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Abstract— Some sensor network applications involve an aerial 

deployment of many sensor nodes over a particular area of 

interest. In this context, current range-free localization proposals, 

based on an iterative refinement and exchange of node 

estimations, are not directly applicable, because they introduce a 

high traffic overhead. In this paper, we propose to control this 

overhead by means of avoiding the transmission of certain 

localization packets. The criterion applied by this new 

localization technique to filter packets is based on the amount of 

improvement shown after updating an estimation and the time 

from the last transmission. We also tune this filter in order to 

find an optimal trade-off between the benefit in traffic and the 

penalty in time. 

Keywords-component; wireless sensor networks, localization, 

range-free. 

I.  INTRODUCTION 

Air-dropped wireless sensor networks (ADWSNs) are an 
emerging research field. They consist of thousands of sensors 
which are carried in aerial (usually unmanned) vehicles, and 
deployed over the area of interest. A wide range of applications 
of this promising technology runs from environment 
monitoring [1] to support in disaster relief operations (such as 
wildfires [2] or earthquakes). 

ADWSNs have specific features which distinguish them 
from other types of sensor networks. First, they are necessarily 
very dense networks containing thousands of nodes, as they 
have to guarantee effective and reliable terrain coverage [3]. 
Furthermore, the topology of the network dynamically evolves 
due to nodes disappearing as their battery runs out, and new 
nodes appearing as a consequence of several sequential 
deployments in the same area (to extend network service). 
Moreover, although they are static nodes, their position 
changes while they are being transported and deployed, until 
they finally drop to the ground. Also, nodes should be rugged 
enough to absorb the impact with the ground and the 
environmental conditions (for example a wildfire). At the same 
time, they must be small and lightweight enough to minimize 
possible material/physical damage caused during their 
deployment. Finally, electronic devices should be 
environmentally friendly, due to the impossibility of collecting 
them after their operation. In this respect, there are several 
prototypes of biodegradable devices [4].  

After deployment, each network device must determine its 
own geographical position. This task is usually referred to as 
the localization process. Localization techniques may be 
classified into two general groups, referred to as range-free and 
range-based algorithms.  

Range-based techniques estimate the position of a node on 
the basis of its distance from several beacon nodes. Time 
difference of arrival (TDoA) [5], angle of arrival (AoA) [6], 
and received signal strength (RSS) [7] are examples of 
methods for measuring distances between nodes. The most 
popular range-based location algorithm is GPS (global 
positioning system). Unfortunately, constraints of size, energy 
consumption, and price make it unfeasible to equip every node 
in a dense ADWSN with a GPS receiver. However, it may be 
reasonable to incorporate a GPS in just a small subset of the 
sensors, and use such beacons to help estimate the position of 
the rest of the nodes. 

On the other hand, range-free techniques are based on the 
fact that sensor nodes are located inside the overlapping 
coverage area of the nodes they can hear. Assuming the 
existence of several beacon nodes, by means of an iterative 
process this area is progressively reduced, thus obtaining a 
more accurate estimation of the position. Some proposals 
employ fix-sized data structures to model the estimated 
localization areas. Two examples are rectangles [8] 
(represented by two points) and pseudo-hexagons [9] 
(represented by three points). Other proposals obtain more 
accurate areas, but progressively increase the amount of data 
transmitted. Some examples are convex polygons [10] 
(represented by up to thirty-two points) and Bézier curves [11] 
(represented by up to thirty points). We consider that the use of 
fix-sized data structures is more suitable for very dense 
network topologies, due to the additional overhead introduced 
by the latter proposals. 

In this context, to support the addition of new components 
during the network deployment operation, nodes necessarily 
retransmit their location estimation periodically. Figure 1 
shows the behavior of a generic range-free localization 
algorithm for different network sizes and transmission periods. 
From now on, the term transmission period means the interval 
of time between retransmissions of a single node. All the 
deployments were performed over the same area. Therefore, as 
network size increases, node connectivity increases (simulation 



methodology is fully described in Section 3.1). In Figure 1(a) 
we can see that as network connectivity increases, average 
location estimations become more accurate, whereas this 
accuracy is not affected by the transmission period applied. 
Figure 1(b) shows how the traffic generated by the localization 
process drastically increases as network size, connectivity, and 
transmission frequency increase. 

As shown above, dense networks natively improve the 
accuracy of the localization process, at the expense of 
dramatically increasing the traffic overhead. In this paper, we 
present and evaluate a range-free localization algorithm 
specifically designed for dense ADWSNs. To reduce the huge 
traffic overhead generated by hundreds or thousands of nodes 
executing an iterative refinement process, we propose to filter 

certain node transmissions. In particular, each time a node 
improves its estimation, it decides whether or not to retransmit 
on the basis of the relative improvement achieved and the time 
from the last transmission. This filter will be referred to as SIF 
(Sent Information-based Filter). It has been tuned in order to 
find a trade-off between the amount of information transmitted 
and the time consumed by the localization process. 

The rest of the paper is organized as follows. The next 
section describes the behavior of range-free localization 
algorithms based on rectangular intersection, and introduces the 
proposed localization scheme. Then, Section 3 analyzes the 
behavior of our proposal by presenting some simulation results. 
Finally, in Section 4 we give our some final conclusions and 
outline areas for future work. 

II. SIF LOCALIZATION ALGORITHM 

As mentioned in the introduction, our localization 
algorithm is based on the intersection of areas modeled by fix-
sized data structures. In particular, for this study we have used 
rectangles. In this section, we first describe the foundations of 
these algorithms, and then we present our proposal including 
the SIF filter. 

A. Principles of Rectangular Intersection 

In the literature, we can find several range-free techniques 
based on rectangular intersection. Basically, these proposals 
assume that if a node A can hear the transmission of a node B, 
A is located at some point inside a square that is centered at B. 
The side length of this square is twice the radio range of B. A 
seminal piece of work is the Bounding-Box algorithm [8], in 
which each node collects the position of its neighboring 
beacons and then obtains the intersection of the squares 
centered at these locations. Obviously, the result of this simple 
operation is a rectangle, whose center is the final estimation 
that the algorithms produce (see Figure 2). 

Several distributed and iterative versions of the rectangular 
intersection technique have been proposed [12, 13, 14]. These 
works consider the existence of nodes not covered by the 
beacons. In this case, during the activation of each device, it 
initializes two 2-D points determining its current localization 
estimation rectangle (AC). Beacon nodes obtain their accurate 
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Figure 1.  Localization error (a) and traffic (b), as a function of network 

size and transmission period, for a generic current range-free algorithm.  

R

 
Figure 2.  Rectangular Intersection. The central node estimates its position 

from intersection of squares representing beacons range. 



position from their internal GPS receiver and, therefore, AC 
becomes a point (or a very small square, if we assume a margin 
of error). In contrast, the rest of the nodes start from an 
“infinite” AC. Then, the iterative localization process is started 
by the beacons, which transmit their position to the medium. 
From this point, each time a node receives a localization 
estimation (AR), it extends the received area by using the radio 
range. The result of this operation will be referred to as ARX. 
After that, the receiving node updates its current estimation 
(AC), by intersecting it with ARX. Finally, the new estimation is 
transmitted again. One of these techniques [12] is detailed in 
the next table: 

 

Algorithm 1. Rectangular Intersection 

1: input: AR: received area, AC: current area  

2: output: AC 

3: compute A0RX: extended AR 

4: AC = ARX ∩ AC 

5: send AC 

 

Figure 3 shows an example of the previous algorithm. In 
(a), a beacon transmits its localization rectangle (box A). A 
non-located node (with an infinite AC) under beacon coverage 
receives the packet containing that localization rectangle AR 
(box A), and extends it by a factor equal to its radio range, 
obtaining ARX (box B). Then, the node estimates its current 
position AC = ARX (box B). Next, in (b), the same node receives 
a localization rectangle transmitted by another node (box C). 
Again, it extends the received area and intersects it (box D) 
with its own (box B), obtaining a new localization rectangle 
(box E).  

Note that the result of applying this proposal in dense 
ADWSNs is that it is very probable that a lot of very close 
nodes compute the same estimation, as they are listening to the 
same information. So, a large number of transmissions are 
redundant and may be explicitly filtered. 

B. Our Proposal 

We shall now describe our proposal for the localization 
algorithm for ADWSNs. The activation of each device is 
performed as explained in rectangular intersection. Beacon 
nodes obtain their accurate position from their internal GPS 
receiver and the rest of the nodes start from an “infinite” 
rectangle. 

For the execution of the localization process, we consider 
the existence of two modules at each network node. These 
modules are referred to as RCM (rectangle computation 
module) and DM (decision module). The RCM is activated 
each time the node receives a localization packet (AR). Then, in 
the same way as the above proposals, the node refines its 
estimation by calculating the intersection of the current 
rectangle (AC) with the one received, previously extending the 
latter by a factor equal to its radio range (ARX). After that, the 
percentage difference between the previously transmitted (AS) 
and the current rectangles is computed (dC). Obviously, AC is 
always less than or equal to AS and, therefore, dC is positive. 

The reason is clear; when a node receives a new packet and two 
rectangles intersect, the rectangle obtained is smaller than the 
previous one (see Figure 3), and therefore, than the previously 
transmitted. On the other hand, if a node receives a packet and 
ARX does not intersect with AC, then the new AC is equal to the 
previous one, so dC=0. The next algorithm details the actions 
performed by the RCM module: 

 

Algorithm 2. Rectangle Computation Module (RCM) 

1: input: AR: received area, AC: current area, AS: sent area 

2: output: AC: current area, dC: difference between 

estimations 

3: compute ARX: extended AR 

4: AC = ARX ∩ AC 

5: dC = (|AS|– |AC|) / |AS| 

 

On the other hand, the DM module at each node is 
periodically activated in order to decide whether or not to 
retransmit its current estimation (AC). First of all, this module 
compares the difference between estimations (dC, previously 
computed) with a predetermined threshold (d). Then, if the 
threshold is exceeded, the current estimation is immediately 
transmitted. The transmission is also performed when a preset 
transmission period (p) has expired. In both cases, the 
transmission period must be reset. However, if none of the 
above conditions are fulfilled, the node decides not to share its 
estimation at this time, thus filtering the transmission. As this 
decision is based on the information previously transmitted by 
the node, we call it Sent Information-based Filter (SIF). Below 
we detail the actions performed by the DM module: 

 

Algorithm 3. Decision Module (DM) 

1: input: dC, d: threshold difference, tC: current time, 

tS: AS sending time, p: transmission period 

2: output: AS, tS 

3: if (dC > d) ˅ (tC ≥ tS + p) do 

4:  send AC 

5:  AS = AC 

6:  tS = tC 

7: end if 

B

A C
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Figure 3.  Example of the iterative localization process. 



III. PERFORMANCE EVALUATION 

After describing our proposal, in this section we evaluate its 
behavior by simulation. First, we present the architecture of the 
simulator developed for this purpose and the set of simulations 
performed. We then show and discuss the results obtained. 

A. Simulation Methodology 

In order to evaluate our proposal, we used a simulation 
environment [15] developed for the EIDOS (Equipment 
Destined for Orientation and Safety) project [2], which 
proposes a WSN-based architecture applied to wildfire fighting 
operations. The environment is composed of several 
independent and interconnected modules, which share 
information by means of a global database (see Figure 4). 

The core component of the system is the sensor network 
simulator. This module consists of a simulation engine, 
developed in Python, which dynamically controls a TOSSIM 
[16] simulation. Before starting the simulation, the engine 
provides each beacon with its position, modeling in this way 
the real behavior of a GPS receiver. During the simulation, 
TOSSIM is in charge of collecting several statistics, and stores 
them in temporary files. At the end of the simulation, the 
Python engine performs the storage of this information on a 
MySQL database. 

In order to obtain realistic results, the simulator 
incorporates a noise and interference model and the Friis free-
space signal propagation model [17]. The noise and 
interference model residing in TOSSIM uses the Closest 
Pattern Matching (CPM) algorithm. CPM takes a noise trace as 
input and generates a statistical model from it. This model can 
capture bursts of interference and other correlated phenomena, 
such that it greatly improves the quality of the RF simulation. 
We modeled Crossbow’s IRIS mote radio XM2110CA [18], 
applying a transmit power of 0 dBm and a minimum received 
power of -88 dBm. Under these conditions, we obtain an 
approximate coverage range of 55 meters. 

Each simulation run consists of the deployment of a sensor 
network over a square area of 500×500 meters. For network 
size, we considered 600, 800, 1000, 1200, and 1400 nodes, 
with an associated connectivity degree (average amount of 
direct neighbors) of 19.35, 25.71, 32.17, 38.91, and 45.81, 
respectively. Beacons represent 2% of the network nodes. Each 

node is deployed at a random position over the area, at a  
random time during the first 20 minutes of simulation. 
Additionally, we analyzed the impact of the dropping speed on 
the behavior of our proposal. In this case, we fixed the network 
size to 1000 nodes and considered deployment times of 5, 10, 
15, 20 and 25 minutes. In all the cases, simulations conclude 
after 30 minutes to guarantee that the localization process 
finishes.  

For all the scenarios described above, we varied the 
parameters of the SIF filter to optimize it. In particular, we 
used transmission periods (p) of 0.5, 1, 2, 3, 4, and 5 minutes; 
and threshold differences (d) of 0, 20, 40, 60, 80, and 99%.  

In order to increase the accuracy of the results, each 
experiment were repeated 10 times for each configuration, and 
average values were drawn from the solution set and presented 
graphically. The combination of all these factors required 3240 
simulations executed over 24 generic PCs. 

 
Figure 4.  Architecture of the EIDOS simulation environment. 
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Figure 5.  Influence of the SIF filter on the behavior of the localization 

process. Average localization time per node against d (a) and p (b). Series 
represent p (a) and d (b) (network size: 1000 nodes, deployment time: 20 

min). 

 



B. Simulation Results 

The manipulation of d and p parameters in the SIF filter 
does not affect the estimation error. Consequently, in this 
section we do not include results related to estimation error, as 
they are similar to those shown in Fig. 1(a). 

Figure 5 shows the impact of d and p on the time consumed 
by a localization process executed over a network composed of 
1000 nodes deployed over a period of 20 minutes. Smaller 
values of d imply that node estimation updates are transmitted 
earlier, and the localization process is linearly faster, this 
behavior being clearer for larger values of p, as shown in 
Figure 5(a). As we can see in Figure 5(b), transmission periods 
shorter than pmin=0.5 minutes do not contribute significantly to 
speeding up the process. This is because there is a lower bound 
for localization time (referred to as TL), which is mainly 
determined by the deployment time, as Figure 6 shows.  

Figure 7 shows the impact of d and p on the traffic required 
by the localization process presented in Figure 5. As is obvious, 
the most restrictive threshold difference (d=99%) implies the 
minimum traffic overhead. Also, we can see that for 
transmission periods longer than pmax=5 minutes the 
improvement will not be significant. This provides a lower 
bound for localization packets (PL).  

Once we have established the interval [pmin, pmax], we can 
obtain the upper bounds for time (TU) and packets (PU) from 
the results of Figure 5 and Figure 7. Figure 8(a) presents the 
previous results, but expressed as a relative improvement with 
respect to these bounds. For localization packets, the interval 
[PL, PU] is translated to an interval of improvement of [100%, 
0%]. Similarly, for localization time, the interval [TL, TU] is 
translated to an interval of (negative) improvement of [0%, –
100%]. Figure 8(b) shows the aggregated improvement. 

As we have seen before, the improvement in traffic 
increases exponentially (Figure 7), and the improvement in 
time decreases linearly (Figure 5). This behavior guarantees the 
existence of an optimal tuning that provides the maximum 
improvement. In particular, for the selected scenario, Figure 8 
shows that the best configuration for the SIF filter is d=20% 
and p=2 minutes, obtaining in this case an aggregate 
improvement of 59%.  

Figure 9 shows the aggregate improvement observed for 
networks with several sizes, deployed in 20 minutes. As we can 
see, we have obtained the same optimal configuration in all 
cases. Thus, we can conclude that the network size does not 
affect the tuning of the SIF filter. 

Figure 10 shows the optimal configurations for the 1000-
node network, as a function of the deployment time. In the plot, 
values on the left represent faster deployments than on the 
right. As we can see, the SIF filter is highly sensitive to 
deployment speed.  

In very fast deployments, each node quickly improves its 
location estimation with the contribution of the rest of the 
nodes. In this case, it is better to quickly transmit periodic 
aggregations of several estimation improvements. As shown in 
the figure, SIF achieves this behavior by tuning high threshold 
differences combined with short transmission periods. 
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Figure 6.  Localization time against deployment time (upper and lower 

bounds). 
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Figure 7.  Influence of the SIF filter on the behavior of the localization 

process. Average number of localization packets per node against d (a) and p 

(b). Series represent p (a) and d (b) (network size: 1000 nodes, deployment 
time: 20 min). 



On the other hand, in slower deployments, nodes may 
experience periods of inactivity in which their estimation 
remains stable. In this case, it is better for each node to avoid 
the retransmission of many useless copies of the same 
estimation, but to react quickly under new estimation 
improvements. SIF achieves this behavior by tuning low 
threshold differences combined with high transmission periods. 

The global result is that nodes are able to dynamically tune 
the filter parameters to optimize the localization process on the 
basis of their detection rate of new neighbors. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed a range-free localization 
algorithm for dense air-deployed wireless sensor networks. Our 
contribution is to employ a filter to reduce the huge traffic 

overhead inherent to the process. The filter is based on 
avoiding the transmission of a localization estimation if it is not 
sufficiently different from the previous one. We have tuned the 
threshold for the difference between both estimations and the 
transmission period in order to find the optimal trade-off 
between the benefit in traffic and the penalty in time. We can 
conclude that this tuning is dependent on the speed of 
deployment, but not on other parameters, such as network size. 

As future work, we plan to incorporate in the nodes the 
ability to estimate the speed of appearance of their local nodes. 
This feature allows the nodes to tune the parameters p and d. 

Another line of work is about the decisions taken by a node. 
In the SIF filter, a node takes decisions according to its own 
estimation refinement. We plan to allow nodes to decide 
whether or not to retransmit their estimation depending on 
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Figure 8.  Improvement in localization time and traffic in relation to d and p (network size: 1000 nodes, deployment time: 20 min). 



whether it significantly improves the estimations transmitted 
from other nodes, evolving from individual decisions to 
collective ones. 
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