928

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO.7, JULY 2008

Efficient Deadline-Based QoS Algorithms
for High-Performance Networks

Alejandro Martinez, George Apostolopoulos, Member, IEEE, Francisco J. Alfaro,
José L. Sanchez, and José Duato, Member, IEEE

Abstract—Quality of service (QoS) is becoming an attractive feature for high-performance networks and parallel machines because,
in those environments, there are different traffic types, each one having its own requirements. In that sense, deadline-based algorithms
can provide powerful QoS provision. However, the cost associated with keeping ordered lists of packets makes these algorithms
impractical for high-performance networks. In this paper, we explore how to efficiently adapt the Earliest Deadline First family of
algorithms to high-speed network environments. The results show excellent performance using just two virtual channels, FIFO queues,

and a cost feasible with today’s technology.

Index Terms—Quality of service, high-speed interconnection networks.

1 INTRODUCTION

ODERN supercomputers and parallel machines put a

lot of pressure on the interconnection network.
Nowadays, low-latency and contention-free interconnection
networks are demanded for the execution of parallel
applications. Moreover, high bandwidth is also required
to access storage devices. In addition to these, there is also a
need for administration traffic used to configure and
manage the machine. Finally, some low-priority traffic-like
backup copies are needed. Therefore, there is a great variety
of application requirements in such environments.

The usual solution to cope with this variety of commu-
nication necessities is to overprovision the network. The
designers provide more resources than needed to ensure
meeting traffic requirements [1]. Besides, to provide the
different classes of traffic with their requirements, it is
common to settle on a network for each traffic class (TC).
For instance, the recently built supercomputer MareNostrum
[2] implements a Myrinet network for parallel applications,
a Gigabit Ethernet for storage access, and a regular Ethernet
for management purposes. Although Ethernet interfaces are
quite cheap nowadays, keeping three times the wires is
complex, costly, and power consuming.

A subtler approach could be taken in the design of the
interconnection for such machines. A single network with

o A. Martinez is with the Intel Barcelona Research Center, Intel Labs-
Universitat Politécnica de Catalunya, C/ Jordi Girona, 29 Edificio
Nexus 11, 3a planta, 08034 Barcelona, Spain.

E-mail: alejandrox.martinez@intel.com.

o G. Apostolopoulos is with Redback Networks, 350 Holger Way, San Jose,
CA 95134. E-mail: georgeap@redback.com.

e F.J. Alfaro and].L. Sdnchez are with the Escuela Politécnica Superior de
Albacete, Campus universitario, s/n, 02071 Albacete, Spain.

E-mail: {falfaro, jsanchez)@dsi.uclm.es.

o . Duato is with ETS Informdtica Aplicada, Camino de Vera, s/n, 46022

Valencia, Spain. E-mail: jduato@disca.upv.es.

Manuscript received 19 Jan. 2007; revised 4 Jan. 2008; accepted 24 Jan. 2008;
published online 25 Feb. 2008.

Recommended for acceptance by F. Lombardi.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0030-0107.
Digital Object Identifier no. 10.1109/TC.2008.39.

0018-9340/08/$25.00 © 2008 IEEE

some quality-of-service (QoS) support could be used to
provide each kind of traffic with its specific requirements.
In fact, some of the latest high-performance interconnec-
tion proposals incorporate some support for QoS. In the
next section, we will introduce the InfiniBand and PCI AS
interconnection standards, which include some QoS
mechanisms.

The two main types of QoS support are per-traffic-class
and per-flow support. The first approach requires the
classification of the traffic in TCs and the assignment of one
virtual channel (VC) per TC. The network switches offer a
traffic differentiation based on these TCs by applying
different scheduling algorithms at the VC level. On the
other hand, per-flow QoS support requires a flow identifier
to be associated with each packet and per-flow information
to be kept at each switch of the network. This second
approach is much more powerful, but it is also so complex
that it has never been implemented in a high-performance
environment, with perhaps the exception of ATM [3].

In this paper, we discuss how to obtain most of the
benefits of the per-flow QoS approach within the restric-
tions of high-performance switches. More specifically, we
will propose a novel strategy to emulate the Earliest
Deadline First (EDF) family of algorithms by using just a
pair of FIFO queues.

The remainder of this paper is structured as follows: In
Section 2, the related work is presented. In Section 3, we
present our strategy to offer QoS support. Details on the
experimental platform are in Section 4 and the performance
evaluation is presented in Section 5. Finally, Section 6
summarizes the results of this study.

2 RELATED WORK

In this section, we will review the state of the art in QoS
support in wired interconnects with a special attention to
the characteristics of per-flow QoS algorithms.

Published by the IEEE Computer Society

MARTINEZ ET AL.: EFFICIENT DEADLINE-BASED QOS ALGORITHMS FOR HIGH-PERFORMANCE NETWORKS 929

2.1 QoS Support in Packet Networks

Over the last few years, as networks have had to carry more
diverse types of traffic, there has been extensive work on
how to schedule the resources of a packet switch' to
provide guaranteed performance to traffic. Performance
guarantees usually include bounds on packet loss, delay,
jitter (delay variation), and transmission rate or throughput.
Achieving these performance guarantees requires both the
scheduling of the network resources and avoiding their
oversubscription. Scheduling is implemented through a
service discipline and oversubscription is avoided through a
Connection Admission Control (CAC) policy, usually tightly
coupled with the service discipline. The network resources
that need to be scheduled are buffer space (usually at the
outgoing port) at the packet switches and link bandwidth.

Over time, a variety of scheduling disciplines have been
proposed, each one targeted at providing certain types of
guarantees and representing a different trade-off between
implementation complexity and performance guarantees.
Scheduling policies can be classified into two broad classes
depending on whether they provide aggregate or per-flow
guarantees. A flow is a sequence of packets that belong to
the same logical stream and should be treated similarly by
the network, for example, a single TCP connection or all of
the traffic destined to a certain host. A popular class of
service disciplines that can provide per-flow guarantees is
based on the concept of Weighted Fair Queuing (WFQ) [4]. In
this case, individual flows receive a ratio of the available
link capacity based on their weight, approximating General-
ized Processor Sharing (GPS), a theoretical service disci-
pline that schedules traffic following the fluid model, i.e.,
scheduling each bit of incoming packets independently. The
packetized version of GPS known as PGPS [5] or WEQ [4]
has been shown to be able to provide tight end-to-end rate
and delay guarantees while remaining fair in how it
handles traffic. The downside is that the implementation
of this class of scheduling disciplines is complex since they
need to approximate the operation of GPS. A number of
variants have been introduced (see [6] for a brief review)
that not only simplify implementation but also reduce the
fairness or the quality of guarantees provided.

The Earlier Deadline First (EDF) discipline is a different
approach, based on a deadline scheduler. Packets are
assigned deadlines and the packet with the earliest deadline
is selected for transmission. An advantage of this discipline
over the WFQ variants is that EDF can separate the rate and
delay guarantees provided; the WFQ policies can only
provide a rate guarantee and, indirectly through it, a delay
guarantee: A flow that needs very low delays would have to
reserve a high rate. In order to provide end-to-end
guarantees with EDF schedulers, it is necessary to provide
additional shaping at each node. With this addition, it has
been shown that the EDF discipline is the most efficient
when guaranteeing end-to-end delays [7]. Still, both the
simplified WFQ disciplines as well as the EDF algorithm are
too difficult to implement since they require separate
queues for each flow. Large packet switches may have to

1. The terms packet switches and packet networks will be used to refer to
general networking technologies.

handle hundreds of thousands of flows, making fast
hardware implementations of these policies impractical.

The above limitation has led to the development of
scheduling disciplines that can provide aggregate guaran-
tees. In these disciplines, flows are mapped to a small
number of TCs that are then scheduled; each flow receives a
less accurate aggregate guarantee. Scheduling among
classes can be implemented using WFQ-like or EDF
disciplines as above. A scheduling discipline specifically
targeted to classes is Class-Based Queuing (CBQ) [8], which
uses a hierarchy of schedulers for providing different
guarantees to different classes of traffic. Aggregate guaran-
tees will not be as hard (i.e., deterministic) as with per-flow
scheduling and QoS provision will depend more on CAC.
For example, if we can guarantee a given rate for a TC, we
will have to be very careful how many flows are admitted in
this class so as to ensure some meaningful per-flow
guarantee. In certain cases, in order to achieve a relatively
tight guarantee, we may have to implement a very strict
CAC reducing the utilization of the network.

Based on the above scheduling disciplines, a number of
QoS architectures have been proposed. Examples of per-
flow-oriented QoS architectures are the QoS architecture of
ATM [3] and the Integrated-Services model [9] that was
proposed for Internet in the mid-1990s. An example of
aggregate-QoS architecture is Differentiated Services [10],
which is nowadays used to provide limited QoS in parts of
the Internet.

We should note here that, in packet networks, there is
another important dimension to scheduling, that of buffer
management. Given that there are limited buffers available,
service disciplines usually are complemented with a buffer
management policy that decides what packets to drop when
buffers are exhausted. We will not look further into this
aspect of scheduling since high-speed interconnects typi-
cally use flow control to throttle senders when there are no
available buffers and they never drop packets. Besides, in
QoS architectures in packet networks, one has to deal with
the potential heterogeneity of the network, which may be
using equipment from different vendors with different
scheduling discipline implementations. Providing end-to-
end aggregate guarantees in such a network can be
challenging. On the other hand, there is no such issue
when we consider high-speed interconnection networks.

2.2 QoS Support in New High-Speed Interconnects

When compared with a generic packet switch, high-speed
interconnect switches exhibit some important differences,
mostly because of their much simpler and compact
implementation. First, flow control is commonly used to
throttle the incoming traffic and, thus, there are usually no
packet drops due to running out of buffer space. Buffers
themselves are smaller than what one would expect from a
generic packet switch. Furthermore, access to these buffers
is more restricted, and random access is not possible due to
the strict time limitations. Similarly, the number of different
queues is limited.

InfiniBand was proposed in 1999 by the most important
IT companies to provide server systems with the required
levels of reliability, availability, performance, scalability,
and QoS [11]. Specifically, the InfiniBand Architecture (IBA)

930

proposes three main mechanisms to provide the applica-
tions with QoS [12]. These are traffic segregation with
service levels, the use of up to 16 VCs, and arbitration at
output ports according to an arbitration table. Although
IBA does not specify how these mechanisms should be
used, some proposals have been made to provide applica-
tions with QoS in InfiniBand networks [13].

On the other hand, the PCI Express Advanced Switching
(AS) architecture has recently been proposed as the natural
evolution of the traditional PCI bus [14]. It is a switch fabric
architecture that supports high availability, performance,
reliability, and QoS. AS ports incorporate up to 20 VCs
(16 unicast and 4 multicast) that are scheduled according to
some QoS criteria. It is also possible to use a CAC
implemented in the fabric management software.

These proposals, therefore, permit us to use several VCs to
provide QoS support. However, implementing a great
number of VCs would require a significant fraction of silicon
area and would make packet processing slower. Moreover,
thereis a trend toward increasing the number of ports instead
of increasing the number of VCs per port [15]. In general, the
number of queues per port can have a significant effect on the
overall complexity and cost of the interconnect switch.
Therefore, it is important to attempt to provide effective
QoSwith anumber of queues as small as possible. Indeed, our
proposal addresses this very effectively.

3 EFFICIENT ARCHITECTURE FOR PER-FLOw Q0S
SUPPORT

In a typical cluster environment, we have a set of hosts
connected through the type of high-speed interconnects
described above. The hosts have enough resources to
maintain per-flow information for the traffic flows they
originate. On the other hand, the switches that make up the
interconnect have drastically fewer resources and usually
cannot maintain more than a few different VCs. Unavoid-
ably, the interconnect can only support aggregate QoS
despite the host’s ability to keep track of per-flow
information. In this work, we explore whether it is possible
to maintain reasonable traffic differentiation through a very
simple interconnect that uses only two VCs. As discussed
above, it is essential to keep the cost of interconnect
switches as low as possible as even a few VCs may push
the cost to unacceptable levels. The hosts implement a per-
flow EDF type of scheduling discipline and all of the traffics
are collapsed into the two VCs used by the interconnect.
The interconnect switches perform a very simple sorting
operation that can be implemented without the queue
management complexity of the EDF scheduling. The
effectiveness of the sorting operation depends on the fact
that packets arrive from the hosts already sorted in priority.
A previous version of this work can be found in [16].

We focus on the following TCs: 1) high-priority low-
bandwidth control traffic, which is traffic that has to be
delivered as fast as possible, 2) high-priority real-time
traffic, which has to be delivered so that it does not violate
its deadlines and, thus, requires a certain amount of
bandwidth availability, and 3) best-effort low-priority
traffic. We also want to provide further differentiation for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO.7, JULY 2008

different types of best-effort traffic. We do not aim at
providing specific QoS guarantees such as delay of rate
bounds, but we focus on providing sufficient traffic
differentiation beyond the limitations of the two VCs in
the interconnect. We will show how, thanks to the
scheduling done at the hosts, we can effectively differenti-
ate among multiple classes of traffic.

We want to efficiently adapt the EDF family of
algorithms to a high-speed network. More specifically, we
will use a variation of the Virtual Clock [17] algorithm. In
our architecture, each packet will carry one tag, the
deadline, which is the cycle in which it is supposed to be
delivered to the final destination host. In order to compute
this, the sender host is responsible for keeping some
information about the flows with origin in that host.

A flow would be a single connection, like a TCP connection
or traffic from a single application. Each flow would have the
following parameters: source, destination, a fixed route, and
the information necessary to compute deadlines, which
would usually be average bandwidth, but may vary depend-
ing on the type of flow, as we will see later.

In addition to deadline, packets have another tag while
they are at the sender host: the eligible cycle. This tag
indicates the earliest cycle in which a packet is allowed to
get into the network. Since it is not used in the switches, this
tag is not transmitted in the packet header.

A cornerstone of our proposal is to avoid any book-
keeping of the flows at the switches. For scheduling, only
the information in the header of packets is used: the
deadline and the routing information.

We use an admission control similar to what is proposed
for InfiniBand or PCI AS. Bandwidth reservation is
performed at a centralized point and no record is kept in
the switches. This makes the use of fixed routing mandatory
so that packets use the route they have reserved.

On the other hand, we have to provide a connectionless
or unregulated service like UDP or ATM’s UBR for best-
effort traffic. In this case, we still propose using fixed
routing to avoid out-of-order delivery, which may happen
with adaptive routing. Although we use fixed routing,
admission control can ensure load balancing when assign-
ing paths, as opposed to deterministic routing, where there
is only a single path between a given pair of hosts.

For unregulated traffic, a generic flow record is kept in the
end-hosts, with the necessary parameters. In this case, there is
no bandwidth reservation and there is no guarantee of
delivery. However, if we want to support several classes of
best-effort traffic, we can configure several aggregated flows,
each one with a different bandwidth to compute deadlines.

Summing up, we propose injecting packets from hosts
using an unmodified EDF algorithm. However, at the
switches, we use just two VCs, implemented as FIFO
queues, and apply a scheduling based on the deadlines
packets include in their header.

3.1 Calculus of Deadline

Taking into account the flow parameters, the packets are
stamped in the end-hosts with the deadline tag. In addition,
an eligible time tag is also used while the packet remains in
the interface. For most flows, the deadline of packet P is

MARTINEZ ET AL.: EFFICIENT DEADLINE-BASED QOS ALGORITHMS FOR HIGH-PERFORMANCE NETWORKS 931

L(PR)

D(F;) = i D(Pi-1), Thow)
(P) = maximum(D(P,—1), T,)+BWavg

where L(P;) is the length of the packet P;, T, is the host’s
clock when the packet arrives from the application level, and
BW, is the reserved average bandwidth. This computation
does not consider the number of hops that a packet needs to
reach its destination. However, this is fine in high-perfor-
mance networks, where base latency is very short.

Some specialized types of traffic require a different
method to compute bandwidth. Control traffic needs a
latency that is as short as possible but takes almost no
bandwidth. For this type of traffic, we would use no
connection admission and BW,,, would be the link band-
width. In this way, control traffic gets the maximum priority.

Multimedia traffic usually consists of bursts of packets
followed by silence periods. Let us assume that we want to
transmit an MPEG video sequence with average bandwidth
of 400 Kbyte/s. Moreover, we know that the video sequence
consists of one video frame each 40 ms and the frame size
can be between 1 and 120 Kbytes. For this kind of traffic, an
average bandwidth assignation is not enough because,
during peak-rate periods, it would introduce intolerable
delays. We could use the maximum bandwidth (based on
maximum frame size) to generate deadlines, but two
problems arise: First, if the frame to be transmitted is short,
we are introducing unnecessary bursts of packets. Second,
the latency of each frame will vary a lot since it will depend
on the size of frames.

We propose using the following strategy: The user fixes a
desired latency per frame, for instance 10 ms. Upon
reception of a new frame, we compute the number of
network level packets it will generate. For instance, if the
frame size is 80 Kbytes and the maximum transfer unit
(MTU) is 2 Kbytes, it will generate 40 packets. For each
packet P;, the deadline is

10 ms

D(PL) = mamimum(D(P,-,l), T,ww) + Ws(m 3

where Parts(F;) is the number of packets generated by the
frame to which P; belongs. In this way, every frame will
have a latency close to 10 ms, independently of frame size,
and a smooth distribution of packets. This is good both for
avoiding unnecessary bursts in the network and for
preventing a lot of variability in frame latency.

Another central element of our proposal is that the
deadline of the packets is not recomputed at the switches.
The main reason is that the ideal implementation of a high-
speed switch is a single chip to minimize delays, which
means that silicon area is limited and there is no space for
recording information regarding all of the flows traversing
the switch. Moreover, recomputing the deadline would
introduce additional delay and would not introduce any
significant benefit in a high-performance network.

The use of eligible time in the end-nodes is optional since
some TCs do not tolerate being smoothed. When it is used,
typically for multimedia traffic, we propose computing the
eligible time of a packet as its deadline minus a fixed value,
the eligibility factor. We have found in our tests that 20 us
works well. In this way, when a traffic flow is smoothed,
packets leave the end-node at most 20 us before their

deadline, not earlier (they can leave later due to competition
for the link). This strategy, together with the aforemen-
tioned method to compute deadlines for multimedia traffic,
produces almost constant latency for multimedia frames,
which in turn reduces jitter and also produces low
burstiness since packets are more evenly distributed.

3.2 Packet Scheduling

Ideally, each switch would schedule packets implementing
an EDF algorithm. However, searching for the packet with
the minimum deadline through all of the buffers is not
practical. An alternative is to implement a heap buffer,
which always keeps the packet with the lowest deadline at
the top of the queue. A design for this is discussed in [18].
However, the associated cost is not practical for high-speed
switches with high radix (number of ports).

On the other hand, we have observed that, when traffic is
regulated (no oversubscription of the links), the switches
can just take into account the first packet at each input
buffer in arrival order. The idea is that traffic coming from
the interfaces has already been scheduled and this traffic is
coming in an ascending order of deadline. This being so, it
is possible to just consider the first packet at each queue
with confidence that packets coming afterward have higher
deadlines.

The behavior of the switch would be analogous to a sorting
algorithm: If the switch has as input ordered chains of packets
and has to produce at the output an ordered sequence, it only
needs to look at the first packet of each input.

The main limitation of this algorithm is that packets may
not always come ordered from the interfaces. It may happen
that, when no more low-deadline packets are available, a
high-deadline packet is transmitted, especially if eligible
time is not being used. If the high-deadline packet has to
wait in a switch input queue and other packets with lower
deadline are transmitted from the network interface, they
would be stored after the high-deadline packet in the same
queue. Thus, the arbiter would penalize the low-deadline
packets because they would have to wait until the high-
deadline packet is transmitted.

The order error situation, along with the eligibility time
feature, is illustrated with an example in Fig. 1. Let us
assume that, at a given host, there are two applications
injecting traffic: a multimedia application and a control
application. At a certain point, there are several multimedia
packets waiting for injection and no control packet at the
host. In T =4, the first multimedia packet can proceed
because the actual time, 4, plus the eligibility factor, 3, is less
or equal than the packet’s deadline, 7. In the same way, in
T =9, the next multimedia packet can proceed. However,
in T'=11, a control packet is generated and immediately
forwarded. In that case, there is an order error because the
deadline of the control packet is smaller than the deadline
of the preceding multimedia packet in the switch buffer.
Also note that the maximum magnitude of order errors is
the eligibility factor 3 in this example. In our simulations,
we use 20 us obtaining good performance.

Order errors will violate our assumptions and degrade
the service offered to the low-deadline packets. We will
analyze this problem and how to attenuate it later. Note that

932

Multimedia

SWITCH
VvC o0

Control

HOST

Multimedia

SWITCH
vCo

Control

HOST

Multimedia

SWITCH
vCo

Control

HOST

Fig. 1. Example of order error.

there is no chance for starvation since traffic is regulated
and there is enough bandwidth guaranteed.

On the other hand, there is also unregulated (best-effort)
traffic that could interfere with the regulated traffic. This is
the reason why we propose using two different VCs: one for
regulated traffic and the other for nonpoliced traffic. The
regulated traffic has absolute priority over the best-effort
traffic. Therefore, we can guarantee that regulated traffic
will not be delayed by congestion and still accept best-effort
traffic to make use of the remaining bandwidth.

There are also two VCs at the end-hosts, but packets are
always in deadline order. In the regulated traffic VC, there
are two queues, one feeding the other. In the first queue,
packets are stored in ascending eligible time. As soon as the
first packet in the queue is eligible, it goes to another queue,
where packets are sorted according to ascending deadlines.
Packets are injected from this queue as soon as the link is
available and there are enough credits. On the other hand,
packets in the best-effort VC are also sorted by deadline.
They are injected only when the link is available, there are
credits, and the regulated traffic VC has no packets ready to
inject (there might be packets waiting for eligible time).

3.3 Clock Synchronization

Precise clock synchronization between the end-hosts would
be needed for the viability of our proposal. If packets carry
deadline tags in absolute values, then the performance would
be affected by clock synchronization. Since clock synchroni-
zation protocols (like NTP [19]) would be implemented in the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO.7, JULY 2008

network with maximum priority, we can argue that clocks
would be quite synchronized. Skew between clocks would
be much less than 1 ms and, thus, this would be the
maximum penalization.

However, we can avoid this situation with a simple
strategy. The deadlines we are computing consist of a base
time value, linked to a local clock, plus some additional
time to reach the destination. By subtracting local clocks, we
would have the time to reach the final destination (TTD).
This value has the advantage of not needing any synchro-
nization of clocks. The host indicates that a packet has to
reach its destination before n milliseconds instead of the
absolute time to do the same.

The problem is that this value would change every clock
cycle, which is undesirable. However, we can reconstruct a
packet’s deadline by adding the local clock again. There-
fore, our strategy would be the following: Packets receive a
deadline in the hosts and are stored as usual. When a packet
is about to leave a host or switch, the TTD is computed:

TTD; =D, — nocalv

where Tj,.q is the local clock at the host or switch the packet
is leaving. When the packet arrives at the next hop, the
deadline is reconstructed, adding to the TTD of the packet
the new local clock. This deadline is used for scheduling
locally and, when the packet is chosen to be transmitted, a
new TTD is computed and put in the packet header.

Regarding eligibility time, when this feature is active, no
smoothed packet can leave the interface with a TTD higher
than the eligibility factor. For instance, in the simulations,
multimedia packets have a maximum TTD of 20 us. This
also bounds the number of bits necessary to store the TTD at
the packet header.

The only drawback of this proposal is that the CRC of the
header would need to be recomputed at each hop. This is
because a packet’s TTD will be changing with each hop.
Other fields of the header also change with each hop. Note
that fast CRC circuits are already present in the network
elements and this is not a restrictive requirement. For
instance, Myrinet [20] requires that CRC be recomputed at
the output links of network elements.

3.4 Reducing Order Errors

We have observed through simulation that the performance
achieved by the previous proposal is similar to having full-
ordered queues. However, the latency of the most demand-
ing flows may be increased as much as 25 percent due to
order errors. To attenuate this effect, we propose an
improvement to this proposal.

The key idea consists of splitting, in the switches, the
regulated traffic VC into two FIFO queues (Fig. 2). One of
these queues is the ordered queue and the other is the take-
over queue. When a packet arrives, its deadline is compared
with the deadline of the packet in the last position of the
ordered queue. If the new packet has a higher deadline, it is
put in the ordered queue. If the deadline is smaller, the packet
goes to the take-over queue.

The dequeuing algorithm is very simple: The packet
chosen to be transmitted is always the one with the
smallest deadline of both queue heads. In this way, we give

MARTINEZ ET AL.: EFFICIENT DEADLINE-BASED QOS ALGORITHMS FOR HIGH-PERFORMANCE NETWORKS 933

Take over queue

‘ Ordered queue

——

Common queue

Fig. 2. New buffer structure for the switch ports.

low-deadline packets a chance to advance over packets
with a high deadline. With this algorithm, the amount of
order errors is not completely eliminated, but is greatly
diminished, as we will see in the experiments.

This improvement to the buffer ports does not introduce
out-of-order delivery. The demonstration can be found in the
Appendix. Note that out-of-order delivery means that packets
from a particular flow donotarrive in the same order in which
they were injected. As opposed to when we talk about order
errors, it means that packets from different flows are putin a
queue out of order of deadline tags. Therefore, out-of-order
delivery has to be avoided because it would require
reordering buffers at the end-nodes, which is expensive. On
the other hand, order error simply means that sometimes the
scheduler will not choose the packet with the earliest
deadline. In the latter case, some packets would be delayed,
but no special hardware would be needed.

4 SIMULATION CONDITIONS

In this section, we will explain the simulated network
architecture. We will also give details on the parameters of
the network and the load used for the evaluation.

4.1 Simulated Architecture

The network used to test the proposals is a butterfly
multistage interconnection network (MIN) with 128 end-
points. The actual topology is a folded (bidirectional)
perfect-shuffle. We have chosen a MIN because it is a
common topology for clusters. Although not included here,
we have also tested direct networks (torus and meshes),
obtaining similar performance. The switches use a com-
bined input and output buffer architecture, with a crossbar
to connect the buffers. We use virtual output queuing at the
switch level, which is the usual solution to avoid head-of-
line blocking.

We will evaluate five different architectures:

e A traditional switch architecture with some QoS
support. This is based on the PCI AS specification
and provides two VCs to distinguish between two
broad traffic categories. It also has CAC, but no
traffic smoothing. This architecture will be denoted
in the figures as Traditional 2 VCs.

e A more advanced switch architecture, also based in
PCI AS specification. In this case, there is a VC per
TC (four in our study). Also, we have implemented
Token Buckets for multimedia and best-effort traffic
in order to alleviate the problems with bursty traffic.

This architecture will be denoted in the figures as
Traditional 4 VCs.

e An ideal switch architecture based on our EDF
algorithm. This implements two VCs (regulated and
unregulated traffic), but each one is a heap queue
which always keeps the packet with the highest
deadline at the top. In the figures, it is called Ideal.
Order errors would not happen in this case but the
implementation of this architecture would be un-
feasible due to the kind of buffers.

e A simple switch architecture based on our first
proposal. This emulates the previous ideal architec-
ture, but, since order errors are possible, perfor-
mance will be degraded. This will be called Simple 2
VCs.

e The improved version of the previous architecture.
This implements the take-over queue proposed in
Section 3.4. In the figures, it will appear as
Advanced 2 VCs.

In all of the cases, the switches implement 16 ports and

8 Kbytes of buffer per VC. In our tests, the link bandwidth is
8 Gbps. The remaining parameter values are picked from the
AS specification. In general, all of the parameters used in the
simulations are quite typical for high-speed interconnects.

The CAC we have implemented for QoS-requiring traffic

is a simple one, based on average bandwidth requirements.
Each connection is assigned a path where enough bandwidth
is assured. The CAC guarantees that less than 70 percent of
bandwidth is used by QoS traffic at any link. The other
30 percent of available bandwidth will be used by unregu-
lated traffic. We also use a load-balancing mechanism when a
QoS connection is established, which consists of assigning the
least occupied route among the possible paths.

4.2 Traffic Model

Table 1 presents the characteristics of the traffic injected in
the network. We follow the recommendations of The
Network Processing Forum Switch Fabric Benchmark
Specifications [21]. We have considered a mix of QoS-
requiring traffic flows and best-effort flows. In this way, the
workload is composed of two different TCs: two QoS TCs
and two best-effort TCs. Note that there are many
individual flows of the four categories, each one with the
characteristics shown in the table.

Control traffic models traffic from applications that
demand a latency as short as possible. Since it has a
connectionless nature, it is not subject to the CAC or load
balancing.

Multimedia traffic consists of actual MPEG video se-
quences, transmitted through the network. Best-effort TCs,
Best-effort and Background, are not subject to CAC or
smoothing. For this reason, they can saturate network links
and impact performance. These TCs are modeled with self-
similar traffic, which is composed of bursts of packets
heading to the same destination. The packet size is
governed by a Pareto distribution, as recommended in [22].

5 SIMULATION RESULTS

In this section, the performance of our proposals is shown.
We have considered three traditional QoS indices for this
performance evaluation: throughput, latency, and jitter.

934

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO.7, JULY 2008

TABLE 1
Traffic Injected per Host
| Name | % BW | Application frame | Notes |
Control 25 [128 bytes, 2 Kbytes] Small control messages
Multimedia 25 [1 Kbyte, 120 Kbytes] | 3 Mbyte/s MPEG-4 traces
Best-effort 25 [128 bytes, 100 Kbytes] | Self-similar internet-like traffic
Background 25 [128 bytes, 100 Kbytes] | Self-similar low-priority traffic

Note that packet loss is not considered because no packets
are dropped due to the use of credit-based flow control. We
also show the cumulative distribution function (CDF) of
latency, which represents the probability of a packet
achieving a latency equal to or lower than a certain value.

In the following, we will see two experiments. First, we
evaluate an initial scenario where the input QoS load is
equal to the best-effort load. Afterward, we will study
which amount of QoS traffic can be allowed at each
architecture.

5.1 Initial Scenario

In Fig. 3, we can see the performance of the most delay-
sensitive TC we are considering, i.e., Control traffic. The
most important result is that the EDF-based architectures

50 . . ‘
Traditional 2VC —&—
,C'? Traditional 4VC ¥
Ideal %
340 | Simple 2VC &
& Advanced 2VC —©
Q
=301
8
<
—
o 20
&
=
Lot
<
0 . :) . ‘
0 02 - 0.6 08 1
Normalized offered load
1+ j T T
08
[0.6
A
Q
04
Traditional 2VC ———
o2t Traditional 4VC |
- Ideal ——
/ Simple 2VC -~
0= . . Advanced 2VC
0 50 100 150 200
Latency (us)
80 Tn & T T
~ Traditional 2VC —&—
@70 b Traditional 4VC ¥
3 Ideal <
60 Simple 2VC A& -
<>;' Advanced 2VC —© s g '_,,‘_5
Ssor =
3
a0t
g 30 e
g 20 e e
c’é e
2 10
0 . .) . ‘
0 02 04 0.6 08 1

Normalized offered load

Fig. 3. Latency of control traffic.

(Ideal, Simple 2 VCs, and Advanced 2 VCs) offer much better
results in terms of latency. The CDF results are obtained at
an input load of 100 percent.

The best results correspond to the Traditional 4 VCs case.
This is because, in this case, Control has its own VC and
maximum priority. On the other hand, EDF architectures also
have good performance. We can see at the bottom of the figure
that our simplest proposal, Simple 2 VCs, increases maximum
latency up to 15 percent compared with the Ideal case. On the
other hand, the Advanced 2 VCs proposal has almost the same
behavior as the Ideal case. Finally, the Traditional 2 VCs case
has very bad performance.

Fig. 4 shows the performance of Multimedia traffic. Using
the method we propose to compute deadlines, the average

100000
=
3 10000 B & B & & & B B B % 9
S « N
1000 ey ek -
5 -
e m—
S 100 pae—=F
I
50 10
] Traditional 2VC —#—
[5) Traditional 4VC -~ %
> 1F Ideal -
< Simple 2VC -4
01 A(;lvzmced ZYC O))
"o 02 04 0.6 0.8 1
Normalized offered load
1} Traditional 2VC —— -
Traditional 4VC -------
Ideal -
0.8 | Simple 2VC -
Advanced 2VC
L 06
a
@) ‘
04 | \
\
/ |
02 g i
|
0 L ‘ i
1 10 100 1000 10000 100000
Latency (us)
1 | Traditional 2vC —— ‘ i
Traditional 4VC -------
deal
0.8 Simple 2VC e
Advanced 2VC i
a I
@) /
04 |
02 |
0

001 01 1 10100 1000 10000 100000
Jitter (us)

Fig. 4. Latency video traffic.

MARTINEZ ET AL.: EFFICIENT DEADLINE-BASED QOS ALGORITHMS FOR HIGH-PERFORMANCE NETWORKS 935

100 | Traditional 2VC —®—
Traditional 4VC ---%---

—_ Ideal —>¢— PN
<o 80 F Simple 2VC A /;5} ©
s Advanced 2VC -0 s
=
B 60}
=
2
2 40
—
=
H ol

o o2 04 06 o8 1
Offered load
(a)

100 Traditional 2VC —@—
Traditional 4VC X%
Ideal %
§ 80 L Simple 2VC -
N Advanced 2VC —© é
E
2 60
=
=
40
g
=
SEN

o 02 o4 o6 03 |
Offered load
(b)

Fig. 5. Throughput of best-effort TCs. (a) Best-effort. (b) Background.

latency of video frames is almost exactly 10 ms (the value
configured as desirable latency). Note that latency results
refers to full transfers and not to individual packets (i.e.,
latency is for each frame of the video sequence). Looking at
the CDF of latency, we notice that there is little variation in
latency for EDF-based architectures (the probability of a
latency of 10 ms is more than 99 percent). On the other hand,
latency can vary considerably when using traditional
architectures, which would introduce a lot of jitters, as can
be seen at the bottom of the figure. Note that the Traditional 4
VCs case increases latency compared with the Traditional 2
VCs case due to the use of token buckets.

Finally, we show in Fig. 5 the performance in terms of
throughput of the two best-effort classes we have consid-
ered. For the Traditional 2 VCs case, both classes look the
same (they share VC 1) and, thus, receive the same
performance. On the other hand, the EDF-based architec-
tures can label each packet with deadlines according to the
reserved bandwidth of each flow. In this way, not only can
we differentiate multiple classes within a single VC, but we
can also guarantee minimum bandwidth if we are careful in
assigning weights to the different best-effort flows. Finally,
the Traditional 4 VCs case is able to offer differentiation, but
the achieved throughput is not as good as with the EDF
architectures. The reason is that, although token buckets are
being used, they have to be configured to allow peak rate of
video transfers and, therefore, they alleviate but do not
completely eliminate the burstiness of Video traffic.

We can conclude that EDF-based architectures are clearly
superior to a traditional two classes QoS. Note that the cost
of these architectures is similar, except for the Ideal
architecture. Using our proposals, the only difference is a
slight increase of latency for Control traffic compared with
the Traditional 4 VCs architecture.

W
=]

{
- / H
.40 " H
~ / i
> / 2
Q // ;
S0 f "
AlO
g* v
o 20 B - e I
o0 eyl ot ® o % x-¥X HeX
& O =% oo Traditional 2VC —m—
O oL Traditional 4VC X
> Ideal —>—
< Simple 2VC &
0 Advanced 2VC 60—
0 20 40 60 80 100
% of QoS traffic
400 . ‘ —
= o
2 350
= |
SN i
>, 300 Traditional 2VC —#— ;
Q Traditional 4VC X i
5 250 Ideal - i
- Simple 2VC 4
E 200 Advanced 2VC & |
!
g 150 A‘
£ 10 9
3 58
5 L PP =

=]

0 20 40 60 80 100

% of QoS traffic
Fig. 6. Latency of control traffic varying QoS load.

5.2 QoS Traffic Acceptance

In this section, we evaluate which amount of QoS traffic can
be accepted by each architecture before QoS requirements are
not satisfied. Moreover, we can see the behavior of the three
EDF variants we are considering under stressing QoS load.

In this scenario, we vary the proportion of QoS traffic,
from 10 percent to 90 percent of the total available network
load. We fill in the remaining bandwidth with best-effort
traffic. Therefore, input links are injecting at 100 percent of
their capacity. We can see that the different TCs saturate at
different points when using the five architectures. In this
way, QoS requirements are satisfied only up to a certain
QoS load.

In Fig. 6, we can see Control latency results. For the
Traditional 2 VCs case, results are very bad for almost any
QoS load. On the other hand, the Traditional 4 VCs case
offers good performance at any amount of QoS traffic
because Control traffic has its own VC and maximum
priority. Finally, the three EDF architectures, including our
two proposals, have good performance up to a QoS load of
75 percent. Note that the Advanced 2 VCs case reduces the
latency of this TC up to 20 percent compared with the
Simple 2 VCs case.

Regarding Video traffic, we see in Fig. 7 that latency is
10 ms for every video frame using the three EDF
architectures up to a load of 75 percent. On the other hand,
both traditional architectures start losing® Video packets at a
QoS load of 60 percent.

Finally, we can observe in Fig. 8 the throughput of the
two best-effort TCs we have considered. In this case, the
EDF architectures offer the best performance for Best-effort.
For Background traffic, results are similar in all of the cases.

2. Packets are discarded at the end-nodes after waiting 100 ms for

injection.

936

100000

@
10000 +
S
2 1000
=]
3
< 100
—
5]
= 10 + »
e Traditional 2VC —&—
5} Traditional 4VC X
> 1+ Ideal >
< Simple 2VC -4
0.1 Advanced 2VC -))
T o 20 40 60 80 100
% of QoS traffic
100 | Traditional 2VC —@— ‘
Traditional 4VC X
@ Ideal — %
= 80t Simple 2VC -4 .
6 Advanced 2VC —© g’ﬁ'@‘é
L =N
é 60 L li\.A.
)
= 40
S
£ 20
0 \ \ . . .
0 20 40 60 80 100

% of QoS traffic

Fig. 7. Latency and throughput of video traffic varying QoS load.

When using the EDF algorithms, more best-effort traffic can
be injected in the gaps left by QoS traffic.

Summing up, EDF architectures provide very good
performance for all TCs up to 75 percent of QoS traffic
(100 percent network load). On the other hand, traditional
architectures are only able to handle up to 60 percent of QoS
load with similar results. Our proposals emulate very well the
behavior of anideal architecture, even with a lot of QoS traffic.

6 CONCLUSIONS

In this paper, we have explored how to efficiently adapt the
EDF family of algorithms to high-speed network environ-
ments. As far as we know, no similar attempt has been
made since some adaptations of ATM due to the cost of
using ordered buffers. On the other hand, our proposal is
an architecture which, using FIFO buffers, offers almost the
same performance, even for the most delay-sensitive traffic.

We have also compared our proposals with typical VC-
based QoS, such as can be found in recent standards such as
InfiniBand or PCI AS. We have seen that, for similar cost in
terms of the silicon area, our proposals offer a much better
performance. Achieving similar performance in a tradi-
tional multi-VC architecture would require a larger number
of VCs, which would significantly increase the cost of the
switches and would limit the applicability to high-speed
interconnects.

APPENDIX

In Section 3.4, we have introduced a two-queue system which
models the high-priority VC of an input or output buffer in
the switches. Now, we are going to prove that this system for
the QoS VC does not introduce out-of-order delivery. Note
that this is an important issue: In many high-speed standards,
out-of-order delivery is explicitly forbidden (for instance, in

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO.7, JULY 2008

100 ' ‘ Traditional 2VC m
Traditional 4VC
@, Ideal X
QRS Simple 2VC b |
bl B, Advanced 2VC &
8
B of e
E .\l P
3 40t \. Y
— "~ B @\
= ‘\' A
= o0t '\.\i‘ N*@
LT P8
ﬂ;é;@:rg
0 ‘ s ‘ ‘ ‘
0 20 40 60 80 100

% of QoS traffic
(@

100 [‘ ‘ Traditional 2VC —#— |
Traditional 4VC -~
Ideal
§ 80 + Simple 2VC - f -
N Advanced 2VC o
=)
= 60
=
o0 [
3 407 N
& TRy
= By
= 20t % .%i‘—‘-w
L s S R
0 ; ; . e
0 20 40 60 80 100

% of QoS traffic
(b)

Fig. 8. Throughput of best-effort TCs varying QoS load. (a) Best-effort.
(b) Background.

PCI AS). For that purpose, first, we indicate the notation in
Table 2, introduce several initial hypotheses, and present
the enqueuing and dequeuing algorithms. Finally, we prove
some theorems:

Initial hypotheses: Two conditions are accomplished by
every flow:

D(F)) < D(F],)1<j<np, 1 <k<npj, (1)

I(F)) < I(Fl,)1<j<np, 1 <k<np; (2)

Intuitively, the previous expressions say that packets from a
flow arrive ordered at the system and they have increasing
deadlines.

Now, we will formally define the enqueuing and
dequeuing algorithms:

Definition 1 (Enqueuing algorithm). Enqueuing of an
incoming packet p works as follows:

e If both queues are empty, store p in the L queue.
e If there are my, packets in the L queue:

- If D(p) > D(Ly,,) store p in the L queue.
- Else, store p in the U queue.

Note that incoming packets always have space in the
system due to the credits flow control. Also note that the
two queues can dynamically take all of the memory allowed
for the VC and, therefore, it is not possible for a queue to
become full while there is space in the other queue.

With respect to the flow control mechanism, the
following possibility could arise: If two packets are
available and D(U;) < D(L;) but Ly is smaller (in bytes)

MARTINEZ ET AL.: EFFICIENT DEADLINE-BASED QOS ALGORITHMS FOR HIGH-PERFORMANCE NETWORKS 937

TABLE 2
Notation
U Upper queue (Take over queue)
L Lower queue (Ordered queue)
U; Packet at position ¢ in the U queue. (¢ = 1, packet at the front of the queue)
L; Packet at position 7 in the L queue. (¢ = 1, packet at the front of the queue)
my Number of packets in the U queue at a given moment
my, Number of packets in the L queue at a given moment
D(p) Deadline function. D(L;) is the deadline of the ith packet of the L queue
ng Number of packet flows
FI .., F"F | Packet flows
np; Number of packets of the jth flow
Fi Fi Individual packets of the flow F7 in the generation order and, thus, in arrival order. F} is
npi? 7 71| the packet at the first position
Dep(p) Time at which packet p leaves the system
I(p) Arrival time of the packet p

than D(U;) and there are only credits for L, the latter
would be forwarded out of order. This would corrupt the
dequeuing discipline, but we prevent this by imposing the
condition that only the packet with the smallest deadline of
the potential two available is checked for credits and, thus,
for transmission.

Definition 2 (Dequeuing algorithm). The algorithm for
removing packets works as follows:

o If both queues are empty, there is no packet to choose.

e If there are packets only in the L queue, L, is chosen.

o If there are packets in both queues, the packet with the
smallest deadline between D(L1) and D(Uy) is chosen.

e A situation where there are only packets in the U queue
is not possible (Lemma 1).

Lemma 1. A situation where there are only packets in the
U queue is not possible.

Proof. The empty L queue and the U queue with packets
cannot be obtained from the two empty queues since the
enqueuing algorithm indicates that, if the two queues
are empty and a packet arrives, the latter is stored in the
L queue.

Hence, an empty L and U with packets could only
arise from a situation in which both queues have packets
and dequeuing takes place in both. However, from
Theorem 2, the packet with the highest deadline is in the
L queue and, thus, all of the packets in the two queues
will leave before the former and U will become empty
before L. O

Definition 3 (Out-of-order delivery). As we mentioned
earlier, there would be out-of-order delivery if packets from
an individual flow were to leave the system in a different order
from arrival order. Therefore, there is out-of-order delivery iff

3j, k / Dep(F]) > Dep(F},,)
1<j<np, 1<k<np,.

In the following, we are going to prove several theorems,
some of them more or less intuitive, which will permit us to

prove that, given the previous enqueuing and dequeuing
algorithms, out-of-order delivery is not possible in our
proposed queue system.

Theorem 1. Packets in the L queue are in deadline order:

D(L;) < D(Liv1) 1<i<my.

Proof. By reductio ad absurdum: If packets in the L queue
are not in deadline order,

3/ D(Lip) < D(L;) 1<i<my,

but that would contradict the enqueuing algorithm,
which only stores a packet in the L queue when its
deadline is higher than or equal to that of the last packet
in the queue. Since packets can only leave the queue in a
FIFO discipline, this order is preserved by the dequeuing
algorithm. 0

Theorem 2. The packet with the highest deadline in the two
queues is always the last packet in the L queue:

D(L;) <D(Lm,)
D(U/) < D(LML)

1<i<my,
1< <my,

where my, is the number of elements in the L queue.

Proof. The first part of the theorem follows from Theorem 1.

On the other hand, packets in the U queue always

have a smaller deadline than the last element of the

L queue. Following the enqueuing algorithm, in the

event of a new packet arriving with a larger deadline

than the maximum, it would be stored in the last position

of the L queue and would become the new maximum
deadline.

Finally, L,,, is always the last element to leave the
system. No packet L;, i # mz, in the L queue can leave
earlier due to the FIFO discipline. On the other hand,
since all of the packets in the U queue have a smaller
deadline than L,,, (as we have proven in the previous
paragraph), they cannot leave earlier than it with the

938

dequeuing algorithm given, which always chooses the
packet with the minimum deadline. 0

Theorem 3. There is no out-of-order delivery. Formally,

Dep(F,f) < Dep(F,)1 < j<np,1<k<np;.

Proof. Since the arrival of packets is ordered, conflicts can
only arise if F,f .| Mmanages to overcome F,f while it is still
waiting at the system. That means that we have to study
the cases where both packets are stored in the queues.
Let us analyze the different possible cases:

e When they arrive, both F/ and F/ .1 go to the
same queue, either L or U. In this case, they leave
in arrival order because both the U and L queues
are FIFO queues. Since they arrived ordered (2),
they leave ordered.

e Upon arrival, F/ goes to the L queue and, later,
Fl, goes to the U queue. This may happen if
D(F}]) is the maximum deadline at the arrival
time, but before the arrival of F/ ., at least one
packet p arrives with D(p) > D(F,f+1).

From Theorem 1, we know that the L queue is
ordered and, when F/ 41 is ready to leave, it
means that its deadline is smaller than that of any
packet in the L queue. Since D(F}) < D(F/,,) (1),
it is sure that packet F] already left and the order
is preserved.

e When they arrive, F/ goes to the U queue and,
later, F}/,, goes to the L queue. It may happen if
D(F}) is smaller than the maximum but D(F}]_)
is larger.

Let L,,, be the last packet in the L queue when
Flﬁ is stored in the U queue. From Theorem 2, L,,,
has a higher deadline than any packet in the
U queue at that moment, including F,ﬁ Therefore,
it will leave later than all of those packets: To
leave earlier, it would need to be compared with a
packet from the U queue with a higher deadline,
but this is not possible. As a consequence, it is
true that

Dep(F)) < Dep(Ly,).

Since F .1 is positioned in the L queue behind
L, (maybe with other packets between), it
cannot leave earlier (FIFO queuing) and, there-
fore, it has to leave after F}:

Dep(Lum,) < Dep(FL,,),

Dep(F;f) < Dep(Li,) < Dep(F,‘iH)

= Dep(Fg) < Dep(F,i+1).

ACKNOWLEDGMENTS

This work has been jointly supported by the Spanish
MEC and European Commission FEDER funds under
Grants Consolider Ingenio-2010 CSD2006-00046 and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO.7, JULY 2008

TIN2006-15516-C04-0X, and by Junta de Comunidades de
Castilla-La Mancha under Grant PBCO08-0078-9856. This

research was performed while Alejandro Marti was work-

ing at the University of Castilla-La Mancha.

REFERENCES

(1]

(2]

(3]
(4

(5]

(o]

[

(8]

%]

[10

[1

(12]

[13

[14
[15

[1o]

[17]

(18]

[19
[20

21

[22

S. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken,
“An Overview of QoS Capabilities in InfiniBand, Advanced
Switching Interconnect, and Ethernet,” IEEE Comm. Magazine,
vol. 44, no. 7, pp. 32-38, July 2006.

G. Rodgers and P. Morjan, “Blade Cluster Architecture,” IBM
Systems Group—DBarcelona Supercomputing Center, technical report,
http://www.bsc.es/publications/documentation/pdf/Greg
Rodgers_Presentation.pdf, Sept. 2005.

A. Forum, ATM Forum Traffic Management Specification, version 4.0,
May 1995.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation
of a Fair Queueing Algorithm,” Proc. ACM Symp. Comm.
Architectures and Protocols, pp. 1-12, http://portal.acm.org/
citation.cfm?id=75248, 1989.

A K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 3,
pp. 344-357, 1993.

R. Guerin and V. Peris, “Quality-of-Service in Packet Networks:
Basic Mechanisms and Directions,” Computer Networks, vol. 31,
no. 3, pp. 169-189, 1999.

L. Georgiadis, R. Guerin, and A K. Parekh, “Optimal Multiplexing
on a Single Link: Delay and Buffer Requirements,” Proc. IEEE
INFOCOM 94, vol. 2, pp. 524-532, 1994.

S. Floyd and V. Jacobson, “Link-Sharing and Resource Manage-
ment Models for Packet Networks,” IEEE/ACM Trans. Networking,
vol. 3, no. 4, pp. 365-386, citeseer.ist.psu.edu/floyd93linksharing.
html, 1995.

R. Braden, D. Clark, and S. Shenker, Integrated Services in the
Internet Architecture: An Owverview, Internet Eng. Task Force,
Internet Request for Comment RFC 1633, http://www.ietf.org/
rfc/rfc1633.txt, June 1994.

S. Blake, D. Back, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
An Architecture for Differentiated Services, Internet Eng. Task Force,
Internet Request for Comment RFC 2475, http://www ietf.org/
rfc/rfc2275.txt, Dec. 1998.

InfiniBand Architecture Specification, vol. 1, Release 1.0, InfiniBand
Trade Assoc., Oct. 2000.

J. Pelissier, “Providing Quality of Service over InfiniBand
Architecture Fabrics,” Proc. Eighth Symp. High-Performance Inter-
connects, http:/ /www .hoti.org/hoti8_thursday.html, Aug. 2000.
F.J. Alfaro, J.L. Sanchez, and J. Duato, “QoS in InfiniBand
Subnetworks,” IEEE Trans. Parallel and Distributed Systems,
vol. 15, no. 9, pp. 810-823, Sept. 2004.

ASI SIG, Advanced Switching Core Architecture Specification, 2005.
C. Minkenberg, F. Abel, M. Gusat, R.P. Luijten, and W. Denzel,
“Current Issues in Packet Switch Design,” ACM SIGCOMM
Computer Comm. Rev., vol. 33, pp. 119-124, Jan. 2003.

A. Martinez, F. Alfaro, J. Sanchez, and J. Duato, “Deadline-Based
QoS Algorithms for High-Performance Networks,” Proc. 21st Int’l
Parallel and Distributed Processing Symp., http://investigacion.
uclm.es/portali/documentos/fi_1169052300-IPDPS07.pdf, Mar.
2007.

L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switching Networks,” Computer Comm. Rev. (Proc. ACM
SIGCOMM ’90), vol. 20, no. 4, pp. 19-29, Sept. 1990.

A. Ioannou and M. Katevenis, “Pipelined Heap (Priority Queue)
Management for Advanced Scheduling in High Speed Networks,”
Proc. IEEE Int’l Conf. Comm., 2001.

D.L. Mills, RFC 958: Network Time Protocol (NTP), Sept. 1985.

N. Boden, D. Cohen, and R. Felderman, “Myrinet—A Gigabit per
Second Local Area Network,” IEEE Micro, pp. 29-36, Feb. 1995.
I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and A. Poursepanj,
“The Network Processing Forum Switch Fabric Benchmark
Specifications: An Overview,” IEEE Network, pp. 5-9, Mar. 2005.
R. Jain, The Art of Computer System Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling. John
Wiley & Sons, 1991.

MARTINEZ ET AL.: EFFICIENT DEADLINE-BASED QOS ALGORITHMS FOR HIGH-PERFORMANCE NETWORKS 939

Alejandro Martinez received the MS degree in
computer science and the PhD degree from the
University of Castilla-La Mancha in 2003 and
2007, respectively. He is currently with the Intel
Barcelona Research Center. His research inter-
ests include high-performance interconnections,
quality of service, high-performance computing,
and processor microarchitecture.

George Apostolopoulos received the BSc
degree in computer engineering from the Uni-
versity of Patras, Greece, and the MSc and PhD
degrees in computer science in 1994 and 1999,
respectively. He has been a researcher with the
IBM T.J. Watson Research Center and at ICS-
FORTH, Greece. He is currently a principal
engineer with Redback/Ericsson. His interests
include routing, QoS, scalable and robust
implementation of software for networking sys-
tems, system support for router software, and router architectures. He is
a member of the IEEE.

Francisco J. Alfaro received the MS degree in
computer science from the University of Murcia
in 1995 and the PhD degree from the University
of Castilla-La Mancha in 2003. He is currently an
assistant professor of computer architecture and
technology in the Department of Computer
Systems at the University of Castilla-La Mancha.
His research interests include high-performance
local area networks, quality of service, design of

4 high-performance routers, and design of on-chip
interconnection networks for multicore systems.

José L. Sanchez received the PhD degree from
the Technical University of Valencia, Spain, in
1998. Since November 1986, he has been with
the Department of Computer Systems (formerly
the Computer Science Department) at the Uni-
versity of Castilla-La Mancha, where he is
currently an associate professor of computer
architecture and technology. His research inter-
ests include multiprocessor architectures, quality
of service in high-speed networks, interconnec-
tion networks, and parallel algorithms.

José Duato is a professor in the Department of
Computer Engineering (DISCA) at the Universi-
dad Politécnica de Valencia, Spain. His research
interests include interconnection networks and
multiprocessor architectures. He has published
more than 350 papers. His research results have
been used in the design of the Alpha 21364
microprocessor, and the Cray T3E and IBM
BlueGene/L supercomputers. He is the first
author of the book Interconnection Networks:
An Engineering Approach. He has served as an associate editor of the
IEEE Transactions on Parallel and Distributed Systems and the |IEEE
Transactions on Computers. He is currently an associate editor of IEEE
Computer Architecture Letters. He was the general cochair of ICPP '01,
the program chair of HPCA-10, and a program cochair of ICPP ’05. He
has also been a cochair, a steering committee member, a vice chair, and
a program committee member for more than 55 conferences, including
HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, Europar, and HiPC.
He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

