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Abstract. A key component for networks with Quality of Service (QoS)
support is the egress link scheduler. The table-based schedulers are sim-
ple to implement and can offer good latency bounds. Some of the latest
proposals of network technologies, like Advanced Switching and Infini-
Band, define in their specifications one of these schedulers. However,
these schedulers do not work properly with variable packet sizes and
face the problem of bounding the bandwidth and latency assignments.
We have proposed a new table-based scheduler, the Deficit Table (DTable)
scheduler, that works properly with variable packet sizes. Moreover, we
have proposed a methodology to configure this table-based scheduler that
partially decouples the bandwidth and latency assignments.
In this paper we propose a method to improve the flexibility of the de-
coupling methodology. Moreover, we compare the latency performance
of this strategy with two well-known scheduling algorithms: the Self-
Clocked Weighted Fair Queuing (SCFQ) and the Deficit Round Robin
(DRR) algorithms.

1 Introduction

Current packet networks are required to carry not only traffic of applications
such as e-mail or file transfer, which does not require pre-specified service guar-
antees, but also traffic of other applications that require different performance
guarantees. The best-effort service model, though suitable for the first type of
applications, is not so for applications of the other type [9]. A key component
for networks with QoS support is the output scheduling algorithm, which selects
the next packet to be sent and determines when it should be transmitted, on
the basis of some expected performance metrics.

An ideal scheduling algorithm implemented in a high performance network
with QoS support should satisfy two main properties: good end-to-end delay and
simplicity. The design of a traffic scheduling algorithm involves an inevitable
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trade-off among these properties. Many scheduling algorithms have been pro-
posed. Among them, the “sorted-priority” family of algorithms are known to
offer very good delay [12]. These algorithms assign each packet a service tag
and transmit packets in an increasing order of service tag. However, their com-
putational complexity is very high, making their implementation in high-speed
networks rather difficult.

In order to avoid the complexity of the sorted-priority approach, the Deficit
Round Robin (DRR) algorithm [10] has been proposed. In the DRR algorithm,
a list of flow1 quantums is visited sequentially, each quantum indicating the
amount of data that can be transmitted from the flow in question. The sum of
all the quantums is called the frame length. The main problem of this algorithm
is that its delay and fairness depend on the frame length. Depending on the
situation, the frame can be very long, and thus, the latency and fairness would
be very bad.

On the other hand, in the table-based schedulers instead of serving packets of
a flow in a single visit per frame, the service is distributed throughout the entire
frame. This approach is followed in [3] and in two of the last high performance
network interconnection proposals: Advanced Switching [1] and InfiniBand [4].
These table-based schedulers can provide a good latency performance with a
low computational complexity [3,8,2]. However, these schedulers do not work
properly with variable packet sizes, as is usually the case in current network
technologies. Moreover, they face the problem of bounding the bandwidth and
latency assignments [8,2]. This may involve a waste of resources because the
flows with the highest latency requirements are probably going to be assigned
more bandwidth than they actually require.

In [6] we reviewed these problems and proposed a new table-based scheduler
that works properly with variable packet sizes. Moreover, we proposed a method-
ology to configure this scheduler in such a way that it permits us to decouple
partially the bounding between the bandwidth and latency assignments. We
called this new scheduler Deficit Table scheduler, or just DTable scheduler. As
we stated in [6], the latency performance of the DTable scheduler depends on the
maximum amount of data that is allowed to be transmitted per table entry. The
more information is allowed to be transmitted the worse latency performance we
get. Therefore, this maximum amount of data should be kept as small as possi-
ble. However, one of the parameters that our configuration methodology uses to
increase the decoupling between the bandwidth and the latency assignments is
indeed this value.

In this paper we propose and evaluate a method to increase the decoupling
between the bandwidth and the latency assignments without increasing too much
the maximum amount of data that is allowed to be transmitted per table entry.
Moreover, we compare the latency performance of the DTable scheduler with the
latency performance of two well-known scheduling algorithms: the Self-Clocked
Weighted Fair Queuing (SCFQ) and the DRR algorithms. We have chosen the

1 In this paper we will use the term flow to refer both to a single flow or an aggregated
of several flows with similar characteristics.



SCFQ algorithm as an example of “sorted-priority” algorithm and the DRR
algorithm as one of the simplest scheduling mechanism proposed in the literature.

The structure of the paper is as follows: In Section 2, we review the DTable
scheduler and our methodology to decouple the bandwidth and latency assign-
ments. In Section 3, we propose a method to improve the latency performance of
the DTable scheduler. Details on the experimental platform and the performance
evaluation are presented in Section 4. Finally, some conclusions are given.

2 The Deficit Table scheduler

In [6] we proposed a new table-based scheduling algorithm that works properly
with variable packet sizes. We called this algorithm Deficit Table scheduler, or
just DTable scheduler, because it is a mix between the already proposed table-
based schedulers and the DRR algorithm. The scheduler works in a similar way
than the DRR algorithm but instead of serving packets of a flow in a single visit
per frame, the service is distributed throughout the entire frame.

The DTable scheduler defines an arbitration table in which each table entry
has associated a flow identifier and an entry weight. Moreover, each flow has
assigned a deficit counter that is set to 0 at the start. When scheduling is needed,
the table is cycled through sequentially until an entry assigned to an active flow is
found. A flow is considered active when it stores at least one packet and the link-
level flow control, if exists, allows that flow to transmit packets. When a table
entry is selected, the accumulated weight is computed. The accumulated weight
is equal to the sum of the deficit counter for the selected flow and the current
entry weight. The scheduler transmits as many packets from the active flow as
the accumulated weight allows. When a packet is transmitted, the accumulated
weight is reduced by the packet size.

The next active table entry is selected if the flow becomes inactive or the
accumulated weight becomes smaller than the size of the packet at the head of
the queue. In the first case, the remaining accumulated weight is discarded and
the deficit counter is set to zero. In the second case, the unused accumulated
weight is saved in the deficit counter, representing the amount of weight that the
scheduler owes the queue. Note that, if this scheduler is employed in a network
with a credit-based link-level flow control, like Advanced Switching, the weights
are usually expressed in flow control credits.

We set the minimum value that a table entry can have associated to the
Maximum Transfer Unit (MTU) of the network. This is the smallest value that
ensures that there will never be necessary to cycle through the entire table several
times in order to gather enough weight for the transmission of a single packet.
Note that this consideration is also made in the DRR algorithm definition [10].

In [6] we have also proposed a methodology to configure the DTable sched-
uler to decouple, at least partially, the bounding between the bandwidth and
latency assignments. With this methodology we set the maximum distance be-
tween any consecutive pair of entries assigned to a flow depending on its latency
requirement. By fixing this separation, it is possible to control the maximum



latency of a network element crossing. This is because this distance determines
the maximum time that a packet at the head of a flow queue is going to wait
until being transmitted. Therefore, given a maximum number of hops, we can
control the maximum end-to-end latency [2].

Moreover, we set the weights of the table entries assigned to a flow depending
on its bandwidth requirement. With this methodology we can assign the flows
with a bandwidth varying between a minimum and a maximum value that de-
pends not only on the number of table entries assigned to each flow, but also on
two table configuration parameters. We have called these parameters w and k.

Supposing an arbitration table with N entries in a network with a certain
MTU , the w parameter determines the maximum weight M that can be assigned
to a single table entry in function of the MTU : M = MTU×w. The k parameter
determines the total weight that can be distributed between all the table entries.
We call this value the bandwidth pool : pool = N ×MTU × k. The total number
of weight units (as stated before, a weight unit is usually equivalent to a flow
control credit) from the bandwidth pool that the table entries of a flow have
assigned fixes the bandwidth that the flow has actually assigned.

Note that k, w ≥ 1 because, as stated before, the minimum weight that can
be assigned to a table entry is the MTU . Note also that k ≤ w because the
bandwidth pool cannot be larger than the theoretical maximum weight among
all the entries (N × M).

The w and k parameters fix the minimum bandwidth minφi and the maxi-
mum bandwidth maxφi that can be assigned to the ith flow depending on the
number of table entries ni that it has assigned:

minφi =
ni × MTU

pool
=

ni × MTU

N × MTU × k
=

ni

N
×

1

k

maxφi =
ni × M

pool
=

ni × MTU × w

N × MTU × k
=

ni

N
×

w

k

Summing up, the DTable scheduler is a table-based scheduler that is able to
deal properly with variable packet sizes and considers the possibility of a link-
level flow control mechanism. Moreover, with our configuration methodology
we can provide a flow with latency and bandwidth requirements in a partially
independent way.

3 Improving the latency performance of the DTable

scheduler

As stated before, using the DTable scheduler and our methodology, we can assign
each flow a bandwidth between a minimum and a maximum that depends on the
number of table entries and the two decoupling table parameters. When choosing
the value of these parameters some considerations must be made. Note that the
objective for this methodology is to decrease the minimum bandwidth that can
be assigned to a flow and to increase the maximum bandwidth assignable in



order to be as flexible as possible. In order to be able to assign a small amount
of bandwidth the k parameter must be high. However, the higher k is, the smaller
the maximum bandwidth that can be assigned. And thus, the flexibility to assign
the bandwidth decreases. We can solve this by increasing the value of w.

Table 1 shows two different scenarios, each one with a different pair of values
for the w and k parameters: DTable4 (k = 2, w = 4) and DTable8 (k = 4,
w = 8). Note that we refer the different DTable scenarios according to the w

value used in each case. This table shows the minimum and maximum bandwidth
that can be assigned to seven flows (referred to as Virtual Channels, VCs) with
different number of table entries. This number of table entries correspond to 7
flows with different latency requirements, and thus, different distances between
any pair of consecutive entries in the arbitration table. We have called these flows
D2, D4, D8, D16, D32, D64, and D64’, indicating the distance between any pair
of consecutive table entries. As we can see, when we increase the k parameter,
the minimum bandwidth decreases. However, to maintain the same maximum
bandwidth in the two scenarios, we have had to increase the w parameter in the
same proportion.

Table 1. Table configuration. N = 64, MTU = 32

DTable4 DTable8

k = 2, w = 4 k = 4, w = 8

VC #entries %entries minφi maxφi minφi maxφi

D2 32 50 25 100 12.5 100

D4 16 25 12.5 50 6.25 50

D8 8 12.5 6.25 25 3.125 25

D16 4 6.25 3.125 12.5 1.5625 12.5

D32 2 3.125 1.5625 6.25 0.78125 6.25

D64 1 1.5625 0.78125 3.125 0.390625 3.125

D64’ 1 1.5625 0.78125 3.125 0.390625 3.125

Total 64 100 50 200 25 200

However, increasing the value of the w parameter has two disadvantages.
First of all, the memory resources to store each entry weight are going to be
higher. Secondly, the latency of the flows is going to increase, because each
entry is allowing more information to be transmitted, and thus, the maximum
time between any consecutive pair of table entries is higher.

Our objective is to have a good flexibility when assigning the bandwidth
to the flows but without increasing too much the w parameter. In order to
achieve this we propose to use different MTUs for the different flows, instead of
considering the general network MTU that the technology fixes for all the flows.
Note that this means that some flows are going to have a specific MTU smaller
than the general MTU. The use of different MTUs for different flows can be done
at the communication library level.

The advantage of having a flow with a specific MTU smaller than the general
MTU is that we can assign a table entry a minimum weight equal to the new



MTU. When we use the general MTU for all the flows we cannot do this. As
stated before, in this case, the general MTU is the smallest value that ensures
that there will never be necessary to cycle through the entire table several times
in order to gather enough weight for the transmission of a single packet. Being
able to assign the table entries of a flow with a weight smaller than the general
MTU allows to decrease the minimum bandwidth that can be assigned to that
flow. If the ith flow uses a specific MTU of size MTUi, the maximum bandwidth
that can be assigned to that flow is the same, but the minimum bandwidth
depends on the proportion between the specific MTU and the general MTU:

minφi =
ni × MTUi

pool
=

ni × MTUi

N × MTU × k
=

ni

N
×

MTUi

MTU
×

1

k

Note that varying the w and k parameters affect the minimum and maximum
bandwidth that can be assigned to all the flows. However, assigning a specific
MTU to a flow only affects that flow minimum bandwidth.

Note that with this method we can achieve small minimum bandwidths with
a low value for the k parameter. Note also that now k can be even lower than 1.
This allows to use a small w and still getting big maximum bandwidths.

Table 2 shows two different scenarios, each one with a different pair of values
for the w and k parameters: DTable1 (k = 0.5, w = 1) and DTable2 (k = 1,
w = 2). If we compare these values with the values in Table 1, we can see that
now we can assign a small amount of bandwidth to those flows with lots of
entries with a small w parameter.

Table 2. Table configuration with different MTUs. N = 64, MTU = 32

DTable1 DTable2

k = 0.5, w = 1 k = 1, w = 2

VC #entries %entries MTUi minφi maxφi minφi maxφi

D2 32 50 MTU/32 3.125 100 1.5625 100

D4 16 25 MTU/32 1.5625 50 0.78125 50

D8 8 12.5 MTU/16 1.5625 25 0.78125 25

D16 4 6.25 MTU/8 1.5625 12.5 0.78125 12.5

D32 2 3.125 MTU/4 1.5625 6.25 0.78125 6.25

D64 1 1.5625 MTU/2 1.5625 3.125 0.78125 3.125

D64’ 1 1.5625 MTU 3.125 3.125 1.5625 3.125

Total 64 100 14.0625 200 7 200

When a message from a given flow arrives at the network interface, if its
size is greater than its specific MTU, the message is splitted in several packets
of a maximum size given by the specific MTU of the flow, as can be seen in
Figure 1. A possible disadvantage of assigning specific MTUs smaller than the
general MTU could be that the bandwidth and latency overhead of fragmenting
the original message in several packets could probably affect performance of the
flows. However, most restrictive latency flows (for example network control or



voice traffic) usually present low bandwidth requirements, and small packet size.
For example, in [13] several payload values for voice codec algorithms are shown.
These values range from 20 bytes to 160 bytes. In that way, if we fix a small
MTU for these flows, no fragmentation will be usually necessary because, in fact,
the packets of those flows are already smaller than the new MTU. Therefore, the
cornerstone of this proposal is to tune the specific MTU of each flow according
to the specific characteristics of the flows.

Fig. 1. Process of message fragmentation into packets.

In the performance evaluation section we are going to use the same kind of
traffic (with the same average packet size) for all the flows in order to make a
fair comparison. Moreover we are going to assign smaller specific MTUs to those
flows with more table entries in order to decrease the minimum bandwidth that
can be assigned. Therefore, results are going to show the negative effect of an
excessive packetization.

4 Performance evaluation

In this section, we evaluate the latency performance of the DTable scheduler. For
this purpose, we have developed a detailed simulator that allows us to model
the network at the register transfer level, following the Advanced Switching
(AS) specification. Note, however, that our proposals can be applied to any
interconnection network technology.

We compare the performance of the different scenarios with a different w

parameter showed in the previous section (DTable1, DTable2, DTable4, and
DTable8) and the SCFQ and DRR schedulers. We have chosen the SCFQ al-
gorithm as an example of “sorted-priority” algorithm and the DRR algorithm
because of its very small computational complexity. In order to simulate these
algorithms we use the credit aware versions of both algorithms (SCFQ Credit
Aware and DRR Credit Aware respectively) that we proposed in [7] for being
used in networks with a link-level flow control network like AS.

4.1 Simulated architecture

We have used a perfect-shuffle Bidirectional Multi-stage Interconnection Net-
work (BMIN) with 64 end-points connected using 48 8-port switches (3 stages of
16 switches). In AS any topology is possible, but we have used a MIN because it
is a common solution for interconnection in current high-performance environ-
ments. The switch model uses a combined input-output buffer architecture with



a crossbar to connect the buffers. Virtual output queuing has been implemented
to solve the head-of-line blocking problem at switch level.

In our tests, the link bandwidth is 2.5 Gb/s but, with the AS 8b/10b encoding
scheme, the maximum effective bandwidth for data traffic is only 2 Gb/s. We
are assuming some internal speed-up (x1.5) for the crossbar, as is usually the
case in most commercial switches. AS gives us the freedom to use any algorithm
to schedule the crossbar, so we have implemented a round-robin scheduler. The
time that a packet header takes to cross the switch without any load is 145 ns,
which is based on the unloaded cut-through latency of the AS StarGen’s Merlin

switch [11].
A credit-based flow control protocol ensures that packets are only transmitted

when there is enough buffer space at the other end to store them, making sure
that no packets are dropped when congestion appears. AS uses Virtual Channels
(VCs) to aggregate flows with similar characteristics and the flow control and
the arbitration is made at VC level. The MTU of an AS packet is 2176 bytes,
but we are going to use 2048 bytes (a power of two) for simplicity but without
loosing generality. The credit-based flow control unit is 64 bytes, and thus, the
MTU corresponds to 32 credits.

The buffer capacity is 32768 bytes (16×MTU) per VC at the network inter-
faces and 16384 bytes (8×MTU) per VC both at the input and at the output
ports of the switches. If an application tries to inject a packet into the network
interface but the appropriate buffer is full, we suppose that the packet is stored
in a queue of pending packets at the application layer. Regarding the latency
statistics, a packet is considered injected when it is stored in the network inter-
face.

4.2 Simulated scenario and scheduler configuration

As stated before, we are going to compare the performance of the DTable sched-
uler using different values for the w parameter (DTable1, DTable2, DTable4, and
DTable8) with the performance of the SCFQ and DRR algorithms. Note that all
the scenarios have the same maximum bandwidth values, differing only in the
minimum bandwidth values (see Tables 1 and 2). Table 3 shows the amount of
bandwidth φi that we have actually assigned to each VC. This table also shows
the configuration of the different DTable scenarios and the SCFQ and the DRR
schedulers. Specifically, in the case of the DTable scheduler, this table shows the
total weight (T. w.) that we have distributed among the table entries of each VC
and the weight assigned to each table entry (E. w.) of each VC. For example,
in the DTable1 case, the bandwidth pool is 1024 credits (k = 0.5), and thus, in
order to assign 25% of bandwidth to this VC, 256 credits must be assigned to
it. Therefore, 8 credits have been assigned to each one of its 32 table entries.

We are going to inject an increasing amount of traffic of all the VCs and study
the throughput and latency performance of the different possibilities at different
network load levels. The traffic load is composed of self-similar point-to-point
flows of 1 Mb/s. The destination pattern is uniform in order to fully load the
network. The packets’ size is governed by a Pareto distribution, as recommended



in [5]. In this way, many small-sized packets are generated, with an occasional
packet of large size. The minimum payload size is 56 bytes, the maximum 2040
bytes, and the average 176 bytes, which represents enough packet size variability.
The AS packet header size is 8 bytes. The periods between packets are modelled
with a Poisson distribution.

Table 3. Bandwidth configuration of the DTable scheduler scenarios.

DTable1 DTable2 DTable4 DTable8 SCFQ DRR

VC φi E. w. T. w. E. w. T. w. E. w. T. w. E. w. T. w. Weight Quantum

D2 25 8 256 16 512 32 1024 64 2048 0.25 256

D4 25 16 256 32 512 64 1024 128 2048 0.25 256

D8 25 32 256 64 512 128 1024 256 2048 0.25 256

D16 12.5 32 128 64 256 128 512 256 1024 0.125 128

D32 6.25 32 64 64 128 128 256 256 512 0.625 64

D64 3.125 32 32 64 64 128 128 256 256 0.3125 32

D64’ 3.125 32 32 64 64 128 128 256 256 0.3125 32

Total 100 1024 2048 4096 8196 1 1024

4.3 Simulation results

The figures of this section show the average values and the confidence intervals
at 90% confidence level of ten different simulations performed at a given input
load. For each simulation we obtain the normalized average throughput, the
average message injection latency, and the maximum message injection latency
of each flow. Note that in the DTable1 and DTable2 scenarios we use specific
MTUs for the VCs that are smaller than the general MTU. Therefore, in these
cases, a message can be splitted in several packets. In the rest of cases (DTable4,
DTable8, SCFQ, and DRR) a mesage is going to be transmitted in only one
packet. Note that in the DTable1 and DTable2 scenarios we consider the latency
of the message as a whole. This means that, in these cases, to calculate the
latency of a message we consider the time since we inject the first packet of a
message into the network interface up to the last packet of the message arrives
at its destination. Note that this may suppose a certain overhead. No statistics
on packet loss are given because, as has been said, we assume a credit-based
flow control mechanism to avoid dropping packets. We obtain statistics per VC
aggregating the throughput of all the flows of the same VC, obtaining the average
value of the average latency, and the maximum latency of all the flows. Note that
the maximum latency shows the behavior of the flow with the worst performance.

Figure 2 shows the normalized injection rate of the aggregated of flows as-
sociated with each VC and the normalized throughput results per VC of the
DTable1 scenario. The rest of scenarios for the DTable scheduler and the DRR
and SCFQ schedulers obtain similar throughput results. As we can see, when the
load is low, all the VCs obtain the bandwidth they inject. However, when the



load is high (around 95%) the VCs do not yield a corresponding result, obtaining
a bandwidth proportional to their assigned bandwidth. Note that the VCs do
not obtain all the bandwidth that they were supposed to have assigned because
the network is not able to provide 100% throughput.
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Fig. 2. Normalized injection rate and throughput per VC.

Figure 3 shows the average latency performance. When the load is very low,
all the VCs present a similar low latency. This is because at this load level
there are few packets being transmitted through the network, and thus, there
are few conflicts between them. However, when the load increases, the latency
also increases because some packets must wait in the buffers until others have
been transmitted. It is at this point when the scheduling algorithm assumes
an important role and the VCs obtain a different latency depending on the
scheduler configuration. However, when the load of the VC begins to outstrip
its throughput, the latency of the scheduler starts to grow very fast. This is
because the buffers used for that VC begin to be full. Finally, the buffers become
completely full and the latency stabilizes at a given value which depends on the
buffers’ size and the bandwidth assigned to that VC.

Note that when using the SCFQ algorithm those VCs that have assigned the
same bandwidth (in this case the D2, D4, and D8 VCs, and the D64 and D64’
VCs) obtain the same latency performance. In the case of the DRR algorithm,
all the VCs obtain a similar latency performance until a VC reaches the point
when its load begins to outstrip its throughput. In that point, the latency of that
VC grows very fast and obtains a different latency performance. This happens
for all the VCs as load grows. When using the DTable scheduler, all the VCs,
including those with the same bandwidth assignment, obtain a different latency
performance depending on the separation between any consecutive pair of their
table entries. The smaller the distance, the better latency performance they
obtain.

These different latency performance behaviors are explained by the fact that
the maximum time that a packet at the head of a VC queue is going to wait until
being transmitted is different depending on the scheduler algorithm. In the case
of the SCFQ algorithm, this time is proportional to the assigned bandwidth. In
the case of the DTable scheduler, we can control this time by controlling the
maximum separation between any consecutive pair of entries assigned to the
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Fig. 3. Average latency per VC of the different scheduling scenarios.

same VC. In this way, we provide some VCs with a better latency performance
and other VCs with a worse latency performance. In the case of the DRR algo-
rithm, the latency performance depends more on the frame length than on the
quantum that each VC has been assigned. This is because when the quantum for
a VC has been expended sending packets, all the frame must be cycled through
before sending more packets of the same VC.

Finally, Figure 4 shows the percentage of improvement on average latency of
the SCFQ algorithm over the four possibilities of the DTable scheduler and the
DRR algorithm. Analyzing this figure we can compare the DTable performance
comparing it not only with the SCFQ scheduler, but also with the DRR sched-
uler. Moreover, we can compare the difference between using the same general
MTU for all the VCs or using specific MTUs for the VCs. This figure shows that
in general, the SCFQ algorithm provides a better latency performance than the
DTable scheduler in all the cases. However, this algorithm is the most complex.
The DRR provides a worse performance for the most latency restrictive VCs
and better for the less latency restrictive VCs than the DTable scheduler. This
is because with the DTable scheduler we can provide a different level of latency
performance to the VCs, priorizing those VCs with higher latency requirements.
This is not possible with the DRR algorithm. Regarding the different scenarios
of the DTable scheduler we can see that DTable1 provides a better latency per-
formance than DTable2, and DTable4 than DTable8. This is because in general,
the higher the value of the w parameter, the worse the latency performance.
However, the effect of splitting the messages in several packets must also be
taken into account.

Table 4 shows the bandwidth overhead per VC that is produced by using
smaller specific MTUs than the general MTU. This packetization also has effect
on the latency of the message. Note that each packet must be processed by the
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Fig. 4. Average latency improvement of the SCFQ algorithm over the other
schedulers considered.

network elements (routing, scheduling, etc.). Moreover, if a table entry allows us
to transmit a small number of packets of the new MTU size, it is possible that in
order of transmitting all the packets belonging to the same message more than
one table entry must be used, and thus, the latency increases. Figure 4 shows



clearly the first effect when considering a low load for the D2 and D4 VCs. In
this case, the latency of the DTable1 and Dtable2 scenarios is rather worse than
for the others cases. We obtain a better latency for DTable1 and Dtable2 than
DTable4 and Dtable8 when the latency is high for the D2, D4, and D8 VCs.
However, for the rest of VCs we obtain a worse latency because the specific
MTUs are higher and the weight assigned to the table entries lower. Note that
this bad effect of the excessive packetization would disappear in a real case if
the MTU of each VC is selected on the basis of the specific average message size
of the flows that would use the VC.

Table 4. Packetization bandwidth overhead per VC with average packet size of
176 bytes.

VC D2 D4 D8 D16 D32 D64 D64’

MTUi (bytes) 64 64 128 256 512 1024 2048

Overhead (%) 11.7 11.7 3.82 1 0.4 0.06 0

Summing up, the DTable scheduler, which has a quite good computational
complexity, provides the most preferential VCs (those which have been assigned
a shorter distance between any consecutive pair of entries) with a better latency
performance than the DRR algorithm. However, it provides the least preferen-
tial VCs with a worse latency than the DRR algorithm. Our proposal of using
different specific MTUs increments the flexibility of our decoupling methodology
without the need of increasing the w parameter too much. Note that increasing
this parameter would entail more hardware requirements to store and process
the table entries and a worse latency performance. However, the excesive pack-
etization of the messages may produce a negative effect on the performance of
the flows. Therefore, the specific MTUs should be assigned taking into account
the characteristics of the traffic, specifically, the size of the packets.

5 Conclusions

A key component for networks with QoS support is the output scheduling al-
gorithm, which selects the next packet to be transmitted. An ideal scheduling
algorithm should satisfy two main properties: good end-to-end delay and sim-
plicity. Table-based schedulers try to address these two characteristics. However,
they have several problems that we try to solve with a new table-based scheduler,
the DTable scheduler, and several proposals to configure it.

The DTable scheduler is a simple algorithm that properly configured may
provide the flows with different levels of latency performance. Moreover, given a
flow or aggregated of flows with some latency requirements, we can assign a cer-
tain amount of traffic to that flow in a flexible way. The decoupling methodology
that allows us to do this relies on two table configuration parameters. One of
these parameters, the w parameter, determines the maximum weight that can be
assigned to a single table entry, and thus, the maximum data that can be trans-



mitted per table entry. The other, the k parameter, determines the maximum
weight that can be distributed among all the table entries.

In this paper we have proposed a method to increase this flexibility. This
method consists in using different MTUs for the different flow. This allows us to
employ smaller values for the k parameter, and thus, for the w parameter. This is
quite positive because a high value for the w parameter entails higher hardware
requirements and worse latency performance. However, the specific flow MTU
must be assigned taking into account the characteristics of the traffic flow. A
too small specific MTU may decrease the latency performance of the flow.

In a real case the w parameter is probably going to be fixed by the network
technology.The network manager should then choose an appropiate value for the
k parameter and the specific MTUs. To do this the characteristics of the traffic
and the proportion of each kind of traffic must be taken into account. Note that
different flows can exhibit very different message sizes. As future work we are
focusing our attention on applying our proposals to a multimedia environment
with different kind of traffics.
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