
Implementing the Advanced Switching
Minimum Bandwidth Egress Link Scheduler∗

Raúl Martı́nez, Francisco J. Alfaro, José L. Sánchez
Dept. de Sistemas Informáticos. University of Castilla-La Mancha. Albacete, Spain

{raulmm, falfaro, jsanchez}@dsi.uclm.es

Abstract

Advanced Switching (AS) is a new fabric-interconnect
technology that further enhances the capabilities of PCI Ex-
press, which is the next PCI generation. On the other hand,
the provision of Quality of Service (QoS) in computing and
communication environments is currently the focus of much
discussion and research in industry and academia.

One of the mechanisms that AS provides to support QoS
is the minimum bandwidth egress link scheduler, or just
MinBW scheduler. In this paper, we propose several im-
plementations of the MinBW scheduler and compare their
performance by simulation. These implementations fulfill
all the properties that an AS MinBW scheduler must have,
including the interaction with the AS link layer flow control.

1. Introduction

The PCI bus has served industry well for the last 10
years and is currently used extensively. However, the pro-
cessors and I/O devices of today and tomorrow demand
much higher I/O bandwidth than PCI 2.2 or PCI-X can de-
liver. The reason for this limited bandwidth is the paral-
lel bus implementation. PCI Express [13] eliminates the
legacy shared bus-based architecture of PCI and introduces
an improved and dedicated point-to-point interconnect. The
primary strength behind PCI Express is in its support for
legacy PCI while addressing its inadequacies.

The need for Advanced Switching (AS) [1] essentially
comes because computing and communication platforms
begin to converge by exhibiting increasing overlap in terms
of the functions they serve. While PCI Express is clearly the
interconnect of choice for the computing industry, a com-
mon interconnect with the communications industry seems
logical and necessary, in order to keep development cost

∗This work was partly supported by the Spanish CICYT under Grant
TIC2003-08154-C06-02, by the Junta de Comunidades de Castilla-La
Mancha under Grant PBC-05-005-1, and by the Spanish State Secretariat
of Education and Universities under FPU grant.

down, performance up and to reduce time-to-market. AS is
an extrapolation of PCI Express, borrowing its lower two
architectural layers from PCI Express, but diverging at the
transaction layer and in the marketplaces it intends to serve.
Whereas PCI Express has already begun to reshape a new
generation of PCs and traditional servers, AS is intended
to proliferate in multiprocessor, peer to peer systems in the
communications, storage, networking, servers and embed-
ded platform environments. Together, PCI Express and AS
have the potential for building the next generation intercon-
nects [9].

The provision of Quality of Service (QoS) in the envi-
ronment where AS is foreseen to be used will be very im-
portant. AS networks will be required to carry not only
traffic of applications, such as e-mail or file transfer, which
does not require pre-specified service guarantees, but also
traffic of other applications that requires different perfor-
mance guarantees, like real-time video or telecommunica-
tions [10]. The best-effort service model, though suitable
for the first type of applications, is not so for applications of
the other type [12]. Even in the same application, different
kinds of traffic (e.g. I/O requests, coherence control mes-
sages, synchronization and communication messages, etc.)
can be considered, and it would be very interesting that they
were treated according to their priority.

A key component for the support of QoS in any network
is the output scheduling algorithm, which selects the next
packet to be sent and determines when it should be trans-
mitted, on the basis of some expected performance metrics.
AS defines two egress link schedulers: The virtual chan-
nel arbitration table scheduler and the Minimum Bandwidth
egress link scheduler (MinBW). However, the AS specifi-
cation does not offer a particular algorithm to implement
this scheduler, but only the properties it must respect. Fur-
thermore, one of the features added by the AS link layer
is a credit-based flow control. Flow control protocol en-
sures that packets are only transmitted when there is enough
buffer space at the other end to store them, thereby guar-
anteeing that no packets are dropped when congestion ap-
pears. The problem of most well-known scheduling algo-

rithms is that they were designed without taking into ac-
count the existence of a flow control mechanism. The rea-
son is that they were originally proposed for networks that
do not have link layer flow control, like Internet or ATM.

In [8], we showed how to use the AS mechanisms to
provide applications with QoS. Moreover, we compared
the performance of our proposals using both the table and
the MinBW schedulers. In order to do this we proposed
a modification to the table scheduler that works with vari-
able packet sizes and presented an implementation of the
MinBW scheduler based on the Self-Clocked Weighted Fair
Queuing (SCFQ) algorithm [3]. We called this algorithm
SCFQ Credit Aware (SCFQ-CA).

In this paper, we focus on the implementation of the
MinBW scheduler. We review the SCFQ-CA algorithm and
propose two other implementations for the MinBW sched-
uler: the Weighted Fair Queuing Credit Aware (WFQ-CA)
and the Deficit Round Robin Credit Aware (DRR-CA) al-
gorithms. These two last algorithms are based on two well-
known schedulers: the WFQ [2] and the DRR [14] algo-
rithms, respectively. The SCFQ-CA, the WFQ-CA, and
the DRR-CA schedulers fulfill all the properties that an AS
MinBW scheduler must have, including the interaction with
the AS flow control. We will see that in the SCFQ and
DRR cases the adaptation of these well-known scheduling
algorithms to the MinBW scheduler is more or less simple.
However, in the case of the WFQ, the solution is not triv-
ial. In the performance evaluation section we compare the
performance of the three posibilities.

Proposing adapted scheduling algorithms for AS is quite
significant if we take into account that PCI Express and AS
are foreseen to be the de facto standard in a lot of inter-
connection environments. As far as we know, nobody has
proposed previously a specific implementation for this key
component of AS. Moreover, the three credit aware schedul-
ing algorithms that we propose are actually appropriate not
only for being used in AS, but also for being used in any net-
work that employs a link level flow control. To the best of
our knowledge, the important issue of adapting well-known
scheduling algorithms to environments that employ a link
level flow control mechanism has not yet been treated.

The structure of the paper is as follows: Section 2 re-
views the most important AS mechanisms to support QoS.
In Section 3, we propose our credit aware scheduling al-
gorithms. In Section 4, we review how to configure the
MinBW scheduler to provide the applications with band-
width and latency requirements. Details on the experimen-
tal platform and the performance evaluation are presented
in Section 5. Finally, some conclusions are given and future
work is proposed.

2. AS mechanisms to provide QoS

AS permits us to employ Virtual Channels (VCs) and
egress link scheduling to differentiate between traffic flows.
Moreover, fabric management software may regulate the ac-
cess to the AS fabric, allowing new packet flows entry to the
fabric only when sufficient resources are available.

AS supports up to 16 unicast VCs and up to 4 multicast
VCs. The implemented unicast VC with the highest identi-
fier is called the Fabric Management Channel (FMC).

AS defines two schedulers to resolve between the up to
16 unicast VCs competing for bandwidth on the egress link:
The table scheduler and the MinBW scheduler. A given
implementation may choose either of them or may imple-
ment its own proprietary mechanism. In any case, when
implementing the egress link scheduler, the interaction with
the credit-based flow control must be taken into account.
Packets from VCs that lack enough credits must not be
scheduled. Thus, if the credits for a given VC have been
exhausted, the VC scheduler must treat the corresponding
queue as if it were empty.

The MinBW egress link scheduler consists of two parts:
The first is a mechanism to provide the FMC with abso-
lute priority, ahead of the other VCs, but with its bandwidth
limited by a token bucket. The second is a mechanism to
distribute bandwidth amongst the rest of the VCs according
to a configurable set of weights.

AS does not state a specific algorithm for the MinBW
scheduler, but it must respect the following properties [1]:

• Work conserving: If at least one VC has a packet avail-
able to be sent, it should be transmitted.

• Minimum bandwidth guarantee: Egress link band-
width is allocated among the VCs in proportion to a
set of configurable weights that represent the fraction
of egress link bandwidth assigned to each VC.

• Bandwidth metering, not packet metering: The
MinBW scheduler allocates link bandwidth to each
VC taking into account packet sizes.

• Fair redistribution of unused bandwidth: Bandwidth
left over, after all the VCs have consumed their con-
figured bandwidth, must be redistributed among those
VCs that have credits and packets to be transmitted in
proportion to their bandwidth allocations.

• Memoryless: During the time that a VC has no packets
to transmit, or credits to do so, it does not consume
bandwidth and the scheduler must not save that VC’s
minimum bandwidth allocation for future use.

In the next section, we review several scheduling algo-
rithms and propose three new algorithms based on them,
which fulfill all these properties.

3. Implementation of the MinBW scheduler

The MinBW properties reviewed in the previous section
refer to an ideal fair-queueing model. In a fair-queueing
system, supposing a service rate R, N flows, with the ith

flow having assigned a weight φi, during a given interval of
time, the flow i receives a fair share bandwidth (Bi) propor-
tional to its weight

Bi =
φi

∑V

j=1
φj

∗ R

where V is the set of flows (V ≤ N) with data in queue
during that interval of time.

The AS specification states that variants of WFQ such as
SCFQ, and variants of Weighted Round Robin (WRR) [7]
such as DRR exhibit the desired properties of the MinBW
scheduler. The problem with these algorithms is that they
were designed for networks without a flow control mecha-
nism. Therefore, one of the main issues when implementing
the MinBW scheduler is its interaction with the AS credit-
based flow control. A given implementation of a scheduler
is not allowed to select packets from a VC lacking trans-
mission credits, nor it is allowed to ‘save’ this bandwidth
for future use.

In this section, we present three new scheduling algo-
rithms that take into account the AS credit-based flow con-
trol and fulfill all the properties that the AS MinBW sched-
uler must have and, therefore, can be implemented in this
new technology. These new algorithms are based on the
WFQ, SCFQ, and DRR scheduling algorithms.

3.1. Weighted Fair Queuing Credit Aware

The WFQ algorithm [2] is an approximation of the Gen-
eralized Processor Sharing (GPS) model [11]. GPS is an
ideal fluid model that provides perfect instant fairness in
bandwidth allocation. This ideal model assumes that sev-
eral packets from different queues can be simultaneously
transmitted. WFQ is a packet-by-packet algorithm that tries
to emulate the GPS model by stamping each packet that ar-
rives at the egress link with its departure time (virtual fin-
ishing time) in a corresponding GPS system. The packets
are then transmitted in an increasing order of timestamp.

Let F k
i be the virtual finishing time of the kth packet

from flow i,

F k
i = max{F k−1

i , V (t)} +
Lk

i

φi

where Lk
i is the length of the kth packet and V (t) is the

virtual time of the WFQ system. The WFQ algorithm tracks
the set of queues which are active in each instant and the real
time of the system to calculate V (t).

The WFQ-CA algorithm that we propose works in the
same way as the WFQ algorithm, except in the following
aspects:

• When a new packet arrives at a queue, it is stamped
with its virtual finishing time if there are enough credits
to transmit the packet that is at the head of the queue.

• Packets are transmitted in an increasing order of times-
tamp, but only those queues with enough credits to
transmit the packet at their heads are considered.

• When a queue is inactive because of lack of credits and
receives enough credits to be able to transmit again, its
packets are restamped, from the head to the tail, as if
they had arrived in that instant.

Another aspect that must be taken into account is that the
WFQ algorithm uses the real time to calculate the virtual
time. Note that the real time includes the time used to trans-
mit control packets, which are out of the control of the WFQ
algorithm. The WFQ-CA algorithm fits this problem by not
taking into account the time employed in sending control
packets for calculating the virtual time. However, this is not
a trivial task because events still may happen during that
time. An event is anything that changes the scheduler state,
namely the arrival or departure of a packet, or the arrival
of a credit flow control message that changes a queue from
inactive to active.

Figure 1 shows an example of how the V (t) is calculated.
The figure shows 7 events occurring in the system and two
“gaps” (shadowed boxes) in the time line due to the trans-
mission of control packets. The t line represents the real
time of the system. The t′ line represents the time that is
actually being used to calculate V (t) and when the events
are considered to happen. Note that the events that happen
during a gap time are considered to happen at the beginning
of that gap.

Figure 1. Time line in the WFQ-CA implemen-
tation of the MinBW scheduler.

3.2. Self-Clocked Weighted Fair Queuing
Credit Aware

The SCFQ algorithm [3] defines fair queueing in a self-
contained manner and avoids using a hypothetical queueing
system as reference to determine the fair order of services.

This objective is accomplished by adopting a different no-
tion of virtual time. Instead of linking virtual time to the
work progress in the GPS system, it uses a virtual time func-
tion which depends on the progress of the work in the actual
packet-based queueing system. This approach offers the ad-
vantage of removing the computation complexity associated
to the evaluation of V (t) that may make WFQ unfeasible in
high-speed interconnection technologies.

Therefore, when a packet arrives, SCFQ uses the service
tag (finish time in WFQ) of the packet currently in service
as the V (t) to calculate the new packet tag. Thus, in this
case the virtual finishing time is computed as

F k
i = max{F k−1

i , Fcurrent} +
Lk

i

φi

The SCFQ-CA algorithm that we propose works in the
following way:

• When a new packet arrives at a queue, it is stamped
with its service tag only if it is at the head of the queue
and there are enough credits to transmit it. Packets are
transmitted in increasing order of service tag.

• When a packet is transmitted, if there are enough cred-
its to transmit the next packet, this packet is stamped
with its service tag.

• When a queue is inactive because of lack of credits and
receives enough credits to transmit again, the packet at
the head of the queue is stamped with its service tag.

Note that Fcurrent ≤ F k−1

i if there is at least one packet
waiting, or being transmitted, in the queue i. This permits
us to wait to stamp a packet until it reaches the queue head,
avoiding the restamping process of the WFQ-CA algorithm,
and thus simplifying the scheduling process.

3.3. Deficit Round Robin Credit Aware

The DRR algorithm [14] is a variation of the Weighted
Round Robin (WRR) algorithm [7]. In the WRR, a list of
flow weights is visited sequentially, each weight indicating
the number of packets from the flow in question that can be
transmitted. The WRR algorithm faces a problem if the av-
erage packet size of the different flows is different. In that
case, the bandwidth that the flows obtain may not be pro-
portional to the assigned weights. Therefore, the WRR al-
gorithm does not work properly with variable packet sizes.
However, today network technologies usually use variable
packet sizes.

In order to handle properly variable packet sizes the
DRR algorithm associates each queue with a deficit counter,
which is set to zero at the start. The scheduler visits and
serves a fixed amount of data (referred to as quantum) from

each flow. When a packet is transmitted, the flow’s quantum
is reduced by the packet size. For each flow, the scheduler
transmits as many packets as its quantum allows. The un-
used quantum is saved in the deficit counter, representing
the amount of quantum that the scheduler owes the flow. At
the next round, the scheduler will add the previously saved
quantum to the current quantum. When the queue has no
packets to transmit, the quantum is discarded, since the flow
has wasted its opportunity to transmit packets.

The DRR-CA algorithm that we propose works in the
same way as the DRR algorithm, except in the following
aspects:

• A queue is considered active only if it has at least one
packet to transmit and if there are enough credits to
transmit the packet at the head of the queue.

• When a packet is transmitted, the next active queue is
selected when any of the following conditions occurs:

– There are no more packets from the current queue
or there are not enough flow control credits for
transmitting the packet that is at the head of the
queue. In this case, the current queue becomes
inactive, and its deficit counter becomes zero.

– The remaining quantum is less than the size of
the packet at the head of the current queue. In
this case, its deficit counter becomes equal to the
accumulated weight in that instant.

A well-known problem of the WRR and DRR algo-
rithms, which is shared by the DRR-CA algorithm, is that
the latency and fairness depend on the frame length. The
frame length in these algorithms is defined as the sum of all
the weights in the WRR algorithm or the quantums in the
DRR algorithm. The longer the frame is, the higher the la-
tency and the worse the fairness. In order for DRR to exhibit
lower latency and better fairness, the frame length should
therefore be kept as small as possible. Unfortunately, given
a set of flows, it is not possible to select the frame length ar-
bitrarily. According to the implementation proposed in [14],
DRR exhibits O(1) complexity provided that each flow is
allocated a quantum no smaller than the Maximum Trans-
fer Unit (MTU). As observed in [6], removing this hypoth-
esis would entail operating at a complexity which can be as
large as O(N). This restriction affects not only the weight
assigned to the smallest flow, but to the rest of the flows in
order to keep the proportions between them.

3.4. Implementation considerations

To choose a given MinBW implementation we need to
consider not only the latency and fairness properties, but
also the computational complexity of the different algo-
rithms. Sorted-priority algorithms, like WFQ and SCFQ

(also WFQ-CA and SCFQ-CA), require processing at line
speeds for tag computation and tag sorting. Even the SCFQ
(or SCFQ-CA) algorithm, which has a lower computation
tag complexity, has to sort the VC tags (O(log N), where N
is the number of VCs). Note that the WFQ-CA algorithm
has the additional complexity of the restamping process. As
stated before, the DRR algorithm exhibits O(1) complexity.
However, variants of WRR, like DRR and DRR-CA, have
lower worst-case fairness and latency tuning characteristics
compared to sorted-priority algorithms [16].

4. Providing QoS with the MinBW scheduler

To provide QoS requirements in AS, a set of Service
Classes (SCs) with different requirements must be specified
[8]. The egress link scheduler, in this paper the MinBW,
must be properly configured to provide the different SCs
with their requirements. Moreover, an admission control
protocol must be used to provide QoS guarantees.

In order to define this set of SCs, we propose a traffic
classification based on two network parameters: Bandwidth
and latency. We distinguish three broad categories of traffic:

• Network Control traffic: High-priority traffic to main-
tain and support the network infrastructure.

• QoS traffic: Traffic that has explicit minimum band-
width and/or maximum latency requirements.

• Best-effort traffic: Traffic largely insensitive to both
bandwidth and latency and only characterized by the
differing priority among each other.

When various flows obtain access to the AS fabric, they
will be aggregated into the SCs depending on their charac-
teristics. If there are sufficient VCs, we will devote a sepa-
rate VC to each SC. The control SC will be assigned to the
FMC in order to achieve the maximum priority.

Providing the traffic of VC with minimum bandwidth re-
quirements using the MinBW scheduler is as easy as as-
signing to that VC a weight equal to the proportion of the
egress link bandwidth that it needs. Parekh and Gallager
[11] analyzed the performance of WFQ from the standpoint
of worst-case packet delay. On the basis of that study, we
assign a higher amount of bandwidth than is needed to those
VCs with high latency requirements, in order to obtain a
better average and maximum latency performance.

To distribute the link bandwidth between the VCs, sev-
eral things must be taken into account. First of all, it is well-
known that interconnection networks are unable to achieve
100% global throughput. Moreover, a certain amount of
bandwidth must be reserved to the control SC according to
its expected traffic, which has strict priority in the MinBW

scheduler. Therefore, not all the bandwidth can be dis-
tributed among the QoS and best-effort SCs, thereby requir-
ing a certain bandwidth to be left unassigned. Secondly,
QoS traffic may be bursty (for example a video transmis-
sion) and may require, during short periods of time, more
bandwidth than average. Therefore, when configuring the
MinBW scheduler, not all the bandwidth that is intended
to be assigned to best-effort SCs will in fact be assigned
to them, but rather only a small amount of bandwidth pro-
portional to their relative priority. The rest of the best-
effort bandwidth will also be added to this unassigned traf-
fic. Note that the unused bandwidth would be redistributed
by the MinBW scheduler among the best-effort SCs.

5. Performance Evaluation

In [8], we evaluated our proposals for providing QoS
over AS comparing the performance of the table sched-
uler and the MinBW scheduler using the SCFQ-CA algo-
rithm. In this paper we explore and evaluate different al-
ternatives of the MinBW scheduler. For this purpose, we
have developed a detailed simulator that allows us to model
the network at the register transfer level, following the AS
specification. First, we will describe the main AS network
model features. Secondly, the traffic model and the load
used are described. Thirdly, the configuration of the egress
link schedulers is specified. Finally, we present and analyze
the results obtained.

5.1. Simulated architecture

We have used a perfect-shuffle multi-stage interconnec-
tion network with 64 end-points. In AS, any topology
is possible, but we have used this topology because it is
a common solution for interconnection in current high-
performance environments. The switches have 8 ports and
use a combined input-output buffer architecture, with a
crossbar to connect the buffers. Virtual output queueing has
been implemented to solve the head-of-line blocking prob-
lem at switch level, although all the queues of a VC share
the same credit count.

In our tests, the link bandwidth is 2.5 Gb/s but, with
the 8b/10b encoding scheme, the maximum effective band-
width for data traffic is only 2 Gb/s. We are assuming some
internal speed-up (x1.5) for the crossbar, as is usually the
case in most commercial switches. AS gives us the freedom
to use any algorithm to schedule the crossbar, and we have
implemented a Round Robin scheduler. The cut-through
latency of the switch is 145 ns, which is based on the AS
StarGen’s Merlin switch [15].

5.2. Traffic model

The IEEE standard 802.1D-2004 [4] defines 7 traffic
types at the Annex G that can be easily adjusted to our traf-
fic classification. We will consider each traffic type as an
AS SC. Table 1 shows each SC and its requirements. In this
way, the workload is composed of 7 SCs and each one will
be assigned to a different VC, the NC SC being assigned to
the FMC.

Table 1. SCs recommended by the standard
IEEE 802.1D-2004.

SC Description
NC: Network control Control
VO: Voice QoS: Bandwidth and latency req.
VI: Video QoS: Bandwidth and latency req.
CL: Controlled load QoS: Bandwidth requirements
EE: Excellent-effort Best-effort: Most preferent
BE: Best-effort Best-effort: Intermediate
BK: Background Best-effort: Least preferent

Our intention is to evaluate the behavior of the three
credit aware algorithms we have proposed, using an admis-
sion control mechanism for controlling the QoS traffic and
a relatively small amount of control traffic (as is usually the
case). The QoS SCs should meet their requirements, what-
ever the load of best-effort traffic. For that purpose, we con-
stantly inject a fixed amount of control traffic (NC) and QoS
traffic (VO, VI, and CL) all the time, and we start to inject
best-effort traffic (EE, BE, and BK) at 0.7 normalized net-
work input load, gradually increasing the amount. Table 2
shows the percentage of traffic of each SC that each node
injects regarding the link bandwidth.

Table 2. Injected traffic and scheduler config-
uration.

Injected traffic MinBW C.
SC Bandw. % Traffic pattern Weight
NC 1 self-similar -
VO 20.3125 64KB/s CBR connect. 0.265625
VI 20.3125 750 KB/s MPEG-4 traces 0.203125
CL 20.3125 750 KB/s CBR connect. 0.203125
EE 0 - 25.4 self-similar 0.09375
BE 0 - 25.4 self-similar 0.03125
BK 0 - 25.4 self-similar 0.015625

Total 61.9 - 138.1 0.8125

The packets are generated according to different distri-
butions, as can be seen in Table 2. VO, VI, and CL SCs are
composed of point-to-point connections of the given band-
width. In the case of the VI SC, the frames of the traces are
split into packets and transmitted with an equal distribution

through the video frame time (40 ms). The self-similar traf-
fic is bursty traffic generated with on/off sources, governed
by two Pareto distributions, as recommended by Jain [5].
The packet sizes that we have used are: Up to 64 bytes for
NC traffic, 128 bytes for VO traffic, and up to 2176 bytes
(the maximum packet size in AS) for the rest of SCs.

Note that the traffic model that we use is this perfor-
mance evaluation is based on a multimedia environment.
AS is intended to be used in very different kind of environ-
ments, and probably in some of them the multimedia traffic
is not the most suitable one. However, we use a wide range
of traffic behaviors, and thus the results obtained with this
kind of traffic can be generalized to other AS environments
with other kind of traffic with QoS requirements.

5.3. Scheduler configuration

Table 2 also shows the scheduler configuration. We want
to reserve 20% of link bandwidth to best-effort traffic, but
we have only assigned best-effort SCs a minimum band-
width (14.0625%) to establish the preference between them.
Thus, we have left 18.75% of bandwidth unassigned (rest of
best-effort bandwidth + expected amount of control traffic +
expected amount of lost network bandwidth). The remain-
ing bandwith has been distributed between the QoS SCs.
We will inject the same amount of traffic of the three QoS
SCs considered, but we have assigned a 33% weight more
to VO SC due to its higher latency requirements [11].

In the case of the DRR-CA implementation of the
MinBW scheduler, the VC that accommodates the BK SC,
which is the VC with the minimum bandwidth require-
ment, is assigned a quantum that corresponds to 34 cred-
its (the maximum packet size), which ensures that at least
one packet is going to be transmitted when a VC is selected.
The rest of VCs are assigned a proportional quantum.

(a) WFQ-CA (b) SCFQ-CA (c) DRR-CA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input LoadGlobal Input Load

Average latency (µs)
Maximum latency (µs)

Average latency (ms)
Maximum latency (ms)

Maximum jitter (µs)
Maximum jitter (ms)

Th
ro

ug
hp

ut
pe

rV
C

Th
ro

ug
hp

ut
pe

rV
C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input LoadGlobal Input Load

Average latency (µs)
Maximum latency (µs)

Average latency (ms)
Maximum latency (ms)

Maximum jitter (µs)
Maximum jitter (ms)

Th
ro

ug
hp

ut
pe

rV
C

Th
ro

ug
hp

ut
pe

rV
C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input LoadGlobal Input Load

Average latency (µs)
Maximum latency (µs)

Average latency (ms)
Maximum latency (ms)

Maximum jitter (µs)
Maximum jitter (ms)

Th
ro

ug
hp

ut
pe

rV
C

Th
ro

ug
hp

ut
pe

rV
C

 0.01

 0.1

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL
EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input Load

Average latency (µs)
Maximum latency (µs)

Av
er

ag
e

la
te

nc
y

(m
s)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC 0.01

 0.1

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL
EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input Load

Average latency (µs)
Maximum latency (µs)

Av
er

ag
e

la
te

nc
y

(m
s)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC 0.01

 0.1

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL
EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input Load

Average latency (µs)
Maximum latency (µs)

Av
er

ag
e

la
te

nc
y

(m
s)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

 0.1

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL
EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input Load

Average latency (µs)
Maximum latency (µs)

Average latency (ms)

M
ax

im
um

la
te

nc
y

(m
s)

Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC 0.1

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL
EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input Load

Average latency (µs)
Maximum latency (µs)

Average latency (ms)

M
ax

im
um

la
te

nc
y

(m
s)

Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC 0.1

 1

 10

 100

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL
EE
BE
BK

PSfrag replacements
Injection (Gb/s)

Global Input Load

Average latency (µs)
Maximum latency (µs)

Average latency (ms)

M
ax

im
um

la
te

nc
y

(m
s)

Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC
Figure 2. Performance of the three scheduler
implementations of the MinBW.

(a) Network Control (b) Voice (c) Video (d) Controlled Load

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Av
.l

at
en

cy
(µ

s
)

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Av. latency (µs)

Av
.l

at
en

cy
(µ

s
)

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Av. latency (µs)
Av. latency (µs)

Av
.l

at
en

cy
(µ

s
)

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Av. latency (µs)
Av. latency (µs)
Av. latency (µs)

Av
.l

at
en

cy
(µ

s
)

 200

 400

 600

 800

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

M
ax

.l
at

en
cy

(µ
s
)

 200

 400

 600

 800

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Max. latency (µs) M
ax

.l
at

en
cy

(µ
s
)

 200

 400

 600

 800

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Max. latency (µs)
Max. latency (µs) M

ax
.l

at
en

cy
(µ

s
)

 200

 400

 600

 800

 1000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

WFQ−CA
SCFQ−CA
DRR−CA

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC

Global Input Load

Max. latency (µs)
Max. latency (µs)
Max. latency (µs) M

ax
.l

at
en

cy
(µ

s
)

Figure 3. Average and maximum latency performance of the control and QoS SCs.

5.4. Simulation results

Figure 2 shows the performance of our three scheduler
implementations of the MinBW. Figures 3 and 4 show a
more detailed comparison between the schedulers based on
the average and maximum latency of the control and QoS
SCs. Figures show the average values and the confidence
intervals at 90% confidence level of ten different simula-
tions performed at a given input load. For each simulation
we obtain the normalized average throughput, the average
packet latency, and the maximum packet latency of each
flow. We obtain statistics per SC aggregating the through-
put of all the flows of the same SC, obtaining the average
value of the average latency, and the maximum latency of
all the flows. Note that the maximum latency shows the
behavior of the flow with the worst performance.

Figure 2 shows the normalized throughput results per
VC. It can be seen that the NC and the QoS SCs obtain
all the bandwidth they inject. However, when the network
load is high (around 85%), the best-effort SCs do not yield
a corresponding result. These SCs obtain a bandwidth pro-
portional to their priority.

Regarding the latency performance, Figure 2 shows that
the average and maximum latency of the NC SC and the
QoS SCs grow with the load until they reach a certain value.
Once this value is reached the latency remains more or less
constant. The average latency of best-effort SCs grows with
the load. Furthermore, it can be seen that best-effort SCs
obtain a different average latency according to their priority.

Figure 3 offers a clearer picture of the difference between
the three schedulers for the control and QoS SCs, which are
the SCs with stricter QoS requirements. As we can see, the
best latency results are offered by the WFQ-CA algorithm.
The DRR-CA algorithm offers clearly the worst latency re-
sults of the three schedulers. Note that the latency perfor-
mance of the three schedulers is inverse to their complexity

(see Section 3.4). Another difference between the sched-
ulers is that the DRR-CA algorithm is affected negatively
for the variable bit rate of video traffic (the VI SC obtains
a worse latency than the CL SC having assigned the same
amount bandwidth). This is not the case for the WFQ-CA
and SCFQ-CA proposals. Note also that the control traffic
obtains a worse latency than, for example, the voice traffic
because control traffic must be emulated using self-similar
traffic, which is more difficult to handle than the CBR traf-
fic used for the voice traffic. Finally, the VO SC obtains
a better latency than the VI and CL SCs because, in order
to fulfill its latency requirements, we have assigned it more
bandwidth than it strictly requires.

As stated before, the DRR-CA algorithm provides la-
tency performance far worse than the WFQ-CA and SCFQ-
CA algorithms. However, the difference between these last
two schedulers is no so big. Figure 4 shows the percent-
age of improvement on average and maximum latency of
the WFQ-CA algorithm over the SCFQ-CA algorithm for
the control and QoS SCs. As we can see the maximum im-
provement of the WFQ-CA algorithm is less than 20% for
the average, and less than 15% for the maximum latency.

−10

−5

 0

 5

 10

 15

 20

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC
Global Input Load

Global Input Load

Av
.L

at
.I

m
pr

ov
em

en
t(

%
)

−10

−5

 0

 5

 10

 15

 20

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

NC
VO
VI
CL

PSfrag replacements
Injection (Gb/s)

Global Input Load
Average latency (µs)

Maximum latency (µs)
Average latency (ms)

Maximum latency (ms)
Maximum jitter (µs)
Maximum jitter (ms)

Throughput per VC
Global Input Load

Global Input Load

Av. Lat. Improvement (%)

M
ax

.L
at

.I
m

pr
ov

em
en

t(
%

)

Figure 4. Latency improvement of the WFQ-
CA algorithm over the SCFQ-CA algorithm.

Summing up, the three proposed algorithms are able to
provide control and QoS SCs with the required throughput,
and to provide best-effort SCs with a throughput propor-

tional to their priority. However, the three schedulers pro-
vide a different latency performance. The DRR-CA algo-
rithm, which presents the lowest computational complexity,
offers the worst latency results. Moreover, the latency of
this scheduler depends on the frame length, which may be
very long. Therefore, if we want to provide QoS based on
latency requirements, the DRR-CA option may not be the
most appropriate. On the other hand, if we want to provide
QoS based only on bandwidth, the DRR-CA algorithm is
probably the best option due to its computational simplic-
ity. The WFQ-CA algorithm provides the best latency per-
formance. However, this is the scheduler with the highest
computational complexity among the three options. Note
that when the switching node operates at high speed, a sim-
ple and fast scheduling algorithm is mandatory in order to
achieve a good performance. On the other hand, the SCFQ-
CA algorithm provides a quite good latency performance
with an affordable computational complexity. Therefore,
the SCFQ-CA option may be a better option if we want to
provide QoS based on both latency and bandwidth require-
ments, without a very high computational complexity.

6. Conclusions

In this paper, we have reviewed the main characteristics
of the new AS technology and claimed that in this envi-
ronment the QoS provision will be very important. This
is the reason because we have proposed and compared
three scheduler implementations for the AS MinBW sched-
uler. These new algorithms, which are based on three well-
known scheduling algorithms, accomplish all the properties
that the AS MinBW scheduler must have, including the in-
teraction with the AS flow control. In some cases, the adap-
tation of these traditional algorithms to AS is not a trivial
task because several aspects must be taken into account.
We have called these algorithms WFQ Credit Aware (WFQ-
CA), SCFQ Credit Aware (SCFQ-CA), and DRR Credit
Aware (DRR-CA). Note that these algorithms can be used
not only to implement the AS MinBW scheduler, but also
in any network technology with flow control. As far as we
know, the important issue of adapting well-known schedul-
ing algorithms to environments that employ a link level flow
control mechanism has not yet been treated.

We have studied the computational complexity of the
three proposals and their throughput and latency perfor-
mance. Simulation results show that the three schedulers
provide a similar throughput but a different latency perfor-
mance. The WFQ-CA algorithm, which has the highest
computational complexity, provides the best latency results.
However, the SCFQ-CA algorithm shows a slightly worse
latency performance than the WFQ-CA algorithm with a
lower computational complexity. The DRR-CA proposal
is the algorithm with the lowest computational complexity,

but offers the worst latency results, and has very bad latency
tuning characteristics. Therefore, if we want to provide only
bandwidth requirements, the DRR-CA algorithm may be
the best option. On the other hand, if we want to provide
both latency and bandwidth requirements, the option that
offers the best balance between latency performance and
computational complexity is the SCFQ-CA algorithm.

As future work we are focusing our attention on obtain-
ing analytical expressions for their latency characteristics.

References

[1] Advanced Switching Interconnect Special Interest Group.
Advanced Switching core architecture specification. Revi-
sion 1.1, Mar. 2005.

[2] A. Demers, S. Keshav, and S. Shenker. Analysis and simu-
lations of a fair queuing algorithm. In SIGCOMM, 1989.

[3] S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In INFOCOM, 1994.

[4] IEEE. 802.1D-2004: Standard for local and metropoli-
tan area networks. http://grouper.ieee.org/
groups/802/1/, 2004.

[5] R. Jain. The art of computer system performance analysis:
Techniques for experimental design, measurement, simula-
tion and modeling. John Wiley and Sons, Inc., 1991.

[6] S. S. Kanhere, H. Sethu, and A. B. Parekh. Fair and efficient
packet scheduling using elastic round robin. IEEE Transac-
tions on Parallel and Distributed Systems, 2002.

[7] M. Katevenis, S. Sidiropoulos, and C. Corcoubetis.
Weighted round-robin cell multiplexing in a general-
purpose ATM switch chip. IEEE Journal on Selected Areas
in Communications, Oct. 1991.

[8] R. Martı́nez, F. Alfaro, and J. Sánchez. Providing Quality of
Service over Advanced Switching. International Conference
on Parallel and Distributed Systems (ICPADS), July 2006.

[9] D. Mayhew and V. Krishnan. PCI Express and Advanced
Switching: Evolutionary path to building next generation in-
terconnects. In Hot Interconnects: 10th Symposium on High
Performance Interconnects, 2003.

[10] P. L. Montessoro and D. Pierattoni. Advanced research is-
sues for tomorrow’s multimedia networks. In International
Symposium on Information Technology (ITCC), 2001.

[11] A. K. Parekh and R. G. Gallagher. A generalized processor
sharing approach to flow control in integrated services net-
works: The multiple node case. IEEE/ACM Transactions on
Networking, 1994.

[12] K. I. Park. QoS in Packet Networks. Springer, 2005.
[13] PCI SIG. PCI Express base architecture specification. Revi-

sion 1.0a, Apr. 2003.
[14] M. Shreedhar and G. Varghese. Efficient fair queueing using

deficit round robin. In SIGCOMM, pages 231–242, 1995.
[15] StarGen. StarGen’s Merlin switch, 2004. http:

//www.stargen.com/products/merlin_
switch.shtml.

[16] D. Stiliadis and A. Varma. Latency-rate servers: a gen-
eral model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking, 1998.

