Providing Full QoS Support in Clusters Using
Only Two VCs at the Switches*

A. Martinez', F. J. Alfaro!, J. L. Sdnchez!, and J. Duato?

! Departamento de Informatica, Escuela Politécnica Superior
Universidad de Castilla-La Mancha, 02071 - Albacete, Spain
{alejandro,falfaro, jsanchez}@info-ab.uclm.es
2 Dept. de Informética de Sistemas y Computadores, Facultad de Informética
Universidad Politécnica de Valencia, 46071 - Valencia, Spain
jduato@disca.upv.es

Abstract. Current interconnect standards providing hardware support
for quality of service (QoS) consider up to 16 virtual channels (VCs) for
this purpose. However, most implementations do not offer so many VCs
because they increase the complexity of the switch and the scheduling de-
lays. In this paper, we show that this number of VCs can be significantly
reduced. Some of the scheduling decisions made at network interfaces
can be easily reused at switches without significantly altering the global
behavior. Specifically, we show that it is enough to use two VCs for QoS
purposes at each switch port, thereby simplifying the design and reducing
its cost.

1 Introduction

The last decade has witnessed a vast increase in the variety of computing devices
as well as in the number of users of those devices. In addition to the traditional
desktop and laptop computers, new handheld devices like pocket PCs, PDAs,
and multimedia cellular phones have now become household names.

The main reasons for the widespread use of computing devices are the avail-
ability of cheaper and more powerful devices and, even more importantly, the
huge amount of information and services available through the Internet. These
services rely on applications executed in many servers all around the world. Clus-
ters of PCs have emerged as a cost-effective platform to implement these services
and run the required Internet applications. These clusters provide service to
thousands or tens of thousands of concurrent users. Many of these applications
are multimedia applications, which usually present bandwidth and/or latency
requirements [1]. These are known as QoS requirements.

In the next section, we will be looking at some of the proposals to provide
QoS in clusters and system area networks. Most of them incorporate 16 or even

* This work was partly supported by the Spanish CICYT under grant TIC2003-08154-
C06, Junta de Comunidades de Castilla-La Mancha under grant PBC-05-005-1, and
by the Spanish State Secretariat of Education and Universities under FPU grant.

more VCs, devoting a different VC to each traffic class. This increases the switch
complexity and also prevents the use of these VCs for other purposes (for in-
stance, to provide adaptive routing or fault tolerance). Moreover, it seems that,
when the technology enables it, the trend is to increase the number of ports
instead of increasing the number of VCs per port [2].

In the recent switch designs, the buffers at the ports are implemented with a
memory space organized in logical queues. These queues consist in linked lists of
packets, with pointers to manage them. Our experience with communications’
hardware manufacturers [3] has taught us that the complexity of the switch and
the scheduling delays heavily depend on the number of queues at the ports. VCs,
which can be used for many purposes, are implemented as queues of this kind.
Then, a reduction of the number of VCs necessary to support QoS can be very
helpful in the switch design.

In this paper, we show that it is enough to use two VCs at each switch port
for the provision of QoS. One of these VCs is used for QoS traffic and the other
one for best-effort traffic. Although this is not a new idea, the novelty of our
proposal lies in the fact that the global behavior of the network is very similar
as if it had much more VCs. This can be achieved by reusing in the switches some
of the scheduling decisions made at network interfaces. Simulation results show
that applications achieve an adequate QoS performance, but with a reduced
processing delay and using fewer VCs, which results in less chip area.

The remainder of this paper is structured as follows. In the following section
the related work is presented. In Section 3 we present our strategy to reduce the
number of VCs required for QoS support. Details on the experimental platform
and the performance evaluation are presented in Section 4. Finally, Section 5
summarizes the results of this study and identifies directions for future research.

2 Related Work

During the last decade several switch designs with QoS support have been pro-
posed. All of them incorporate VCs in order to provide QoS support. In these
proposals, different scheduling algorithms are used to arbitrate between the dif-
ferent existing traffic flows, providing each one with QoS according to its re-
quirements.

The Multimedia Router (MMR) [4] is a hybrid router. It uses pipelined circuit
switching for multimedia traffic and virtual cut-through for best-effort traffic.
Pipelined circuit switching is connection-oriented and needs one VC per connec-
tion. This is the main drawback of the proposal because the number of VCs per
physical link is limited by the available buffer size and there may not be enough
VCs for all the possible existing connections. Therefore, the number of multi-
media flows allowed is limited by the number of VCs. Moreover, the scheduling
among hundreds of VCs is a complex task.

MediaWorm [5] was proposed to provide QoS in a wormhole router. It uses a
refined version of the Virtual Clock algorithm [6] to schedule the existing VCs.
These VCs are divided into two groups: One for best-effort traffic and the other

for real-time traffic. Several flows can share a VC, but 16 VCs are still needed to
provide QoS. Besides, it is well known that wormhole is more likely to produce
congestion than virtual cut-through. In [7], the authors propose a preemption
mechanism to enhance MediaWorm performance, but in our view that is a rather
complex solution.

InfiniBand was proposed in 1999 by the most important IT companies to
provide present and future server systems with the required levels of reliability,
availability, performance, scalability and QoS [8]. Specifically, the InfiniBand
Architecture (IBA) proposes three main mechanisms to provide the applications
with QoS. These are traffic segregation with service levels, the use of VCs (IBA
ports can have up to 16 VCs) and the arbitration at output ports according to an
arbitration table. Although IBA does not specify how these mechanisms should
be used, some proposals have been made to provide applications with QoS in
InfiniBand networks [9].

Finally, PCI Express Advanced Switching (AS) architecture is the natural
evolution of the traditional PCI bus [10]. It defines a switch fabric architecture
that supports high availability, performance, reliability and QoS. AS ports in-
corporate up to 20 VCs that are scheduled according to some QoS criteria. In
the AS specifications, three possible arbiters are proposed, one of them being
table-based.

All the proposals studied use a significant number of VCs to provide QoS
support. If a great number of VCs is implemented, it would require a significant
fraction of chip area and would make packet processing a more time-consuming
task. Moreover, in all the cases, the VCs are used to segregate the different traffic
classes. Therefore, it is not possible to use the available VCs to provide other
functionalities like adaptive routing or fault tolerance when all the VCs are used
to provide QoS support.

On the other hand, there have been proposals which use only two VCs. For in-
stance, the Avici TSR [11] is a well-known example of this. It is able to segregate
premium traffic from regular traffic. However, it is limited to this classification
and cannot differentiate among more categories. In the recent IEEE standards,
it is recommended to consider seven traffic classes [12]. So, although being able
to differentiate two categories is a big improvement, it could be insufficient.

In contrast, the novelty of our proposal lies in that although we use only two
VCs in the switches, the global behavior of the network is very similar as if the
switches were using much more VCs. This is because we are reusing at the switch
ports the scheduling decisions performed at the network interfaces, which have
as many VCs as traffic classes. In the end, the network provides a differentiated
service to all the traffic classes considered.

To the best of our knowledge, only Katevenis and his group [13] have proposed
something similar before. The basic idea of their architecture is to map the
multiple priority levels onto the two existing queues, for each crosspoint buffer.
The operation of the system is analogous to a two-lane highway, where cars drive
in one lane and overtake using the other. However, this proposal is complex
because it needs specific hardware and signaling. Furthermore, it is more limited

in its scope than ours, because it is aimed to a single-stage router based on a
single buffered crossbar. This crossbar has small buffers at the crosspoints that
the authors split into two VCs. In contrast, our proposal is a simpler and more
general technique, as we will see in the next section.

3 Reducing the Number of VCs for QoS Support

In this section, we present our proposal for QoS provision with reduced resources.
The basic idea consists in using only two VCs at the switch ports. One of these
VCs would be used for QoS packets and the other for best-effort packets. We
reuse at switches the scheduling decisions performed at network interfaces. This
allows us to achieve a performance similar to that obtained by systems with
much more VCs.

Injection Queues
(Virtual channels) !nput Queues
(Virtual channels)

Switch

(11
P

Network

fabric

Interface

Routing and
arbitration unit

Switch

Fig. 1. QoS support at the network interface and the switch.

Figure 1 shows an example of a network interface that is connected to a
switch. Note that at both the network interface and the switch input port, there
are several VCs. When a packet arrives at the switch, the header is analyzed
and the packet is then usually stored in a VC according to the flow or class to
which it belongs to. However, packets arriving at the switch have been previously
sorted by the network interface according to some criteria. If we separate the
packets in different VCs, we are losing this order, which may contain enough
information to simplify the scheduling at the switch. However, it is not enough
to put all the packets in the same VC to reuse the scheduling decisions. It is
also necessary that the arbiter implementing this technique considers the global
priority level of the packets, as opposed to the traditional 2 VC design, which
would only consider two categories: premium and regular.

In order for our proposal to be effective we need two assumptions. The first
assumption we make is that a static priority criterion exists to order packets. In
this way, every packet would be stamped with a priority level. This is necessary
because we will maintain the incoming order along the whole network. This is not
a big deal because queuing delays for QoS traffic will be short, and therefore, the

packet ordering established at network interfaces does not need to be changed
at any switch in the path.

The second assumption is that there must be a connection admission control
(CAC) for the traffic with QoS requirements so that no link is oversubscribed
by QoS traffic. This requirement is needed to provide bandwidth guarantees and
avoid starvation of the QoS traffic. The CAC is also necessary to assure that
this kind of traffic will flow with short delays.

Note that although we assume that QoS traffic does not oversubscribe any
link, no assumption is made about best-effort traffic. Thus, if we did not separate
QoS traffic and best-effort traffic, the total bandwidth demand for a given output
link could exceed the available bandwidth. For this reason, we cannot use just
one VC, and therefore we propose to use two VCs at the switches.

It is important to note that the order of the different best-effort traffic classes
is also kept with this design. Although we use only one VC for best-effort traffic,
we also consider the different priorities of packets belonging to this group. This
means that the switch will also differentiate among this kind of packets, as we
will see in the next section.

Now, we will proceed to describe in depth how our proposal works. Let us
suppose that several packets arrive at a switch from a network interface. Taking
into account that the interface implements a priority-based arbiter, the first
packet should be the one with the highest priority. So, instead of separating
the packets among several VCs according to their traffic classes, we put them
all in the same queue in the arrival order. Later, when the switch must decide
which packets should be transmitted, it will seek in the input queues. It is only
necessary to look at the first packet in each queue, because its position at the
front of the queue indicates that it had a higher priority when it left the network
interface.

Obviously, the network interface can only arbitrate among the packets it
holds at a given moment. Therefore, when no more high-priority packets are
available, a low-priority QoS packet can be transmitted. If this packet has to wait
at a switch input queue, and other packets with higher priority are transmitted
from the network interface, they would be stored in the same VC as the low-
priority packet, and be placed after it in the queue. Thus, the arbiter would
penalize the high-priority packets, because they would have to wait until the
low-priority packet is transmitted. But this situation, which we call order error,
has a small impact on performance because there is bandwidth reservation for
QoS packets. This means that all the QoS packets will flow with short delay.

In the performance evaluation section, we will see that the order errors have
a low impact on the performance. However, they make latency and jitter more
variable. Although the average value will remain similar, peak values will be
increased slightly. The other main limitation of this technique is the necessity of
a CAC, which is not always possible or practical. However, most of the recent
interconnect proposals (InfiniBand or AS) include a CAC in their specification.

4 Performance Evaluation

In this section, we show the behavior of our proposal and we compare it with the
performance of traditional switches. First, we will explain the simulated network
architecture. Next, we will give details on the parameters of the network and the
load used for the evaluation. Finally, we present and comment the results.

4.1 Simulated architecture

Our objective is to evaluate the performance of our technique under fair condi-
tions. In order to achieve this, we will define a complete network architecture,
including all the elements necessary to work. However, many of them are not
directly related with our work. We do not aim at achieving the best performance
or proposing a whole new switch design, but, instead, we aim at defining a fair
scenario in which compare several switch architectures. For that reason, we have
not used state-of-the-art routing techniques, congestion control mechanisms, etc.
We have used the most popular and well-known solutions for these issues.

The network used to test the proposals is a perfect-shuffle multi-stage inter-
connection network (MIN) with 64 end-points. We have chosen a MIN because
it is a usual topology for clusters. However, our proposal is valid for any net-
work topology, including both direct networks and MINs. The switches use a
combined input and output buffer architecture, with a crossbar to connect the
buffers. No packets are dropped because we use credit-based flow control. The
parameters of the network elements used in this performance study are given
in Table 1. Note that we are assuming some internal speed-up (x1.5), as it is
usually the case in most commercial switches.

Table 1. Simulation parameters.

Switch ports 8 Port buffer size 32 Kbytes
Packet size 64 to 2048 bytes Channel bandwidth 2 Gb/s
Packet header size 8 bytes Crossbar bandwidth | 3 Gb/s
Control message size 8 bytes Network interfaces 64
Crossbar scheduling time 20/10 ns Output scheduling time| 10/5 ns

Virtual output queuing (VOQ) is implemented to solve the head-of-line block-
ing problem at the switch level. However, this does not increase the necessary
buffer memory, only the crossbar scheduling time. Note that, nowadays, the
queues are implemented logically over a shared space. That means that adding
more queues implies more pointers and more complex arbiters, but not more
buffer space. Furthermore, most of current commercial switches include VOQ as
the technique to minimize the effects of head-of-line blocking.

In Table 1 we also show the amount of memory at each port. It is the mini-
mum necessary space to achieve the peak throughput. Taking into account that

there is credit-based flow control and we are using Virtual Cut-Through switch-
ing, it would be necessary a space at each VC of one maximum packet size plus
one round-trip-time. However, since it is common to use maximum packet size,
we round the number up, resulting in two whole packets, which results in 4
Kbytes for each VC. Note that switches using our proposal save memory (and
thus chip area) at the ports by a factor of 4 compared with the 8 VC case.

The scheduling delays have been chosen to reflect the actual delays in real
implementations and the use of fewer VCs with our proposal. We have considered
the research in the area, like Peh’s work [14], which indicates that the arbitration
time is logarithmic in the number of VCs. In Table 1, the number before the slash
is the delay for 8 VC switches and the number after the slash is the delay for 2
VC switches (both traditional and using our technique). Therefore, we obtain a
speed-up of 2.0 using our proposal.

The CAC we have implemented is a simple one, based on average bandwidth.
Each connection is assigned a path where enough resources are assured. We also
use a load balancing mechanism, which consists in assigning the least occupied
route among those possible. There exist more complex and powerful mechanisms,
but this is enough to test our proposal.

4.2 Traffic model

In Table 2 the characteristics of the traffic injected in the network are included.
We have considered the traffic classes (T'Cs) defined by the IEEE standard
802.1D-2004 [12] at the Annex G, which are particularly appropriate for this
study. However, we have added an eighth TC, Preferential Best-effort, with a
priority between FEzcellent-effort and Best-effort. In this way, the workload is
composed of 8 different TCs. Each TC has decreasing priority, such that TC 7
has the highest priority and TC 0 has the lowest.

The proportion of each category has been chosen to provide meaningful re-
sults. Our intention is to put the network in a situation where the different TCs
have to compete for limited resources. We also want to have diversity between
the sources, combining different packet sizes and different traffic distributions,
that is, constant bit rate (CBR) flows combined with variable bit rate (VBR)
flows. It is possible that this mix of traffic is not actually present in a real-
life cluster, but it serves perfectly to evaluate the different architectures we are
testing.

The destination pattern is based on Zipf’s law [15], as recommended in [16],
with & = 1. In this way, the traffic is not uniformly distributed, but, instead,
for each TC and input port it is established a ranking among all the possible
destinations. Therefore, there will be destinations with a higher chance of being
elected by a group of flows, where this probability is obtained with the aforemen-
tioned Zipf’s law. The global effect is a potential full utilization of the network,
but with a reduced performance compared with a uniform distribution.

The packets are generated according to different distributions, as can be seen
in Table 2. Audio, Video, and Controlled Load traffic are composed of point-to-
point connections of the given bandwidth. The self-similar traffic is bursty traffic

generated with on/off sources, governed by Pareto distributions, as recommended
in [17].

Table 2. Traffic injected per host.

|TC]| Name |% BW |[Packet size|Notes
7 Network Control 1 64 bytes self-similar
6 Audio 15.625 |128 bytes |CBR 64 Kb/s connections
5 Video 15.625 |< 2 Kbytes |750 Kb/s MPEG-4 traces
4 Controlled Load 15.625 |2 Kbytes CBR 1 Mb/s connections
3 Excellent-effort 13.031 (2 Kbytes self-similar
2 |Preferential Best-effort| 13.031 |2 Kbytes self-similar
1 Best-effort 13.031 |2 Kbytes self-similar
0 Background 13.031 |2 Kbytes self-similar

4.3 Simulation results

In this section, the performance of our proposal is shown. We have considered
three traditional QoS indices for this performance evaluation: Throughput, la-
tency, and jitter. Note that packet loss is not considered because no packets are
dropped due to the use of credit-based flow control. Maximum jitter determines
the receiver’s user space for audio and video. Inappropriate results of latency
or jitter may lead to dropped packets at the application level. For that reason,
we also show the cumulative distribution function (CDF) of latency and jitter,
which represents the probability of a packet achieving a latency or jitter equal
to or lower than a certain value.

We have performed the tests considering three cases. First, we have tested
the performance of our proposal, which uses 2 VCs at each switch port. It is
referred in the figures as New 2 VCs. Note that, with our proposal, the network
interfaces still use 8 VCs. Second, we have decided to perform the test with
traditional switches using 8 VCs because this number matches the number of
TCs. In this case, it is referred in the figures as Traditional 8 VCs. Third, we have
also tested a traditional approach with 2 VCs, noted in the figures as Traditional
2 VCs. In this case, the network interfaces also use 2 VCs. Therefore, we have
two references to compare our proposal, one being the lower bound (Traditional
2 VCs) and the other the upper bound (Traditional 8 VCs).

Figure 2 shows the latency results for TC 7, which corresponds to Network
Control traffic. The throughput of this TC, which is not shown, is the optimum
in the three cases. We can see that the three cases succeed in getting a reason-
able average latency. However, the Traditional 2 VCs case achieves the worst
performance when the input load is high. In Figure 2, we can also see the CDF
of latency at a network load of 1.0. For the Traditional 8 VCs and the New 2

"% 100
i 1
=
>y 80 Traditiona 2CVs —+— 0.8
13} New2CVs
5 o Tredtiond 8CVs o = 06 Traditional 2 CV's
= a New 2 CVs
L I O o4 Traditional 8 CVs
[5)
o0 - 0.2
S 20 65@/5/‘;36 66-00.4
[5) o 0
> 0 sﬂaw o
< "0 02 o4 o0s 08 1 B § % %
Offered load Latency (us)

Fig. 2. Latency results for Network Control traffic.

VCs cases, the results are quite good. However, for the Traditional 2 VCs case
the results are not so suitable, because many packets have a latency far above
the average. In this figure, maximum values are represented by vertical lines.

g

o
= 1 T 1
>y 80 Tradmﬁggg: — 0.8 08
Q
T 6o | Tradtiond 8CVs o /| = o6 Tradiitional 2 CVs = 06 Traditional 2 CVs
= 4 a New 2 CVs a New 2 CVs
= %0 O 04 Traditional 8 CVs O o4 Traditional 8 CVs
[}
) /
< 20 M—gﬁ 600, 0.2 0.2
g Ll
> pooe®d” 0 0
&0 ° g8 8 g8 8 = g2 8 8 8
0 02 04 06 08 1 o S ! IS4 0 S 2 &
Offered load Latency (us) Jitter (us)

Fig. 3. Performance of Audio traffic.

In Figure 3, we show the performance of Audio traffic. According to the IEEE
guidelines, this TC should achieve latency and jitter values lower than 10 ms.
This is achieved in the three cases. However, the Traditional 2 VCs case yields
an inadequate performance, in terms of latency and jitter, at high load. Note
that our proposal increases slightly the maximum latency and jitter. However,
the results are still acceptable and a significant improvement over the Traditional
2 VCs approach.

8

“w
3 1F- e 1 f
= e
> Traditional 2 CVs —+— 08 08 ¢
3} 150 New 2 CVs
9 |
5 Traditional 8CVs o B 06 Traditional 2 CVs = 06 Traditional 2 CV's
= 100 a New 2 CVs a New 2 CVs
= O 04 Traditional 8 CV's O 04 Traditional 8 CV's
[}
% 50 . 02 02
= st 0000
g 0 e 0 o 0 o
< "6 02 o4 o5 o8 1 & é § % g é é %
Offered load Latency (us) Jitter (pus)

Fig. 4. Performance of Video traffic.

The Video traffic results (Figure 4) are very similar to the audio traffic.
Again, the performance of the network using our technique is quite close to the
results obtained with the Traditional 8 VCs approach. Note that the use of VBR
traffic does not affect the performance of our proposal.

"% 200 —

3 ®0

~ . Traditional 2CVs ——

> 150 Tradmﬁnel %gs — é red Iﬁg,v chz e

15 ew 2 CVs 15 iti o

8 Traditiondl 8 GVs o \: Traditional 8 CVs o o

+ 100 =

< 0,10

= =

® “ab

a0 =]

2 piseteoe] B S

g S aanal ﬁ olL®

< 0 0.2 0.4 0.6 08 1 0 0.2 04 0.6 08 1
Offered load Offered load

Fig. 5. Average latency and throughput for Controlled Load traffic.

Finally, the three network models provide a maximum throughput to the
Controlled Load traffic, as can be seen in Figure 5. In this case, the New 2
Vs case provides a higher average latency than the obtained by the Traditional
2 V(s case. This is due to the differentiation among the QoS TCs. With our
technique, the TCs with the most priority are treated preferently from the TCs
with the least priority. However, the bandwidth is guaranteed and, according to
the IEEE guidelines, there is no real need for a very low latency in this case. At
this point we can conclude that the performance of our proposal for QoS traffic
is very similar to that obtained with a switch design with more VCs.

In Figure 6 we can see the throughput for the best-effort TCs. In these cases,
the Traditional 2 VCs approach produces the same performance for all the TCs,
which is an inadequate behavior, because Ezxcellent-effort and Preferential Best-
effort traffic should have better performance. The reason for this inadequate
behavior is that in the Traditional 2 VCs model, all the best-effort classes look
the same for the schedulers at both the network interfaces and the switches.

On the other hand, the arbiters using our technique take into account the
priority of the packets, even if they share the same VC. For that reason, our
proposal, which devotes a single VC in the switches for all the best-effort TCs,
can provide a behavior similar to that of the Traditional 8 VCs approach, which
uses 4 VCs for the best-effort TCs.

The Best-effort and Background TCs obtain a slightly worse performance
with our technique if we compare it with the performance of the Traditional 8
VCs case. This is due to a lower global throughput of the network using our
technique, but it only affects the TCs with the least priority, which is alright.

According to these results, we can conclude that our proposal can provide
an adequate QoS. We only need two VCs at the switches, which simplifies the
arbitration algorithm. The switches also incorporate 1/4 the memory at the
ports and have a reduced arbitration delay, which is 50% of the necessary time

nl8 ni8
"X-16 | Traditional 2CVs —— o® 316 Traditiond 2CVs ——
5 14 New 2CVs Pt 14 New 2CVs e
5 Traditional 8 CVs - & 9/ 5 Traditional 8 CVs o o
- g - <
=10 = 10 R
Y Tl BN !
o0 6 o0 6
54 Z 4
g2 = -
Ho Ho
0 02 04 06 08 1 0 02 04 06 08 1
Offered load Offered load
(a) Excellent-effort (b) Pref. Best-effort
nl8 nis
316 Traditional 2 CVs —+— "X-16 | Traditional 2CVs ——
! New 2CVs 6 14 New 2CVs
N Traditional 8 CVs o]) Traditional 8 CVs o
12 o 12
=10 + =10 e
=3 u! N
E 8 N\+,+ % 8 g
eh 6 609 %o 6 00g
=)
o4 24 boq
= 2 6 = 2
Ho Ho
0 02 04 06 08 1 0 02 04 06 08 1
Offered load Offered load
(c) Best-effort (d) Background

Fig. 6. Throughput for best-effort traffic classes.

in a traditional approach with more VCs. This scheme is simpler than today’s
trends but as powerful as the more complex arbiters with many more VCs.

5 Conclusions

The proposal of this paper consists in making the network elements cooperate,
building together ordered flows of packets. Consequently, the switches try to
respect the order in which packets arrive at the switch ports, which is probably
correct. This allows a drastic reduction in the number of VCs required for QoS
purposes at each switch port.

This study has shown that it is possible to achieve a more than acceptable
QoS with only two VCs. We reuse in the switches some of the scheduling de-
cisions made at the network interfaces. This opens up the possibility of using
the remaining VCs for other concerns, like adaptive routing or fault tolerance.
Furthermore, it is also possible to reduce the number of VCs supported at the
switches, thereby simplifying the design, or increasing the number of ports.

The results we have presented in the previous section have shown that our
proposal provides a very similar performance compared with a traditional archi-
tecture with 8 VCs, both for the QoS traffic and the best-effort traffic. Comparing
our technique with a traditional architecture with 2 VCs, our proposal provides
a significant improvement in performance for the QoS traffic, while for the best-
effort, the traditional model is unable to provide the slightest differentiation.

We are currently examining a number of possible extensions to the work here
presented. First, we are preparing a study on more complex switch models that
can benefit from our proposal, such as switches using EDF arbitration. Second,

we intend to use this technique in other environments, like Internet routers or
networks on chip. Finally, we are considering to code the switches and network
interfaces with a hardware description language, which can then be implemented
in FPGAs to examine the actual reductions of delays and area.

References

10.

11.

12.

13.

14.

15.
16.

17.

. Miras, D.: A survey on network QoS needs of advanced internet applications.

Technical report, Internet2 - QoS Working Group (2002)

Minkenberg, C., Abel, F., Gusat, M., Luijten, R.P., Denzel, W.: Current issues
in packet switch design. In: ACM SIGCOMM Computer Communication Review.
(2003)

Duato, J., Johnson, I., Flich, J., Naven, F., Garcia, P., Nachiondo, T.: A new
scalable and cost-effective congestion management strategy for lossless multistage
interconnection networks. In: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture. (2005)

Duato, J., Yalamanchili, S., Caminero, M.B., Love, D., Quiles, F.: MMR: A high-
performance multimedia router. Architecture and design trade-offs. In: Proceedings
of the 5th Symposium on High Performance Computer Architecture. (1999)

. Yum, K.H., Kim, E.J., Das, C.R., Vaidya, A.S.: MediaWorm: A QoS capable router

architecture for clusters. IEEE Trans. Parallel Distrib. Syst. 13 (2002) 1261-1274
Zhang, L.: VirtualClock: A new traffic control algorithm for packet switched net-
works. ACM Transaction on Computer Systems 9, 2 (1991) 101-124

Yum, K., Kim, E., Das, C.: QoS provisioning in clusters: An investigation of router
and NIC design. In: Proceedings of the 28th Annual International Symposium on
Computer Architecture, IEEE Computer Society (2001)

. InfiniBand Trade Association: InfiniBand architecture specification volume 1. Re-

lease 1.0. (2000)

Alfaro, F.J., Sanchez, J.L., Duato, J.: QoS in InfiniBand subnetworks. IEEE Trans.
Parallel Distrib. Syst. 15 (2004) 810-823

Advanced switching core architecture specification. Technical report, (available at
http://www.asi-sig.org/specifications for ASI SIG members)

Dally, W., Carvey, P., Dennison, L.: Architecture of the Avici terabit switch/router.
In: Proceedings of the 6th Symposium on Hot Interconnects. (1998)

IEEE: 802.1D-2004: Standard for local and metropolitan area networks. http:
//grouper.ieee.org/groups/802/1/ (2004)

Chrysos, N., Katevenis, M.: Multiple priorities in a two-lane buffered crossbar. In:
Proceedings of the IEEE Globecom 2004 Conference. (2004)

Peh, L., Dally, W.: A delay model and speculative architecture for pipelined
routers. In: Proceedings of the 7th International Symposium on High-Performance
Computer Architecture. (2001)

Zipf, G.K.: The Psycho-biology of Languages. Houghton-Miffin, MIT (1965)
Elhanany, 1., Chiou, D., Tabatabaee, V., Noro, R., Poursepanj, A.: The network
processing forum switch fabric benchmark specifications: An overview. IEEE Net-
work (2005)

Jain, R.: The art of computer system performance analysis: techniques for experi-
mental design, measurement, simulation and modeling. John Wiley and Sons, Inc.
(1991)

