde, “Goal-Oriented Requirements
Engineering: A Guided Tour”, Proceedings 5th IEEE International Symposium
on RE, Toronto, August, 2001, pp. 249-263.

(Lamsweerde, 2001b) A. van Lamsweerde, “Building Formal Requirements Models for
Reliable Software”, Invited Paper for 6th International Conference on Reliable
Software Technologies, Ada-Europe 2001, LNCS. 2043, Leuven, May 14-18,
2001.

(Lamsweerde, 2000) A. van Lamsweerde, “Formal Specification: a Roadmap”,
Proceedings of the International Conference on Software Engineering - The
Future of Software Engineering Track, A. Finkelstein (ed.), ACM Press, (2000).

(Lamsweerde & Letier, 2000) A. van Lamsweerde and E. Letier. Handling Obstacles in
Goal-Oriented Requirements Engineering. IEEE Transactions on Software
Engineering 26 (10): 978-1005, Special Issue on Exception Handling, October
2000.

(Lamsweerde et al., 1998a) A. van Lamsweerde, R. Darimont, E. Letier, ”Managing
Conflicts in Goal-Driven Requirements Engineering”, IEEE Transactions on
Software Engineering, 24(1): 908-926, January 1998.

(Lamsweerde et al., 1998b) A. van Lamsweerde, L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios”, IEEE Transactions on
Software Engineering, Special Issue on Scenario Management, 24(12): 1089-1114,
December 1998.

(Lamsweerde et al., 1995) A. van Lamsweerde, R. Darimont and Ph. Massonet, “Goal-
Directed Elaboration of Requirements for a Meting Scheduler: Problems and
Lessons Learnt”. Proceedings Second International Conference on
Requirements Engineering (RE'95), York, UK, IEEE Computer Society Press,
March 1995, pp. 194-203.

 References 337

(LARLASC, 2002) Large Area Laser Surface Cleaning (LARLASC), EUREKA E! 2732
EULASNET (2002-2004).

(Lauder and Kent, 1998) A. Lauder and S. Kent, “Precise Visual Specification of
Design Patterns”, 12th European Conference Object-Oriented Programming
(ECCOP’98), Brussels, Belgium, July 20-24, 1998, LNCS 1445, ISBN 3-540-
64737-6.

(Lauesen, 2006) S. Lauesen “COTS tenders and integration requirements”. Requirements
Engineering, 11(2): 111-122, April 2006

(Lauesen, 2003) S. Lauesen “Task Descriptions as Functional Requirements”. IEEE
Software 20(2): 58-65, 2003.

(Leake, 1996) D. B. Leake, “CBR in Context: The Present and Future”, Case-Based
Reasoning: Experiences, Lessons, and Future Directions, D. B. Leake (ed.), AAAI
Press/MIT Press, 1996.

(Lehman, 1980) M. M. Lehman: On understanding Laws, Evolution and Conversation
in the large-Program Life Cycle. The Journal of Systems and Software 1: 213-
221(1980).

(Leite et al., 2000) J.C. S.P. Leite, G. Hadad, J. Doorn, G. Kaplan, “A Scenario
Construction Process”, Requirements Engineering Journal, 5(1): 38-61, (2000).

(Lemos & Saeed, 1995) R. Lemos, A. T. Saeed, “Analyzing Safety Requirements for
Process-Control Systems”, IEEE Software, 12(3), 42-53, May 1995.

(Letelier et al., 1998) P. Letelier, P. Sánchez, I. Ramos, O. Pastor. OASIS 3.0: Un enfoque
formal para el modelado conceptual orientado a objeto, Servicio de Publicaciones
Universidad Politécnica de Valencia, SPUPV -98.4011, ISBN 84-7721-663-0,
1998.

(Letier & Lamsweerde, 2004) E. Letier and A. van Lamsweerde, “Reasoning about
Partial Goal Satisfaction for Requirements and Design Engineering,”
Proceedings of FSE’04, 12th ACM International Symposium on the Foundations
of Software Engineering, Newport Beach (CA), November 2004, pp. 53-62.

(Letier & Lamsweerde, 2002) E. Letier and A. van Lamsweerde, “Deriving Operational
Software Specifications from System Goals”, Proceedings 10th ACM S1GSOFT
Symposium on the Foundations of Software Engineering (FSE’10), Charleston,
November 2002, pp. 119-128.

(Letier & Lamsweerde, 2002) E. Letier and A. van Lamsweerde, “High Assurance
Requires Goal Orientation,” Proceedings International Workshop on
Requirements for High Assurance Systems, Essen, Sept. 2002.

(Letier, 2001) E. Letier, Reasoning about Agents in Goal-Oriented Requirements Engineering,
Ph.D. Thesis, University of Louvain, May 2001.

(Leue & Rezai, 1998) S. Leue, M. Rezai, “Synthesizing Software Architecture
Descriptions from Message Sequence Chart Specifications”, Proceedings of 13th

338 References

IEEE International Conference on Automated Software Engineering (ASE’98),
Honolulu, Hawaii, USA, 13-16 October 1998, pp. 192-195.

(Leveson, 1995) N. Leveson. Safeware, System Safety & Computers, Addison-Wesley,
1995.

(Liang et al., 2006) H. Liang, J. Dingel, Z. Diskin, “A comparative survey of scenario-
based to state-based model synthesis approaches”, Proceedings of the
International Workshop on Scenarios and State Machines: Models, Algorithms
and Tools, collocated to ICSE’06, Shanghai, China, May 20-28, 2006, pp. 5 – 12.

(Lieberherr et al., 1999) K. Lieberherr, D. Lorenz D., M. Mezini, “Programming with
Aspectual Components,” Technical Report NU-CCS-99-01, Northeastern
University, Boston, Massachusetts, March 1999, pp. 1-27.

(Liu & Yu, 2004) L. Liu, E. Yu, “Designing Information Systems in Social Context:
A Goal and Scenario Modelling Approach”, Information Systems, Special issue:
The 14th international conference on advanced information systems engineering
(CAiSE*02), 29(2): 187 – 203, April 2004.

(Louridas & Loucopoulos, 2000) P. Louridas, and P. Loucopoulos, “A generic model
for reflective design,” ACM Transactions on Software Engineering, 9(2, 2000), 199-
237.

(Luckham & Vera, 1995) D. Luckham, J. Vera: An Event-Based Architecture
Definition Language, IEEE Transactions on Software Engineering, 21(9): 717-734,
Sep. 1995.

(Magee et al., 1995) J. Magee, N. Dulay, S. Eisenbach and J. Kramer, “Specifying
distributed Software Architectures”, Proceedings of the Fifth European
Software Engineering Conference, ESEC’95, September 1995.

(Maiden, 1998) N.A.M. Maiden “CREWS-SAVRE: Scenarios for Acquiring and
Validating Requirements,” Automated Software Engineering, 5:419-446, 1998.

(Maiden, & Sutcliffe, 1992) N. A. M. Maiden, & A. G. Sutcliffe, Exploiting Reusable
Specifications Through Analogy. Communications of the ACM, 34(5): 55-64, 1992.

(Manna & Pnueli, 1992) Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems, Springer-Verlag, 1992.

(Massonet & Lamsweerde 1997) P. Massonet, A. Van Lamsweerde, “Analogical Reuse
of Requirements Frameworks”, 3rd IEEE International Symposium on
Requirements Engineering (RE’97), January 5-8, 1997, Annapolis, MD, USA.
IEEE Computer Society, pp. 26-37.

(McDirmid et al., 2001) S. McDirmid, M. Flatt, and W. C. Hsieh. “Jiazzi: New-age
components for old-fashioned Java,” Proceedings of the 2001 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2001, October 14-18, 2001, Tampa, Florida, USA, pp.
211 – 222.

 References 339

(Medvidovic, 1996) N. Medvidovic, P. Oreizy, J. E. Robbins and R. N. Taylor, “Using
object-oriented typing to support architectural design in the C2 style,”
Proceedings of the 4th ACM Symposium on the Foundations of Software
Engineering (SIGSOFT’96), ACM Press. Oct 1996, pp. 24-32.

(Medvidovic & Taylor, 1997) N. Medvidovic and R. N. Taylor, “A framework for
classifying and comparing architecture description languages,” Proceedings of
the 6th European Conference collocated to the 5th ACM SIGSOFT Symposium
on Software engineering, , Zurich, Switzerland, Sept. 22-25 1997, pp. 60—76.

(Mehta et al., 2000) N. R. Mehta, N. Medvidovic, S. Phadke, “Towards a taxonomy of
software connectors”, Proceedings of the 22nd International Conference on on
Software Engineering (ICSE 2000), June 4-11, 2000, Limerick Ireland, pp. 178-
187.

(Mellor et al., 2004) S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled.
Addison-Wesley, 2004.

(Mens et al., 2005) T. Mens, P. Van Gorpa, D. Varróa, and G. Karsaia, “Applying a
Model Transformation Taxonomy to Graph Transformation Technology,”
Electronic Notes in Theoretical Computer Science, 152(27) : 143-159, March 2006.

(Mettala & Graham, 1992) E. Mettala, and M. Graham, “The Domain-Specific
Software Architecture Program”. Special Report of the Carnegie Mellon
University Software Engineering Institute, CMU/SEI-92-SR-9. 1992.

(Mezini & Ostermann, 2003) M. Mezini, K. Ostermann, “Conquering Aspects with
Caesar”. International Conference on Aspect-Oriented Software Development
(AOSD), ACM Press, Boston, Massachusetts, USA, March, 2003, pp. 90-100.

(Miller & Madhavji, 2001) J. A. Miller, N. H. Madhavji, “The Architecture-
Requirements Interaction,” Proceedings of Working IEEE/IFIP Conference on
Software Architecture (WICSA'07), January 6-9, 2007, Mumbai, India.

(ModelMorf, 2007) http://www.tcs-trddc.com/ModelMorf/index.htm, 2007.

(Monroe et al., 1997) R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan,
“Architecture Styles, Design Patterns, and Objects”, IEEE Software, 14(1):43-52,
January/February 1997.

(Moreira et al., 2005) A. Moreira, J. Araújo, A. Rashid, “A Concern-Oriented
Requirements Engineering Model”, Proceedings 17th International Conference
Advanced Information Systems Engineering, (CAiSE 2005), Porto, Portugal,
June 13-17, LNCS 3520, pp 293-308.

(Moreira et al., 2002) A. Moreira, J. Araújo, I. Brito, “Crosscutting quality attributes for
requirements engineering”, Proceedings 14th International Conference on
Software Engineering and Knowledge Engineering (SEKE02), Ischia, Italy,
2002, pp. 167 – 174.

340 References

(Moody, 2000) D. L. Moody, “Building links between IS research and professional
practice: improving the relevance and impact of IS research”, Proceedings of the
21st International Conference on Information systems, Brisbane, Queensland,
Australia, 2000, pp. 351-360.

(Munson, et al 2006) J. C. Munson, A. P. Nikora and J. S. Sherif, “Software faults: A
quantifiable definition”, Advances in Engineering Software, 37(5):327-333, May 2006.

(Navasa et al., 2005) A. Navasa, M. A. Pérez, J. M. Murillo, “Aspect Modelling at
Architecture Design,” 2nd European Workshop on Software Architecture
(EWSA), Lecture Notes on Computer Science, Springer Verlang, LNCS 3527,
Pisa, Italy, June, 2005, pp. 41-58.

(Newell & Simon, 1963) A. Newell and H. Simon, GPS, “A Program that Simulates
Human Thought.” Computers and Thought, E. A. Feigenbaum and J. Feldman, R.
Oldenbourg(eds.), Mac Graw Hill., 1963.

(Niemela et al., 2005) E. Niemela, J. Kalaoja and P. Lago, “Toward an Architectural
Knowledge Base for Wireless Service Engineering,” IEEE Transactions on
Software Enginnering, 31(5):361-379, May 2005.

(Nuseibeh, 2001) B. Nuseibeh, “Weaving the Software Development Process
Between Requirements and Architecture”, From Software Requirements to
Architectures (STRAW ‘01), collocated to 23rd International Conference on
Software Engineering, ICSE 2001.

(Nuseibeh & Easterbrook, 2000) B. Nuseibeh, S. Easterbrook. “Requirements
Engineering: A Roadmap, The Future of Software Engineering,” 22nd
International Conference on Software Engineering, ACM-IEEE, pp. 37-46,
2000.

(Nuseibeh et al., 1994) B. Nuseibeh, J. Kramer, and A. Finkelstein, "A Framework for
Expressing the Relationship Between Multiple Views in Requirements
Specification," IEEE Transactions on Software Engineering, October 1994, pp. 760-
773

(OCL Specification, 2005) OMG, OCL 2.0 Specification, Version 2.0,
http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.

(OCL tools, 2005) OCL tools & services http://www.klasse.nl/ocl/ocl-services.html,
2005.

(Odell et al., 2000) J. Odell, H. Van Dyke Parunak, B. and Bauer, “Extending UML for
Agents”, Proceedings of the Agent-Oriented Information System Workshop at
the 17 National Conference on Artificial Intelligence, Austin, USA, July 2000,
pp. 3-17.

(Oreizy et al., 1998) P. Oreizy, N. Medvidovic, R. N. Taylor, “Architecture-Based
Runtime Software Evolution”, Proceedings of the 20th International Conference
on Software Engineering (ICSE-98), Kyoto, April 1998.

 References 341

(OptimalJ, 2005) OptimalJ 4.0, User’s Guide, Compuware, June 2005,
http://www.compuware.com/products/optimalj.

(Ortiz et al., 2005) F. J. Ortiz D. Alonso, B. Álvarez, J. A. Pastor, “A Reference Control
Architecture for Service Robots Implemented on a Climbing Vehicle”,
Proceedings 10th Ada-Europe International Conference on Reliable Software
Technologies, York, UK, June 20-24, 2005, pp. 13-24

(Osborne & MacNish, 1996) M. Osborne, C. K. MacNish, “Processing Natural
Language Software Requirement Specifications”, 2nd International Conference
on Requirements Engineering (ICRE ‘96), April 15 - 18, 1996, Colorado
Springs, Colorado.

(Pang & Blair, 2004) J. Pang, L. Blair, “Refining Feature Driven Development - A
Methodology for Early Aspects”, Early Aspects 2004: Aspect-Oriented
Requirements Engineering and Architecture Design Workshop, March 22, 2004
- Lancaster, UK in conjunction with 3rd Aspect-Oriented Software
Development Conference (AOSD).

(Padak & Padak, 1994) N. Padak and G. Padak, “Guidelines for Planning Action
Research Projects”, Research To Practice, October 1994.

(Parnas & Madey, 1995) D.L. Parnas, J. Madey, “Functional documents for computer
systems”, Science of Computer Programming, 25: 41-61, 1995.

(Parnas, 1972) D. Parnas, “On the Criteria to Be Used in Decomposing Systems into
Modules,” Communications of ACM, 15(12): 1053–1058, 1972.

(Perry & Wolf, 1992) D.E. Perry and A.L. Wolf, “Foundations for the study of
Software Architecture”, ACM SIGSOFT Software Engineering Notes, 17(4):40 52,
October 1992.

(Pérez, 2006) J. Pérez, PRISMA. Phd of the Computer Department of Information
Systems and Computation, Universidad Politécnica de Valencia, 2006.

(Perez et al., 2003) J. Pérez, “Oasis como Soporte Formal para la Definición de
Modelos Hipermedia Dinámicos, Distribuidos y Evolutivos”, Technical Report,
DSIC-II/23/03, Polytechnic University of Valencia, October, 2003.

(Pinto et al., 2005) M. Pinto, L. Fuentes, J.M. Troya, “A Dynamic Component and
Aspect-Oriented Platform,” The Computer Journal 48(4):401–420, 2005.

(Pfleger and Hayes-Roth, 1997)K. Pfleger and B. Hayes-Roth. “An Introduction to
Blackboard-style Systems Organization,” Knowledge Systems Laboratory,
Stanford University, Stanford, 1997.

(Ponsard et al., 2004) C. Ponsard, P. Massonet, A. Rifaut, J.F. Molderez, A. van
Lamsweerde, H. Tran Van, “Early Verification and Validation of Mission-
Critical Systems,” Proceedings of 9th International Workshop on Formal
Methods for Industrial Critical Systems, (Linz, Austria, 2004) 218-228.

342 References

(QVT, 2005) MOF Query/Views/Transformations final adopted specification. OMG
document ptc/05-11-01, 2005, November 5th 2005.

(Rapanotti et al., 2004) L. Rapanotti, J. G. Hall, M. Jackson, B. Nuseibeh,
“Architecture-driven Problem Decomposition,” Proceedings of 12th IEEE
International Requirements Engineering Conference (RE'04), September 6-40,
2004, Kyoto, Japan, pp. 80-89.

(Rashid et al., 2003) A. Rashid, A. Moreira, J. Araújo, “Modularisation and composition
of aspectual requirements”, Proceedings 2nd international conference on Aspect-
oriented software development, March 17 - 21, 2003, Boston, Massachusetts.

(Rashid et al., 2002) Rashid, A., Sawyer, P., Moreira, A. and Araújo, J. “Early Aspects: a
Model for Aspect-Oriented Requirements Engineering”, Proceedings of the
International Conference on Requirements Engineering, September 9-13, 2002,
Essen, Germany, pp. 199-202.

(Rational, 2006) Rational Rose, http://www-306.ibm.com/software/rational/

(Robinson et al., 2003) W. N. Robinson, S. D. Pawlowski, V. Volkov: Requirements
interaction management. ACM Computing Survey 35(2): 132-190, June 2003.

(Rolland et al., 1999) C. Rolland, G. Grosz and R. Kla: “Experience with Goal-
Scenario Coupling in Requirements Engineering”, Proceedings IEEE
International Symposium on Requirement Engineering, June 7-11, 1999,
Limerick, Ireland.

(Rolland et al., 1998) C. Rolland, C. Souveyet, and C. Ben Achour, “Guiding Goal
Modelling using Scenarios”, IEEE Transactions on Software Engineering 24(12):
1055-1071, Special Issue on Scenario Management, December 1998.

(Sánchez et al., 2006) P. Sánchez, J. Magno, L. Fuentes, A. Moreira and J. Araújo.
"Towards MDD Transformations from Aspect-Oriented Requirements to
Aspect-Oriented Architecture". 3rd European Workshop on Software
Architecture (EWSA), September 2006, Nantes (France), LNCS 4344, Springer,
pp. 159–174.

(Schippers et al., 2004) H. Schippers, P. Van Gorp and D. Janssens. “Leveraging UML
Profiles to generate Plugins from Visual Model Transformations”. Software
Evolution through Transformations (SETra). Satellite of the 2nd Intl.
Conference on Graph Transformation (ICGT), Rome, Italy, October 2, 2004.

(Schmid et al., 2000) R. Schmid, J. Ryser, S. Berner, M.Glinz, R. Reutemann, E.
Fahr, A Survey of Simulation Tools for Requirements Engineering, Technical
Reports – 2000, Special Interest Group on Requirements Engineering, Germa
Informatics Society (GI), August 2000.

(Schobbens et al., 2006) P. Y. Schobbens, P. Heymans, J. C. Trigaux, “Feature
Diagrams: A Survey and a Formal Semantics,” Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE'06), Minneapolis, MN,
USA, September 11-15, 2006, pp. 139-148.

 References 343

(Schopf & Berman, 1998) J. Schopf and F. Berman. “Performance prediction in
production environments”, Proceedings of the 12th International Parallel
Processing Symposium, (Orlando, 1998) pp. 647-653.

(Schmid et al., 2006) K. Schmid, K. Krennrich, M. Eisenbarth, "Requirements
Management for Product Lines: Extending Professional Tools," 10th
International Software Product Line Conference (SPLC'06), August 21-24, 2006
Baltimore, Maryland, USA , pp. 113-122

(Schmidt et al., 2000) D. C. Schmidt M. Stal, H. Rohnert and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects, Wiley &
Sons, 2000.

(Selic, 2003) B. Selic, “The Pragmatics of Model-Driven Development,” IEEE Software,
20(5): 19-25, Sept/Oct, 2003.

(Sendall & Kozaczynski, 2003) S. Sendall, W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Development”, IEEE Software,
20(5): 42-45 (2003).

(Shaw & Clements, 2006) M. Shaw and P. Clements, “The Golden Age of Software
Architecture”, IEEE Software, 23(2): 31-39, March/April 2006.

(Shaw & Clements, 1997) M. Shaw and P. Clements, “A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for Software Systems”,
Proceedings Annual International Computer Software and Applications
Conference (COMPSAC’97), Washington, DC, Aug. 1997.

(Shaw, 1996) Mary Shaw, “Procedure Calls Are the Assembly Language of Software
Interconnection: Connectors Deserve First-Class Status”. Lecture Notes in
Computer Science No 1078, Springer-Verlag, pp. 17-32, 1996.

(Shaw & Garlan, 1996) M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

(Shaw & Garlan, 1994) M. Shaw and D. Garlan. Characteristics of higher-level
languages for Software Architecture. Technical Report CMU-CS-94-210, School
of Computer Science, Carnegie Mellon University, December 1994.

(Shaw, 1994) M. Shaw, “Procedure Calls Are the Assembly Language of Software
Interconnection: Connectors Deserve First-Class Status”. Workshop on Studies
of Software Design, January,1994.

(Siau & Tan, 2005) K. Siau, X. Tan, “Technical Communication in Information
Systems Development: The Use of Cognitive Mapping” IEEE Transactions on
Professional Communications: 48(3): 269-284, 2005.

(Shonle et al., 2003) M. Shonle, K. J. Lieberherr, A. Shah, “XAspects: an extensible
system for domain-specific aspect languages”, Proceedings Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2003, October 26-30, 2003, Anaheim, CA, pp. 28-37.

344 References

(Souza & Wills, 1999) D. Souza, A. Wills, Objects, Components and Frameworks with UML.
The Catalysis approach. Addison-Wesley, 1999.

(SPEM, 2005) OMG, Software Process Engineering Metamodel (SPEM), Version 1.1
formal/05-01-06, http://www.omg.org/cgi-bin/doc?formal/2005-01-06,
January 2005.

(Sprinkle et al., 2003) J. Sprinkle, A. Agrawal, T. Levendovszky, F. Shi, G. Karsai:
“Domain Model Translation Using Graph Transformations”. Proceedings 10th
IEEE International Conference on Engineering of Computer-Based Systems
(ECBS 2003), 7-10 April 2003, Huntsville, AL, USA. IEEE Computer Society
2003, pp. 159-167.

(Sutcliffe, 1998) A.G. Sutcliffe: Scenario-based requirement analysis”, Requirements
Engineering Journal, 3(1):48-65, 1998.

(Sutton & Rouvellou, 2004) S. M. Sutton and I. Rouvellou, "Concern Modeling for
Aspect-Oriented Software Development," in Aspect-Oriented Software Development,
R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Eds.: Addison-Wesley, 2004, pp.
479-505.

(Sutton & Tarr, 2002) S. M. Sutton Jr., and P. Tarr. “Aspect-oriented design needs
concern modeling,” Position paper in the Aspect Oriented Design workshop in
conjunction with AOSD 2002, Enschede, The Netherlands, Apr. 2002.

(Suvée et al., 2005) D. Suvée, W. Vanderperren, D. Wagelaar, V. Jonckers, “There Are
No Aspects”. Electronical Notes in Theoretical Computer Sciences (ENTCS), Special
Issue on Software Composition, 114:153-174, January, 2005.

(Suzuki & Yamamoto, 1999) J. Suzuki and Y. Yamamoto, “Extending UML with
Aspects: Aspect Support in the Design Phase”, AOP Workshop at ECOOP’99,
Lisbon, Portugal, 1999.

(Szyperski, 1998) C. Szyperski, Component software: beyond object-oriented programming.
Addison Wesley, 1998.

(Tarr et al., 1999) P. Tarr, H. Ossher, W. Harrison, S. Sutton. “N Degrees of
Separation: Multi-Dimensional Separation of Concerns”. Proceedings in of the
International Conference on Software Engineering (ICSE’99), Los Angeles, CA,
USA, 16-22 May 1999, pp 107-119.

(Tratt, 2006) L. Tratt, ‘‘The MT Model Transformation Language,’’ Proceedings of
ACM SIGAPP Symposium on Applied Computing (SAC’06), Dijon, France
(2006), pp. 1296 – 1303.

(Trigaux & Heymans, 2003) J.C. Trigaux and P. Heymans, Modelling variability
requirements in Software Product Lines: A comparative survey, Technical
report PLENTY project, Institut d’Informatique FUNDP, Namur, Belgium,
November 2003.

 References 345

(Toval et al., 2003) J. A. Toval, V. Requena, J. L. Fernández, “Emerging OCL tools,”
Software and System Modeling 2(4): 248-261, 2003.

(RDCU, 2003) UPCT, Remote Control Unit Requirements, Administrative report of
the EFTCoR Project, EFTCoR WP7 D1 a UPCT draft, March 20, 2003.

(UML, 2005) OMG, UML 2.0: Superstructure Specification, OMG Adopted
Specification, September 4, http://www.omg.org/cgi-bin/doc?formal/05-07-
04, July 5, 2005.

(Visio, 2003) Visio 2003, http://office.microsoft.com/es-es/FX010857983082.aspx

(Van et al., 2004) H. Tran Van, A. van Lamsweerde, P. Massonet, C. and Ponsard,
“Goal-Oriented Requirements Animation”, Proceedings International
Conference on Requirements Engineering, September 06 - 10, 2004 Kyoto,
Japan, IEEE Computer Society 2004.

(Wadsworth, 1998) Y. Wadsworth, What is Participatory Action Research? Action
Research International, Paper 2. Available on-line:
http://www.scu.edu.au/schools/gcm/ar/ari/p-ywadsworth98.html

(Walker et al., 2003) D. Walker, S. Zdancewic and J. Ligatti, “A theory of aspects”,
Proceedings of the 8th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Uppsala, Sweden, August 25-29, 2003, pp.127-139

(Westhuizen & Hoek , 2002) C. Van der Westhuizen and A. van der Hoek:
“Understanding and Propagating Architectural Change”, Proceedings of the
Working IEEE/IFIP Conference on Software Architecture 2002 (WICSA 3),
Montreal, Canada, August 2002.

(Whittle & Schumann, 2000) J. Whittle and J. Schumann, “Generating Statechart
Designs from Scenarios”, Proceedings of the International Conference on
Software Engineering (ICSE), Limerick, Ireland, 2000, pp. 314-323.

(Wile, 2001) D. Wile, “Residual Requirements and Architectural Residues”, Proceedings
of the 5th International Symposium on Requirements Engineering (RE’01),
Toronto, Canada, pp.194-201, IEEE CS Press, 2001.

(Whittle & Araujo, 2004) J. Whittle and J. Araujo, “Scenario Modeling with Aspects,”
IEE Proceedings -Software, vol. 151, pp. 157-172, 2004.

(Yu et al., 2004) Y. Yu, J. C. Sampaio do Prado Leite, and J. Mylopoulos, “From Goals
to Aspects: Discovering Aspects from Requirements Goal Models”,
Proceedings 12th IEEE International Requirements Engineering Conference
(RE’04), September 06 - 10, 2004, Kyoto, Japan, IEEE Computer Society 2004.

(Yu & Mylopoulos, 1995) E. Yu and J. Mylopoulos: “From E-R to ‘A-R’: Modelling
Strategic Actor Relationships for Business Process Reengineering,” International
Journal of Intelligent and Cooperative Information Systems, 4: 125-144, 2/3, 1995.

(XSLT, 1999) XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16
November 1999, http://www.w3.org/TR/xslt

346 References

(Zave & Jackson, 1997) P. Zave and M. Jackson: Four dark corners of requirements
engineering. ACM Transaction Software Engineering and Methodology, 6(1):1-30, Jan.
1997.

(Zave, 1997) P. Zave: Classification of research efforts in requirements engineering.
ACM Computing Surveys, 29(4):315--321, 1997.

-347-

LIST OF FIGURES

Figure 1-1 Software Architecture as a bridge ...2
Figure 1-2 An intertwined process to define Requirements and SA (extracted from

(Nuseibeh, 2001)) ...3
Figure 1-3 Disconnection between Research and Practice in Software Engineering

(Moody, 2000)...5
Figure 1-4. Applying Action-Research: actors in DYNAMICA..6
Figure 1-5. Cyclic character of Action-Research..7
Figure 2-1 Partial description of a Goal graph (extracted from Dardenne et al.)............16
Figure 2-2 Use Case approach..18
Figure 2-3 Problem Frames approach...19
Figure 2-4 An example of a viewpoint (extracted from (Finkelstein et al., 1992))21
Figure 2-5 An illustrative example of a feature diagram (extracted from Kang et al.)....22
Figure 2-6 Bottleneck with early and delayed variability (extracted from (Gurp et al.,

2001)) ...23
Figure 2-7 Main concepts in AOP (code extracted from (Kickzales et al., 2001))..........32
Figure 2-8 Describing the compound linkui as a link between the units applet and ui by

matching the packages ui_out and ui_in (extracted from (McDirmid et al., 2001))
..41

Figure 2-9 Describing the composition in FUSEJ (extracted from (Suvée et al., 2005))42
Figure 2-10 Composing an Aspectual Component and the Base Application (partially

extracted from (Lieberherr et al., 1999)) ...43
Figure 2-11 Describing a PRISMA connector ...44
Figure 2-12 Concern diagram (extracted from (Katara & Katz, 2003))............................44
Figure 3-1 Four inter-related models for KAOS ...50
Figure 3-2 Main activities of GBRAM (extracted from (Antón, 1996))52
Figure 3-3 Strategic Dependency Model (extracted from (Castro et al., 2002))53
Figure 3-4 Requirements chunks at different levels of abstraction55
Figure 3-5 Alternative Designs and their UCM (extracted from (Liu & Yu, 2004))56
Figure 3-6 The scattering and tangling while working with a use-case driven approach

(extracted from (Jacobson, 2003))..57
Figure 3-7 UML representation of a scenario (extracted from (Sánchez et al., 2006)) ...60
Figure 3-8 Describing an AFrame: (a) the pipe-and-filter transformation and (b) the

scheduling sub-problemn..61
Figure 3-9 An example of a FS graph for peer-to-peer communication (extracted from

(Bruin & Vliet, 2003)) ..62
Figure 3-10 Describing a UCM for a peer-to-peer architecture...63
Figure 3-11 Example of components and their relationships to systemic aspects

(extracted from (Grundy, 1999)) ..65
Figure 3-12 Models for ATRIUM..72
Figure 3-13. ATRIUM: activities and artifacts ...75
Figure 4-1. Primary Positioning System with both arm joint (yellow) and joint on tracks

(green) of the EFTCoR ...81

348 List of Figures

Figure 4-2 Tele-operation Robotic System for Hull Maintenance Operations81
Figure 4-3 An illustrative view of the Teachmover...84
Figure 4-4 Geometry of joints of the Robot Arm...85
Figure 4-5 Describing PRISMA Interfaces (extracted from (Pérez, 2006))87
Figure 4-6 SignatureOfService of the PRISMA metamodel (extracted from (Pérez,

2006)) ...87
Figure 4-7 The metaclass Aspect of the package Aspect of the PRISMA metamodel

(extracted from (Pérez, 2006))..88
Figure 4-8 Describing Architectural elements (extracted from (Pérez, 2006))89
Figure 4-9 KindsOfArchitecturalElements of the PRISMA metamodel (extracted from

(Pérez, 2006))..90
Figure 4-10 Describing PRISMA Ports (extracted from (Pérez, 2006))...........................90
Figure 4-11 Describing PRISMA Played_Role (extracted from (Pérez, 2006))91
Figure 4-12 Describing the Weaving metaclass (extracted from (Pérez, 2006))..............92
Figure 4-13 Describing System metaclass (extracted from (Pérez, 2006))93
Figure 4-14 Bindings of the PRISMA metamodel (extracted from (Pérez, 2006))93
Figure 4-15 Describing Attachment metaclass (extracted from (Pérez, 2006))...............94
Figure 4-16 Describing a PRISMA architecture (extracted from (Pérez, 2006)).............94
Figure 5-1 Metamodel for the Core Concepts. ..97
Figure 5-2 An integrated proposal for the Goal Model of ATRIUM.............................102
Figure 5-3 Metamodel of the ATRIUM Goal Model ...104
Figure 5-4 Example of a Goal description ...107
Figure 5-5 Process for describing the ATRIUM Goal Model ...121
Figure 5-6 Workflow to specify goals and requirements ..122
Figure 5-7 Unfolding a Software Specification ..125
Figure 5-8 Operationalizing the Goal Model ...129
Figure 5-9 Propagation results for a simplified model of the Teachmover150
Figure 5-10 Describing the Analyze activity...152
Figure 6-1 Refining the GOA.1 RDCU should be suitable for the user needs.162
Figure 6-2 Refining GOA.2 RDCU allows working operation162
Figure 6-3 Refining GOA.9 RDCU allows cleaning operations......................................163
Figure 6-4 Refining GOA.15 RDCU allows handling objects...163
Figure 6-5 Refining GOA.10 RDCU allows coordinate positioning systems164
Figure 6-6 Refining GOA.18 RDCU allows movement across wide areas....................164
Figure 6-7 Refining GOA.19 movements in a precise way..165
Figure 6-8 Describing Reliability goals of the RDCU...167
Figure 6-9 Describing RDCU goals related to portability ..169
Figure 6-10 Describing a Require relationship between a variant REQ.14 and a

variation point GOA.9 ..170
Figure 6-11 Describing Required relationships between variants REQ.14 and REQ.17

and variants GOA.19 and GOA.18...170
Figure 6-12 Extension to the ATRIUM Goal Model ...176
Figure 6-13 Describing safety goals..178
Figure 6-14 Specifying risks for each pair Safe(Ti)-Avoid(Hzj)180
Figure 6-15 Operationalizing the requirements of the tool..184

 List of Figures 349

Figure 6-16 Operationalizing the requirements of movement of the secondary system
... 185

Figure 6-17 Operationalizing the requirement of recoverability..................................... 186
Figure 6-18 Operationalizing safety requirements.. 187
Figure 7-1 Internal and external view of a PRISMA connector 200
Figure 7-2 Metamodel for ATRIUM Scenarios Model... 201
Figure 7-3 Metamodel for Scenarios Model: UML entities and Added Entities 203
Figure 7-4 Graphical representation for Lifelines... 204
Figure 7-5 Describing Message and its extension as Aspectual Message 206
Figure 7-6 Describing a Safety Concern .. 207
Figure 7-7 Extending BehaviorExecutionSpecification to support concern specification

... 208
Figure 7-8 Describing Guards in a Scenario.. 210
Figure 7-9 Extension of Interaction for specifying systems.. 211
Figure 7-10 Describing the MUC system for the teachMover.. 212
Figure 7-11 Using an InteractionOccurrence to refer the Base.Move(BaseHalfSteps,

speed) systemFrame... 213
Figure 7-12 Frame description in UML 2.0... 213
Figure 7-13 Alternative behaviour when defining the movement of a joint................. 214
Figure 7-14 Parallel composition .. 215
Figure 7-15 Describing a loop for the movement of the Base System.......................... 216
Figure 7-16 Describing Gate in UML 2.0 .. 217
Figure 7-17 Software Architecture Description .. 219
Figure 7-18 A common structure for the Blackboard Style .. 222
Figure 7-19 ATRIUM Scenario applying a Blackboard Style.. 222
Figure 7-20 Main structure of the Pipe and Filter Style... 223
Figure 7-21 Applying the Pipe and Filter Style in an ATRIUM Scenario 224
Figure 7-22 Layout for the Layered Style... 225
Figure 7-23 Layer Style applied to an ATRIUM Scenario ... 226
Figure 7-24 Typical layout for an Event-based Style.. 227
Figure 7-25 Event-based Style applied to an ATRIUM scenario 227
Figure 7-26 Layout for an Interpreter Style... 228
Figure 7-27 An ATRIUM Scenario with the Interpreter Style.. 228
Figure 7-28 Main layout of ACROSET ... 229
Figure 7-29 ACROSET Style in an ATRIUM Scenario... 230
Figure 7-30. Primary Positioning System with both arm joint (yellow) and joint on

tracks (green) of the EFTCoR system.. 232
Figure 7-31. Partial description of a safety pattern for R2A Risk Reduction Category234
Figure 7-32 An aspect for managing Safety concerns .. 235
Figure 7-33 Process for Scenarios Description... 236
Figure 7-34 Describing the operationalization for requirement MoveWrist................. 238
Figure 7-35 Applying a Safety Pattern.. 239
Figure 8-1 ATRIUM following the MDD approach: where a solution has to be

described... 244
Figure 8-2 Describing QVT... 250

350 List of Figures

Figure 8-3 Establishing mappings between an ATRIUM Scenarios systemFrame and a
System..254

Figure 8-4 Establishing mappings between ATRIUM Scenarios Messages and
Architectural Elements..255

Figure 8-5 Establishing mapping between ATRIUM Scenarios Interaction connecting
Connectors in different Systems and Bindings ..258

Figure 8-6 Establishing mapping between ATRIUM Scenarios Component-Component
Interaction and Components and Connector ..264

Figure 8-7 Establishing mapping between an ATRIUM Scenarios Message and a
PRISMA Aspect ...267

Figure 8-8 Establishing mapping between an ATRIUM Scenarios Operator-System
Interaction and a PRISMA Presentation Aspect ...270

Figure 8-9 Describing the process for the Synthesis and Transformation activity274
Figure 9-1 Sketching the MORPHEUS Architecture ...281
Figure 9-2 Requirements Environment ...282
Figure 9-3 Metamodel Editor...283
Figure 9-4 Describing Meta-Artifacts for a kind of Artifact ..284
Figure 9-5 Describing a new attribute...285
Figure 9-6 Selecting the shape for the kind of Artifact...285
Figure 9-7 Describing a kind of Dependency ..286
Figure 9-8 Describing a kind of Refinement..287
Figure 9-9 Eliminating a kind of Artifact..288
Figure 9-10 MORPHEUS while loading the Requirements Model Management

environment..289
Figure 9-11 Customizing the preferences of the project ..290
Figure 9-12 Describing the properties of an artifact ...290
Figure 9-13 MORPHEUS while loading a Tabular View in the Requirements Model

Manager ...291
Figure 9-14 Configuring the tabular view...292
Figure 9-15 A sketched view of the Rules add-in..293
Figure 9-16 MORPHEUS while loading the Rule Editor ..293
Figure 9-17 MORPHEUS while loading propagation data..295
Figure 9-18 MORPHEUS: Capabilities of the Scenarios Environment.........................296
Figure 9-19 MORPHEUS while loading the Scenarios Management environment.....297
Figure 9-20. MORPHEUS: Capabilities of the Architectural Environment298
Figure 9-21 External view of a connector ..301
Figure 9-22 Internal view of the SUCconnector ...301
Figure 9-23. What MORPHEUS looks like whenever the Architecture Environment is

active ..302
Figure 9-24. Developed Stencils for PRISMA...303
Figure 9-25 Describing attributes (Atributos) and services (operaciones) of an Aspect

..303
Figure 9-26 Developed Form to specify those specific properties to aspects: kinds of

service, preconditions, triggers and subprocesses..304
Figure 9-27. MORPHEUS provides support to model weaving relationships.304
Figure 9-28 Describing roles when a connector is defined ..305

-351-

LIST OF TABLES

Table 3-1 Determining the satisfaction of the established features (first part)................68
Table 3-2 Determining the satisfaction of the established features (second part)69
Table 5-1 OCL Constraint for Refinement relationship...97
Table 5-2 OCL Constraint for Refinement relationship...98
Table 5-3 Mapping concepts: from concepts of Approaches to RE (rows) to our

Metamodel (columns) ..98
Table 5-4 BNF for textually describing a goal... 106
Table 5-5 Describing the temporal logic operators .. 106
Table 5-6 Describing a Requirement.. 108
Table 5-7 Example of a requirement.. 109
Table 5-8 Describing operationalizations .. 110
Table 5-9 Describing AND relationships .. 111
Table 5-10 OCL Constraints for refinement relationships.. 112
Table 5-11 Describing OR relationships.. 112
Table 5-12 OCL Constraints for OR relationship.. 112
Table 5-13 Describing Intervariants relationship.. 115
Table 5-14 OCL Constraints for Intervariant relationship.. 115
Table 5-15 Describing Crosscutting relationship.. 118
Table 5-16 OCL Constraints for Crosscutting relationship .. 118
Table 5-17 Describing Contribution relationships ... 119
Table 5-18 Constraint for Contribution dependency... 119
Table 5-19 Quality Characteristics of the ISO/IEC 9126 ... 123
Table 5-20 ISO 9126 for selecting Architectural Styles ... 130
Table 5-21 Mapping between proposals for propagation.. 138
Table 5-22 Qualitative Propagation rules described by (Giorgini et al., 2003), where

⎯⎯→⎯++ S , ⎯⎯→⎯−− S , etc. are describing contribution relationships............................. 140
Table 5-23 Giorgini et al.’ algorithm for propagation of the satisfiability 140
Table 5-24 Propagation algorithm based on (Giorgini et al., 2003)’s proposal 141
Table 5-25. BNFs for describing condition grammar .. 143
Table 5-26 BNF for describing valuation grammar.. 145
Table 5-27 Describing the Giorgini et al.’s rules using the proposal 149
Table 5-28 Describing variability rules using the proposal.. 150
Table 6-1 Risk Reduction Categories ... 174
Table 6-2. Summary of Risks for the Secondary Positioning System 181
Table 6-3 Determining the RRC for each established Hazard.. 181
Table 6-4 Describing safety rules to determine actual tolerance level 182
Table 6-5 Propagation results according to the described rules 182
Table 6-6 Rules for reasoning Analysis .. 188
Table 6-7 Propagation results: values of satisfiability (Sat) and deniability (Sat) before

(t0) and after (t1) the propagation .. 189
Table 7-1 Example of mappings specification (extracted from (Rashid et al., 2002)) . 199
Table 7-2 Code colour and graphical notation for lifelines ... 205

352 List of Tables

Table 7-3 OCL Constraints for AspectualMessages ...207
Table 7-4 Concerns for ATRIUM...209
Table 7-5 OCL Constraints for AspectualMessages ...209
Table 7-6 Description of the ANSI Risk Reduction Category R2A232
Table 8-1 A framework for selecting the most proper approach for ATRIUM models

transformation..248
Table 8-2 Declaration of the transformation ...252
Table 8-3 Describing the transformation from an ATRIUM systemFrame to a System

..254
Table 8-4 Describing the transformation from an ATRIUM Message to an architectural

element ..255
Table 8-5 Describing the transformation from an ATRIUM Message to an Attachment

..257
Table 8-6 Describing the transformation for dealing with the ACROSET...................260
Table 8-7 Transforming a Message to a Binding ...261
Table 8-8 Transforming a Lifeline to an Architectural Element261
Table 8-9 Transforming a Lifeline to an Architectural Element262
Table 8-10 Transforming a Message between Component Lifelines to two Components

and a Connector ...265
Table 8-11 Transforming a Lifeline to a Component and a Connector.........................266
Table 8-12 Transforming a Lifeline to a Service of an Aspect ..268
Table 8-13 Transforming a Lifeline to an Aspect..268
Table 8-14 Transforming a Lifeline to a Service..269
Table 8-15 Transforming a Messages received from Human Lifeline to a Component

..271
Table 8-16 Transforming a Lifeline to a Presentation Aspect ...272
Table 9-1 An extract of the PRISMA profile ...300

-353-

Appendix A. Software Process Engineering
Metamodel

As was described in the previous chapters, during the definition of ATRIUM
several processes had to be described, considering the inputs for each process,
activities and the steps which conform each activity. Several alternatives were
possible, but, finally, Software Process Engineering Metamodel (SPEM) was
selected.

SPEM is a metamodel for defining processes and their constituting
components, oriented to the engineering process. It is based on UML,
facilitating a profile which gives supports to any needed concept. Those
elements of the profile that have been used in this work are presented in the
following table, along with their base class, description and notation. The
explanation has been directly extracted from (SPEM, 2005).
Stereotype Base Class Description Notation

Activity ActivityGraphs::
ActionState

It is the main subclass of WorkDefinition. It
describes a piece of work performed by one
ProcessRole: the tasks, operations, and
actions that are performed by a role or with
which the role may assist.

Document ActivityGraphs::
ObjectFlowState

Any document used or generated.

Guidance Core::Comment Guidance elements may be associated with

ModelElements, to provide more detailed
information to practitioners about the
associated ModelElement.
Possible types of Guidance depend on the
process family and can be for example:
Guidelines, Techniques, Metrics, Examples,
UML Profiles, Tool mentors, Checklist,
Templates.

ProcessRole UseCases::
Actor

ProcessRole defines responsibilities over
specific WorkProducts, and defines the roles
that perform and assist in specific activities.

Step ActivityGraphs::
ObjectFlowState

It is an atomic element for the definition of
an Activity.

WorkProduct ActivityGraphs::
ObjectFlowState

A work product or artifact is anything
produced, consumed, or modified by a
process. It may be a piece of information, a
document, a model, source code, and so on.
A WorkProduct describes one class of work
product produced in a process.

354 Appendix A

A WorkProductKind describes a category of
work product, such as Text Document,
UML Model, Executable, Code Library, and
so on. The range of work product kinds is
dependent on the process being modeled.

WorkDefinition ActivityGraphs::
ActionState

WorkDefinition is a kind of Operation that
describes the work performed in the
process. Its main subclass is Activity, but
Phase, Iteration, and Lifecycle (in the
Process Lifecycle package) are also
subclasses of WorkDefinition.
WorkDefinition is not an abstract class, and
instances of WorkDefinition itself can be
created to represent composite pieces of
work that are further decomposed. It has
explicit inputs and outputs referred to via
ActivityParameter.

-355-

Appendix B. Transforming ATRIUM Scenarios –
PRISMA

In the following sections, the Relations that have been defined are introduced
according to its kind, that is, architectural generative patterns, architectural
style-oriented transformation, and idioms-oriented transformation. It can be
observed the latter transformation imports the others because they factorize the
Relations that are used by it.

B.1 ARCHITECTURAL GENERATIVE PATTERN

transformation ATRIUM2ToArchModel(scenarios:ATRIUMScenarios;
archModel: ArchitecturalModel)
{
key archModel::System {name};
key archModel::Component {name};
key archModel::Connector {name};
key archModel::Port {name, ArchitecturalElement};
key archModel::Attachment {name, System};
key archModel::Aspect {name};

top relation FragmentToSystems
{
 cn: String; c:archModel::Component;
 checkonly domain scenarios p:SystemFrame{
 fragment=sf:SystemFrame {systemName=cn}
 }{p.fragment->notEmpty()};
 enforce domain archModel s:System{
 name=cn
 };
 where{
 MessageToArchElements(sf, s);
 MessageBetweenComponentsToArchElements(sf, s);
 GeneralOrderingToWeaving(sf, s);
 }
}

relation SystemFrameToConnector
{
 cn: String;
 checkonly domain scenarios sf:SystemFrame{
 lifeline=l:Lifeline{name=cn}
 }{l->oclIsKindOf(Connector)};
 enforce domain archModel c:Connector{
 name=cn
 };
}

356 Appendix B

relation SystemFrameToComponent
{
 cn: String;
 checkonly domain scenarios sf:SystemFrame{
 lifeline=l:Lifeline{name=cn}
 }{l->oclIsKindOf(Component)};
 enforce domain archModel c:Component{
 name=cn
 };
}

query NameConnector(l1:ATRIUMScenarios::Lifeline,
l2:ATRIUMScenarios::Lifeline):ATRIUMScenarios::Lifeline
{
 if (l1->oclIsTypeOf(ATRIUMScenarios::Connector)) then l1
 else l2 endif
}

query NameComponent(l1:ATRIUMScenarios::Lifeline,
l2:ATRIUMScenarios::Lifeline):ATRIUMScenarios::Lifeline
{
 if (l1->oclIsTypeOf(ATRIUMScenarios::Component)) then l1
 else l2 endif
}

query KindService(s:String):String
{
 if (s='in') then 'in'
 else 'out' endif
}

relation MessageToArchElements
{
 cn: String; cn1: String; cn2: String; cn3: String;
 cn4: String; p:ARCHMODEL::Port;
 comp:ARCHMODEL::Component; con:ARCHMODEL::Connector;
 lcon:ATRIUMScenarios::Lifeline; lcom:ATRIUMScenarios::Lifeline;
 seqArch:Sequence(ARCHMODEL::ArchitecturalElement);
 checkonly domain scenarios sf:SystemFrame
 {
 message=m:Message{
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{name=cn1}},
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{name=cn2}}
 }
 }{(l1->oclIsKindOf(Connector) and l2->oclIsKindOf(Component)) or
 (l1->oclIsKindOf(Component) and l2->oclIsKindOf(Connector))};
 enforce domain archModel s:System{
 containsComps= comp ,
 containsCnct= con
 };
 where {
 lcom=NameComponent(l1, l2);
 lcon=NameConnector(l1, l2);
 LifelineComponentToComponent(lcom, comp);

 Transforming ATRIUM Scenarios – PRISMA 357

 LifelineConnectorToConnector(lcon, con);
 MessageToAttachmentComponent(lcom, s, lcon.name, lcom.name);
 MessageToAttachmentConnector(lcon, s, lcon.name, lcom.name);
 LifelineToServiceAspectComponent(lcom, comp);
 LifelineToServiceAspectConnector(lcon, con);
 }
}

relation MessageToAttachmentComponent
{
 cn:String; nComp:String; attName:String;
 checkonly domain scenarios l:Lifeline{name=cn};
 enforce domain archModel s:System{
 connect=a:Attachment{
 name=attName,
 linkPort=p:Port{
 name=nComp,
 ArchitecturalElement=c:Component{name=cn}
 }
 }
 };
 primitive domain portComp:String;
 primitive domain portCon:String;
 where{
 attName=portComp+portCon;
 nComp=portComp;
 }
}

relation MessageToAttachmentConnector
{
 cn:String; attName:String; nCon:String;
 checkonly domain scenarios l:Lifeline{name=cn};
 enforce domain archModel s:System{
 connect=a:Attachment{
 name=attName,
 linkPort=p:Port{
 name=nCon,
 ArchitecturalElement=c:Connector{name=cn}
 }
 }
 };
 primitive domain portComp:String;
 primitive domain portCon:String;
 where{
 attName=portComp+portCon;
 nCon=portCon;
 }
}

relation LifelineComponentToComponent
{
 cn: String;
 checkonly domain scenarios l:Lifeline{
 name=cn
 }{l->oclIsKindOf(Component)};
 enforce domain archModel con :Component{

358 Appendix B

 name=cn
 };
}

relation LifelineConnectorToConnector
{
 cn: String;
 checkonly domain scenarios l:Lifeline{
 name=cn
 }{l->oclIsKindOf(Connector)};
 enforce domain archModel con :Connector{
 name=cn
 };
}

relation ArchitecturalElementsToAttachment
{
 cn:String;
 checkonly domain scenarios sf:SystemFrame{};
 enforce domain archModel a:Attachment{ name=cn };
 primitive domain s:String;
 where{ cn=s; }
}
}

B.2 ARCHITECTURAL STYLE-ORIENTED TRANSFORMATION

Transformation
ATRIUM2ToArchModelACROSETStyle(scenarios:ATRIUMScenarios;
archModel: ArchitecturalModel)
{
key archModel::System {name};
key archModel::Component {name};
key archModel::Connector {name};
key archModel::Port {name, ArchitecturalElement};
key archModel::Attachment {name, System};
key archModel::Aspect {name};

top relation TransformationApplyingACROSET
{
 cn: String; ln1: String; sn1: String; ln2: String;
 sn2: String; attName:String;
 s1:archModel::System; s2:archModel::System; ps1:archModel::Port;
 ps2:archModel::Port; pae1:archModel::Port;
 pae2:archModel::Port;
 checkonly domain scenarios p:Package
 {
 packagedElement= i:Interaction{
 message= m:Message{
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{
 name=ln1,
 interaction=i1:SystemFrame{systemName=sn1}

 Transforming ATRIUM Scenarios – PRISMA 359

 }
 },
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{
 name=ln2,
 interaction=i2:SystemFrame{systemName=sn2}
 }
 }
 }
 }
 }{i.message->notEmpty() and
 ((i1.systemName.substring(i1.systemName.size()-2,
 i1.systemName.size())='MUC' and
 i2.systemName.substring(i2.systemName.size()-2,
 i2.systemName.size())='SUC') or
 (i1.systemName.substring(i1.systemName.size()-2,
 i1.systemName.size())='RUC' and
 i2.systemName.substring(i2.systemName.size()-2,
 i2.systemName.size())='MUC'))
 and (l1->oclIsTypeOf(Component) or l1->oclIsTypeOf(Connector))
 and (l2->oclIsTypeOf(Component) or l2->oclIsTypeOf(Connector))};
 enforce domain archModel s:System{
 name=ps1.ArchitecturalElement.name,
 connect=att:Attachment{
 name=attName,
 linkPort=ps1
 }
 };
 where{
 attName=sn1+ln1+sn2+ln2;
 LifelineToArchitecturalElementBinding(l1, ps1, sn2+ln2);
 MessageToBinding2(l2, s, sn1+ln1, sn2+ln2);
 }
}

top relation MessageToBindingComposed
{
 cn: String; ln1: String; sn1: String; ln2: String;
 sn2: String; attName:String; s1:archModel::System;
 s2:archModel::System; ps1:archModel::Port; ps2:archModel::Port;
 pae1:archModel::Port; pae2:archModel::Port;
 checkonly domain scenarios p:Package
 {
 packagedElement= i:Interaction{
 message= m:Message{
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{
 name=ln1,
 interaction=i1:SystemFrame{systemName=sn1}
 }
 },
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{
 name=ln2,
 interaction=i2:SystemFrame{systemName=sn2}
 }

360 Appendix B

 }
 }
 }
 }{i.message->notEmpty() and
 ((i1.systemName.substring(i1.systemName.size()-2,
 i1.systemName.size())='SUC' and
 i2.systemName.substring(i2.systemName.size()-2,
 i2.systemName.size())='MUC') or
 (i1.systemName.substring(i1.systemName.size()-2,
 i1.systemName.size())='MUC' and
 i2.systemName.substring(i2.systemName.size()-2,
 i2.systemName.size())='RUC'))
 and (l1->oclIsKindOf(Component) or l1->oclIsKindOf(Connector))
 and (l2->oclIsKindOf(Component) or l2->oclIsKindOf(Connector))};
 enforce domain archModel s:System{
 name=ps1.ArchitecturalElement.name,
 connect=att:Attachment{
 name=attName,
 linkPort=ps1
 }
 };
 where{
 attName=sn2+ln2+sn1+ln1;
 LifelineToArchitecturalElementBinding(l2, ps1, sn1+ln1);
 MessageToBinding2(l2, s, sn2+ln2, sn1+ln1);
 }
}

relation MessageToBinding2
{
 cn: String; ln1: String; sn1: String; ln2: String;
 sn2: String; attName:String;
 s1:archModel::System; s2:archModel::System;
 ps1:archModel::Port; ps2:archModel::Port;
 pae1:archModel::Port; pae2:archModel::Port;
 checkonly domain scenarios l2:Lifeline{
 name=ln2,
 interaction=i2:SystemFrame{systemName=sn2}
 };
 enforce domain archModel s:System{
 connect=att:Attachment{
 name=attName,
 linkPort=ps2
 }
 };
 primitive domain portName1:String;
 primitive domain portName2:String;
 where{
 attName= portName1 + portName2;
 LifelineToArchitecturalElementBinding(l2, ps2, portName1);
 }
}

relation LifelineToArchitecturalElementBinding
{
 cn: String; ln: String; pn:String;
 checkonly domain scenarios l:Lifeline{

 Transforming ATRIUM Scenarios – PRISMA 361

 name=ln,
 interaction=i:SystemFrame{systemName=cn}
 };
 enforce domain archModel p:Port{
 name=pn,
 ArchitecturalElement=s:System{name=cn }
 };
 primitive domain portName:String;
 where{
 pn=portName;
 LifelineToComponentBinding(l, p, portName);
 LifelineToConnectorBinding(l, p, portName);
 }
}

relation LifelineToComponentBinding
{
 sn: String; pn: String; ln: String; bn:String;
 a:archModel::ArchitecturalElement; b:archModel::Binding;
 checkonly domain scenarios l:Lifeline{
 name=ln,
 interaction=sf:SystemFrame{systemName=sn}
 }{l->oclIsKindOf(Component)};
 enforce domain archModel p:Port{
 name=pn,
 ArchitecturalElement=s:System{
 name=sn,
 containsComps=c:Component{
 name=ln,
 has=pc1:Port{
 name=pn,
 isComponent=b:Binding{
 name= ln
 }
 }
 },
 has=pc2:Port{
 name=pn,
 isComposed=b
 }
 }
 };
 primitive domain portName:String;
 where{
 pn=portName;
 nameBinding= ln;
 }

relation LifelineToConnectorBinding
{
 sn: String; pn: String; ln: String;
 a:archModel::ArchitecturalElement; b:archModel::Binding;
 checkonly domain scenarios l:Lifeline{
 name=ln,
 interaction=sf:SystemFrame{systemName=sn}
 }{l->oclIsKindOf(Connector)};

362 Appendix B

 enforce domain archModel p:Port{
 name=pn,
 ArchitecturalElement=s:System{
 name=sn,
 containsCnct=c:Connector{
 name=ln,
 has=pc1:Port{
 name=pn,
 isComponent=b:Binding{
 name= ln
 }
 }
 },
 has=pc2:Port{
 name=pn,
 isComposed=b
 }
 }
 };
 primitive domain portName:String;
 where
 {
 pn=portName;
 nameBinding= ln;
 }
}
}

B.3 IDIOMS-ORIENTED TRANSFORMATION

import archpatt.qvt;
import archstyle.qvt;
transformation ATRIUM2ToArchModelPRISMA(scenarios:ATRIUMScenarios;
archModel: ArchitecturalModel)
{
key archModel::System {name};
key archModel::Component {name};
key archModel::Connector {name};
key archModel::Port {name, ArchitecturalElement};
key archModel::Attachment {name, System};
key archModel::Aspect {name};

relation LifelineToServiceAspectConnector
{
 cn: String; cn1:String; cn2:String; as:ARCHMODEL::Aspect;
 checkonly domain scenarios l:Lifeline{
 coveredBy=mo:MessageOccurrenceSpecification {
 message=m:Message{}
 }
 }{m->oclIsTypeOf(Message)};
 enforce domain archModel c:Connector{
 imports=as
 };
 when{ LifelineToAspect(l,as, 'Coordination'); }

 Transforming ATRIUM Scenarios – PRISMA 363

 where{
 cn1=mo.event.name.substring(1,2);
 cn2=KindService(cn1);
 LifelineToService(m, as, cn2);
 }
}

relation LifelineToServiceAspectComponent
{
 cn: String; cn1:String; cn2:String; as:ARCHMODEL::Aspect;
 checkonly domain scenarios l:Lifeline{
 coveredBy=mo:MessageOccurrenceSpecification {
 message=m:Message{}
 }
 }{m->oclIsTypeOf(Message)};
 enforce domain archModel c:Component{
 imports=as
 };
 when{ LifelineToAspect(l,as, 'Functional'); }
 where{
 cn1=mo.event.name.substring(1,2);
 cn2=KindService(cn1);
 LifelineToService(m, as, cn2);
 }
}

relation LifelineToService
{
 cn: String; cn1: String;
 checkonly domain scenarios m:Message{ name=cn };
 enforce domain archModel as:Aspect{
 belongsTo=s:Service{
 type=cn1,
 name=cn
 }
 };
 primitive domain parType:String;
 where{ cn1=parType; }
}

relation LifelineToAspect
{
 cn: String; conc: String;
 checkonly domain scenarios l:Lifeline{ name=cn };
 enforce domain archModel a:Aspect{
 name=cn,
 concern=conc
 };
 primitive domain parConcern:String;
 where{
 conc=parConcern;
 LifelineToBegin(l,a);
 LifelineToEnd(l,a);
 }
}

relation LifelineToBegin

364 Appendix B

{
 cn: String;
 checkonly domain scenarios l:Lifeline{};
 enforce domain archModel a:Aspect {
 belongsTo= b1:Service{name='begin()'}
 };
}
relation LifelineToEnd
{
 cn: String;
 checkonly domain scenarios l:Lifeline{};
 enforce domain archModel a:Aspect {
 belongsTo= b1:Service{name='end()'}
 };
}

relation MessageBetweenComponentsToArchElements
{
 cn: String; cn1: String; cn2: String;
 comp:ARCHMODEL::Component; con:ARCHMODEL::Connector;
 checkonly domain scenarios sf:SystemFrame
 {
 message=m:Message
 {
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{name=cn1}},
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{name=cn2}}
 }
 }{(l1->oclIsKindOf(Component) and l2->oclIsKindOf(Component))};
 enforce domain archModel s:System{
 containsComps= comp,
 containsCnct=con
 };
 where {
 LifelineComponentToComponent(l1, comp);
 LifelineConnectorToConnectorBetweenComponents(l1, con);
 MessageToAttachmentComponent(l1, s, con.name, comp.name);
 MessageToAttachmentConnectorBetweenComponents(l1, s,
 con.name, comp.name);
 MessageReceiveBetweenComponentsToArchElements(l2, s, cn1);
 }
}

relation MessageReceiveBetweenComponentsToArchElements
{
 cn: String; cn1: String; cn2: String;
 comp:ARCHMODEL::Component; con:ARCHMODEL::Connector;
 att:ARCHMODEL::Attachment;
 checkonly domain scenarios l:Lifeline{ name=cn };
 enforce domain archModel s:System{
 containsComps= comp,
 containsCnct=con
 };
 primitive domain compName:String;
 where{

 Transforming ATRIUM Scenarios – PRISMA 365

 LifelineComponentToComponent(l, comp);
 LifelineConnectorToConnectorBetweenComponents(l, con);
 MessageToAttachmentComponent(l, s, con.name, comp.name);
 MessageToAttachmentConnectorBetweenComponents(l, s, con.name,
 comp.name);
 }
}

relation MessageToAttachmentConnectorBetweenComponents
{
 sn:String; cn:String; attName:String; nCon:String;
 checkonly domain scenarios l:Lifeline{
 interaction=sf:SystemFrame{name=sn}
 };
 enforce domain archModel s:System{
 connect=a:Attachment{
 name=attName,
 linkPort=p:Port{
 name=nCon,
 ArchitecturalElement=c:Connector{name=cn}
 }
 }
 };
 primitive domain portComp:String;
 primitive domain portCon:String;
 where{
 attName=portComp+portCon;
 nCon=portCon;
 cn='Cnct'+sn;
 }
}

relation LifelineConnectorToConnectorBetweenComponents
{
 cn: String; cn1: String;
 checkonly domain scenarios l:Lifeline{
 interaction=sf:SystemFrame{systemName=cn}
 };
 enforce domain archModel con:Connector{ name=cn1 };
 where{ cn1='Cnct'+cn; }
}

relation MessageToAspectBetweenComponents
{
 cn: String; cn1: String;
 checkonly domain scenarios sf:SystemFrame{ systemName=cn1 };
 enforce domain archModel s:System{
 containsCnct= con :Connector {name=cn}
 };
 where{ cn='Cnt'+cn1; }
}

top relation MessageFromHumanToComponent
 {
 cn: String; ln1: String; sn: String; ln2: String; sn2: String;
 comp:archModel::Component; lcom: ATRIUMScenarios::Lifeline;
 checkonly domain scenarios p:Package

366 Appendix B

 {
 packagedElement= i:Interaction{
 message= m:Message{
 name=cn,
 sendEvent=m1:MessageOccurrenceSpecification{
 covered=l1:Lifeline{
 name=ln1
 }
 },
 receiveEvent=m2:MessageOccurrenceSpecification{
 covered=l2:Lifeline{
 name=ln2,
 interaction=sf:SystemFrame{systemName=sn}
 }
 }
 }
 }
 }{i.message->notEmpty() and l1->oclIsKindOf(Human)
 and l2->oclIsKindOf(Component) and m->oclIsKindOf(Message)};
 enforce domain archModel s:System{
 name=sn,
 containsComps=comp
 };
 where{
 lcom=NameComponent(l1, l2); //this query determines which
 //lifeline is the Component
 mcom=NameComponentMO(m1, m2); //this query determines which
 //MessageOccurrenSpecification is the Component
 LifelineComponentToComponent(lcom, comp);
 LifelineToServicePresentationAspectComponent(mcom, comp);
 }
 }
 }{i.message->notEmpty() and ((l1->oclIsKindOf(Human) and
 l2->oclIsKindOf(Component)) or (l1->oclIsKindOf(Human) and
 l2->oclIsKindOf(Component))) and m->oclIsKindOf(Message)};
 enforce domain archModel s:System{
 name=sn,
 containsComps=comp
 };
 where{
 LifelineComponentToComponent(l2, comp);
 LifelineToServicePresentationAspectComponent(m2, comp);
 }
}

relation LifelineToServicePresentationAspectComponent
{
 cn: String; cn1:String; cn2:String; as:ARCHMODEL::Aspect;
 checkonly domain scenarios mo:MessageOccurrenceSpecification{
 covered=l:Lifeline {},
 message=m:Message{}
 };
 enforce domain archModel c:Component{ imports=as };
 when{ LifelineToAspect(l,as, 'Presentation'); }
 where{ LifelineToService(m, as, 'in'); }
}
}

-367-

Appendix C. ATRIUM Scenarios

C.1 SAFETY PATTERNS

Alternative Scenarios for the Safety Pattern: Redundant Safety Node

Figure C. 1 SafetyNode detects a fault during the movement

368 Appendix C

Figure C. 2 Monitored connector detects a fault during the movement

Figure C. 3 Any hazard arises during the movement

 ATRIUM Scenarios 369

C.2 TEACHMOVER SCENARIOS

OPE. 1 Operational closing of the Wrist by TeachMover Control accessing
RUC-SUC

The following scenario describes how the TeachMover controls the close of the
tool. It can be observed that the system RUC directly accesses to the tool

OPE. 2 Operational opening of the Wrist by TeachMover Control accessing
RUC-SUC

370 Appendix C

OPE. 8 Operational angular movement of the joint by TeachMover Control
accessing RUC-MUC-SUC

In the following scenario it can be observed how the TeachMover can control
each joint in a separated way. The scenarios that are referenced are described in
the ¡Error! No se encuentra el origen de la referencia..

 ATRIUM Scenarios 371

OPE. 15 Add a Safety Aspect to the control of the Wrist

This operationalization describes how the scenario described in ¡Error! No se
encuentra el origen de la referencia. is modified to take into account Safety
concerns.

OPE. 9 Operational angular movement by TeachMover Control RUC- MUC –
SUC

372 Appendix C

-373-

Appendix D. From an ATRIUM Scenario to a
PRISMA description

D.1 ATRIUM SCENARIO USED FOR GENERATION

In the following is presented how the scenario depicted in ¡Error! No se
encuentra el origen de la referencia. is translated to xmi following the
EMOF description of the ATRIUM Scenarios Model.
<?xml version="1.0" encoding="UTF-8" ?>
- <Package xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="ATRIUMScenarios" xmi:id="_jrkqYK-REdulGdzJuhFZlw"
name="EFTCoR">
-<nestedPackage xmi:id="_Rz8wkLCZEdu59b4jU24OaQ" name="Wrist">
- <packagedElement xsi:type="SystemFrame"
xmi:id="_tfjaMLI0EduhdIbZeY2ECA">
 <message xmi:id="_WSkjULdwEduSi-sHVP1Rgw"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed)"
receiveEvent="//@nestedPackage.0/@packagedElement.0/@fragment.3"
sendEvent="//@nestedPackage.0/@packagedElement.0/@fragment.2" />
 <message xmi:id="_gLvqILa7Edufg-VapKE-6g"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed)"
receiveEvent="_fZBZMLdqEduSi-sHVP1Rgw" sendEvent="_o6h_MLa7Edufg-
VapKE-6g" />
 <message name="wristmovejoint(newLeftHalfStep, newRightHalfStep,
speed)" receiveEvent="_p72gMK-SEdulGdzJuhFZlw"
sendEvent="_4PMkYLdxEduSi-sHVP1Rgw" />
 <message xmi:id="_b-3mgLdqEduSi-sHVP1Rgw"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed)"
receiveEvent="//@nestedPackage.0/@packagedElement.0/@fragment.5"
sendEvent="_3DOw4K-4EdubZJKMO78Tqg" />
 <message name="MoveOk(OK)" receiveEvent="_NsRvcK-7EduWeujrBWnIYg"
sendEvent="//@nestedPackage.0/@packagedElement.0/@fragment.6" />
 <message name="MoveOk(OK)"
receiveEvent="//@nestedPackage.0/@packagedElement.0/@fragment.0/@fragm
ent.2" sendEvent="_OqCGQK-9EduWeujrBWnIYg" />
 <message name="MoveOk(OK)" receiveEvent="_pbdiALa7Edufg-VapKE-6g"
sendEvent="//@nestedPackage.0/@packagedElement.0/@fragment.0/@fragment
.3" />
 <message name="MoveOk(OK)"
receiveEvent="//@nestedPackage.0/@packagedElement.0/@fragment.9"
sendEvent="_i9wEMLdqEduSi-sHVP1Rgw" />
 <lifeline xsi:type="Human" xmi:id="_WYfz4LdqEduSi-sHVP1Rgw"
name="HOperator" coveredBy="_i9wEMLdqEduSi-sHVP1Rgw
//@nestedPackage.0/@packagedElement.0/@fragment.2
//@nestedPackage.0/@packagedElement.0/@fragment.9
//@nestedPackage.0/@packagedElement.0/@fragment.11
//@nestedPackage.0/@packagedElement.0/@fragment.12" />
 <lifeline xsi:type="Component" name="Operator"
coveredBy="//@nestedPackage.0/@packagedElement.0/@fragment.13

374 Appendix D

//@nestedPackage.0/@packagedElement.0/@fragment.14 _o6h_MLa7Edufg-
VapKE-6g _pbdiALa7Edufg-VapKE-6g
//@nestedPackage.0/@packagedElement.0/@fragment.3" />
 <lifeline xsi:type="Environment" name="Wrist"
coveredBy="//@nestedPackage.0/@packagedElement.0/@fragment.16
//@nestedPackage.0/@packagedElement.0/@fragment.18
//@nestedPackage.0/@packagedElement.0/@fragment.17
//@nestedPackage.0/@packagedElement.0/@fragment.5
//@nestedPackage.0/@packagedElement.0/@fragment.6" />
- <fragment xsi:type="SystemFrame" xmi:id="_y_InsLdrEduSi-sHVP1Rgw"
name="RobotRUC.wristmovejoint(NewHalfSteps, Speed)"
systemName="RobotRUC" scenarioName="wristmovejoint(NewHalfSteps,
Speed)">
 <lifeline xsi:type="Component" xmi:id="_APdOQLdsEduSi-sHVP1Rgw"
name="Robot4U4Cnct" coveredBy="_fZBZMLdqEduSi-sHVP1Rgw _IzM0ILdwEduSi-
sHVP1Rgw _IXfIgLdwEduSi-sHVP1Rgw _4PMkYLdxEduSi-sHVP1Rgw
_FL_yALdyEduSi-sHVP1Rgw" />
 <fragment xsi:type="MessageOccurrenceSpecification"
xmi:id="_fZBZMLdqEduSi-sHVP1Rgw" name="MOS-Robot4U4Cnct-1-1-in"
covered="_APdOQLdsEduSi-sHVP1Rgw" event="_z4e4sLIUEduXkqb1bjAvKA"
message="_gLvqILa7Edufg-VapKE-6g" />
 <fragment xsi:type="MessageOccurrenceSpecification"
xmi:id="_4PMkYLdxEduSi-sHVP1Rgw" name="MOS-Robot4U4Cnct-1-1-out"
covered="_APdOQLdsEduSi-sHVP1Rgw" event="_A-rS4LIVEduXkqb1bjAvKA"
message="//@nestedPackage.0/@packagedElement.0/@message.2" />
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-
Robot4U4Cnct-1-2-in" event="//@nestedPackage.0/@packagedElement.19"
message="//@nestedPackage.0/@packagedElement.0/@message.5" />
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-
Robot4U4Cnct-1-2-out" event="//@nestedPackage.0/@packagedElement.9"
message="//@nestedPackage.0/@packagedElement.0/@message.6" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_IXfIgLdwEduSi-sHVP1Rgw" name="EOS-Robot4U4Cnct-1-start"
covered="_APdOQLdsEduSi-sHVP1Rgw" execution="_FL_yALdyEduSi-sHVP1Rgw"
/>
 <fragment xsi:type="BehaviorExecutionSpecification"
xmi:id="_FL_yALdyEduSi-sHVP1Rgw" name="BES-Robot4U4Cnct-1"
covered="_APdOQLdsEduSi-sHVP1Rgw" start="_IXfIgLdwEduSi-sHVP1Rgw"
finish="_IzM0ILdwEduSi-sHVP1Rgw" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_IzM0ILdwEduSi-sHVP1Rgw" name="EOS-Robot4U4Cnct-1-finish"
covered="_APdOQLdsEduSi-sHVP1Rgw" execution="_FL_yALdyEduSi-sHVP1Rgw"
/>
 </fragment>
- <fragment xsi:type="SystemFrame" xmi:id="_TeCPUK-SEdulGdzJuhFZlw"
name="WristSUC.wristmovejoint(newLeftHalfStep, newRightHalfStep,
speed)" systemName="WristSUC"
scenarioName="wristmovejoint(newLeftHalfStep, newRightHalfStep,
speed)">
 <message xmi:id="_mF_B4K-SEdulGdzJuhFZlw"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed)"
receiveEvent="_Wz-WwK-aEdulGdzJuhFZlw" sendEvent="_pVjVMK-
SEdulGdzJuhFZlw" />
 <message xmi:id="_6gMDIK-8EduWeujrBWnIYg" name="MoveOk(OK)"
receiveEvent="_FYXtoK-9EduWeujrBWnIYg" sendEvent="_N-T6oK-
7EduWeujrBWnIYg" />

 From an ATRIUM Scenario to a PRISMA description 375

 <lifeline xsi:type="Connector" xmi:id="_kfT_AK-SEdulGdzJuhFZlw"
name="WristCnct" coveredBy="_p72gMK-SEdulGdzJuhFZlw _sHU5QK-
SEdulGdzJuhFZlw _pVjVMK-SEdulGdzJuhFZlw _vUNsAK-SEdulGdzJuhFZlw
_FYXtoK-9EduWeujrBWnIYg _OqCGQK-9EduWeujrBWnIYg _v2yNkK-
SEdulGdzJuhFZlw" />
 <lifeline xsi:type="Component" xmi:id="_lZbd4K-SEdulGdzJuhFZlw"
name="WristActuator" coveredBy="_3DOw4K-4EdubZJKMO78Tqg _Wz-WwK-
aEdulGdzJuhFZlw _x0Wz4K-aEdulGdzJuhFZlw _tNKmUK-aEdulGdzJuhFZlw
_yisgkK-aEdulGdzJuhFZlw" />
 <lifeline xsi:type="Component" xmi:id="_k8N9cK-SEdulGdzJuhFZlw"
name="WristSensor" coveredBy="_N-T6oK-7EduWeujrBWnIYg _NsRvcK-
7EduWeujrBWnIYg _JUBgUK-8EduWeujrBWnIYg _nkfxAK_DEduWeujrBWnIYg
_ETWbwK-8EduWeujrBWnIYg" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_p72gMK-
SEdulGdzJuhFZlw" name="MOS-WristCnct-1-1-in" covered="_kfT_AK-
SEdulGdzJuhFZlw" event="_9w5IQLIUEduXkqb1bjAvKA"
message="//@nestedPackage.0/@packagedElement.0/@message.2" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_pVjVMK-
SEdulGdzJuhFZlw" name="MOS-WristCnct-1-1-out" covered="_kfT_AK-
SEdulGdzJuhFZlw" event="_BNubgLIVEduXkqb1bjAvKA" message="_mF_B4K-
SEdulGdzJuhFZlw" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_Wz-WwK-
aEdulGdzJuhFZlw" name="MOS-WristActuator-1-1-in" covered="_lZbd4K-
SEdulGdzJuhFZlw" event="_-hnakLIUEduXkqb1bjAvKA" message="_mF_B4K-
SEdulGdzJuhFZlw" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_3DOw4K-
4EdubZJKMO78Tqg" name="MOS-WristActuator-1-1-out" covered="_lZbd4K-
SEdulGdzJuhFZlw" event="_Beai4LIVEduXkqb1bjAvKA" message="_b-
3mgLdqEduSi-sHVP1Rgw" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_NsRvcK-
7EduWeujrBWnIYg" name="MOS-WristSensor-1-1-in" covered="_k8N9cK-
SEdulGdzJuhFZlw" event="__d0kILIUEduXkqb1bjAvKA"
message="//@nestedPackage.0/@packagedElement.0/@message.4" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_N-T6oK-
7EduWeujrBWnIYg" name="MOS-WristSensor-1-1-out" covered="_k8N9cK-
SEdulGdzJuhFZlw" event="//@nestedPackage.0/@packagedElement.7"
message="_6gMDIK-8EduWeujrBWnIYg" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_FYXtoK-
9EduWeujrBWnIYg" name="MOS-WristCnct-1-2-in" covered="_kfT_AK-
SEdulGdzJuhFZlw" event="//@nestedPackage.0/@packagedElement.18"
message="_6gMDIK-8EduWeujrBWnIYg" />
 <fragment xsi:type="MessageOccurrenceSpecification" xmi:id="_OqCGQK-
9EduWeujrBWnIYg" name="MOS-WristCnct-1-2-out" covered="_kfT_AK-
SEdulGdzJuhFZlw" event="//@nestedPackage.0/@packagedElement.8"
message="//@nestedPackage.0/@packagedElement.0/@message.5" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_vUNsAK-SEdulGdzJuhFZlw" name="EOS-WristCnct-1-start"
covered="_kfT_AK-SEdulGdzJuhFZlw" execution="_sHU5QK-SEdulGdzJuhFZlw"
/>
 <fragment xsi:type="BehaviorExecutionSpecification" xmi:id="_sHU5QK-
SEdulGdzJuhFZlw" name="BESwristCnct" covered="_kfT_AK-SEdulGdzJuhFZlw"
start="_vUNsAK-SEdulGdzJuhFZlw" finish="_v2yNkK-SEdulGdzJuhFZlw" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_v2yNkK-SEdulGdzJuhFZlw" name="EOS-WristCnct-1-finish"
covered="_kfT_AK-SEdulGdzJuhFZlw" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_x0Wz4K-aEdulGdzJuhFZlw" name="EOS-WristActuator-1-start"

376 Appendix D

covered="_lZbd4K-SEdulGdzJuhFZlw" execution="_tNKmUK-aEdulGdzJuhFZlw"
/>
 <fragment xsi:type="BehaviorExecutionSpecification" xmi:id="_tNKmUK-
aEdulGdzJuhFZlw" name="BESwristActuator" covered="_lZbd4K-
SEdulGdzJuhFZlw" start="_x0Wz4K-aEdulGdzJuhFZlw" finish="_yisgkK-
aEdulGdzJuhFZlw" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_yisgkK-aEdulGdzJuhFZlw" name="EOS-WristActuator-1-finish"
covered="_lZbd4K-SEdulGdzJuhFZlw" execution="_tNKmUK-aEdulGdzJuhFZlw"
/>
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_JUBgUK-8EduWeujrBWnIYg" name="EOS-WristSensor-1-start"
covered="_k8N9cK-SEdulGdzJuhFZlw" execution="_ETWbwK-8EduWeujrBWnIYg"
/>
 <fragment xsi:type="BehaviorExecutionSpecification" xmi:id="_ETWbwK-
8EduWeujrBWnIYg" name="BESwristSensor" covered="_k8N9cK-
SEdulGdzJuhFZlw" finish="_JUBgUK-8EduWeujrBWnIYg" />
 <fragment xsi:type="ExecutionOccurrenceSpecification"
xmi:id="_nkfxAK_DEduWeujrBWnIYg" name="EOS-WristSensor-1-finish"
covered="_k8N9cK-SEdulGdzJuhFZlw" execution="_ETWbwK-8EduWeujrBWnIYg"
/>
 </fragment>
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-
HOperator-1-1-out" covered="_WYfz4LdqEduSi-sHVP1Rgw"
event="_uEs8MLIUEduXkqb1bjAvKA" message="_WSkjULdwEduSi-sHVP1Rgw" />
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-
Operator-1-1-in"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.1"
event="_x2P7MLIUEduXkqb1bjAvKA" message="_WSkjULdwEduSi-sHVP1Rgw" />
 <fragment xsi:type="MessageOccurrenceSpecification"
xmi:id="_o6h_MLa7Edufg-VapKE-6g" name="MOS-Operator-1-1-out"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.1"
event="_y_3OoLIUEduXkqb1bjAvKA" message="_gLvqILa7Edufg-VapKE-6g" />
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-Wrist-
1-1-in" covered="//@nestedPackage.0/@packagedElement.0/@lifeline.2"
event="_-_3c0LIUEduXkqb1bjAvKA" message="_b-3mgLdqEduSi-sHVP1Rgw" />
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-Wrist-
1-1-out" covered="//@nestedPackage.0/@packagedElement.0/@lifeline.2"
event="_HjCXwLIVEduXkqb1bjAvKA"
message="//@nestedPackage.0/@packagedElement.0/@message.4" />
 <fragment xsi:type="MessageOccurrenceSpecification"
xmi:id="_pbdiALa7Edufg-VapKE-6g" name="MOS-Operator-1-2-in"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.1"
event="//@nestedPackage.0/@packagedElement.20"
message="//@nestedPackage.0/@packagedElement.0/@message.6" />
 <fragment xsi:type="MessageOccurrenceSpecification"
xmi:id="_i9wEMLdqEduSi-sHVP1Rgw" name="MOS-Operator-1-2-out"
covered="_WYfz4LdqEduSi-sHVP1Rgw"
event="//@nestedPackage.0/@packagedElement.10"
message="//@nestedPackage.0/@packagedElement.0/@message.7" />
 <fragment xsi:type="MessageOccurrenceSpecification" name="MOS-
HOperator-1-2-in" covered="_WYfz4LdqEduSi-sHVP1Rgw"
event="//@nestedPackage.0/@packagedElement.21"
message="//@nestedPackage.0/@packagedElement.0/@message.7" />
 <fragment xsi:type="ExecutionOccurrenceSpecification" name="EOS-
HOperator-1-start"
execution="//@nestedPackage.0/@packagedElement.0/@fragment.11" />

 From an ATRIUM Scenario to a PRISMA description 377

 <fragment xsi:type="BehaviorExecutionSpecification" name="BES-
HOperator-1" covered="_WYfz4LdqEduSi-sHVP1Rgw"
finish="//@nestedPackage.0/@packagedElement.0/@fragment.12" />
 <fragment xsi:type="ExecutionOccurrenceSpecification" name="EOS-
HOperator-1-finish" covered="_WYfz4LdqEduSi-sHVP1Rgw"
execution="//@nestedPackage.0/@packagedElement.0/@fragment.11" />
 <fragment xsi:type="ExecutionOccurrenceSpecification" name="EOS-
Operator-1-start"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.1"
execution="//@nestedPackage.0/@packagedElement.0/@fragment.14" />
 <fragment xsi:type="BehaviorExecutionSpecification" name="BES-
Operator-1"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.1"
start="//@nestedPackage.0/@packagedElement.0/@fragment.13"
finish="//@nestedPackage.0/@packagedElement.0/@fragment.15" />
 <fragment xsi:type="ExecutionOccurrenceSpecification" name="EOS-
Operator-2-finish"
execution="//@nestedPackage.0/@packagedElement.0/@fragment.14" />
 <fragment xsi:type="ExecutionOccurrenceSpecification" name="EOS-
Wrist-1-start"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.2"
execution="//@nestedPackage.0/@packagedElement.0/@fragment.17" />
 <fragment xsi:type="BehaviorExecutionSpecification" name="BES-Wrist-
1" covered="//@nestedPackage.0/@packagedElement.0/@lifeline.2"
start="//@nestedPackage.0/@packagedElement.0/@fragment.16"
finish="//@nestedPackage.0/@packagedElement.0/@fragment.18" />
 <fragment xsi:type="ExecutionOccurrenceSpecification" name="EOS-
Wrist-1-finish"
covered="//@nestedPackage.0/@packagedElement.0/@lifeline.2"
execution="//@nestedPackage.0/@packagedElement.0/@fragment.17" />
 </packagedElement>
 <packagedElement xsi:type="SendOperationEvent" name="out1" />
 <packagedElement xsi:type="SendOperationEvent" name="out2" />
 <packagedElement xsi:type="SendOperationEvent" name="out3" />
 <packagedElement xsi:type="SendOperationEvent" name="out4" />
 <packagedElement xsi:type="SendOperationEvent" name="out5" />
 <packagedElement xsi:type="SendOperationEvent" name="out6" />
 <packagedElement xsi:type="SendOperationEvent" name="out7" />
 <packagedElement xsi:type="SendOperationEvent" name="out8" />
 <packagedElement xsi:type="SendOperationEvent" name="out9" />
 <packagedElement xsi:type="SendOperationEvent" name="out10" />
 <packagedElement xsi:type="SendOperationEvent" name="out11" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in1" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in2" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in3" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in4" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in5" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in6" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in7" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in8" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in9" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in10" />
 <packagedElement xsi:type="ReceiveOperationEvent" name="in11" />
 </nestedPackage>
 </Package>

378 Appendix D

D.2 GENERATED PRISMA SPECIFICATION

In the following is described the PRISMA Specification automatically generated
using ModelMorf, the set of Relations described in Appendix B and using as
input the ATRIUM scenario described in the previous section.

 <?xml version="1.0" encoding="ASCII" ?>
- <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:PRISMA="PRISMA">
- <PRISMA:System
xmi:id="PRISMA.System.d05a152f445dfced706f0a043a85ff7ceb814d1decf3b4cd
b74e3bf75f37c1a2" name="RobotRUC"
containsComps="PRISMA.Component.01c0d52bfc7f41eafcf0f411954510fedefbb0
9c3b4811fa374dce933f6c5eec">
 <has
xmi:id="PRISMA.Port.367a2dfe895e6beac198ce14a994901aa0f0abf3b2278f3042
a5f389f12c9237" name="WristSUCWristCnct"
isComposed="PRISMA.Binding.b361f311a6d65d68-b9d3ab0d5c187760" />
 <has
xmi:id="PRISMA.Port.489b2dfa789e6beac167ce14a556901bb1f0abf3b2278f3042
a5f389a12b3423" name="Operator"
isComposed="PRISMA.Binding.f462f461b6f67d68-bad3bc0d5c187890" />
 <connect
xmi:id="PRISMA.Attachment.3b9190527eaa48f670fb713902e7411ca0cc5ac2d176
4d5bccc8fde200eedd0a" name="RobotRUCRobot4U4CnctWristSUCWristCnct"
linkPort="PRISMA.Port.367a2dfe895e6beac198ce14a994901aa0f0abf3b2278f30
42a5f389f12c9237
PRISMA.Port.de583f4a8341c3a165748bae1e9a4f9f547013d0f24d613f785f1d035b
214456" />
 </PRISMA:System>
 <PRISMA:Binding xmi:id="PRISMA.Binding.b361f311a6d65d68-
b9d3ab0d5c187760" name="RobotRUCRobot4U4Cnct"
ARPort="PRISMA.Port.5c9ab0d99591e47b5e7df0d3c2e2635581f1f3862a415a7cb1
3cbbc26e5c62e1"
SystemPort="PRISMA.Port.367a2dfe895e6beac198ce14a994901aa0f0abf3b2278f
3042a5f389f12c9237" />
 <PRISMA:Binding xmi:id="PRISMA.Binding.f462f461b6f67d68-
bad3bc0d5c187890" name="RobotRUCOperator"
ARPort="PRISMA.Port.5c9ab0d99591e47b5e7df0d3c2e2635581f1f3862a415a7cb1
3cbbc26e5c62e1"
SystemPort="PRISMA.Port.d05a152f445dfced706f0a043a85ff7ceb814d1decf3b4
cdb74e3bf75f37c1a2" />
- <PRISMA:Component
xmi:id="PRISMA.Component.01c0d52bfc7f41eafcf0f411954510fedefbb09c3b481
1fa374dce933f6c5eec" name="Robot4U4Cnct"
imports="PRISMA.Aspect.01c0d52bfc7f41eafcf0f411954510fedefbb09c3b4811f
a374dce933f6c5eec">
 <has
xmi:id="PRISMA.Port.5c9ab0d99591e47b5e7df0d3c2e2635581f1f3862a415a7cb1
3cbbc26e5c62e1" name="WristSUCWristCnct"
isComponent="PRISMA.Binding.b361f311a6d65d68-b9d3ab0d5c187760" />
 <has
xmi:id="PRISMA.Port.6cfaa0f9a5617435a7df1d3f2e5637584f1a3872a616a7cb13

 From an ATRIUM Scenario to a PRISMA description 379

cbbc56e5a34a7" name="Operator"
isComponent="PRISMA.Binding.f462f461b6f67d68-bad3bc0d5c187890" />
 </PRISMA:Component>
- <PRISMA:Aspect
xmi:id="PRISMA.Aspect.01c0d52bfc7f41eafcf0f411954510fedefbb09c3b4811fa
374dce933f6c5eec" name="CoorRobot4U4Cnct" concern="Coordination">
 <belongsTo xmi:id="PRISMA.Service.19579f27cc91cd66-ec7c5c354cc006f5"
name="begin()" />
 <belongsTo xmi:id="PRISMA.Service.86c2de34edc9f9dd-6ad4ed8a7ab2272b"
name="end()" />
 <belongsTo xmi:id="PRISMA.Service.c1d8cfea3f8840de-f0fe47983f14b21f"
name="MoveOk(OK)" type="inout" />
 <belongsTo xmi:id="PRISMA.Service.aebe2013a3eae286-d0574cfe9509d48c"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed"
type="inout" />
 </PRISMA:Aspect>
- <PRISMA:System
xmi:id="PRISMA.System.abd7d05b397de29648a3f73964410b3b55ae98553f23e624
46440892f54ab8c5" name="WristSUC"
containsComps="PRISMA.Component.505edf42ce0978ba691699aa5e020e4717d33f
dc007f20cf5588a4ab96b785f1
PRISMA.Component.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde790044316
0d2fa93d136"
containsCnct="PRISMA.Connector.ac6f0c7950ebbf55df67f5f9fc45fdfe5764dd5
fce987c21bcff9348f4529e56">
 <has
xmi:id="PRISMA.Port.de583f4a8341c3a165748bae1e9a4f9f547013d0f24d613f78
5f1d035b214456" name="RobotRUCRobot4U4Cnct"
isComposed="PRISMA.Binding.6c92a297ee39d19d-524620d0b7880c66" />
 <connect
xmi:id="PRISMA.Attachment.4bf9d629df16ad3410f5d32e01c1f5647d6a2d7cb50e
b0ab3ee9bfccb440a03a" name="WristCnctWristActuator"
linkPort="PRISMA.Port.ab80097c7efdfc6a861460fb4e02df5582d59914ae38be43
8ff0fcdec55ad60b
PRISMA.Port.636238c2d2ed6b0978f2e6e946a07c2f400569287dd0cc02c019a51aaa
68dff9" />
 <connect
xmi:id="PRISMA.Attachment.2a46ac5b7063420c47a91c002387342526741c8cfe1f
b9208b695f0b5ac56e22" name="WristCnctWristSensor"
linkPort="PRISMA.Port.bd3953804692832e7662acc726a002700414ebeaecd36d7b
f24a1aa0f1f097d1
PRISMA.Port.ca52019b6b0062aa165c6f29fa69efffac5ee2a76998556cd03ecfe0bc
a7f4f6" />
 </PRISMA:System>
 <PRISMA:Binding xmi:id="PRISMA.Binding.6c92a297ee39d19d-
524620d0b7880c66" name="WristCnct"
ARPort="PRISMA.Port.2839f6179ed31c7d7a67ebb4b361b0cd03d405103c9ef2e134
86e15df53b7269"
SystemPort="PRISMA.Port.de583f4a8341c3a165748bae1e9a4f9f547013d0f24d61
3f785f1d035b214456" />
- <PRISMA:Connector
xmi:id="PRISMA.Connector.ac6f0c7950ebbf55df67f5f9fc45fdfe5764dd5fce987
c21bcff9348f4529e56" name="WristCnct"
imports="PRISMA.Aspect.ac6f0c7950ebbf55df67f5f9fc45fdfe5764dd5fce987c2
1bcff9348f4529e56">
 <has
xmi:id="PRISMA.Port.2839f6179ed31c7d7a67ebb4b361b0cd03d405103c9ef2e134

380 Appendix D

86e15df53b7269" name="RobotRUCRobot4U4Cnct"
isComponent="PRISMA.Binding.6c92a297ee39d19d-524620d0b7880c66" />
 <has
xmi:id="PRISMA.Port.636238c2d2ed6b0978f2e6e946a07c2f400569287dd0cc02c0
19a51aaa68dff9" name="WristActuator" />
 <has
xmi:id="PRISMA.Port.ca52019b6b0062aa165c6f29fa69efffac5ee2a76998556cd0
3ecfe0bca7f4f6" name="WristSensor" />
 </PRISMA:Connector>
- <PRISMA:Aspect
xmi:id="PRISMA.Aspect.ac6f0c7950ebbf55df67f5f9fc45fdfe5764dd5fce987c21
bcff9348f4529e56" name="CoorWristCnct" concern="Coordination">
 <belongsTo xmi:id="PRISMA.Service.8b8dae473afcf85c-247a0e994b9f5ff6"
name="begin()" />
 <belongsTo xmi:id="PRISMA.Service.2780fd6ce1fc6560-62f67ba515fd186f"
name="end()" />
 <belongsTo xmi:id="PRISMA.Service.91dd3432e7b602be-1c621974c1d84db1"
name="MoveOk(OK)" type="inout" />
 <belongsTo xmi:id="PRISMA.Service.6488fa61843ecae1-72f32c49d924ac17"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed"
type="inout" />
 </PRISMA:Aspect>
- <PRISMA:Component
xmi:id="PRISMA.Component.505edf42ce0978ba691699aa5e020e4717d33fdc007f2
0cf5588a4ab96b785f1" name="WristActuator"
imports="PRISMA.Aspect.505edf42ce0978ba691699aa5e020e4717d33fdc007f20c
f5588a4ab96b785f1">
 <has
xmi:id="PRISMA.Port.ab80097c7efdfc6a861460fb4e02df5582d59914ae38be438f
f0fcdec55ad60b" name="WristCnct" />
 </PRISMA:Component>
- <PRISMA:Aspect
xmi:id="PRISMA.Aspect.505edf42ce0978ba691699aa5e020e4717d33fdc007f20cf
5588a4ab96b785f1" name="WristActuator" concern="Functional">
 <belongsTo xmi:id="PRISMA.Service.7ef81bbeb15c0d9c-65802fd7c3a41635"
name="begin()" />
 <belongsTo xmi:id="PRISMA.Service.84f213be16689212-85155286b8879fdc"
name="end()" />
 <belongsTo xmi:id="PRISMA.Service.d352b0ec59ce9398-6ebe031c334720a6"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed)"
type="inout" />
 </PRISMA:Aspect>
- <PRISMA:Component
xmi:id="PRISMA.Component.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde7
900443160d2fa93d136" name="WristSensor"
imports="PRISMA.Aspect.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde790
0443160d2fa93d136">
 <has
xmi:id="PRISMA.Port.bd3953804692832e7662acc726a002700414ebeaecd36d7bf2
4a1aa0f1f097d1" name="WristCnct" />
 </PRISMA:Component>
- <PRISMA:Aspect
xmi:id="PRISMA.Aspect.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde7900
443160d2fa93d136" name="WristSensor" concern="Functional">
 <belongsTo xmi:id="PRISMA.Service.294ef583f786645b-7723670b0cf529d7"
name="begin()" />

 From an ATRIUM Scenario to a PRISMA description 381

 <belongsTo xmi:id="PRISMA.Service.2d8f6e6d283c8705-bd04adb8728ff1e7"
name="end()" />
 <belongsTo xmi:id="PRISMA.Service.435105467f982732-4f601d3b30c19b3b"
name="MoveOk(OK)" type="inout" />
 </PRISMA:Aspect>
- <PRISMA:System
xmi:id="PRISMA.System.d05a152f445dfced706f0a043a85ff7ceb814d1decf3b4cd
b74e3bf75f37c1a2" name=""
containsComps="PRISMA.Component.bc6bc31975cb45e0aa92cb82072e914a586688
3e5fde7900443160d2fa93d136">
 <connect
xmi:id="PRISMA.Attachment.3b9190527eaa48f670fb713902e7411ca0cc5ac2d176
4d5bccc8fde200eedd0a" name="OperatorRobotRUCRobot4U4Cnct"
linkPort="PRISMA.Port.bd3953804692832e7662acc726a002700414ebeaecd36d7b
f24a1aa0f1f097d1
PRISMA.Port.489b2dfa789e6beac167ce14a556901bb1f0abf3b2278f3042a5f389a1
2b3423" />
 </PRISMA:System>
- <PRISMA:Component
xmi:id="PRISMA.Component.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde7
900443160d2fa93d136" name="Operator"
imports="PRISMA.Aspect.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde790
0443160d2fa93d136">
 <has
xmi:id="PRISMA.Port.bd3953804692832e7662acc726a002700414ebeaecd36d7bf2
4a1aa0f1f097d1" name="WristCnct" />
 </PRISMA:Component>
- <PRISMA:Aspect
xmi:id="PRISMA.Aspect.bc6bc31975cb45e0aa92cb82072e914a5866883e5fde7900
443160d2fa93d136" name="PresOperator" concern="Presentation">
 <belongsTo xmi:id="PRISMA.Service.d708ef8fbec9707b-26b1e0c2214fa032"
name="begin()" />
 <belongsTo xmi:id="PRISMA.Service.da9d0e1c09e798cd-34f6b1d147a089f1"
name="end()" />
 <belongsTo xmi:id="PRISMA.Service.dd0ad62fd06a6eca-168c3c1564fd1d5f"
name="wristmovejoint(newLeftHalfStep, newRightHalfStep, speed"
type="inout" />
 <belongsTo xmi:id="PRISMA.Service.7fb390edb7ff96fe-ba5f8384fb3451c"
name="MoveOk(OK)" type="inout" />
 </PRISMA:Aspect>
 </xmi:XMI>

D.3 PRISMA ADL GENERATED

In the following is described the result of the transformation to textual
PRISMA ADL performed using MORPHEUS using as input the previous
specification.

Interface InterfacePRISMA1
 wristmovejoint(newLeftHalfStep, newRightHalfStep, speed);
 MoveOk(OK);
End_Interface InterfacePRISMA1;

382 Appendix D

Interface InterfacePRISMA2
 wristmovejoint(newLeftHalfStep, newRightHalfStep, speed);
End_Interface InterfacePRISMA2;

Interface InterfacePRISMA3
 MoveOk(OK);
End_Interface InterfacePRISMA3;

Presentation Aspect PresOperator using
 Services
 Begin();
 End();
 in/out wristmovejoint(newLeftHalfStep, newRightHalfStep, speed);
 in/out MoveOk(OK);
End Presentation Aspect PresOperator;

Coordination Aspect CoorRobot4U4Cnct using
 Services
 Begin();
 End();
 in/out wristmovejoint(newLeftHalfStep, newRightHalfStep, speed);
 in/out MoveOk(OK);
End Coordination Aspect CoorRobot4U4Cnct;

Coordination Aspect CoorWristCnct using
 Services
 Begin();
 End();
 in/out wristmovejoint(newLeftHalfStep, newRightHalfStep, speed);
 in/out MoveOk(OK);
End Coordination Aspect CoorWristCnct;

Coordination Aspect FuncWristSensor using
 Services
 Begin();
 End();
 in/out MoveOk(OK);
End Coordination Aspect FuncWristSensor;

Coordination Aspect FuncWristActuator using
 Services
 Begin();
 End();
 in/out wristmovejoint(newLeftHalfStep, newRightHalfStep, speed);
End Coordination Aspect FuncWristActuator;

End_Component «Functional»FuncWristActuator;

Component Operator
 Ports
 PortPRISMA1: InterfacePRISMA1;
 End_Ports;
 Presentation Aspect Import PresOperator;
End_Component Operator;

 From an ATRIUM Scenario to a PRISMA description 383

Component WristActuator
 Ports
 PortPRISMA2: InterfacePRISMA2;
 End_Ports;
 Functional Aspect Import FuncWristActuator;
End_Component WristActuator;

Component WristSensor
 Ports
 PortPRISMA3: InterfacePRISMA3;
 End_Ports;
 Functional Aspect Import FuncWristSensor;
End_Component WristSensor;

End_Connector «ComponentPRISMA»WristSensor;

End_Connector «ComponentPRISMA»WristSensor;

Connector Robot4U4Cnct
 Roles
 RolPRISMA2: InterfacePRISMA1;
 RolPRISMA1: InterfacePRISMA1;
 End_Roles;
 Coordination Aspect Import CoorRobot4U4Cnct;
End_Connector Robot4U4Cnct;

Connector WristCnct
 Roles
 RolPRISMA4: InterfacePRISMA1;
 RolPRISMA5: InterfacePRISMA2;
 RolPRISMA3: InterfacePRISMA3;
 End_Roles;
 Coordination Aspect Import CoorWristCnct;
End_Connector WristCnct;

System RobotRUC
 Ports
 PortPRISMA5: InterfacePRISMA1;
 PortPRISMA4: InterfacePRISMA1;
 End_Ports;
 Import_Types
 End_Import_Types;
 Instances
 End_Instances;
 Attachments
 End_Attachments;
 Bindings
 RobotRUC.PortPRISMA4 <-->
ConnectorPRISMA»Robot4U4Cnct.RolPRISMA2;
 RobotRUC.PortPRISMA5 <-->
ConnectorPRISMA»Robot4U4Cnct.RolPRISMA1;
 End_Bindings;
End_System RobotRUC;

System WristSUC
 Ports
 PortPRISMA6: InterfacePRISMA1;

384 Appendix D

 End_Ports;
 Import_Types
 End_Import_Types;
 Instances
 End_Instances;
 Attachments
 ComponentPRISMA»WristSensor.PortPRISMA3 <-->
ConnectorPRISMA»WristCnct.RolPRISMA5;
 ComponentPRISMA»WristActuator.PortPRISMA2 <-->
ConnectorPRISMA»WristCnct.RolPRISMA4;
 End_Attachments;
 Bindings
 ConnectorPRISMA»WristCnct.RolPRISMA3 <--> WristSUC.PortPRISMA6;
 End_Bindings;
End_System WristSUC;

	TABLE OF CONTENTS
	Chapter 1 - Introduction
	1.1 INTRODUCTION
	1.2 MOTIVATION
	1.3 METHODOLOGY OF DEVELOPMENT
	1.4 SCHEME OF THE WORK

	Chapter 2 - Requirements and Software Architecture:considering the Aspect-Oriented Approach
	2.1 INTRODUCTION
	2.2 AN OVERVIEW ABOUT REQUIREMENTS ENGINEERING
	2.2.1 Goal-Oriented Approach
	2.2.2 Scenario-based approach
	2.2.3 Problem Frames
	2.2.4 Viewpoints
	2.2.5 Features
	2.2.6 Variability Management

	2.3 AN OVERVIEW ABOUT SOFTWARE ARCHITECTURE
	2.4 ASPECT-ORIENTED SOFTWARE DEVELOPMENT
	2.4.1 Aspect-Oriented Requirements Engineering
	2.4.2 Aspect Oriented Software Architectures

	2.5 CONCLUSIONS

	Chapter 3 - Intertwining Requirements and SoftwareArchitecture: a Context for ATRIUM
	3.1 INTRODUCTION
	3.2 PROPOSALS INTERTWINING REQUIREMENTS AND SA
	3.2.1 Goal-Oriented for defining SA
	3.2.2 Scenarios and AOSD
	3.2.3 Problem Frames
	3.2.4 Features
	3.2.5 Other Proposals
	3.2.6 Main discussion

	3.3 OUR PROPOSAL: ATRIUM
	3.3.1 Models for ATRIUM
	3.3.2 A process for ATRIUM

	3.4 CONCLUSIONS

	Chapter 4 - Preliminaries
	4.1 INTRODUCTION
	4.2 TELE-OPERATED SYSTEMS
	4.2.1 EFTCoR: Environmental Friendly and cost-effective Technology forCoating Removal
	4.2.2 TeachMover

	4.3 AN INTRODUCTION TO PRISMA
	4.3.1 PRISMA Interfaces
	4.3.2 PRISMA Aspects
	4.3.3 PRISMA Architectural Elements
	4.3.4 PRISMA Systems
	4.3.5 PRISMA Attachments
	4.3.6 Instantiating a PRISMA model

	Chapter - 5 Goals: why the system will be
	5.1 INTRODUCTION
	5.2 A PROPOSAL FOR CUSTOMIZING RE METAMODELS
	5.2.1 A Metamodel for Requirement Specification
	5.2.2 A process for customizing the core

	5.3 DESCRIBING THE ATRIUM GOAL MODEL
	5.3.1 Building Blocks for the Goals Model
	5.3.2 Relationships: An Element in the Refinement Process

	5.4 A PROCESS FOR THE ATRIUM GOAL MODEL
	5.4.1 Elicitation and Specification of ATRIUM Goal Models
	5.4.2 Analyzing Goal Models

	5.5 CONCLUSIONS

	Chapter 6 - Playing with ATRIUM Goal Models
	6.1 INTRODUCTION
	6.2 ELICITATION AND SPECIFICATION
	6.2.1 Functionality
	6.2.2 Reliability
	6.2.3 Efficiency
	6.2.4 Maintainability
	6.2.5 Portability
	6.2.6 Safety: being one step ahead

	6.3 ANALYZING THE ATRIUM GOAL MODEL
	6.4 CONCLUSIONS

	Chapter 7 - Scenarios to run Aspect-Oriented SoftwareArchitectures
	7.1 INTRODUCTION
	7.2 ELEMENTS OF THE SCENARIOS MODEL
	7.3 GRAPHICAL NOTATION
	7.3.1 Lifelines
	7.3.2 Messages
	7.3.3 ExecutionSpecification
	7.3.4 Guards
	7.3.5 Interaction
	7.3.6 InteractionOccurrence
	7.3.7 Combined Fragments
	7.3.8 Gates

	7.4 ARCHITECTURAL STYLES AND PATTERNS
	7.4.1 Architectural Styles
	7.4.2 Design Patterns

	7.5 PROCESS FOR SCENARIOS MODELLING
	7.6 CONCLUSIONS

	Chapter 8 - Towards a first view of the Architecture
	8.1 INTRODUCTION
	8.2 CONTEXT AND ALTERNATIVES FOR OUR PROPOSAL
	8.2.1 QVT: a proposal for model transformation in ATRIUM

	8.3 DESCRIBING QVT TRANSFORMATIONS
	8.3.1 Architectural transformation patterns
	8.3.2 Applying the Architectural Style
	8.3.3 PRISMA idioms

	8.4 PROCESS FOR SYNTHESIS AND TRANSFORMATION
	8.5 CONCLUSIONS

	Chapter 9 - MORPHEUS: A Tool for ATRIUM
	9.1 INTRODUCTION
	9.2 TECHNOLOGIC DECISSIONS FOR MORPHEUS
	9.3 REQUIREMENTS ENVIRONMENT
	9.3.1 Requirements Metamodel Editor
	9.3.2 Requirements Editor
	9.3.3 An add-in for customizing the analysis process

	9.4 SCENARIOS ENVIRONMENT
	9.5 ARCHITECTURE ENVIRONMENT
	9.6 CONCLUSIONS

	Chapter 10 - Conclusions and further work
	10.1 CONCLUSIONS
	10.2 RESULTS OF THE PHD
	10.2.1 Publications
	10.2.2 Conference Activities

	10.3 FURTHER WORK

	KEYWORDS
	ACRONYMS
	REFERENCES
	LIST OF FIGURES
	Appendix A. Software Process EngineeringMetamodel
	Appendix B. Transforming ATRIUM Scenarios –PRISMA
	Appendix C. ATRIUM Scenarios
	Appendix D. From an ATRIUM Scenario to aPRISMA description

