
Providing Quality of Service over Advanced Switching∗

Raúl Martı́nez, Francisco J. Alfaro, José L. Sánchez
Dept. de Sistemas Informáticos. University of Castilla-La Mancha. Albacete, Spain

{raulmm, falfaro, jsanchez}@dsi.uclm.es

Abstract

Advanced Switching (AS) is a new fabric-interconnect
technology, which provides the advanced features of ex-
isting proprietary fabrics in an open standard. AS is in-
tended to proliferate in multiprocessor, storage, networking,
servers, and embedded platform environments.

The provision of Quality of Service (QoS) in computing
and communication environments is currently the focus of
much discussion and research in industry and academia.
AS provides some mechanisms, which correctly used permit
us to provide QoS. In this paper we examine these mecha-
nisms and show how to provide QoS based on bandwidth
and latency requirements.

Furthermore, we propose a new algorithm based on the
Self-Clocked Weighted Fair Queuing (SCFQ) algorithm,
which we call SCFQ Credit Aware (SCFQ-CA), as an imple-
mentation of the AS minimum bandwidth egress link sched-
uler. Finally, we show that the AS table-based scheduler
does not work properly with variable packet sizes, and we
propose a modification of the table scheduler, based on the
Deficit Table (DTable) scheduler, to solve this drawback.

Keywords: Quality of Service (QoS), Advanced Switching,
scheduling, application requirements, interconnection net-
works, aggregated flows, performance evaluation.

1. Introduction

The PCI bus has served industry well for the last ten
years and is currently used extensively. However, the pro-
cessors and I/O devices of today and tomorrow demand
much higher I/O bandwidth than PCI 2.2 or PCI-X can de-
liver. The reason for this limited bandwidth is the paral-
lel bus implementation. PCI Express [16] eliminates the
legacy shared bus-based architecture of PCI and introduces
an improved and dedicated point-to-point interconnect. Ad-

∗This work was partly supported by the Spanish CICYT under Grant
TIC2003-08154-C06-02, by the Junta de Comunidades de Castilla-La
Mancha under Grant PBC-05-005-1, and by the Spanish State Secretariat
of Education and Universities under FPU grant.

vanced Switching (AS) [1] is a new open-standard fabric-
interconnect technology for communications, storage, and
embedded environments based on PCI Express.

Multiservice packet networks are required to carry not
only traffic of different applications, such as e-mail or file
transfer, which does not require pre-specified service guar-
antees, but also other applications that require different per-
formance guarantees, like real-time video or telephony. The
provision of QoS in computing and communication envi-
ronments is currently the focus of much discussion and re-
search in industry and academia. AS provides mechanisms
that can be used to support QoS. Specifically, an AS fab-
ric permits us to employ virtual channels (VCs), egress link
scheduling, and an admission control mechanism to provide
a different treatment to the different traffic classes. In [12],
we examined these mechanisms and showed a first approach
to provide QoS in AS. In this paper, we expand largely the
basic ideas presented there and propose several methods of
using the AS mechanisms to provide applications with QoS
based on bandwidth and latency requirements.

A key component for networks with QoS support is the
egress link scheduling algorithm, which selects the next
packet to be sent and determines when it should be transmit-
ted, on the basis of some expected performance metrics. AS
defines two egress link schedulers: The VC arbitration table
scheduler and the Minimum Bandwidth egress link sched-
uler (MinBW).

AS does not specify an algorithm or implentation for the
MinBW scheduler, but some charateristics that it must re-
spect. In this paper, we propose a new algorithm based on
the Self-Clocked Weighted Fair Queuing (SCFQ) algorithm
[6] that fulfills all the properties that the AS MinBW sched-
uler must have, including the interaction with the AS credit-
based flow control. We have called this algorithm SCFQ
Credit Aware (SCFQ-CA).

Moreover, we show that the AS table-based scheduler
does not work properly with variable packet sizes. In [11]
we proposed a new table-based scheduler that is able to deal
properly with variable packet sizes. We called this algo-
rithm Deficit Table scheduler or just DTable scheduler. In
this paper we show how to adapt the DTable scheduler to

implement the AS table scheduler. The resulting scheduling
mechanism requires simple hardware modifications of the
original AS table scheduler. However, it does not require
to modify the interface provided in the AS specification for
configuring the table scheduler.

The structure of the paper is as follows: Section 2
presents a summary of the general aspects in the AS spec-
ification including the most important mechanisms that AS
provides to support QoS. In Section 3, we propose our
implementation of the MinBW scheduler. In Section 4,
we show the problems of the table scheduler with variable
packet sizes and show how to modify this scheduler to solve
those problems. In Section 5, we present our proposal to
use the AS mechanisms to provide applications with QoS.
Details on the experimental platform and the performance
evaluation are presented in Section 6. Finally, some conclu-
sions are given and future work is proposed.

2. Advanced Switching

Advanced Switching (AS) is built on the same physi-
cal and link layers as PCI Express. Moreover, it includes
an optimized transaction layer to enable essential commu-
nication capabilities, including protocol encapsulation, en-
hanced fail-over, high availability, and congestion and sys-
tem management.

The physical layer consists in a dual-simplex channel,
which is implemented as a transmit pair and a receive
pair. A data clock is embedded using the 8b/10b encod-
ing scheme, with an initial frequency of 2.5 Gb/s, but the
bandwidth of a link may be linearly scaled by adding signal
pairs to form multiple lanes.

The link layer is responsible for data integrity and adds
a sequence number and a CRC to the transaction layer. A
credit-based flow control protocol ensures that packets are
only transmitted when there is enough buffer space at the
other end to store them, making sure that no packets are
dropped when congestion appears.

AS supports unicast and multicast traffic. For unicast
traffic the AS transaction layer provides source-based rout-
ing. The maximum packet size of an AS packet is 2176
bytes. An AS fabric permits us to employ VCs, egress link
scheduling, and an admission control mechanism to differ-
entiate between traffic flows.

AS supports up to 20 VCs of three different types: Up
to 8 bypassable unicast VCs, up to 8 ordered-only unicast
VCs, and up to 4 multicast VCs. The bypassable VC with
the highest identifier in each network element is called the
Fabric Management Channel (FMC). Note that each VC has
its own credit count for the credit-based flow control.

AS defines two schedulers to resolve between the up to
twenty VCs competing for bandwidth onto the egress link:
The table scheduler and the MinBW scheduler. A given

implementation may choose any of them or may implement
its own proprietary mechanism.

When implementing the egress link scheduler the in-
teraction with the credit-based flow control must be taken
into account. Packets from VCs that lack sufficient credits
must not be scheduled. Thus, if the credits for a given VC
have been exhausted, the VC scheduler must treat the cor-
responding queue as if it were empty. While this situation
persists, the bandwidth ordinarily given to that queue is con-
sidered excess bandwidth and must be redistributed among
queues for which corresponding VC credits are available.

The table scheduler provides an implementation of the
Weighted Round Robin (WRR) algorithm [10]. The VC ar-
bitration table is a register array with fixed-size entries of 8
bits. Each table entry, which contains a VC identifier value,
corresponds to a slot of a WRR arbitration period. When ar-
bitration is needed, the table is cycled through sequentially
and a packet is transmitted from the VC indicated in the
current table entry regardless of the packet size. If the cur-
rent entry points to an empty VC, that entry is skipped. The
number of entries may be 32, 64, 128, 256, 512, or 1024.

The MinBW scheduler is intended for a more precise al-
location of bandwidth regardless of the packet size. This
scheduler consists of two parts: The first is a mechanism to
provide the FMC with absolute priority, ahead of the other
VCs, but with its bandwidth limited by a token bucket. The
second is a mechanism to distribute bandwidth amongst the
rest of the VCs according to a configurable set of weights.
AS does not specify an algorithm or implementation for the
MinBW scheduler, but it must respect certain properties:
Work conserving, bandwidth metering, not packet meter-
ing, minimum bandwidth guarantee, fair redistribution of
unused bandwidth and memoryless [1].

Moreover, fabric management software may regulate ac-
cess to the AS fabric, allowing new packet flows entry to
the fabric only when sufficient resources are available. Fab-
ric management software may track resource availability by
monitoring AS fabric congestion and tracking active packet
flows and their bandwidth.

3. Implementation of the MinBW scheduler

The properties of the MinBW scheduler stated in the pre-
vious section refer to an ideal fair-queueing model. In a
fair-queueing system, supposing a service rate R, N flows,
with the ith flow assigned a weight φi, during a given inter-
val of time, the flow i receives a fair share bandwidth (Bi)
proportional to its weight

Bi =
φi

∑V
j=1 φj

∗ R

where V is the set of flows (V ≤ N) with data in queue
during that interval of time.

As stated before, the AS specification does not state
an algorithm or implementation for the MinBW scheduler.
However, attending to the specification, there are several
well-known scheduling algorithms that fit this model in a
proper way to be used to implement the MinBW algorithm.
The problem of these algorithms is that they were designed
for networks without a flow control mechanism, like Inter-
net or ATM. Therefore, one of the main issues when im-
plementing the MinBW scheduler is its interaction with the
AS credit-based flow control. A given implementation of a
scheduler for AS is not allowed to select packets from a VC
lacking transmission credits, nor it is allowed to “save” this
bandwidth for future use.

The AS specification states that variants of Weighted
Fair Queuing (WFQ) [5] such as SCFQ [6], and variants
of Weighted Round Robin (WRR) [10] such as Deficit
Round Robin (DRR) [19] exhibit the desired properties of
the MinBW scheduler. In order to provide QoS, we have
discarded the variants of WRR because they generally pro-
duce worse latency and fairness properties than variants of
WFQ [21]. Therefore, we have chosen the SCFQ algorithm
to implement the MinBW for performance evaluation.

The SCFQ algorithm is a variant of the WFQ algorithm
which has a lower computational complexity. It defines fair
queueing in a self-contained manner and avoids using a hy-
pothetical queueing system as reference to determine the
fair order of services. Instead, it uses a virtual time function
which depends on the progress of the work in the actual
packet-based queueing system. Each packet that arrives at
the egress link is stamped with a service tag. The packets
are then transmitted in an increasing order of timestamp.

Therefore, when a packet arrives, the SCFQ algorithm
uses the service tag of the packet currently in service as the
virtual time to calculate the new packet tag. Let F k

i be the
service tag of the kth packet from flow i,

F k
i = max{F k−1

i , Fcurrent} +
Lk

i

φi

where Lk
i is the length of the kth packet and Fcurrent is

the service tag of the packet currently in service. Note that
Fcurrent ≤ F k−1

i if there is at least one packet waiting, or
being transmitted, in the queue i. This permits us to wait to
stamp a packet until it reaches the queue head.

The SCFQ Credit Aware (SCFQ-CA) algorithm that we
propose works in the following way:

• When a new packet arrives at a queue, it is stamped
with its service tag only if it is at the head of the queue
and there are enough credits to transmit it.

• Packets are transmitted in increasing order of service
tag.

• When a packet is transmitted, if there are enough cred-
its to transmit the next packet, this packet is stamped
with its service tag.

• When a queue is inactive because of lack of credits and
receives enough credits to transmit again, the packet at
the head of the queue is stamped with its service tag.

This new algorithm fulfills all the properties that the AS
MinBW scheduler must have. Moreover, this scheduling
algorithm is actually appropriate not only for being used in
AS, but also for being used in any network that employs a
link level flow control.

4. Modifying the table to work with variable
packet sizes

The main problem of the AS table-based scheduler is that
it does not work in a proper way with variable packet sizes,
as is common in actual traffic. Figure 1 shows the perfor-
mance of various table schedulers when there are four traf-
fic flows in the network, all of them with the same data rate
but a different packet size, and with all the flows having
the same number of assigned table entries (the same band-
width reservation). The simulated architecture is the same
that it has been used for the performance evaluation in Sec-
tion 6. As it is shown in Figure 1(a), when using the AS
table scheduler, due to the fact that each flow has a differ-
ent packet size, the flows obtain a very different bandwidth.
The reason of this is that, when a table entry is selected,
a packet from the VC indicated in that entry is transmitted
regardless of the packet size. Therefore, although the same
number of packets from each flow is going to be transmit-
ted, the amount of information is not going to be the same.

(a) AS Table (b) DTable

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8 2

2048
1024

512
256

Input load

T
hr

ou
gh

pu
t

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8 2

2048
1024

512
256

Input load

T
hr

ou
gh

pu
t

Figure 1. AS Table and DTable performance
with different packet sizes.

In [11] we proposed a new table-based scheduler that
works properly with variable packet sizes. We called
this new algorithm Deficit Table scheduler, or just DTable
scheduler, because it is a mix between the table scheduler
and the DRR algorithm. The DRR algorithm associates
each queue with a quantum and a deficit counter. The quan-
tum assigned to a queue is proportional to the bandwidth
assigned to that queue. The deficit counter is set to 0 at

the start. The scheduler visits sequentially each queue. For
each queue, the scheduler transmits as many packets as the
quantum allows. When a packet is transmitted, the quantum
is reduced by the packet size. The unused quantum is saved
in the deficit counter, representing the amount of quantum
that the scheduler owes the queue. At the next round, the
scheduler will add the previously saved quantum to the cur-
rent quantum. When the queue has no packets to transmit,
the quantum is discarded, since the flow has wasted its op-
portunity to transmit packets.

The DTable algorithm works like the DRR algorithm, but
the amount of information assigned to each VC (the quan-
tum) in the DRR algorithm is distributed among the table
entries assigned to that VC. Each table entry has associ-
ated a VC identifier and an entry weight. The entry weight
is the amount of information, in flow control credits, that
is allowed to be transmitted by each entry. Moreover, the
DTable scheduler assigns each VC with a deficit counter
that works in the same way as in the DRR scheduler. The in-
teraction with the AS credit-based flow control is also taken
into account. Specifically, this scheduler works in the fol-
lowing way:

• A VC is active when it has at least one packet and there
are enough credits to transmit the packet that is at the
head of the VC queue.

• The table entries are cycled through until an entry that
has a VC identifier from an active VC is found. We
will call this VC the selected VC.

• When a table entry is selected, the accumulated weight
is computed. The accumulated weight is equal to the
sum of the deficit counter for the selected VC and the
entry weight.

• Packets belonging to the selected VC are transmitted.
The accumulated weight is reduced after sending each
packet in an amount equal to the number of flow con-
trol credits required by the transmitted packet.

• The next table entry is selected when any of the fol-
lowing conditions occurs:

– There are no more packets from the selected VC
or there are not enough flow control credits for
transmitting the packet that is at the head of the
VC queue. In that case, the VC becomes inactive,
and the deficit value for that VC becomes zero.

– The accumulated weight is less than the size of
the packet that is at the head of the queue. The
deficit value becomes equal to the accumulated
weight in that instant.

In order to apply to AS our proposed DTable scheduler
it must be taken into account that the AS specification only

consider the VC identifier assigned to each table entry. In
order to be able to also assign a weight to each table entry
the AS specification would require to be modified. There-
fore, we propose to use a fix value for all the entries. This
weight is the Maximum Transfer Unit (MTU). This value
is known by the network elements and, besides, this is the
smallest value that ensures that there is never a need to cy-
cle through the entire table several times in order to gather
enough weight for the transmission of a single packet. In
this way, when an active table entry is selected at least one
packet will be transmitted. This is also taken into account
in the definition of the DRR algorithm [19]. This modi-
fied version of the table scheduler would only require quite
simple hardware modifications. The memory requirements
for this algorithm over the original table scheduler are the
memory needed to store the deficit counter for each VC.
The MTU is 2176 bytes (34 credits of 64 bytes) in a generic
case for AS, and thus, the maximum deficit counter value is
33. We need at least 6 bits to represent this number. There-
fore, in the more general case of 16 unicast VCs this means
16 ∗ 6 = 102 bits per egress link.

The main advantage of the table (and DTable) scheduler
over those schedulers that involve packet tag sorting like the
WFQ-based schemes (including the SCFQ scheduler) is its
simpler implementation [4]. Moreover, the table scheduler
allows to configure not only the number of table entries as-
signed to each queue or VC, but also the distribution of the
entries assigned to each queue. As we will see in Section
5.2, we will use this property to provide different latency
requirements to the AS VCs. Note that, with this algorithm
each table entry allows us to transmit an amount of informa-
tion up to twice the MTU minus one credit. This must be
taken into account when the table is configured to provide
a flow with latency requirements. Note also that, if all the
table entries devoted to the same VCs are assigned consec-
utively, the behavior of this scheduler would be the same as
the DRR algorithm.

The resulting application of the DTable algorithm to AS
is a modification of the AS table scheduler that works prop-
erly with variable packet sizes, as can be seen in Figure 1(b).
Moreover, the modification proposed does not change the
structure of the AS arbitration table.

5. Providing QoS over AS

As was stated in Section 2, AS provides several mecha-
nisms that can be used to provide QoS. However, the AS
specification does not indicate how to use these mecha-
nisms. In this section, we propose a way of using some
of the above-presented AS mechanisms in order to provide
QoS. First of all, a set of Service Classes (SCs) with dif-
ferent requirements must be specified. When various flows
obtain access to the AS fabric, they will be assigned a SC

depending on their characteristics. To define this set of SCs
we propose a traffic classification based on two network pa-
rameters: Bandwidth and latency. In this way, this classifi-
cation is similar to the one presented by Pelissier [17]. We
distinguish between three broad categories of traffic:

• Network Control traffic: High-priority traffic to main-
tain and support the network infrastructure. One SC
will be dedicated to this kind of traffic.

• QoS traffic: This traffic has explicit minimum band-
width and/or maximum latency requirements. Various
QoS SCs can be defined with different bandwidth and
latency requirements. This category can be divided
into two groups:

– Traffic which requires a given minimum band-
width and must be delivered within a given dead-
line in order for the data to be useful. Examples
of such data streams include video conference,
interactive audio, and video on demand.

– Traffic which requires a given minimum band-
width but is not particularly sensitive to latency.
An example could be a non-interactive playback
of a video clip.

• Best-effort traffic: This traffic accounts for the major-
ity of the traffic handled by data communication net-
works today, like file and printing services, web brows-
ing, disk backup activities, etc. This traffic tends to be
bursty in nature and largely insensitive to both band-
width and latency. Best-effort SCs are only character-
ized by the differing priority among each other.

AS supports the use of VCs, which provide a mean of
supporting multiple independent logical data flows over a
given common physical channel. Conceptually, this in-
volves multiplexing various data flows onto a single phys-
ical link. Moreover, in AS, the egress link scheduling is
performed at the VC level. This means that all the traffic
that is transmitted through the same VC is considered as a
single flow.

Therefore, if there are sufficient VCs we will devote a
separate VC to the aggregated traffic of each existing SC.
However, if the network that we are using does not have
as many VCs as SCs we have defined, more than one SC
should be assigned to the same VC and the scheduler should
provide to each VC the most restrictive QoS requirements of
the SCs that has assigned. Note that the maximum number
of SCs that we can define is 16, that is the maximum number
of unicast VCs supported by AS.

In order to provide QoS guarantees, an Admission Con-
trol (AC) mechanism must be used. Without an AC it is
only possible to obtain a scheme of priorities where some

SCs would have a higher priority than others, but no guar-
antee could be given. The AC mechanism would allow a
new connection to be established if it cannot create persis-
tent congestion in its VC. In any case, no AC would be im-
plemented for network control and best-effort traffic.

AS specification just cites admission control as a pos-
sible mechanism to be used, but does not give any indica-
tion of how to implement it. We propose to use a band-
width broker [14], which is an AC scheme that makes the
decisions based on the bandwidth that is expected to con-
sume the new flow. The flows must be connection oriented,
which means that are going to use the same path during all
their life. The bandwidth broker algorithm must maintain
a graph of the network egress links reporting the available
free bandwidth on each link. When a new connection tries
to get access to the network the bandwidth broker checks
if there is enough bandwidth available all along the path of
that connection. If all the links have enough bandwidth, the
amount of required bandwidth is subtracted from the avail-
able bandwidth of those switches and the new connection is
accepted. If any of the links have not enough bandwidth to
accommodate the new flow the connection is rejected.

The bandwidth broker can be implemented in a central-
ized manner, which has all the information in a single host,
or in a distributed manner, like in [7]. As a first approxima-
tion, a centralized bandwidth broker1 based on the average
bandwidth value required per each flow is used in the per-
formance evaluation section.

Finally, the schedulers must be properly configured at
the different network elements to provide the different SCs
with a differentiated treatment. Therefore, in the following
sections we will show how to configure the two normative
AS schedulers, the MinBW scheduler and the table sched-
uler, to provide the flows aggregated in the different VCs
with bandwidth and latency requirements.

5.1. Providing QoS requirements with the
MinBW scheduler

Providing minimum bandwidth requirements to a VC
with the MinBW scheduler is as easy as assigning to that
VC a weight equal to the proportion of the egress link band-
width that it needs. The control SC will be assigned to the
FMC in order to achieve the maximum priority, and thus no
bandwidth will be assigned explicitly to this SC.

Parekh and Gallager [15] analyzed the performance of a
queueing network with fair queueing service discipline and
derived upper bounds on the end-to-end delays when the in-
put traffic streams conform to the leaky bucket characteriza-
tion. As a first approximation, we are not going to conform
the traffic to a given pattern, but on the basis of that study,

1The use of a centralized or distributed AC does not affect the simula-
tion results obtained in this paper.

we assign a higher amount of bandwidth than is needed to
those VCs with high latency requirements, in order to ob-
tain a better average and maximum latency performance.

In order to distribute the link bandwidth between the
VCs, several things must be taken into account. First of
all, it is well-known that interconnection networks are un-
able to achieve 100% global throughput. Therefore, not all
the bandwidth can be distributed among the SCs, thereby
requiring a certain bandwidth to be left unassigned. More-
over, a certain amount of bandwidth must be reserved to the
control SC according to its expected traffic. Secondly, QoS
traffic may be bursty (for example a video transmission) and
may require, during short periods of time, more bandwidth
than average. Therefore, when configuring the MinBW
scheduler, not all the bandwidth that is intended to be as-
signed to best-effort SCs will in fact be assigned to them,
but rather only a small amount of bandwidth proportional to
their relative priority. The rest of the best-effort bandwidth
will also be added to this unassigned traffic. Note that the
bandwidth unused by the control and QoS SCs would be re-
distributed by the MinBW scheduler among the best-effort
SCs.

5.2. Providing QoS requirements with the
Table scheduler

In [3], we explained how to configure this kind of arbitra-
tion table (in that case for InfiniBand) to provide bandwidth
and latency guarantees. In order to provide traffic of a given
VC with a minimum bandwidth, the number of table en-
tries assigned to that VC must accomplish with the propor-
tion of desired egress link bandwidth. In order to provide
maximum latency requirements to the traffic of a VC, the
maximum separation between two consecutive table entries
devoted to that VC must be fixed. By fixing this separation,
it is possible to control the maximum latency of a network
element crossing, and therefore, given a maximum num-
ber of hops, the maximum end-to-end latency. In order to
choose the maximum separation, the maximum time must
be studied that a packet can spend crossing a network ele-
ment as well as the time it takes to be transmitted to the next
element once it has been chosen by the scheduler [3]. Note
that the control SC does not have maximum priority when
using this scheduler, so we will consider it as any other SC
with high latency requirements.

This way of assigning the entries of the table faces the
problem of bounding the bandwidth and latency assign-
ments. If one sets a maximum separation between two con-
secutive table entries of a VC, a certain number of them
are being assigned, and hence a minimum bandwidth, to
the VC in question. This can be a problem because the
most latency-restrictive traffic does not usually require a
high bandwidth reservation. This is usually the case of, for

example, the control traffic. We have presented a proposal
that partially solves this bounding in [11]. However, in this
case, we can prevent this problem by assigning the control
SC the bandwidth that, as it has been previously said, should
be left unassigned in the MinBW case.

This way of configuring the table scheduler is equally
valid for the DTable scheduler and for the original AS ta-
ble scheduler, if a fixed packet size is being used. The only
thing that must be taken into account to provide latency re-
quirements is the maximum amount of information that a
table entry allows to be transmitted.

5.3. Other considerations

There are two possible ways of configuring the sched-
ulers. The first possibility is to configure the schedulers in
advance, defining a set of SCs with a different minimum
bandwidth and maximum latency reservation [18]. This dis-
tribution would be made taking into account the expected
use of each SC. The second possibility is to configure the
schedulers in accordance with the connection requirements
in a dynamic way. With this approach, the scheduler con-
figuration may be modified both when a new connection
is accepted and when a previously established connection
ends [2]. This allows more flexibility and a more accurate
use of the resources. Note that the second possibility is only
feasible when an AC mechanism is used.

6. Performance Evaluation

In [12], we evaluated a first and simpler aproximation
of our proposals using fixed packet sizes, comparing the
performance of the MinBW and the original table sched-
ulers. In this paper, we evaluate thoroughly our propos-
als with variable packet sizes, comparing the performance
of the MinBW scheduler implemented using our SCFQ-CA
algorithm and the DTable scheduler.

6.1. Simulated architecture

We have used a perfect-shuffle Bidirectional Multi-stage
Interconnection Network (BMIN) with 64 end-points con-
nected using 48 8-port switches. In AS any topology is pos-
sible, but we have used a BMIN because it is a common so-
lution for interconnection in current high-performance envi-
ronments. The switch model uses a combined input-output
buffer architecture with a crossbar to connect the buffers.
Virtual output queuing has been implemented to solve the
head-of-line blocking problem at switch level. However, all
the queues of a VC share the same credit count.

In our tests, the link bandwidth is 2.5 Gb/s but, with
the 8b/10b encoding scheme, the maximum effective band-
width for data traffic is only 2 Gb/s. We are assuming some

Table 1. SCs suggested by the standard IEEE 802.1D-2004.
Type SC Description

Control Network control (NC) Traffic to support the network infrastructure.
QoS Voice (VO) Traffic with a limit of 10 ms for latency and jitter.
QoS Video (VI) Traffic with a limit of 100 ms for latency and jitter.
QoS Controlled load (CL) Traffic with explicit bandwidth requirements.

Best-effort Excellent-effort (EE) Preferential best-effort traffic.
Best-effort Best-effort (BE) LAN traffic as we know it today.
Best-effort Background (BK) Traffic that should not impact other flows.

Table 2. Injected traffic and scheduler configuration.
Injected traffic Table C. MinBW C.

SC Min. Max. Traffic pattern Packet size # Entr. Dist. Weight

NC 0.01 0.01 self-similar (Bursts60) up to 64B 16 4 -
VO 0.1875 0.1875 64 Kb/s CBR connects. 128B 16 4 0.25
VI 0.1875 0.1875 750 Kb/s MPEG-4 traces up to 2176B 12 6 0.1875
CL 0.1875 0.1875 750 Kb/s CBR connects. 2176B 12 (6) 0.1875
EE 0 0.1425 self-similar (Bursts60) up to 2176B 5 (16) 0.078125
BE 0 0.1425 self-similar (Bursts60) up to 2176B 2 (32) 0.03125
BK 0 0.1425 self-similar (Bursts60) up to 2176B 1 (64) 0.015625

Total 0.5725 1 64 0.75

internal speed-up (x1.5) for the crossbar, as is usually the
case in most commercial switches. AS gives us the freedom
to use any algorithm to schedule the crossbar, so we have
implemented a round robin scheduler.

The time that a packet header takes to cross the switch
without any load is 145 ns, which is based on the unloaded
cut-through latency of the AS StarGen’s Merlin switch [20].

6.2. Traffic model

The IEEE standard 802.1D-2004 [8] defines 7 traffic
types at the Annex G, which are appropriate for this study.
We will consider each traffic type as a SC. Table 1 shows
each SC and its requirements. In this way, the workload is
composed of 7 SCs and each one of them will be assigned
to a different VC. The NC SC is assigned to the FMC.

Our intention is to show that with an AC mechanism for
controlling the QoS traffic and a relatively small amount of
control traffic (as is usually the case), the QoS requirements
of the different SCs are met, whatever the load of best-effort
traffic. For that purpose, we inject a fixed amount of control
traffic (NC) and QoS traffic (VO, VI, and CL) all the time,
and gradually increase the amount of best-effort traffic (EE,
BE, and BK), starting at 0.62 input load. The amount of
QoS traffic to be injected is the maximum allowed by the
AC. Table 2 shows the proportion of traffic of each SC that
each node injects regarding the link bandwidth.

The destination pattern is uniform in order to fully load
the network. The packets are generated according to differ-
ent distributions, as can be seen in Table 2. VO, VI, and
CL SCs are composed of point-to-point connections of the

given bandwidth. VO and CL SCs are generated following
a Constant Bit Rate (CBR) distribution. In the case of VI
SC, a video trace is used to generate the size of each frame.
Each frame is injected into the network interfaces every 40
ms. If the frame size is bigger than the MTU, the frame is
split into several packets. The traffic of the NC, EE, BE,
and BK SCs is generated according to a Bursts60 distribu-
tion [13]. This traffic is composed of bursts of 60 packets
heading to the same destination. The packets’ size is gov-
erned by a Pareto distribution, as recommended in [9]. In
this way, many small size packets are generated, with an oc-
casional large size packet. The periods between bursts are
modeled with a Poisson distribution. The Bursts60 pattern
models worst-case real traffic scenarios.

6.3. Scheduler configuration

The configuration of the DTable and the MinBW sched-
ulers is shown in Table 2. In order to compare the two
schedulers we have assigned the same amount of bandwidth
to each SC in both cases.

We want to reserve 25% of link bandwidth to best-effort
traffic, but we have only assigned best-effort SCs a min-
imum bandwidth (12.5%) to establish the preference be-
tween them. We have assigned the NC SC with 25% of
bandwidth (rest of best-effort bandwidth + expected amount
of control traffic + expected amount of lost network band-
width). Note that the bandwidth assigned to the NC SC
in the table case is left unassigned in the MinBW case.
For both schedulers, the remaining bandwidth has been dis-
tributed between the QoS SCs. We will inject the same

amount of traffic of the three QoS SCs considered. How-
ever, in the MinBW case the way of providing a better la-
tency to a SC is assigning a higher amount of bandwidth
than is actually required to fulfill its bandwidth require-
ments [15]. Therefore, we have assigned 33% more band-
width to VO SC due to its higher latency requirements.

For the sake of simplicity, a table of 64 entries has been
used in the simulations. In order to fill in the table with the
VC identifiers we have assigned the table entries minimiz-
ing the distance between any consecutive pair of entries for
the NC, VO, and VI SCs, which are the SCs with latency re-
quirements. Therefore, we have assigned a maximum dis-
tance of 4 to the NC and VO SCs, which have 16 entries
each one, and a maximum distance of 6 to the VI SC, which
has 12 entries. For the CL SC and the best-effort SCs this
is not necessary and we could have assigned the entries se-
quentially in the free gaps of the table, but to achieve better
latency results for these SCs we have assigned their entries
minimizing the distance between entries.

6.4. Simulation results

The figures of this section show the average values and
the confidence intervals at 90% confidence level of ten dif-
ferent simulations performed at a given input load. For each
simulation we obtain the average throughput, the average
packet latency, and the maximum packet latency of each
flow. No statistics on packet loss are given because, as it
has been said, AS has a credit-based flow control mecha-
nism to avoid dropping packets. We obtain statistics per SC
aggregating the throughput of all the flows of the same SC,
obtaining the average value of the average latency, and the
maximum latency of all the flows. Note that the maximum
latency shows the behavior of the flow with the worst per-
formance. Note also that in the case of the VI SC this means
the worst latency performance of a video frame (packets
from the same frame have the same generation time).

Figure 2 gives a general overview of the performance
of both schedulers. Regarding the throughput performance,
the figure shows that the NC and the QoS SCs obtain all
the bandwidth that they inject. However, when the network
load is high (around 85%), the best-effort SCs do not yield a
corresponding result. From that input load, these SCs obtain
a bandwidth proportional to their priority.

Regarding the latency performance, Figure 2 shows that
the average and maximum latency of the control and QoS
SCs grow with the load until they reach a certain value.
Once this value is reached the latency remains more or less
constant. Note that the two schedulers fulfill the maximum
latency requirements [8], 10 ms for voice traffic and 100 ms
for video traffic. However, the average latency of best-effort
SCs continually grows with the load. Furthermore, it can be
seen that best-effort SCs obtain different average and max-

(a) MinBW (b) DTable

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

VO
VI
CL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

EE
BE
BK

Input LoadInput LoadInput Load

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

VO
VI
CL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

EE
BE
BK

Input LoadInput LoadInput Load

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

T
hr

ou
gh

pu
t

 0.01

 0.1

 1

 10

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NC
VO
VI
CL
EE
BE
BK

Input Load

A
ve

ra
ge

la
te

nc
y

(m
s)

 0.01

 0.1

 1

 10

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NC
VO
VI
CL
EE
BE
BK

Input Load

A
ve

ra
ge

la
te

nc
y

(m
s)

 0.1

 1

 10

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NC
VO
VI
CL
EE
BE
BK

Input Load
M

ax
im

um
la

te
nc

y
(m

s)
 0.1

 1

 10

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NC
VO
VI
CL
EE
BE
BK

Input Load

M
ax

im
um

la
te

nc
y

(m
s)

Figure 2. Throughput and latency results for
the MinBW and DTable schedulers.

imum latency according to their different priority. In that
sense, for example, the BK SC obtains a worse latency and
starts to increase its latency sooner than the BE and EE SCs.

Figure 2 also shows some interesting results about the ef-
fect of the scheduler configuration and the traffic pattern in
the latency performance of the NC and QoS SCs. If the
different SCs would have been emulated using the same
pattern traffic, attending to the configuration of both sched-
ulers, we could have expected to obtain a better latency for
the NC SC than the rest of SCs, or a similar latency for VI
and CL SCs. However, we have obtained a worse latency
for the NC SC than for the VO SC, and a worse latency
for the VI SC than for the CL SC. The reason of this is
that the pattern distributions that have been used to emu-
late the control and video traffic is bursty. The bursts make
that the average and maximum latency grow because all the
packets from the same burst are injected at the same time
in the network interface. Thus, each packet must wait the
previous packets before being injected in the egress link.
Note that in the case of the VO and CL SCs, which have the
same CBR distribution, the VO SC obtains a better latency
than the CL SC. The reason is that the VO SC has been
assigned more bandwidth than it theoretically requires (in
the MinBW scheduler case) or the table entries of the VO
SC have a smaller maximum distance between them (in the
table scheduler case).

Figures 3, 4, and 5 show a more detailed comparison be-
tween both schedulers. Regarding the control and QoS SCs,

 20

 40

 60

 80

 100

 120

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

N
C

A
ve

ra
ge

la
te

nc
y

(µ
s)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

N
C

M
ax

im
um

la
te

nc
y

(µ
s)

 20

 40

 60

 80

 100

 120

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

V
O

A
ve

ra
ge

la
te

nc
y

(µ
s)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

V
O

M
ax

im
um

la
te

nc
y

(µ
s)

 20

 40

 60

 80

 100

 120

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

V
I

A
ve

ra
ge

la
te

nc
y

(µ
s)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

V
I

M
ax

im
um

la
te

nc
y

(µ
s)

 20

 40

 60

 80

 100

 120

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

C
L

A
ve

ra
ge

la
te

nc
y

(µ
s)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

C
L

M
ax

im
um

la
te

nc
y

(µ
s)

Figure 3. Control and QoS SCs performance
comparison between the MinBW and the
DTable schedulers.

Figure 3 shows that the MinBW scheduler provides a bet-
ter average latency for the NC, VO, and VI SCs. The CL
SC obtains a slightly better average latency when using the
DTable scheduler. Regarding the maximum latency perfor-
mance, Figure 3 shows that the MinBW scheduler provides
a slightly better maximum latency for the NC and VO SCs
than the DTable scheduler. However, the maximum latency
for the VI and CL SCs are quite similar in both cases.

Regarding the best-effort SCs, Figure 4 shows that both
schedulers provide a quite similar latency performance for
the EE SC. However, the DTable scheduler provides a better
latency for the BE and BK SCs when the input load is high.

Figure 5 shows the percentage of improvement of the
MinBW scheduler over the DTable scheduler for three dif-
ferent input load levels. This improvement has been cal-
culated using the average values, and thus the confidence
intervals have not been taken into account. However, some
general conclusions can be extracted from this figure: The
MinBW scheduler provides a better latency performance for
the NC, VO, and VI SCs. This improvement is higher for
the average latency than for the maximum latency and it af-
fects specially the NC SC. This is due to the fact that this
SC has the maximum priority with the MinBW scheduler,
which is not the case when using the DTable scheduler. On

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

E
E

A
ve

ra
ge

la
te

nc
y

(m
s)

 2

 4

 6

 8

 10

 12

 14

 16

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

E
E

M
ax

im
um

la
te

nc
y

(m
s)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

B
E

A
ve

ra
ge

la
te

nc
y

(m
s)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

B
E

M
ax

im
um

la
te

nc
y

(m
s)

 0

 20

 40

 60

 80

 100

 120

 140

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

B
K

A
ve

ra
ge

la
te

nc
y

(m
s)

 0

 50

 100

 150

 200

 250

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

DTable
SCFQ−CA

Input Load

B
K

M
ax

im
um

la
te

nc
y

(m
s)

Figure 4. Best-effort SCs performance com-
parison between the MinBW and the DTable
schedulers.

the other hand, the DTable scheduler offers a better latency
performance for the CL and best-effort SCs when the load
is high, because this scheduler does not provide the NC SC
with absolute priority, and thus it treats better the other SCs.

Summing up, the simulation results show that with a cor-
rect configuration, both schedulers are able to provide the
SCs with their requirements: the network control SC ob-
tains a good latency; the SCs with bandwidth requirements
obtain the amount that they need; the SCs with latency re-
quirements do not exceed the maximum allowed; finally,
the best-effort SCs obtain a different bandwidth and latency
performance in accordance with their different priority. The
latency performance of the different SCs depends on the
scheduler configuration, but also on the pattern traffic. The
MinBW scheduler provides a better average latency and a
slightly better maximum latency than the DTable sched-
uler for those SCs with latency requirements. However, the
DTable scheduler also has a correct performance and it has
a lower implementation complexity (see Section 4).

−30

−20

−10

 0

 10

 20

 30

10.810.62

NC
VO
VI
CL

−30

−20

−10

 0

 10

 20

 30

10.810.62

EE
BE
BK

Input LoadInput Load

A
ve

ra
ge

L
at

en
cy

Im
pr

ov
.(

%
)

A
ve

ra
ge

L
at

en
cy

Im
pr

ov
.(

%
)

−30

−20

−10

 0

 10

10.810.62

NC
VO
VI
CL−30

−20

−10

 0

 10

10.810.62

EE
BE
BK

Input LoadInput Load

M
ax

im
um

L
at

en
cy

Im
pr

ov
.(

%
)

M
ax

im
um

L
at

en
cy

Im
pr

ov
.(

%
)

Figure 5. Latency improvement of the MinBW
scheduler over the DTable scheduler.

7. Conclusions

In this paper, we have proposed several methods of us-
ing the AS mechanisms to provide applications with QoS.
Specifically, we have shown how to provide QoS based on
bandwidth and latency requirements. For that purpose, we
have proposed a traffic classification to segregate the traf-
fic into different SCs based on these requirements. These
SCs must be processed appropriately by the egress link
scheduler to obtain their QoS requirements. AS defines two
egress link schedulers: The table scheduler and the MinBW
scheduler. This paper shows how to configure each of them.

We have proposed the SCFQ-CA algorithm as a specific
implementation of the MinBW scheduler adapting the origi-
nal SCFQ algorithm taking into account the AS credit-based
flow control. We have proposed to use the DTable sched-
uler with the same weight for all the table entries as an im-
plementation of the table scheduler. This modified version
of the table scheduler works properly with variable packet
sizes and fits the AS specification.

The simulation results show that both schedulers, the
MinBW (implemented with the SCFQ-CA) and the DTable
scheduler, are able to provide the SCs with their require-
ments. The simulation results also show a better latency
performance when using the MinBW, but the advantage
of the DTable scheduler over the SCFQ-CA algorithm and
other WFQ variant is its simpler implementation.

Acknowledgments

The authors would like to thank Tor Skeie and Sven-
Arne Reinemo from the Simula Resarch Laboratory of Nor-
way, their useful comments which have helped to improve
the quality of this paper.

References

[1] Advanced Switching Interconnect Special Interest Group.
Advanced Switching core architecture specification. Revi-
sion 1.0, Dec. 2003.

[2] F. J. Alfaro, J. L. Sánchez, and J. Duato. A new proposal to
fill in the InfiniBand arbitration tables. In IEEE Int. Confer-
ence on Parallel Processing (ICPP), pages 133 – 140, Oct.
2003.

[3] F. J. Alfaro, J. L. Sánchez, and J. Duato. QoS in Infini-
Band subnetworks. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(9):810–823, Sept. 2004.

[4] H. M. Chaskar and U. Madhow. Fair scheduling with tunable
latency: A round-robin approach. IEEE/ACM Transactions
on Networking, 11(4):592–601, 2003.

[5] A. Demers, S. Keshav, and S. Shenker. Analysis and simu-
lations of a fair queuing algorithm. In SIGCOMM, 1989.

[6] S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In INFOCOM, 1994.

[7] G. Horn and T. Sødring. SH: A simple distributed bandwidth
broker for source-routed loss-less networks. In Computer,
Networks and Information Security. IASTED, 2005.

[8] IEEE. 802.1D-2004: Standard for local and metropoli-
tan area networks. http://grouper.ieee.org/
groups/802/1/, 2004.

[9] R. Jain. The art of computer system performance analysis:
Techniques for experimental design, measurement, simula-
tion and modeling. John Wiley and Sons, Inc., 1991.

[10] M. Katevenis, S. Sidiropoulos, and C. Corcoubetis.
Weighted round-robin cell multiplexing in a general-
purpose ATM switch chip. IEEE Journal on Selected Areas
in Communications, Oct. 1991.

[11] R. Martı́nez, F. Alfaro, and J. Sánchez. Decoupling the
bandwidth and latency bounding for table-based schedulers.
International Conference on Parallel Procesing (ICPP),
Aug. 2006.

[12] R. Martı́nez, F. Alfaro, J. Sánchez, and T. Skeie. A first
approach to provide QoS in Advanced Switching. Interna-
tional Conference on High Performance Computing (HiPC).
Goa, India, 2005.

[13] M. K. N. Chrysos. Multiple priorities in a two-lane buffered
crossbar. In Proceedings of the IEEE Globecom 2004 Con-
ference, Nov. 2004.

[14] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differen-
tiated services architecture for the internet. Internet Request
for Comment RFC 2638, Internet Engineering Task Force,
July 1999.

[15] A. K. Parekh and R. G. Gallagher. A generalized processor
sharing approach to flow control in integrated services net-
works: The multiple node case. IEEE/ACM Transactions on
Networking, 1994.

[16] PCI SIG. PCI Express base architecture specification. Revi-
sion 1.0a, Apr. 2003.

[17] J. Pelissier. Providing quality of service over Infiniband ar-
chitecture fabrics. In Proceedings of the 8th Symposium on
Hot Interconnects, Aug. 2000.

[18] S. Reinemo, F. Sem-Jacobsen, T. Skeie, and O. Lysne. Ad-
mission control for diffserv based quality of service in cut-
through networks. In Proceedings of the 10th Int. Confer-
ence on High Performance Computing, Dec. 2003.

[19] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. In SIGCOMM, pages 231–242, 1995.

[20] StarGen. StarGen’s Merlin switch, 2004. http:
//www.stargen.com/products/merlin_
switch.shtml.

[21] D. Stiliadis and A. Varma. Latency-rate servers: a gen-
eral model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking, 6(5):611–624,
1998.

