The PDG-mixture model for clustering

M. Julia Flores, José A. Gamez, and Jens D. Nielsen

Computing Systems Dept. & SIMD Lab in I*A
University of Castilla-La Mancha, Albacete, Spain.
{julia,jgamez,dalgaard } @dsi.uclm.es

Abstract. Within data mining, clustering can be considered the most
important unsupervised learning problem which deals with finding a
structure in a collection of unlabeled data. Generally, clustering refers to
the process of organizing objects into groups whose members are simi-
lar. Among clustering approaches, those methods based on probabilistic
models have been extensively developed, such as Naive Bayes (NB) with
a latent class (cluster identifier) found via an EM algorithm.
Probabilistic Decision Graphs (PDGs) are a class of graphical models
that can naturally encode some context specific independencies that can-
not always be efficiently captured by other commonly used models. In
this paper we propose to use a mixture of PDG models in cluster dis-
covery, and an algorithm for automatic induction of the mixture and the
models is introduced.

The proposed approach was experimentally evaluated on both synthetic
and real-world databases, and the presentation of the results includes a
comparison with related techniques. The comparison demonstrates com-
petitive performance of the mixture of PDG models with respect to like-
lihood. Also, the mixture of PDG models have a tendency to use fewer
models (clusters) to represent domains where other models use large
amounts of clusters.

Key words: Probabilistic graphical models, clustering, data mining

1 Introduction

The increasing availability of data in our information society has led to the need
for valid tools for its modeling and analysis. One core task in data mining is
classification. Classification is the process of assigning labels to data instances
using a function that takes a unlabeled data-instance as input and outputs a
label. Unlike classification (aka supervised classification), which analyzes class-
labeled data objects, clustering (aka unsupervised classification) analyzes data
objects without consulting a known class label. In general, the class labels are not
present in the training data simply because they are not known to begin with.
Clustering can be used to generate such labels. The data instances are clustered
or grouped based on the principle of maximizing the intraclass similarity and
minimizing the interclass similarity. Each formed cluster can be viewed as a
class of objects. Clustering can also facilitate taxonomy formation, that is, the

2 M.J. Flores, J.A. Gdmez and J.D. Nielsen

organisation of observations into a hierarchy of classes that group similar events
together. Clustering also facilitates knowledge discovery through learning of new
concepts that characterize common features or patterns, being used in many
fields such as pattern recognition, image analysis and bioinformatics.

Among the different existing approaches, we will focus on the so called model-
based methods [1]. Model-based clustering assumes that the data were generated
by a specific model and tries to recover the original (generative) model from the
data. The model that we recover from the data then defines clusters and can
be used to assigns a label (or a set of possible labels) to new unlabeled data
instances. EM and COBWEB belongs to this family [1].

Another possible classification on clustering methods uses as parameter the
nature of the produced clusters and distinguishes Hard, Soft, Hierarchical and
Probabilistic. These do not necessarily have to be disjoint sets, for example the
Independency Tree [2] clustering is both hierarchical and probabilistic. The Prob-
abilistic Decision Graph (PDG) [3] was originally proposed as an efficient repre-
sentation of probabilistic transition systems. In this study, we consider the more
generalized version of PDGs proposed by [4]. PDGs constitute a class of proba-
bilistic graphical models that can represent some context specific independencies
that can not efficiently be captured by other commonly used models.

The performance of the PDG model w.r.t. general probability estimation has
previously been studied and results suggest that the model performs competi-
tively when compared to state of the art models[5]. The PDG model has also
been successfully applied to supervised classification problems [6] and to the
problem of learning from incomplete data[7]. In this paper we extend the appli-
cation area of PDGs to include also the clustering problem. The motivation for
initiating this study was not only the previous successes of the PDG model to
related problems such as classification and learning from incomplete data. But
also the natural way in which a mixture of PDG models can take advantage of
common sub-patterns in different clusters by reusing of parameters. As a result,
a mixture of PDG models may provide a more compact model than conventional
probabilistic clustering models. Furthermore, if context specific independencies
exists within the same cluster, a PDG model may be able to capture this in a sin-
gle model of this cluster, while other model that does not have this flexibility in
representation may need to break the cluster into different clusters conditioning
on the context.

2 Notation

We will denote random variables by uppercase letters, e.g. X, and sets with
boldface uppercase letters, e.g. X. When X, is a discrete categorical random
variable, we will by lowercase letter z;; refer to the j'th state of X; under
some ordering. We will by R(X;) refer to the set of possible states of X;, and by
R(X) = x x,exR(X;) when X is a set of variables. We will use r; as a shorthand
for |R(X;)|. By lowercase bold letters we refer to joint states of sets of variables,

Mixtures of PDG models for clustering 3

e.g. x € R(X). When X; € X and x € R(X) we denote x[X;] the projection of
x onto coordinate X;.

By P(X) we will denote a joint probability distribution over X, and by
P(Y|Z) for disjoint Y and Z the conditional distribution of Y given Z. To refer
the probability of X = x we use P(X = x) or simply P(x). When computing a
probability using a model M, we may indicate this by conditioning on the model
P(x|M), however, we will use only P(x) when M is clear from context.

Let G = (V,E) be a directed graph structure with set of nodes V =
{V1,...,V,} and set of directed edges E C V x V. We will then by chg(V;)
and pag (Vi) refer the set of children of V; and parents of V; respectively in
structure G, hence chg(V;) ={V; € V: (V;,V;) € E} and pag(V;) ={V; € V:
(V;,V;) € E}. When G is clear from context we drop the subscript. A tree is a
directed acyclic graph where one unique node V,. € V is designated root and has
no parents pag(V;) = 0 while all other nodes have exactly one parent. A forest
structure is a set of such trees.

3 Techniques that perform probabilistic clustering

Expectation-Maximisation and Naive Bayes. In statistical computing, an
expectation-maximisation (EM) algorithm [8] is an algorithm for finding maxi-
mum likelihood estimates of parameters in probabilistic models, where the model
depends on unobserved latent variables. EM is frequently used for data cluster-
ing in machine learning and computer vision. EM alternates between performing
an expectation (E) step, which computes the expected sufficient statistics by in-
cluding the latent variables as if they were observed, and a maximization (M)
step, which computes the maximum using expected sufficient statistics of the pa-
rameters by maximizing the expected likelihood on the observed cases found in
the E step. The parameters found on the M step are then used to begin another
E step, and the process is repeated.

In a probabilistic clustering task, one often includes in the model a special
latent variable C' that is never observed. Each states of this C' then corresponds
to a cluster, and inferring cluster membership is then done by answering queries
like P(C = ¢;|X = x). The Naive Bayes (NB) model for clustering takes this
approach, and represents a joint probability distribution that incorporate one
strong independence assumptions which often have no bearing in reality, hence
are (deliberately) naive: all the variables are independent given cluster member-
ship. The NB model is a special instance of a Bayesian Network model [9]with
the structure shown in Fig. 1.(a).

The independencies that are assumed by the NB model yields the factorisa-
tion of the joint probability distribution P(X, C) over the domain X of observed
variables and cluster variable C: P(X,C) = P(C)[[y_x P(X|C). For a given
observation y of variables Y C X the probability of y being a member of cluster
¢ is PC=qglY =y) = ﬁP(C = ¢i) [Iyey PY = y[Y]|C = ¢;) where

P(Y =y)= ZCER(C) P(C =c) HYeY P(Y =y[Y]|C =¢).

4 M.J. Flores, J.A. Gdmez and J.D. Nielsen

o joer i o3
FB X4:"0"[0.5] "1 [05]

X, L X5:"0"[05] "1 [05] |
IX2:"0" [0.5] "1" [0.5/

Y TX207 [1] T 0] |
Lo 130" [1] "1 0] |
y N ‘
Q) G CO O it s
(a)NB structure (b) A simple Independency Tree

Fig. 1. Two examples of probabilistic structures for clustering.

For learning the parameters in the NB model one needs to reason from incom-
plete data as no data contains observations for C', and the standard approach
is to use EM. For estimating the optimal number of clusters (states of C) a
common approach is to use cross-validation.

Independency Trees. In [2] the Independency Tree (IT) was presented as a
model able to perform clustering and also as an approximate way for factorisa-
tion. In Fig. 1(b) we show an example of an IT model. In general, the IT model
can be interpreted as an extended probability tree [10] which introduces a new
and very important element: a list of probabilistic marginal potentials associated
to every node.

Given a leaf-node n in an IT structure, let X,, be the variables for which
a marginal potential is associated with n, then all X,, are pair-wise marginally
independent given the path to n. So, if the distribution for a given variable is
shared by all leaves in a sub-tree, it can be stored in the root of that sub-tree
for simplicity. For example, in Fig. 1(b) variables X4 and X5 are independent
w.r.t. all the rest, and that is why their distributions appear in the root node.

Then, when one variable appears in a list for a node n it means that this
distribution is common for all levels from here to a leaf, including intermediate
nodes. On the other hand, there might be distributions that vary depending on
the branch. For instance, in Fig. 1.(b) X2 distribution is different depending on
the path (left or right) taken from the root, that is if X1 =0or X1 =1.

The intuition underlying this model is based on the idea that inside each clus-
ter the variables are independent. When we have a set of data, groups are defined
by common values in certain variables, while the rest of the variables may vary
independently. In an IT every cluster will be represented by a complete branch,
with an associated factorisation. For the example, three clusters have been found,
each one with a probability of % If we look at the second branch/cluster it is
characterised by {X1=0,X2=1}+ [X3:1.0/0.0, X4:0.5/0.5, X5:0.5/0.5]*.

! X1 to X5 are binary, Xi:p1/p2 indicates that P(Xi = 0) = pl and P(Xi=1) = p2.

Mixtures of PDG models for clustering 5

Rq o
OO0 © o
(a)

~

(b)
p"90 = P(Xy) p”30 = P(X3|Xo=0,X; =1) p’5:1 = P(X5|X4 =0)
P10 = P(X;]|Xo =0) p"®! = P(X3]|X; =0) P00 = P(Xg|Xy =1,X5 =1)
pulvl = P(X1|XU = 1) pu*‘}72 = P(XS‘XO =1,X; = 1) pu(’71 = P(Xg‘X4 =0V {X4 =1,X5 = 0})
pY2:0 = P(X3|Xo = 0) p¥40 = P(X,) p'70 = P(X7| X4 = X5)
p"21 = P(Xs|Xo = 1) p"5:0 = P(X;|Xs = 1) p"7:0 = P(Xr|Xs # Xs)

(c)

Fig. 2. A forest F over binary variables X = {Xo,..., X7} is shown in (a), and a
PDG-structure over X w.r.t. variable forest F' is shown in (b). In the PDG-structure
in (b), solid edges are labelled with value 1 and dashed edges are labelled with value
0. In (c), we have indicated the probabilistic interpretation of the parameters for each
node in the PDG structure of (b).

3.1 The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution over a set of categorical random
variables X = {X1,..., X,,} by a factorisation defined by a structure over a set
of local distributions.

Definition 1 (The PDG Structure). Let F' be a forest structure over X =
{X1,...,Xn}. A PDG-structure G = (V,E) for X w.r.t. F is a set of rooted
acyclic directed graphs over nodes V, such that:

1. Fach node v € V represents a unique X; € X and all X; € X are represented
by at least one node v € V.. We will by v; ; refer to the j 'th node representing
X; under some ordering of the set of nodes representing X;.

2. For each node v; j, each possible state z;p of X; and each successor X}, €
chr(X;) there exists exactly one edge (v; j,vi,1) € E with label z; 1, where
vk, 18 some node representing Xj.

Let Xy € chp(X;). By suce(vij, Xk, x;) we refer to the unique node vy
representing X, that is reached from v; ; by following the edge with label x; ;.

Ezample 1. A forest F over binary variables X = {Xj,..., X7} can be seen in
Figure 2(a), and a PDG structure over X w.r.t. F' in Figure 2(b). The labelling
of nodes in the PDG-structure is indicated in subscripts and (redundant) by
the dashed boxes, e.g., the nodes representing X, are {v2,0,21}. Dashed edges
correspond to edges labelled 0 and solid edges correspond to edges labelled 1,
for instance suce(vs o, X6,0) = v6 1.

A PDG structure is instantiated by assigning to every node a local probability
distribution over the variable that it represents. By a PDG model over discrete

6 M.J. Flores, J.A. Gdmez and J.D. Nielsen

random variables X = {X7,..., X,,} we refer to a pair G = (G, @) where G is a
PDG structure over X and @ is an instantiation of G. We denote by p”#7 the
local distribution assigned to node v; j, and by p;]h the probability for state z; p,
in local distribution p”#7. The semantics of the local distribution p”*7 is defined
by the path(s) leading to the node v; ; from the root, that is, how v; ; can be
reached. Let G be a PDG structure over variables X w.r.t. forest . A node v; ;
in G is reached by x € R(X) if

— 14,5 is a root in G, or
— X, € chp(Xy), vg, is reached by x and v; ; = suce(vg,i, Xi, X[Xk])-

By reachg(X;,x) we denote the unique node representing X; reached by x in
PDG-structure G.

A PDG model G = (G, @) over variables X represents a joint distribution
P(X) by the following factorisation:

reachg (X;,x
PX=x= [] px[xi]@‘(), (1)
X, eX

Ezample 2. To instantiate the PDG structure in Fig. 2(b), we assign a local
distribution to each node in the structure with the probabilistic interpretation
given in Fig. 2(c). We can read some context specific independencies of this table,
e.g. Xg is independent of X5 only in the context X, = 0.

4 Mixtures of PDG models

In this section, we will describe our approach to probabilistic clustering using
mixtures of PDG models.

In the previous Section 3.1 we introduced the PDG model for representing
joint probability distribution over a finite set of discrete random variables. A
typical approach to probabilistic clustering is to use a mixture of models. We
propose a model that is a mixture of & PDG models by introducing a latent
variable with one categorical state for each of the ¥ PDGs. The marginal distri-
bution of the latent variable defines the mixture of the & models. In Example 3
a specific mixture of 2 PDG models is presented.

Ezxample 3. Consider 3 binary random variables Xy, X7 and Xs. Let the dis-
tribution of X5 be depending on Xy and X;, and furthermore, let the specific
dependence be governed by an unobserved random variable C' such that:

Pi(Xs) if Xpand X; h it
P(X,3|C=0) = 1(X2) if Xo a'n 1 have even parity, @
Py(X3) otherwise.
Py(Xs) if XoAXyist
P(X,3lC=1)= 3(Xa) if Xo A1 is true 5
Py(X3) otherwise.

The PDGs in Fig. 3(a) and (b) encodes the relations of Eq. (2) and (3)
respectively when solid edges ecode value 0 and dashed encode value 1. For the

Mixtures of PDG models for clustering 7

Fig. 3. In all structures, solid edges represent value 0 while dashed edges represent
value 1. (a) A PDG encoding the relation in Eq. (2). (b) A PDG encoding the relation
in Eq. (3). (¢) A PDG that represents a mixture of the two PDG models of (a) and
(b) through the latent variable C.

numerical part of the models we have in Fig. 3(a): p*3 = P;(X3) and p** =
P5(X3), while in (b): p¥* = P3(X2) and p** = P4(X3). Finally, by introducing
the latent variable C' in Fig. 3(c) we mix the two models to obtain a PDG model
representing the full domain, and prior distribution of C' is specified in p*°.

In Ex. 3 we introduced an example of a mixture over two specific PDG
models. Please note that the logical expressions as those used here (Eq. (2) and
Eq. (3)) demonstrates some of the representation power of PDG models. While
most other models has structures that grow exponentially by the number of
variables included in such logical expressions, PDGs usually grow only linearly.
For the toy-example presented here the difference obviously diminishes.

4.1 Learning mixtures of PDG models

In order to induce a PDG mixture model from data, we will have to establish a
strategy for learning both k, a strategy for learning the variable structure to be
shared between all component models, and both parameters and local structure
of each of the k models. Lastly, the marginal distribution P(C') also needs to be
estimated.

Learning PDG models from complete data was addressed in [11], and for the
case of incomplete data in [7]. We will combine these two approaches in a new
algorithm that learns PDG mixture models.

Learning a common variable structure. The first step of our approach will in-
duce a good structure over the variables to be shared between all £ mixture
component models. Here we use the approach presented in [11]. A statistical
test of independence is used to decide the best organisation of variables. Ini-
tially, marginally dependent variables are grouped together. Then, incrementally
the a tree is build for each group by inducing PDG models including more and
more variables, placing variables that are conditionally independent in different
subtrees, where the condition used in the test of independence is defined by a

8 M.J. Flores, J.A. Gdmez and J.D. Nielsen

Fig.4. (a) An inital model learned without latent variable. (b) The initialisation of
the mixture by adding latent variable C' to the model and extending the model with a
new component by method 1. (¢) Equivalent to (b) but method 2 is used for extending
with a new component.

partition of the state space induced by the current PDG structure. The reader
is referred to [11] for details.

Introducing the mizture. Once having learned an initial structure over the vari-
ables (as described above), we continue by adding a latent variable C' to the
model with k& = 1 states, R(C') = {cp}. One outgoing edge with label ¢q is con-
nected to each of the roots of the PDG structure induced in the first step. We
then extend C by adding one new state (incrementing k by one) and optimise
structure and parameters by the structural-EM. If the likelihood of a separate
hold-out dataset was increased by incrementing k, we loop and increment k once
more.

Incrementing k. We consider two different strategies for introducing a new latent
state.

1. We can extend the model with a new parameter node for each non-latent
variable in the model. These new nodes are connected linearly without fur-
ther bifurcations, and the edge labelled ¢y is connected to the new root.

2. We can extend the model with a copy of the subtree(s) corresponding to an
existing latent state ¢;, 1 < ¢ < k. We choose the latent state with highest
prior probability.

After extending the latent variable with a new variable state, splitting and
merging is performed to refine the model. In Ex. 4 we give examples of the two
methods listed above.

Ezample 4. Fig. 4(a) shows an initial PDG structure over two random variables
X and Y. In Fig. 4(b) the latent variable C' is added and a new latent state
is initialise by method 1, that is, using a single new node for each variable. In
Fig. 4(c) we show the structure resulting from initialising the new latent state
by method 2, that is, using a copy of one of the existing subtrees.

When incrementing k, the new marginal probability pt? == P(C = cg41) is

initialised to %H, and the existing probabilities of the old k states pf : 1 <7 <

Mixtures of PDG models for clustering 9

kare scaled accordingly by a factor kLH For the new parameter nodes created
for each of the variables in the domain, the initialisation depends on the method
we used for creating them (the two described above). When using method 1,
the new parameter node for variable X is initialised by either using the relative
frequency (empirical marginal distribution) P(X). When using method 2, the
parameters are copied from the relevant sub-tree. We then draw a data instance
d at random from the data set used for training, and use this as the “centre” of
the new cluster, hence, we want to increase the probability assigned to d given
the new cluster, P(X = d|C' = cg+1). This achieved by tuning parameter p”
where v represents X and reach(X, {d, cx+1}) = v as follows:

(4)

0.1p7,

1.140.1pY
o e { % if d[X] = z;, and
z;

I1

otherwise.

We finally arrive at framework presented as Algorithm 1. Please note that in
line 3 we optimise the BIC score of the model using the score+search method
presented in [11]. In this method the score of a model is optimised by iteratively
splitting and merging parameternodes in a given structure. In lines 4 and 8 we use
the structural-EM approach of [7] optimising the expected BIC score. Basically,
this approach uses the same operators (split and merge of parameternodes) but
uses expected score instead of actual score as the actual score is not tractable
to compute in the precense of missing values. Finally, in lines 4 and 7 we need
to choose either method 1 or 2 for extending the latent variable, yielding two
different versions of the algorithm.

Algorithm 1

1: procedure LearnMixtureOfPDGs(D)
: Divide D into D, being random sample of 10% of D and D, = D \ D,,.
Learn PDG G from Dy .
Initialise mixture G° from G, and optimise G° by structural-EM and D; .
k «— 0.
repeat
gktl {Qk extended with 1 latent state}.
Optimise gktt by structural-EM and Dy.
k—k+1.
until P(D,|G*) < P(D,|G" 1)
return g’“*l.

OO0 NOUR W

5 Empirical evaluation

In this section we perform a comparative analysis based on experimentation
on 10 datasets. The Ezclusive dataset is a dataset that is artificially generated
from a boolean formula containing 5 boolean variables. Three of the variables
are dependent such that one of them always assumes the value true while the
other two assumes false. The last two variables are independent. The TicTacToe
dataset is taken from the USI repository[12], and encodes the complete set of
possible board configurations at the end of tic-tac-toe games. The Greenhouse

10 M.J. Flores, J.A. Gdmez and J.D. Nielsen

Table 1. Datasets used in the empirical evaluation.

Id Name 7# Vars size train size test
1 Exclusive 5 48 24
2 TicTacToe 9 641 317
3A Greenhouse-A 8 830 410
3B Greenhouse-B 17 981 484
3C Greenhouse-C 33 883 435
3D Greenhouse-D 6 1026 506
3E Greenhouse-E 6 981 484
4A Sheep-A 24 2068 1019
4B Sheep-B 23 2068 1019
5 PDG-mixture 3 1000 500
6 NB 5 1000 500
7 IT 6 1000 500

datasets belong to data obtained when analysing an important economical factor
in the south-east of Spain, greenhousing production at Almerfa. Some of these
datasets were studied in [13] by using Bayesian networks. The Sheep datasets are
historical data of sheep and has previously been used to analyse genetic merit for
milk production[14]. The PDG-mizture data is a dataset artificially generated
from a mixture of 3 PDG models. The NB dataset has been sampled from a NB
model with 3 latent states and 5 observable variables. Finally, the IT dataset
was sampled from a IT model defining 3 clusters over 6 random variables. A
brief description of the datasets can be found in table 1.

For learning IT models from the databases in Tab. 1, we have used the
method presented in [2]. NB models was learnt using the Weka[15] system, using
default settings of EM. When establishing the number of clusters, Weka uses
cross-validation. The mixture of PDG models was learned using the algorithm
discussed in Section 4.1.

In Tab. 2 we have listed log-likelihood (LL) for the learnt models measured
over the test data which is a special separate dataset only brought in after the
learning process to assess the quality of the learnt model. In Tab. 2 we also list the
number of clusters (C) identified by the models and the size (S) of the models
measured in the number of independent parameters defined by the respective
models.

6 Discussion

We have compared the four algorithms over the ten datasets by using non-
parametric Wilcoxon paired Signed-Ranks Test (a=0.05). From this statistical
study we are in a position to say that the four models perform equally well
in terms of log-likelihood but that some significant differences appear in the
other two studied parameters (size and clusters). Clearly, IT produces a greater
number of clusters than NB and both PDGs, but no significant difference is
obtained when comparing pairwise NB, mixt-PDG-1 and mixt-PDG-2. However,
the average number of clusters identified are 6.92 for NB, 5.33 for mixt-PDG-1
and 4.67 for mixt-PDG-2, which we find quite remarkable. With respect to size,
there is no surprise, and the simplicity of NB makes it statistically superior in

Mixtures of PDG models for clustering 11

Table 2. Results of Independency Tree (IT) learning, Naive Bayes (NB) learning
and the mixture of PDG models, the mixt-PDG-1 and mixt-PDG-2 columns refers to
variation 1 and 2 of Alg. 1, respectively. The table contain log-likelihood (LL) of the
learnt model measured over a separate test dataset, the number of clusters identified by
the model (C), and the size of the model (S) measured in the number of independent
parameters the model contains.

IT NB mixt-PDG-1 mixt-PDG-2
1d LL C S LL C S LL C S LL C S
1 -2.5481 3 8 -2.7920 3 17 -2.6942 4 16 -2.6383 4 17
2 -9.3111 5 78 -9.4090 2 37 -9.2862 7 308 -9.4228 3 396
3A -6.3433 18 392 -6.3760 6 221 -6.3487 4 326 -6.2743 3 501
3B -7.5005 7 214 -7.3797 4 151 -7.4285 5 332 -7.4957 3 604
3C -17.0196 16 1270 -16.7899 10 1059 -16.8512 10 1345 -16.8505 11 6905
3D -5.0027 6 96 -5.0174 5 124 -5.0191 3 166 -5.0609 3 262
3E -5.6823 8 152 -5.6948 5 134 -5.7372 4 224 -5.7250 4 378
4A -19.7172 63 3526 -19.7393 13 948 -19.3950 10 2163 -18.8837 6 7367
4B -18.8637 53 2835 -18.4460 24 1679 -19.1973 6 1736 -18.8946 8 7852
5 -2.7918 7 22 -2.8033 7 48 -2.7976 3 32 -2.7943 3 40
6 -2.3400 4 14 -2.3440 2 11 -2.7526 4 31 -2.7528 5 46
7 -3.2364 3 12 -3.2768 2 13 -3.2541 4 32 -3.2592 3 29

this parameter with respect to PDG models, and almost statistically superior (p-
value = 0.0639) with respect to IT (average number of parameters is 370 (NB) vs
718 (IT)). There exist also statistically difference between PDG-2 and the other
three models, indicating that PDG-2 is the model needing more parameters.
Finally, no statistical difference appear between PDG-1 and IT, although PDG-
1 needs 23% fewer parameters than IT.

Having done this general comparison, we continue with the analysis of the
behaviour of the algorithms in some particularly interesting cases. Thus, when
investigating the number of clusters identified by the different models, one inter-
esting behaviour is evident. Both the IT and NB models uses many more clusters
to model the Sheep domains than does the mixture of PDG models. This is inter-
esting with respect to the practical use of the model for clustering, where usually
a smaller number of clusters is preferable as it may be easier to assign meaning-
ful semantics to each cluster. The two databases Sheep-A and Sheep-B differs
only in that Sheep-A includes a variable that represents the breeding value of
the sheep, while Sheep-B excludes this variable. Following domain experts (the
shepherds), this variable can naturally be used as a classification of the given
sheep into 4 different classes (the 4 possible values of this variable). For Sheep-B
we see that the IT model identifies 53 clusters, NB identifies 24 while our mixt-
PDG-1 and mixt-PDG-2 approaches identify only 6 and 8 clusters respectively,
though with a somewhat lower score in likelihood.

Finally, investigating the datasets 5, 6 and 7, sampled from a mixture of
PDGs, a NB and an IT respectively, we find one surprise: IT scores higher
likelihood than both PDGs and NBs on all three datasets. We expected each
model to provide the closest representation of data sampled from that exact
model type. However, when investigating the number of clusters identified we see
that for dataset 5 only PDG approaches identifies the correct number of clusters.
For dataset 6 non of the methods identifies the correct number of clusters, and
finally for dataset 7 both IT and mixt-PDG-2.

12

7

M.J. Flores, J.A. Gdmez and J.D. Nielsen

Conclusion

In this paper we have shown how the PDG model can be used in data clustering
by extending the model with a latent variable, yielding a mixture of PDG models.
We have shown how to induce such models from data using EM and score based
model-selection. Using two variations over the framework for induction of PDG
mixtures, we have shown our proposal to be competitive with IT and NB model
approaches, the latter being a standard technique in probabilistic clustering. On
average, the PDG based approach identifies fewer numbers of clusters than both
IT and NB, though non of the differences are statistically significant.

References

1.

11.

12.

13.

14.

15.

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. 2nd ed. Morgan
Kaufmann (2006)

. Flores, M.J., Gamez, J.A., Moral, S.: The independency tree model: A new ap-

proach for clustering and factorisation. In: Proc. of the 3rd PGM workshop. (2006)
83-90

Bozga, M., Maler, O.: On the representation of probabilities over structured do-
mains. In: Proc. of the 11th Int. Conf. on Computer Aided Verification, Springer
(1999) 261273

Jaeger, M.: Probabilistic decision graphs - combining verification and Al techniques
for probabilistic inference. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 12 (2004) 19-42

Nielsen, J.D., Jaeger, M.: An empirical study of efficiency and accuracy of proba-
bilistic graphical models. In: Proc. of the 3rd PGM workshop. (2006) 215-222
Nielsen, J.D., Rumi, R., Salmerén, A.: Supervised classification using probabilistic
decision graphs. Computational Statistics & Data Analysis 53(4) (2009) 1299 —
1311

Nielsen, J.D., Rumi, R., Salmerén, A.: Structural-EM for learning PDG models
from incomplete data. In: Proc. of the 4th PGM workshop. (2008) 217-224
Dempster, A.P., Laird, N.M., Rubin, D.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B
39(1) (1977) 1-38

Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer (2001)

. Salmerén, A., Cano, A., Moral, S.: Importance sampling in bayesian networks using

probability trees. Computational Statistics & Data Analysis 34 (2000) 387-413
Jaeger, M., Nielsen, J.D., Silander, T.: Learning probabilistic decision graphs.
International Journal of Approximate Reasoning 42(1-2) (2006) 84-100

Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases: http://www.ics.uci.edu/~mlearn/MLRepository.html (1998)
Céspedes, A., Rumi, R., Salmerén, A., Soler, F.: Analysis of the agricultural sector
in the west-area of Almeria by using bayesian networks (in spanish). In: Proc. of
the 27th Spanish Conf. on Statistics & Operations Research. (2003) 3438-3455
Flores, M.J., Gamez, J.A., Mateo, J.L.: Mining the ESROM: A study of breed-
ing value classification in manchego sheep by means of attribute selection and
construction. Computers and Electronics in Agriculture 60(2) (2008) 167-177
Witten, I.LH., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edn. Morgan Kaufmann, San Francisco (2005)

