
A Switch Architecture Guaranteeing
QoS Provision and HOL Blocking Elimination

Alejandro Martı́nez, Pedro J. Garcı́a, Francisco J. Alfaro, José L. Sánchez,

José Flich, Francisco J. Quiles, and José Duato

Abstract—Both QoS support and congestion management techniques become essential to achieve good network performance in

current high-speed interconnection networks. The most effective techniques traditionally considered for both issues, however, require

too many resources for being implemented. In this paper, we propose a new cost-effective switch architecture able to face the

challenges of congestion management and, at the same time, to provide QoS. The efficiency of our proposal is based on using the

resources (queues) used by RECN (an efficient Head-of-Line blocking elimination technique) also for QoS support, without increasing

queue requirements. The provided results show that the new switch architecture is able to guarantee QoS levels without any

degradation due to congestion situations.

Index Terms—High-speed interconnection networks, quality of service, congestion management.

Ç

1 INTRODUCTION

THE use of high-speed interconnection networks has
become a major need on the design of several comput-

ing and communication systems, including systems for
parallel computing. They provide the low-latency and high-
performance demanded by parallel applications. The
proliferation of systems based on high-speed networks
has increased the researchers’ interest on developing
techniques for improving the performance of such net-
works. Moreover, due to the increase in network compo-
nents’ cost and power consumption, it is nowadays very
important to propose efficient and cost-effective techniques,
trying to use a minimum number of network resources
while keeping network performance as high as possible.

In that sense, many techniques have been proposed for

solving the problem of network performance degradation

during congestion situations. Actually, congestion drama-

tically degrades network performance due to the appear-

ance of Head-of-Line (HOL) blocking [1] during congestion

situations. This phenomenon happens when a packet at the

head of a queue temporarily blocks,1 preventing other

packets at the same queue from advancing, even if they

request available resources further ahead. This may cause
that data flows not contributing to congestion advance at
the same speed as congested flows, thereby degrading
network performance.

However, although both congestion and HOL blocking
are well-known phenomena in interconnection networks,
efficient proposals for managing congestion in modern high-
speed networks are rare. On one hand, traditional simple
solutions are not suitable for modern interconnects. For
instance, network overdimensioning is not currently feasible
due to cost and power consumption constraints. On the other
hand,more elaborated techniques that have been specifically
proposed for solving the problems related to congestion have
not been really efficient until very recently. For instance, if
Virtual Output Queuing (VOQ) [5] is used, there must be at
each port as many queues as end nodes in the network, and
any incoming packet is stored in the queue assigned to its
destination. The aim of this policy is to prevent flows
addressed to different destinations from sharing the same
queue, thereby avoiding HOL blocking. However, although
this scheme is very effective, it is not efficient (and even not
feasible for medium or large networks) since it requires a
considerable number of queues at each switch port, and the
silicon area required for implementing such a number of
buffers strongly increases the cost. A variation of VOQ uses
as many queues at each port as output ports in a switch [6],
thereby reducing queue requirements. However, this
scheme does not completely eliminate HOL blocking since
only switch-level HOL blocking is eliminated.

Recently, a new HOL blocking elimination technique has
been proposed: Regional Explicit Congestion Notification
(RECN) [7]. RECN completely eliminates HOL blocking
while requiring a small number of resources regardless of
network size, thus being a really efficient, scalable, and cost-
effective technique. Specifically, in order to avoid HOL
blocking between congested and noncongested flows,
RECN identifies congested flows and puts them in special
dynamically-assigned set aside queues (SAQs). Moreover, it
uses a status-based flow control to avoid a congested flow
from taking all the buffer space.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009 1

. A.Martı́nez is with Intel Barcelona Research Center, Intel Labs, Universitat
Politècnica de Catalunya C/ Jordi Girona 29, Edificio Nexus II, 3a planta
08034, Barcelona, Spain. E-mail: AlejandroX.Martinez@intel.com.

. P.J. Garcı́a, F.J. Alfaro, J.L. Sánchez, and F.J. Quiles are with the
Computing Systems Department, Escuela Superior de Ingenierı́a Informá-
tica, Universidad de Castilla-La Mancha, Campus Universitario, s/n
02071, Albacete, Spain.
E-mail: {pgarcia, falfaro, jsanchez, paco}@dsi.uclm.es.

. J. Flich and J. Duato are with the Department of Computer Engineering
(DISCA), Technical University of Valencia, Camino de Vera, s/n 46071,
Valencia, Spain. E-mail: {jflich, jduato}@disca.upv.es.

Manuscript received 10 Aug. 2007; revised 15 Feb. 2008; accepted 2 Apr.
2008; published online 16 Apr. 2008.
Recommended for acceptance by M. Ould-Khaoua.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-08-0271.
Digital Object Identifier no. 10.1109/TPDS.2008.62.

1. We are considering lossless networks like InfiniBand [2], Quadrics [3],
or Myrinet [4].

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Another way for improving network performance, from
an application point of view, is to use techniques for
providing quality of service (QoS). If we want to provide
communication services for several types of applications,
the QoS consists in assuring a minimum performance to
each application, despite the behavior of the rest of traffic
classes. For instance, if we want to guarantee a minimum
bandwidth to each traffic class, this minimum must be
provided even if there are sources injecting more traffic
than they are allowed to.

The usual solution to this problem is to provide a
separate virtual channel (VC) for each traffic class [8], [2],
[9] and perform a correct output scheduling at switches.
These VCs provide also separate domains of flow control,
i.e., there is a separate credit counter for each VC. In this
way, two objectives are achieved: first, there is no HOL
blocking between traffic classes, and second, a single traffic
class cannot take all the available buffer space, so buffer
hogging is avoided. Consequently, the performance of
different traffic classes only depends on the scheduling
and on the amount of injected traffic of each class.
Unfortunately, VCs are costly to implement, since each
new VC requires more buffer space and a more complex
scheduler (more packets to be considered at each schedul-
ing cycle). To alleviate this problem,2 some techniques have
been proposed for reducing the number of VCs while
keeping QoS guarantees. For instance, in [10], a technique
for providing full QoS support with only two VCs was
proposed. Moreover, in [11], this technique was combined
with an RECN by duplicating all the RECN queue
structures in two VCs, in order to obtain a switch
architecture offering QoS provision and congestion man-
agement at the same time.

However, we think that it is possible to achieve full QoS
provision in an even more cost-effective efficient way.
Specifically, we propose in this paper a switch architecture
that improves the basic RECN mechanism so it can provide
also QoS guarantees without introducing additional VCs or
queues. The newly proposed architecture takes into account
the clear parallelism between the tasks performed by RECN
and the use of VCs for QoS provision and exploits the
RECN queue structure from a new original approach that
efficiently uses these resources for managing congestion
while providing QoS at the same time. The benefits of the
proposal are obvious since these two important issues on
interconnect design would be afforded by a single and very
efficient architecture.

The rest of the paper is organized as follows: In Section 2,
RECN is described. Next, in Section 3, the proposed switch
architecture is explained in detail. Section 4 shows an
evaluation of the new proposal, based on simulation results.
Finally, in Section 5, some conclusions are drawn.

2 REGIONAL EXPLICIT CONGESTION NOTIFICATION

RECN is based on a key idea: if HOL blocking is completely
eliminated, congestion may exist while being harmless. Like
VOQ, RECN tries to separate congested and noncongested
flows by storing them into different queues, with the aim of

eliminating HOL blocking. Specifically, RECN adds a set of
additional queues (SAQs) to the standard queue at every
input and output port of a switch. While standard queues
store noncongested packets (RECN assumes that packets
from noncongested flows can be mixed in the same buffer
without producing significant HOL blocking), SAQs are
dynamically allocated for storing packets passing through a
specific congested point. SAQs at each switch port are
controlled by means of a Content Addressable Memory
(CAM), in such a way that each CAM line contains
information for managing an associated SAQ, including
the information required for addressing a congested point.

In that sense, RECN addresses network points by means
of the routing information included at the packet header,
assuming that source routing is used. For instance,
Advanced Switching Interconnect (ASI) [9] packet headers
include a turnpool made up of 31 bits, which contains all
the turns (offset from the input port to the output port) for
every switch in a route. Therefore, in ASI networks, CAM
lines include turnpools addressing congested points,3 as can
be seen in Fig. 1, and these turnpools can be compared to
the turnpool of the incoming packet, in order to know if it
will cross the corresponding congested point. By doing this,
congested packets can be easily detected.

In order to identify a network point as congested, RECN
implements different congestion detection mechanisms at
each switch input and output port. At any output port,
whenever the standard queue fills over a given threshold,
congestion is detected at this point, and a notification is sent
to any switch input port sending packets to the congested
switch output port (Fig. 2a). These notifications include the
turnpool required to reach the congested point from the
input port receiving the notification. Upon reception of a
notification, an input port must allocate a new SAQ and fill
the corresponding CAM line with the received turnpool.

On the other hand, at input ports, the standard queue is
divided into several detection queues, one per output port.
Whenever a detection queue fills over a given threshold,
congestion is detected at the corresponding output port,
and a new SAQ associated to this congested point is
automatically allocated at the input port. Immediately, a
notification including the turnpool of the newly allocated
SAQ is sent to the output port of the upstream switch,
where a new SAQ should be subsequently allocated.

Note that for both input and output congestion detection
mechanisms, detection threshold must be tuned for achiev-
ing an optimal performance [7].

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

2. Note that for high-speed single-chip switches proposals requiring
many VCs could be considered if external DRAM is available for
implementing the buffers. However, in this case, the low latencies
demanded by the QoS-requiring traffic could not be provided.

3. Note, however, that RECN can be applied to other interconnect
topologies as long as they use source routing, so in these case, CAM lines
structure would vary.

Fig. 1. RECN CAM organization for ASI networks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Every packet received at any port with allocated SAQs is
stored in an SAQ if it will pass through the congested point
associated to that SAQ. Otherwise, the incoming packet is
stored in the standard (or detection) queue. In this way,
noncongested packets are always separated from the
congested ones, thereby preventing the appearance of
HOL blocking at the port (Fig. 2b).

Furthermore, if any SAQ becomes congested, a notifica-

tion is sent upstream, and the receiving input or output port

allocates a new SAQ (Figs. 2c and 2d). This procedure can be
repeated until these notifications reach the sources. There-
fore, there will be SAQs for storing congested packets at
every point where, otherwise, these packets could produce
HOL blocking. Moreover, congested packets cannot fill
completely the port memory, since RECN uses an SAQ-
specific Xon=Xoff (Stop & Go) flow-control mechanism. An
Xoff bit at each CAM line controlling an active SAQ is used
to implement the flow-control mechanism. Packets can be

MART�INEZ ET AL.: A SWITCH ARCHITECTURE GUARANTEEING QOS PROVISION AND HOL BLOCKING ELIMINATION 3

Fig. 2. RECN congestion detection and allocation of SAQs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

forwarded from an SAQ only if the associated Xoff bit is
reset.

RECN also detects congestion vanishing at any point, in
such a way that SAQs can be dynamically deallocated.
Specifically, the conditions for deallocating an SAQ are the
following: it must be empty, and it must be in Xon state (the
associated Xoff bit is reset). Note that these conditions allow
a distributed SAQ deallocation, in such a way that an SAQ
can be deallocated independently of other SAQs. Since
deallocated SAQs can be reallocated for storing packets
addressed to new congested points, this policy reduces the
number of SAQs per port required for completely eliminat-
ing HOL blocking. Further details about RECN can be
found in [7].

2.1 RECN and QoS

A high-performance interconnect must offer many features
in order to be effective. Apart from congestion control, this
paper also focuses on QoS provision, which is very
important if there is a variety of applications sharing the
network, becoming necessary to offer guarantees on
performance. Since an efficient congestion control technique
would allow to achieve the best performance near the
saturation point, a combination of both features would
improve network performance significantly.

However, when network designers want to combine
different techniques, it may happen that resources are
multiplied, and the resulting design is completely infea-
sible. For instance, if we want to support 16 VCs for
different traffic classes and, at the same time, we want to
provide VOQ at the switch level, with 16-port switches, the
resulting switch design requires 256 queues per switch port,
which is not usually possible to implement.

Therefore, the motivation of this work is to obtain an
integrated solution for providing congestion management
and QoS support. In particular, we use the same set of
resources for both purposes. In that sense, the proposal that

we present in Section 3 uses the RECN queue structure
described in this section for both HOL blocking elimination
(thereby turning congestion harmless) and QoS support.
This is possible since this queue structure may be config-
ured in such a way that RECN performs traffic isolation
while still dealing with congestion. Thus, our proposal is an
integrated cost-effective and (as we will show in the
following sections) efficient solution for both congestion
management and QoS support.

3 NEW PROPOSAL FOR QOS PROVISION AND

HOL BLOCKING ELIMINATION

As we have already mentioned, our proposal tries to exploit
the resources RECN uses for eliminating HOL blocking (as
explained above), in such a way that QoS could also be
provided without increasing queue requirements. The
following sections explain both the minimum changes
necessary to introduce in the RECN architecture and the
criteria that will allow us to use the modified architecture
for providing both QoS and congestion management.

3.1 Proposed Architecture

The switch organization consists of a combination of input
and output buffering, which is a usual design [12], [13]. Note
that all the switch components are intended to be implemen-
ted in a single chip. This is necessary in order to offer the low
cut-through latencies demanded by current applications.

The logical organization of an input port can be seen in
Fig. 3. This is the standard scheme for a RECN input port, so
there are as many detection queues as output ports (eight in
this case4) for storing noncongested packets and a group of
SAQs for storing congested packets. There are eight of these
SAQs since it has been shown that eight or less SAQs are
enough for eliminating HOL blocking almost completely [7].
The use of these queues is discussed later. A CAM is
required at each input or output port in order to manage the
set of SAQs. CAM organization for ASI networks5 can be
seen in Fig. 4. Each CAM line contains all the fields defined
by RECN, plus a new field for storing the service level the
corresponding SAQ is assigned to.

Fig. 5 shows the logical organization of output ports. In
this case, detection queues are not needed, and a unique

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

4. For the sake of simplicity, we assume 8-port switches and four service
levels. Anyway, architectures with a different number of ports or service
levels could be easily deducted.

5. Note that our proposal could be applied to any interconnect
technology using source routing, so CAM organization could vary.

Fig. 3. Logical input port organization.

Fig. 4. New CAM organization.

Fig. 5. Logical output port organization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

standard queue is used for storing noncongested packets.
Following also the RECN scheme for output ports, a set
of SAQs (8) is also used at each output port. In addition
to this RECN queue structure, our proposal introduces at
the output ports a set of bandwidth counters, one per
service level. These counters must dynamically compute
the difference between the reserved bandwidth and the
current bandwidth used for each service level. These
counters are used for two purposes: first, to perform
deficit round-robin (DRR) scheduling at the switches and,
second, for congestion detection (both issues are detailed
in the following sections).

The bandwidth counters’ structure can be seen in Fig. 6.
Basically, their behavior is the following: each time a block of
64 bytes from a packet6 is scheduled to cross toward the
output port of a switch, the bandwidth counter correspond-
ing to the service level of thepacket is increased by 1.Wehave
assumed an 8-bit register for implementing the bandwidth
counter, so its range of values is from—Kbytes to 8 Kbytes.7

On the other hand, the same register must be automatically
decremented at a rate that matches the bandwidth we
guarantee to the corresponding service level. For instance,
if 128Mbytes/s have been guaranteed to the service level and
the internal clock is 100MHz, the bandwidth countermust be
decreased by one every 50 cycles. This decrease is imple-
mented by configuring the “Allocated BW” register with the
appropriate number of cycles. When the cycle counter
matches the configured cycles, the bandwidth counter
register is decreased by one, and the cycle counter is reset.
All these operations effectively allow to measure the
difference between reserved and consumed bandwidth,
while they are simple and do not introduce a significant
delay or require much silicon area.

3.1.1 Switch Scheduler

The switch scheduler implements a DRR algorithm based
on the bandwidth counters’ information. This algorithm
consists in giving priority to flows that are consuming less
bandwidth than the amount reserved for them. Following
this scheduling, for each packet ready to cross the crossbar,
the scheduler checks the value of the bandwidth counter
corresponding to the output port and the service level of the
packet. Afterwards, packets are served in the order of the
value of these registers: first, packets with the smallest
values and, later, packets with higher values.

It is possible to use a simplified version of this scheduler,
in such a way that a threshold value is set, and the
scheduler performs two rounds of scheduling: first, a round
for packets with counter values lower than the threshold
and, later, another round with the unassigned outputs and
the rest of the packets. For our tests, we tuned the value of
this threshold, obtaining an optimal value of 4 Kbytes.

Since we assume Virtual Cut-Through switching, our
scheduling decisions are made for whole packets (packet-
mode scheduling [14]). In this way, once a packet is selected
by the scheduler, the crossbar connection is kept until all
cells of the packet have been delivered to the output. This
allows the output port to start transmitting the packet on
the line as soon as the first cell of the packet arrives at the
switch output.

This scheduler also needs a new feature if compared to a
typical one. Specifically, our scheduler needs to know
whether a packet at an input port is going to be stored in an
output port SAQ. This is known by comparing the turnpool
of the packet with the information at the corresponding
CAM. In the case of a match, packets can only be selected if
the receiving SAQ is not filled over a given threshold. By
applying this rule, buffer hogging is prevented.

Moreover, the scheduler does not treat specially packets
coming from SAQs. However, if such packets are contribut-
ing to congestion, the bandwidth counter will have a high
value, and they will be penalized by the scheduling
algorithm. On the other hand, if packets are no longer
contributing to congestion, the bandwidth counter will have
a small value, and they will achieve a high priority. This
promotes unnecessary SAQs to be emptied as soon as
possible, allowing so the deallocation of these SAQs (SAQs
must be empty for being deallocated).

3.1.2 Congestion Management

RECN detects congestion both at input and output ports of
switches always by measuring the number of packets
mapped at queues. Our new proposal also detects conges-
tion at input and output ports, but in this case, these
detections do not depend only on queue occupancy.
Specifically, in the new proposal, input detections occur
when a detection queue in an input port fills over (in terms
of stored information) a certain threshold,8 and the value of
the bandwidth counter associated to the packet service level
at the requested output port is over another threshold
(bandwidth counter threshold, see previous section).

Note, however, that detection thresholds and bandwidth
counter threshold are completely independent: detection
thresholds determine how quickly the mechanism reacts
against congestion, while the bandwidth counter one
determines the mechanism tolerance regarding “oversub-
scribing” traffic classes.

The actions to take after a congestion detection at the
input port are, first, an SAQ with turnpool equal to the
output port and the appropriate service level is allocated in
the input port and, in addition to this, another SAQ, with
empty turnpool but associated to the service level, is
allocated at the corresponding output port. These SAQs
with empty turnpool (not considered in original RECN) will
store any packet belonging to the associated service level.

MART�INEZ ET AL.: A SWITCH ARCHITECTURE GUARANTEEING QOS PROVISION AND HOL BLOCKING ELIMINATION 5

6. The unit used in our counter is 64 bytes because in ASI, each credit is
64 bytes, and thus, packets come in 64-byte increments.

7. These values are adequate to monitor instantaneous traffic behavior.
8. Like in RECN, this threshold and the output detection one were tuned

in our experiments until achieving optimal performance.

Fig. 6. Bandwidth counter.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This is necessary in order to avoid that packets from a single
service level completely fill an output buffer.

On the other hand, the conditions for a detection of
congestion at an output port are similar. If a packet arrives
from an input port and causes the occupancy of the
standard queue at this output port to be over a certain
threshold, and the bandwidth counter of the service level of
the incoming packet is over another threshold, then the
detection of congestion takes place. The actions after an
output detection are the same as in an input detection:
allocation of two SAQs, one at the input port the packet
came from and another with empty turnpool (but asso-
ciated to the service level) at the output port.

If congestion persists and SAQs start to fill over a certain
threshold (known as the propagation level), then informa-
tion about the corresponding turnpool and service level is
propagated backwards the congestion flow in order to
allocate new SAQs for storing packets belonging to the flow
wherever these packets are. In the case of propagation from
an SAQ at an output port, SAQs are allocated at the input
ports that cause the overflow of the output port SAQ. Of
course, these input SAQs will have an associated turnpool
with one more hop than the output SAQ. SAQs with empty
turnpools (only allocated at output ports) may also produce
the allocation of SAQs at the input ports, which in this case
will have a one-hop turnpool.

If SAQs at input ports fill over the propagation level, a
control packet is sent to the preceding switch. This packet
includes the turnpool and service level associated to the
filled input SAQ, in order to also have an allocated SAQ
associated to this information at the receiving output port.

In this way, there will be SAQs at any point where they
are necessary in order to store congested packets, thereby
eliminating HOL blocking. SAQs can be deallocated
following the same conditions for SAQ deallocation
considered in the RECN [7].

3.1.3 QoS Provision

In order to provide QoS guarantees, each traffic class has an
assigned percentage of link bandwidth (or weight). For
instance, if there are four traffic classes, each one could have
25 percent. Of course, total assigned bandwidth must not
exceed the link bandwidth. At end nodes, we assume a
traditional DRR implementation with a VC per traffic class,
which is feasible in these devices.

Provided that end-nodes implement a QoS policy and as
long as there is no contention, we have observed that
packets pass through the switches in the same proportions
as they are injected into the network. The reason is that
switches do not introduce any significant delay when links
are not oversubscribed.

However, since there is no admission control, it may
happen that any link in the network becomes oversub-
scribed. In this situation, congestion appears because at this
point, one or more traffic classes introduce more traffic than
their assignation.

A traditional congestion management technique would
penalize all traffic regardless of its traffic class. From this
point of view, all packets are equally contributing to
congestion. However, with the bandwidth counters we have
proposed and the switch scheduler we have presented
before, only traffic classes injecting more than their allow-
ance are handled by the congestion management technique.

In this case, this is done by storing “guilty” packets into
SAQs. Note that any traffic class may still inject additional
traffic if there is unused bandwidth. Thus, problems only
arise as a consequence of oversubscribed links.

Therefore, QoS guarantees are achieved in the sense that
if traffic from a class is injected up to its allowed bandwidth,
it will achieve maximum throughput and experience short
delay. The scheme proposed for QoS provision uses the
same resources provided for congestion management.
Therefore, we can offer a satisfactory solution for both
problems, as we will confirm in the following sections.

3.2 Switch Complexity

In this section, we compare the complexity of different
switch organizations. We consider the solutions for HOL
blocking elimination such as RECN and VOQ (at network
level—VOQnet—or at switch level—V OQsw—). We also
consider those techniques that provide QoS support using
VCs, including the “traditional” approach (1 VC per traffic
class) and the recent proposal [10] using just two VCs.
Finally, we also consider switch organizations able to
provide both HOL blocking elimination and QoS support.

Table 1 shows some characteristics of the different switch
organizations considered. As can be seen, only the last two
switch architectures offer full QoS and HOL blocking
elimination. Table 1 also shows the expressions for
calculating the number of queues per switch port that are
necessary to implement in each case. From these expres-
sions, it is possible to obtain the exact number of queues by
considering specific values for the number of port switches,
network ports, traffic classes, and SAQs per port.

Moreover, we have calculated for each case offering HOL
blocking elimination and QoS the number of required
queues per port by assuming typical values of eight port
switches, 128 end nodes in the network, eight traffic classes,
and eight SAQs per port. Table 2 shows the resulting
numbers, along with an estimation for the required area. In
order to obtain this estimation, first, the minimum data
memory per port has been calculated for each case as the
minimum storage requirements for Virtual Cut-Through

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

TABLE 1
Switch Organization Comparison

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

switching (one packet per queue, allowing a maximum
packet size of 2 Kbytes). Then, the area required in each case
has been estimated from the calculated minimum data
memory using the SRAM modeling tool CACTI [15] and
assuming the use of two-port SRAM memories (0.133 �m
technology) with a 64-bit organization.

Note that, for these assumptions, the VOQsw þQoS
architecture would need 64 queues, the VOQnet þQoS
approach would need 1,024 queues, while our proposal
presented in this paper would just need 16 queues per port.
As a consequence, the estimated data memory area per port
is much smaller for our proposal. Obviously, this would
allow to produce simpler and cheaper switches.

Summing up, we can see clearly why a straightforward
implementation of VOQ at the network level and the typical
VC-based QoS support is a bad idea. An integrated solution
such as the one we propose is more interesting, since the
resources, queues in this case, are reused instead of
multiplied.

4 PERFORMANCE EVALUATION

In the following, we evaluate the performance of the
proposal presented in this paper. We have followed the
methodology proposed in [16] using an ad-hoc simulator.

4.1 Simulation Model

In most cases, we have assumed a workload of four service
levels. Each one has been assigned a guaranteed bandwidth,
but for the sake of simplicity, in many cases, we assume that
each traffic class has been guaranteed 25 percent of the link
bandwidth.

We have considered different network topologies: multi-
stage interconnection networks (MINs, the usual topology
for computer clusters) with different sizes and also direct
networks (3D meshes). However, our proposal is valid for
any other network topology. Other assumptions, like link
bandwidth or packet size, are based on the ASI specifica-
tions [9]. Another assumption is the use of source routing,
since it is needed by RECN.

We have run simulations for several switch architectures.
In all cases, switches have 16 ports. We have considered the
following switch architectures:

. VOQsw 1 VC. A simple switch design with VOQ at
switch level but without VCs. In this case, the
number of queues per port is 16.

. VOQsw 4 VC. An architecture with one VC per traffic
class, and each VC is further divided in VOQs at the
switch level. The total number of queues per switch
port is 64.

. VOQnet 4 VC. A switch design with classic VOQ at
network level and also one VC per traffic class. This
is a complex architecture, since it requires 256 queues
per switch port.

. RECNþQoS. The switch architecture we have
proposed in this paper. Since it integrates QoS and
congestion management with the same resources,
the number of queues per port is 24: 16 detection
queues plus eight SAQs.

Regarding traffic scenarios, we have studied the
following:

. Hot-spot scenario. We test the different alternatives
with a static congestion traffic pattern.

. Multimedia traffic scenario. In this case, we introduce
congestion dynamically. To achieve this, we transmit
video sequences, which are very bursty.

. Multimedia traffic scenario with priorities. This scenario
is similar to the previous one, but we vary the
bandwidth assigned to each service level.

4.2 Simulation Results

In the following sections, we show results for several (four)
tests. The first three tests correspond to the three different
traffic scenarios considered, applied in a MIN with 64 end
nodes, while in the last test, network topology and size are
varied.

In each test, we show the advantages of the different
architectures from two different points of view: congestion
management and QoS support. However, validating RECN
as a congestion management technique is out of the scope of
this paper since it has been done in previous works [17],
[18], [7]. Consequently, we just confirm that our proposed
integrated architecture still offers the expected performance
regarding congestion.

Regarding QoS results, we have already stated that the
aim of this architecture is not to offer strict QoS guarantees,
but a compromise from the network to offer good
performance if traffic injection is inside the configured
bounds. Moreover, since all traffic shares the same VC,
some additional delays are unavoidable when the conges-
tion detection takes place. For instance, in order to detect
that a traffic class is injecting too much, a buffer must be
filled up to a certain level, which implies that packets using
this buffer will be delayed until the SAQs start storing
congested packets. Therefore, latency results will not be as
good as if there were a dedicated VC for regulated traffic.
Nevertheless, this architecture has the advantage of not
requiring connection admission control (CAC) at all.

4.2.1 Hot-Spot Scenario

The objective of this scenario is to show that our proposal is
able to identify and isolate congested traffic, just as the
original RECN technique. Traffic from service levels that are
injecting less traffic than their reserved bandwidth should
not be affected by this congestion. Moreover, congested
traffic should get at least as much bandwidth as reserved.

MART�INEZ ET AL.: A SWITCH ARCHITECTURE GUARANTEEING QOS PROVISION AND HOL BLOCKING ELIMINATION 7

TABLE 2
Queues and Data Memory Area Required at Each Port

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

In this scenario, there is uniform traffic belonging to four

service levels. However, during a small period of time, there

is a sudden burst of traffic toward a hot spot coming from a

single service level. Without loss of generality, we assume

that the hot spot is located at endnode 5 and service level 1. In

this way, in addition to the uniform traffic, some of the

interfaces inject traffic of service level 1 toward end node 5.
All the results of this scenario have been obtained for a

MIN with 64 end nodes. In Fig. 7, latency results of the four

aforementioned traffic classes can be seen. We show

performance for three different architectures: classic VOQ
at switch level and a single VC (Fig. 7a); classic VOQ at
network level, with also one VC per traffic class (Fig. 7b);
and our RECNþQoS proposal (Fig. 7c).

As can be observed, performance is very poor when
using the VOQsw organization: all the traffic classes are
affected by congestion. The V OQnet architecture offers very
good performance since all the traffic classes and destina-
tions are completely isolated but is a very expensive (even
infeasible) solution. When using our proposal, we can see
that traffic classes that are not producing congestion are
only slightly affected by the hot spot (specifically, for all
these classes, latency slightly increases during a short
interval), even though they share the same VC with the
congested traffic.

From this test, we can conclude that our proposal is still
able to provide several traffic classes with their assigned
bandwidth, even if there is another traffic class flooding the
network.

4.2.2 Multimedia Traffic Scenario

After studying the performance of the different architec-
tures under static congestion, we look at results when
congestion is dynamically generated. In real life, congestion
rarely appears regarding a single hot spot, with the rest of
the traffic behaving properly. Rather, hot spots appear and
disappear quickly as bursts of packets are injected into the
network. An excellent example of this is multimedia traffic,
like video sequences.

Video sequences are composed of a set of video frames
that are generated at regular intervals. Compression
algorithms produce frame patterns in which some frames
are smaller than others. More specifically, there are
intracoded frames, which are basically normal pictures
compressed with an algorithm like JPEG; besides, there are
intercoded frames, which only encode the differences with
some neighbor frames. Therefore, frame size presents a lot
of variability [19].

In this way, every 40 ms a long burst of packets is
produced. Moreover, if many of these sources are multi-
plexed, they can quickly deplete buffers in the network and
lead to a very poor performance.

In this scenario, all traffic comes from video traces of
MPEG-4 sequences. Each sequence has an average
throughput of 750 Kbytes/s, but bursts can be as large as
300 Kbytes. There are four traffic classes, each one with a
guaranteed 25 percent of the throughput.

Again, the results shown in this case have been obtained
for a MIN with 64 end nodes. For this scenario, we can see
in Fig. 8 the performance of the different switch architec-
tures we are considering.

Specifically, Fig. 8c shows the overall throughput results.
We can see that our proposal offers a performance identical
to the ideal architecture ðVOQnetÞ. Regarding the V OQsw

architectures, performance is very bad, with a throughput
peak near 65 percent. Note that this is even the case of the
four VC architecture, which has many more queues than
our proposal.

In Figs. 8a and 8b, we show overall latency results, both
in linear and logarithmic scale at the y-axis. In this case, the
best results are for our RECNþQoS architecture, even better

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

Fig. 7. Results for hot-spot scenario. (a) VOQsw. (b) VOQnet.

(c) RECNþQoS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

than the VOQnet case. The reason is that our RECNþQoS
proposal is able to cope better with congestion at any point
in the network, while VOQnet is designed to handle
congested end nodes. As a consequence, large bursts of
packets (like big video frames) creating congestion inside
the network progress faster when our proposal is used,
thereby obtaining the best frame-level latency results.

We can conclude that our proposal is ready to cope with
very demanding traffic, like multimedia traffic.

4.2.3 Multimedia Traffic Scenario with Priorities

Up to this point, we have shown that our proposal handles
congestion properly. Moreover, it is able to isolate one
traffic class from the others, in such a way that it can get a
guaranteed minimum throughput at every link. In this
scenario, we vary the weights of the traffic classes (see
Section 3.1.3). This can be done in our switch model just by
configuring the weights but also in “traditional” switches
by assigning different number of arbitration table entries.
As can be seen in Table 3, we use four different bandwidth
assignments to each (four) traffic classes.

In this test, we also inject multimedia traffic, just like in
the previous test. In this way, in addition to varying
priority, we also have a very bursty traffic to be handled by
the switches. Despite the bandwidth assignments, exactly
the same amount of traffic is injected from every class
(25 percent). In this way, we should see that classes 4 and 3
are the first ones to get congested, while class 1 should not
be affected.

The performance results for this scenario of the different
switch architectures are shown in Fig. 9 (in all the cases,
network is a MIN with 64 end nodes). In the left column,
latency results for the different classes are shown, while in
the right column, the throughput ones are shown. Once
again, our proposal offers performance identical to ideal
architecture regarding throughput. We can also appreciate
the differences between the four traffic classes. We can see
that classes 1 and 2 obtain 100 percent throughput, while
classes 3 and 4 congest at lower loads. Note that all these
traffic classes share a unique VC.

Regarding V OQsw, the traffic classes obtain very poor
performance, similar to that of the previous test. Note that
even the VOQsw 1VC scheme obtains some differentiation
between the four traffic classes. This is because, in all the
cases, we are considering ideal network interfaces at end
nodes, with as many queues as traffic classes times network
destinations.

Finally, latency results are as expected (from throughput
results). Note that, once again, the best latency performance
corresponds to our proposed architecture.

4.2.4 Direct Networks and Scalability

In this section, we explore the performance of the
considered architectures in 3D meshes and MINs with
different network sizes. This will give us an estimation
about how our proposal scales and adapts to other
environments. The results shown in this section have been
obtained considering the multimedia traffic (without
priorities) scenario.

MART�INEZ ET AL.: A SWITCH ARCHITECTURE GUARANTEEING QOS PROVISION AND HOL BLOCKING ELIMINATION 9

Fig. 8. Performance in video transmission scenario. (a) Global latency.

(b) Global latency, logarithmic scale. (c) Global throughput.

TABLE 3
Scheduler Configuration

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

First, Fig. 10 shows the normalized overall network
throughput achieved for the different mechanisms in
different MIN sizes (64, 128, 256, and 512 end nodes). In
all the cases, our proposed solution obtains better perfor-
mance than the rest. Note that, for all the architectures,

there is a slight performance degradation with network
size. This is because multimedia traffic is very bursty, as
discussed in former sections.

Second, Fig. 11 shows the performance achieved for the
different mechanisms in a 3D mesh network with 64 nodes.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

Fig. 9. Results for multimedia traffic with different weights. (a) Class 1. (b) Class 2. (c) Class 3. (d) Class 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Specifically, overall latency results are shown (please note
logarithmic scale). As can be seen, results obtained are very
similar to the ones achieved for the MIN case with 64 nodes
(see Fig. 8a), thus we can conclude that our proposal is also
valid for direct networks.

5 CONCLUSIONS

Due to cost and power consumption constraints, current
high-speed interconnection networks cannot be over-
dimensioned. Therefore, some solutions are needed in
order to handle the problems related to high link
utilization. In particular, both QoS support and conges-
tion management techniques have become essential for
achieving good network performance. However, most of
the techniques proposed for both issues require too many
resources.

In this paper, we propose a new switch architecture able
to face the challenges of congestion management and, at the
same time, QoS provision, while being more cost-effective
than other proposals. Our proposal is based on the
combination of two novel techniques that provide HOL
blocking elimination (turning congestion harmless) and
QoS support while requiring a reduced number of
resources.

According to the results presented in this paper, we can
conclude that our proposal provides an adequate QoS level
while properly dealing with congestion. Since this is
achieved with a reduced number of resources, this
architecture would also reduce network cost.

Specifically, we have shown that our proposal obtains
excellent results in both QoS provision and HOL blocking
elimination for different traffic scenarios and for different
topologies and network sizes. Regarding QoS, we have seen
that our proposal can efficiently isolate the traffic of each
service level, in such a way that each one can obtain its
guaranteed throughput, regardless of the behavior of the
other service levels. Moreover, latency results are better
when using our proposal than when using a much more
complex (and expensive) V OQnet architecture. Regarding
HOL blocking elimination, the performance was excellent
even when we injected static intensive hot spots.

Summing up, this outstanding performance was
achieved with a cost-effective architecture, which integrates

the QoS and HOL blocking elimination mechanisms in an
efficient way.

ACKNOWLEDGMENTS

This work has been jointly supported by the Spanish MEC
and European Commission FEDER funds under Grants
Consolider Ingenio-2010 CSD2006-00046 and TIN2006-
15516-C04-0X and by Junta de Comunidades de Castilla-
La Mancha under Grant PBC08-0078-9856.

REFERENCES

[1] M.J. Karol, M.G. Hluchyj, and S.P. Morgan, “Input versus Output
Queueing on a Space-Division Packet Switch,” IEEE Trans. Comm.,
vol. 35, pp. 1347-1356, 1987.

[2] InfiniBand Architecture Specification Volume 1, Release 1.0,
InfiniBand Trade Assoc., Oct. 2000.

[3] QsNet Overview, white paper, Quadrics Ltd., http://www.
quadrics.com, 2005.

[4] Myrinet, Myricom Inc., http://www.myrinet.com, 2005.
[5] W.J. Dally, P. Carvey, and L. Dennison, “Architecture of the Avici

Terabit Switch/Router,” Proc. Sixth Symp. High-Performance Inter-
connects (Hot Interconnects ’98), pp. 41-50, 1998.

[6] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed
Switch Scheduling for Local-Area Networks,” ACM Trans.
Computer Systems, vol. 11, no. 4, pp. 319-352, Nov. 1993.

[7] P.J. Garcı́a, J. Flich, J. Duato, I. Johnson, F.J. Quiles, and F. Naven,
“Efficient, Scalable Congestion Management for Interconnection
Networks,” IEEE Micro, vol. 26, no. 5, pp. 52-66, Sept. 2006.

[8] J. Duato, S. Yalamanchili, M.B. Caminero, D. Love, and F.J. Quiles,
“MMR: A High-Performance Multimedia Router. Architecture
and Design Trade-Offs,” Proc. 11th Symp. High Performance
Computer Architecture (HPCA ’99), Jan. 1999.

[9] Advanced Switching Core Architecture Specification, Revision 1.1,
Advanced Switching Interconnect Special Interest Group,
Mar. 2005.

[10] A. Martı́nez, F.J. Alfaro, J.L. Sánchez, and J. Duato, “Providing
Full QoS Support in Clusters Using Only Two VCs at the
Switches,” Proc. 12th Int’l Conf. High Performance Computing
(HiPC ’05), pp. 158-169, http://investigacion.uclm.es/portali/
documentos/it_1131561750-HiPC05.pdf, Dec. 2005.

[11] A. Martı́nez, P.J. Garcı́a, F.J. Alfaro, J. Flich, J.L. Sánchez,
F.J. Quiles, and J. Duato, “A Cost-Effective Interconnection
Architecture with QoS and Congestion Management Support,”
Proc. European Conf. Parallel Computing (EuroPar ’06), Aug. 2006.

[12] J. Duato, S. Yalamanchili, and N. Lionel, Interconnection Networks:
An Engineering Approach. Morgan Kaufmann, 2002.

[13] W.J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

MART�INEZ ET AL.: A SWITCH ARCHITECTURE GUARANTEEING QOS PROVISION AND HOL BLOCKING ELIMINATION 11

Fig. 10. Performance for different MIN network sizes.

Fig. 11. Performance in video transmission scenario in a 3D mesh with

64 end nodes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[14] M.A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Packet-Mode Scheduling in Input-Queued Cell-Based Switches,”
IEEE/ACM Trans. Networking, vol. 10, no. 5, pp. 666-678, 2002.

[15] P. Shivakumar and N.P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,” technical report, Compaq
Western Research Laboratory, 2001.

[16] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and A. Poursepanj,
“The Network Processing Forum Switch Fabric Benchmark
Specifications: An Overview,” IEEE Network, pp. 5-9, Mar. 2005.

[17] J. Duato, I. Johnson, J. Flich, F. Naven, P.J. Garcı́a, and
T. Nachiondo, “A New Scalable and Cost-Effective Congestion
Management Strategy for Lossless Multistage Interconnection
Networks,” Proc. 11th Symp. High Performance Computer Architec-
ture (HPCA), 2005.

[18] P.J. Garcı́a, J. Flich, J. Duato, I. Johnson, F.J. Quiles, and F. Naven,
“Dynamic Evolution of Congestion Trees: Analysis and Impact on
Switch Architecture,” Proc. Int’l Conf. High Performance Embedded
Architectures and Compilers (HiPEAC ’05), pp. 266-285, Nov. 2005.

[19] Generic Coding of Moving Pictures and Associated Audio, Moving
Picture Experts Group, Rec. H.262., Draft Int’l Standard ISO/IEC
13818-2, 1994.

Alejandro Martı́nez received the MS degree in
computer science and the PhD degree from the
University of Castilla-La Mancha in 2003 and
2007, respectively. He is currently working at
Intel Barcelona Research Center. His research
interests include high-performance interconnec-
tions, quality of service, high-performance com-
puting, and processor microarchitecture.

Pedro J. Garcı́a received a degree in commu-
nication engineering from the Technical Univer-
sity of Valencia, Spain, in 1996, and the PhD
degree in computer science from the University
of Castilla-La Mancha, Spain, in 2006. In 1999,
he joined the Computer Systems Department
(DSI), University of Castilla-La Mancha, Spain,
where he is currently an assistant professor of
computer architecture and technology. His re-
search interests are focused on high-perfor-

mance interconnection networks, mainly congestion management and
deadlock-avoidance techniques and also reconfiguration and routing
algorithms.

Francisco J. Alfaro received the MS degree in
computer science from the University of Murcia
in 1995 and the PhD degree from the Uni-
versity of Castilla-La Mancha in 2003. He is
currently an assistant professor of computer
architecture and technology in the Computer
Systems Department, Castilla-La Mancha Uni-
versity. His research interests include high-
performance local area networks, QoS, design
of high-performance routers, and design of on-

chip interconnection networks for multicore systems.

José L. Sánchez received the PhD degree from
the Technical University of Valencia, Spain, in
1998. Since November 1986, he has been a
member of the Computer Systems Department
(formerly Computer Science Department), Uni-
versity of Castilla-La Mancha. He is currently an
associate professor of computer architecture
and technology. His research interests include
multicomputer systems, quality of service in
high-speed networks, interconnection networks,

and parallel algorithms and simulation.

José Flich received the MS and PhD degrees
in computer science from the Technical Uni-
versity of Valencia (Universidad Politécnica de
Valencia), Spain, in 1994 and 2001, respec-
tively. He joined the Department of Computer
Engineering (DISCA), Universidad Politécnica
de Valencia, in 1998, where he is currently an
associate professor of computer architecture
and technology. His research interests are
related to high-performance interconnection

networks for multiprocessor systems, cluster of workstations, and
networks on chip. He has served as a program committee member in
different conferences, including ICPP, IPDPS, HiPC, CAC, ICPADS,
and ISCC. He is currently the cochair of the CAC and INA-OCMC
workshops and the vicechair (high-performance networks track) of the
EuroPar conference.

Francisco J. Quiles received the degree in
physics (electronics and computer science) and
the PhD degree from the University of Valencia,
Spain, in 1986and1993, respectively. In 1986, he
joined the Computer Systems Department, Uni-
versity of Castilla-La Mancha, where he is
currently a full professor of computer architecture
and technology and the vicerector of research at
the University of Castilla-La Mancha. He has
developed several courses on computer organi-

zation and computer architecture. His research interests include high-
performance networks, parallel algorithms for video compression and
video transmission, and DVC. He has published more than 160 papers in
international journals and conference proceedings.

José Duato is a professor in the Department of
Computer Engineering (DISCA), Polytechnic
University of Valencia, Spain. His research
interests include interconnection networks and
multiprocessor architectures. He has published
more than 350 papers. His research results have
been used in the design of the Alpha 21364
microprocessor and the Cray T3E and IBM
BlueGene/L supercomputers. He is the first
author of the book “Interconnection Networks:

An Engineering Approach.” He served as associate editor for the IEEE
Transactions on Parallel and Distributed Systems and IEEE Transactions
on Computers and is serving as an associate editor for the IEEE
Computer Architecture Letters. He was the general cochair of ICPP 2001,
the program chair of HPCA 2004, and the program cochair of ICPP 2005.
Also, he served as the cochair, steering committee member, vicechair, or
program committee member in more than 55 conferences, including
HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, Europar, and HiPC.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

