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Abstract

Probabilistic Decision Graphs (PDGSs) are a class of graphiodels that can natu-
rally encode some context specific independencies thabtaiways be efficiently
captured by other popular models, such as Bayesian Netwéikghermore, in-
ference can be carried out efficiently over a PDG, in timediria the size of the
model. The problem of learning PDGs from data has been stiwligne literature,
but only for the case of complete data. We propose an algofith learning PDGs
in the presence of missing data. The proposed method is basbé Expectation-
Maximisation principle for estimating the structure of thmdel as well as the
parameters. We test our proposal on both artificially gaadrdata with different
rates of missing cells and real incomplete data. We also acenfne PDG mod-
els learnt by our approach to the commonly used Bayesian dtkt{BN) model.
The results indicate that the PDG model is less sensitiiectodte of missing data
than BN model. Also, though the BN models usually attain &igtkelihood, the
PDGs are close to them also in size, which makes the learntsRid&erable for
probabilistic inference purposes.

Key words: Machine Learning, Graphical Models, Learning from Incoetel
Data

1. Introduction

The Probabilistic Decision Graph (PDG) model was first idtreed by Bozga
and Maler [1], and was originally proposed as an efficientesgntation of prob-
abilistic transition systems. In this study, we consider titore general version of
PDGs proposed by Jaeger [8].
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PDGs constitute a class of probabilistic graphical modadd tan represent
some context specific independencies that can not effigibaticaptured by con-
ventional directed or undirected graphical models, ugwallled Markov Network
and Bayesian Network (BN) models respectively. Furtheanprobabilistic infer-
ence can be carried out directly in the PDG structure and haseacomplexity
linear in the size of the PDG model. This makes learning of BB&pecially in-
teresting, as we are learning directly the inference strectwhich is in contrast to
the usual scenario when learning general graphical models.

The performance of the PDG model w.r.t. general probabdgiimation has
previously been studied and results suggest that the modgtneral performs
competitively when compared to BN or Naive BN models [14heTPDG model
has also been successfully applied to supervised clasifiqgaroblems [15, 16].

In this paper we are concerned with learning PDG models frata.d This
problem has been addressed by Jaeger et al. [9], where aittalybased on the
optimisation of a score is proposed for learning from coneptiata. However, the
task of learning PDG models in the presence of incomplete kas not yet been
explored in the literature. The difficulty arises in the cartgtion of the score for
a model given the database with missing values. A similabplpro is found in the
case of learning BN models from incomplete databases. Rraed6] addressed
this problem by proposing an algorithm for estimating tlmactire of a BN model
based on the Expectation-Maximisation (EM) principle [6].1

We propose an algorithm for learning PDG models that buitdthe algorithm
of Friedman [6] based on the EM principle. Both the structumd the parameters
are re-adjusted in each iteration of the algorithm. Thaths,adjustments made
to the structure are guided by the expected increase in soane metric, while
the adjustments made to the parameters are guided by thetedpi&elihood of a
completed version of the incomplete data.

2. Background and Notation

We will denote random variables by uppercase letters, &gand sets with
boldface uppercase letters, e.X. When X; is a discrete categorical random
variable, we will by lowercase letter; ; refer to thej'th state of X; under some
ordering. We will byR(X;) refer to the set of possible statesXf, and byR(X) =
x x,exR(X;) whenX is a set of discrete categorical variables. We will usas
a shorthand fofR(X;)|. By lowercase bold letters we refer to joint states of sets
of variables, e.gx € R(X). WhenX,; € X andx € R(X) we denotex|.X;] the
projection ofx onto coordinateX;.

Let G = (V,E) be a directed graph structure with set of vertidés =
{W1,...,V,} and set of directed edgds C V x V. We will then by chq(V;)
andpa(V;) refer the set of children df; and parents oV respectively in struc-
ture G, hencechq(V;) = {V; € V : (V;,V;) € E} andpag(V;) = {V; € V :
(V;,Vi) € E}. A directed graph strucuture is a directadyclic graph (DAG)
structure if it contains no directed cycles.rdoted DAG is a DAG where a unique
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vertex V. is without parentsfa;(V,.) = () while all other vertices have at least
one parent. A tree is a rooted DAG where all vertices excaptdbt has exactly
one parent. A forest structure is a set of such trees.

2.1. The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution over a setatbgorical random
variablesX = { X3, ..., X,,} by a factorisation defined by a structure over a set of
local distributions.

Definition 2.1 (The PDG Structure). Let ' be a forest structure over discrete
categorical random variableX = {X;,..., X, }. APDG-structurez = (V,E)
for X w.r.t. F'is a set ofrootedacyclic directed graphs over nod&5, such that:

1. Each noder € V represents a uniqu&; € X and all X; € X are rep-
resented by at least one nodec V. We will byw; ; refer to thej'th node
representingX; under some ordering of the set of nodes representing

2. For each node/; ;, each possible state; ;, of X; and each successoy;, €
chr(X;) there exists exactlgneedge(v; ;, ;) € E with labelz; ;,, where
vy is some node representing;,.

Let X;, € chp(X;). By succ(v; j, Xi, z;5) we refer to the unique node, ;
representingX, that is reached from; ; by following the edge with labet; j,.

Example 2.1. A forestF’ over binary variablesX = {Xj,..., X7} can be seen
in Figure 1(a), and a PDG structure ové w.r.t. F'in Figure 1(b). The labelling
of nodes in the PDG-structure is indicated in subscripts &edlundant) by the
dashed boxes, e.g., the nodes representingre {15 ¢, > 1 }. Dashed edges cor-
respond to edges labelled 0 and solid edges correspond tesedbelled 1, for
instancesucc(vs o, X¢,0) = 6,1

A PDG structure is instantiated by assigning to every nodeal [probability
distribution over the variable that it represents. By a PD&deh over discrete
random variableX = {X}, ..., X,,} we refer to a paig = (G, ©) whereG is a
PDG structure oveK and® is an instantiation ofs. We denote by"i the local
distribution assigned to nodg ;, and bypgf;jl the probability for state; 5, in local
distribution p”+i. The semantics of the local distributiqgsts is defined by the
path(s) leading to the nodse ; from the root, that is, how; ; can bereached Let
G be a PDG structure over variablXsw.r.t. forestF'. A nodev; ; in G is reached
byx € R(X) if

e y;jisarootinG, or

o X; € chp(Xy), v, is reached bk andy; j = succ(vg, Xi, x[X4]).
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(a) (b)

p 0.0 = P(Xo) P30 = P(X3]Xg =0,X1 =1) p >l =P(X;5]X4=0)
p'10 = P(X1|Xp=0) p“3l =P(X3]X; =0) p60 = P(Xg|Xq =1,X5 =1)
p’Ll = P(Xi[Xg=1) p“32=P(X3|Xg=1,X1=1) p’6l =P(X¢|Xq4=0V{Xg=1,X5=0})
p’2.0 = P(X2|Xo =0) p"*0 = P(Xy) P70 = P(X7|X4 = X5)
P2l = P(Xo|Xp=1) p"50 =P(X5[X4=1) p"70 = P(X7|X4 # X5)
(©
Figure 1: A forestF over binary variableX = {Xo, ..., X7} is shown in (a), and a PDG-structure

over X w.r.t. variable forest’ is shown in (b). In the PDG-structure in (b), solid edges abelled
with value 1 and dashed edges are labelled with value 0. Jm@have indicated the probabilistic
interpretation of the parameters for each node in the PD@&tsire of (b).

By reach (i, x) we denote the unique node representifigeached by in PDG-
structureG.

A PDG modelg = (G, ®) over variablesX represents a joint distributioRY
by the following factorisation:

P = 1wy 1)
X;eX

Example 2.2. To instantiate the PDG structure in Fig. 1(b), we assign aaloc
distribution to each node in the structure with the probatic interpretation given

in Fig. 1(c). We can read some context specific independemdighis table, e.qg.

X is independent ok 5 only in the contexX, = 0.

2.2. Selecting PDG models using complete data

For assessing models in the presence of observed data, wseanpenalised
likelihood score function. Lef be a PDG model over variablgs = {X;,..., X,,}
and letD be a set ofV complete observations &, then we define a general score
function as:

S\(D,G)=(1-X)-L(D,G) — \- size(G), 2

where0 < A < 1, size(G) is some measure of complexity gfand L(D, G) is
the log-likelihood ofD given G. A typical definition of size(G) is the number
of free parameters in modél. Assume that dat® is a set of i.i.d samples of
some (unknown) multivariate distribution over theategorical random variables
X = {Xy,... X;,}. We can use the following notatiod) = {:::i.€ 1 <3 <
n,1 < k < N}, Wherexf is the sampled value of variabl¥; in row k. By
xF = {zF ... 2%} we will refer to thekth row of D. Then the log-likelihood
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L(D,G)is:

N N
L(D,G) = log [[P9(X =x" =) logP/(X =x") (3)
k=1 k=1
= >3 #p(@in vig)logpss, 4)
i=1 h=1 j=1

wherew; is the number of nodes representiig and #p(E) is the count of in-
stances irD satisfying requiremenktl. For example, in Eq. (4¥p(xin,vi;) iS
the count of data items i where variableX; is observed in state; ;, and where
they; ; is reached.

3. Learning from Incomplete Data

When data is incomplete and the values for some variablawnigsing in some
of the rows in our database, it becomes problematic to coenget likelihood in
Eg. (3) as not alh variables are always observed. We will augment the database
with a special “?”-state whenever a variable is not obseraed will then use the
notationD = Do U D)y, whereDp = {z¥ € D : 2} # ?} is the set of elements
of D containing a value anB; = {z¥ € D : 2¥ = 2} = D \ Do. Furthermore,
let X§, = {X; : 2¥ € Do} be the set of variables observed in ttib row, let
Xk = X\ X} and letxf, = {z¥ € Do} be the observations &X},. Then,
Eg. (3) becomes:

N

L(D,G) = log [ P9(X5 =x5) 5)
k;l

= log[[ > PYUXE=x6X5=x). (6)

k=1x'eRr(Xk))

The most typical approach to learn from incomplete data apoly the Ex-
pectation Maximisation (EM) principle (see [12, 5]). In tfidlowing Sec. 3.1 we
review this approach to structural learning in general.oBetioing this, however,
we will introduce a few simpler approaches that will laterused for comparison
when evaluating our proposal experimentally in Sec. 6.

A simple approach to avoiding the exponentially large surgaf(6) is to use
an available-case-analysis (ACA) approximation to the gete case formula of
Eqg. (4). In ACA one uses as much of the available observedatagmssible. So,
considering the structure of Fig. 1, any row in the datablsedontains the obser-
vationsX; = 0 and X3 = 0 would increment the coump (z3,, v3,1) regardless
of the missing values, as any instance with = 0 reachess ;.

An even simpler approach to learning from incomplete datomplete-case-
analysis (CCA) where any row in the database that missesv&bu some variables
is removed from the database and any method that requirgslendata can then
subsequently be applied.



Algorithm 1 The structural EM procedure
1: procedure SEM(D)

2. LetG° = (G°, ®°) be the initial model.
3 n <« 0

4. repeat
5:
6

@"*!  agmaxQ((G", ©), D|Do, G")
Legal ©

Grtl — argmax QG,),D|Do, (G™, @™ 1))
GeN(G

7: gn+1 <Gn+1 en+1>
8: n—n-++1
9: until Q(G™,D|Do,6" ") < Q(G" !, D|Do,G" )
10: return g"1

3.1. The EM principle in structural learning

If we view the missing parD,, of incomplete datd) as a random variable
governed by (unknown) distributioR*, we can compute the expected log likeli-
hood ofD in modelG as:

n o ry v

E[L(D,G)|Do, P*| =Y > "> " El#p(winvij)logprs,,  (7)

i=1 h=1j=1

where the second expectation also is with respe@oand P*. In a structural
EM algorithm like the one proposed by Friedman [6], we opsienihe expected
likelihood instead of directly optimising the likelihoodhich in the presence of
incomplete data no longer decomposes. Decomposabilitiyeofikelihood is im-
portant for model selection in which the search procedureaich step evaluates
candidate models from a neighbourhood that is generated drourrent model by
local transformation. We define the expected score as aifumgt

Q(9,D|Do,G") = (1 = M) E[L(D,G)Do, G"] — Asize(F) . (8)

In Eq. (8) we use the current modgt as the reference distributia®*. The struc-
tural EM procedure can now be stated as in Algorithm 1.

First, in line 5 of Alg. 1 we basically need to find MAP paramstéor G.
Exact methods are usually intractable, so normally someoappation method is
employed. Originally, Friedman [6] proposed to use a stethBd approach in this
step while Pefia et al. [17] propose as a more computatioaffitient alternative
to use thébranch and boungbrocedure of Ramoni and Sebastiani [18]. However,
the choice of approach in this step is not crucial to the faihy discussion of
Sec. 4.

Second, in line 6 of Alg. 1, the functio®/(+) is the neighbourhood generat-
ing function. We will define simple split and merge operasigdhat implement
structural modifications for generating neighbours fromuaent PDG modeg.
We will explain how to compute the expectations needed ttuatathe expected
score of a neighbour.



4. Structual EM for PDG Models

In this section we will explain how Alg. 1 can be applied to PBi@dels. First,
for constructing an initial model we need a forest structhwer the variables in the
domain. We accomplish this using the classical algorithnCléw and Liu [4].
This algorithm induces a maximum weight spanning tree usiatual information
as the edge-weights. In Sec. 5 we explain how to compute rinfaamation from
incomplete data.

Inducing the initial tree by finding a maximum weight spamniree using mu-
tual information as edge-weights is different from preglguyproposed approaches
for inducing variable forests/trees. In [9])& test for conditional independence
is used to assign marginally independent variables inrdiffetrees and condition-
ally independent variables in different sub-trees. In #tigdly we use the above
mentioned mutual information based method as it is lessid&asive compared
to repeatedy? tests. Also, the computation of the test statistic for {Retest is
problematic when the data is incomplete, and it is known thattype Il error
associated with the test is high if the data is scarce, whiak imcrease the risk
of acceptance of independencies that are not supportedebgiatia. Restricting
the forest to a single tree does not limit the expressivitthefmodels that can be
obtained, but it may produce models with a higher number cdrpaters.

Assuming that we have the initial tree structureover the variables, we ini-
tialise a PDG model as follows: for every variablg € X with pa(X;) = X,
we createv; = r, new nodes{v; 1,v;9, . .., Vi, } representingX;. We then con-
nect every nodey, ; representingX;, such thatsucc(vy j, Xs, x5 ) = vi.. That
is, for statexy, . of variable X}, the nodey; . is always reached. Constructing the
initial PDG model in this way allows every variable to be mibetk as marginally
dependent on its parent and its set of childrei®’'in

Finally, we use a random parametrisati®f of the initial structureG®.

4.1. The Neighbourhood of a Model

In this subsection we explain how the neighbourhdé@=) of a PDG struc-
ture G is generated. We include operations that work on the PDGtsire only,
and leave the structure over the variables fixed. Operatlatschange the struc-
ture over the variables (e.g. operations that swap theipogif two variables) are
problematic as they potentially require the creation oftaofonew node connec-
tions. Offhand, it is not intuitive to us how to best do thigeneral, and therefore
we choose to focus on the following two less dramatic stmatithanges, namely
splitting and merging parameter nodes. These operations hath previously
been used by Jaeger et al. [9] for learning in the case of atmphta. Jaeger et al.
[9] use an additional third operator that redirects edgeslaélve this operator out
of the algorithm for simplicity.

Merging Nodes.The merge operator takes a pair of nodles,, v; , } representing
the same variablé(;. The nodes; , andv;; are selected such that for any state
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z;p € R(X;)and childX; € chp(X;), succ(Viq, Xj, zin) = suce(vip, Xj, xip).
The merge operation then simply consists in replacing neggsndv; , with a
new nodev; ., wherev; . has as children exactly the children:gf, (or v; ;) and as
parents inherits the union of parents.gf, and parents of; ;.

Splitting Nodes.The splitting operator takes as input a single negg with m
parents wher@ < m, and replaces; ; with m new nodes all representing;.

Each new node inherits all the children if;, and exactly one unique parent of
Vz',j-

4.2. The candidate-space

Before continuing with the further development of the aitjon, we will in-
vestigate the properties of the space of candidate modslsvhcan reach with the
split and merge operations as defined in Sec. 4.1.

We formally define the neighbourhodd as follows:

Definition 4.1. Let .# be a set of functiong : G — G whereG is the set of all
valid PDG structures according to syntactical definitiorl.2Then the neighbour-
hoodN g of G € G is defined as:

Ngz(G)={G":3f € Z[f(G) = G']}. 9)

The candidate-spacg is defined as the set of models that can be reached by
traversing neighbourhoods.

Definition 4.2. Let# and G be as in Def. 4.1, then the candidate spégcg given
an initial modelGy € G is defined as:

C 7 (Go) = {G' : G' € Ng(Go) VIGH[G* € Ny (Go) AG' € C (G*)]}.
(10)

Lemma 4.1. Let G the set of PDG structures with the same underlying variable-
forestF’, let.# = {merge, split} where merge and split are the operations defined
in Sec. 4.1. Lef/, be an arbitrary PDG structure with variable-fore#t, then:

C7(Go) = G . (11)

Proof: We will show that for any two PDG structures and G* that respects
the same underlying variable forest we can transfornds into G* by a series of
merge and split operations.

The first step in the transformation is to merge all node§ iinom the leaves
and up to the root. This results in a structure in which evarnjable is represented
by exactly one unique node. Then, from the root and down tdetiiis we do the
following for each variableX :



1. split the single node representingin G
2. merge the nodes representiigin G to reconstruct the local structure be-
tweenX and its parent irG*

0

Lemma 4.1 says that any valid PDG structure within the samiahla structure
is reachable from the initial model.

4.3. Scoring a Neighbour Model

In this section we detail how to compute the sc@€G’, ), D|Do, (G, ©))
of a neighbourG’ € N (G) generated by merging two nodes or splitting a node.
In fact, we will not compute the full expected score, but otflg terms that are
different.

4.3.1. Scoring a Merge Operation

Assume PDGF’ is constructed from PD@ = (G,©) by merging nodes
Via,Vip € Vi in structureG. Let the nodey; . be the one replacing; , andv;
in G, and assume that we have computed (and stored) all expemtetsdor all
nodes. Then, computing the expected counts for m@ehder distributionP¢
reduces to computing expected countsifgr, which can be done efficiently from
expectations#p (z; 1, Vi o) and#p(z; p, v;p), that is :

E#p(zin vic) Do, G| =
E#p(xin,via) Do, Gl + E[#p(invip)| Do, G]. (12)

Hence, computing the difference in expected se@,,c g (Vi q, i,p) reduces to
computing the difference between the terms of the expecia: snvolving nodes
v; o andy; , and the new node; .

AQmerge(Vi,aa Vi,b) = Q(g/, D|DOa g) - Q(g, D|DO, g)

=(1-2X) (Z E[Ly — Ly™ — Ly"*| Do, g]) +A-(r;—1) (13)
h=1

wherev; . is the node resulting from merging , andv;;, and Ll,'f’j is the
term in the log-likelihood corresponding to nodg; and thehth state ofX;. The
expectation in (13) obviously can be computed term by temu &e see that
E[L;**|Do,G] = E[#b(2in, vic)|Do,Gllog Elpz5 Do, G|, where the expec-

El#D (i,n,vi,c)[Do,9]
""E[#b(vi,c)Do,G]

tation E[p,. | Do, G] is computed as the fracti . The count

#pD(V;,4) IS just
Y o1 #D(Ti 1, Via)-

The expectation& [#p (z; 1, v; ;)| Do, G] for any stater; ;, € R(X;) and node
v;; € V; are exactly the expectations we would compute in the paraem
step in line 5 of Alg. 1. Therefore, these counts have alrdsn computed for
structureG™ in line 5 of Alg. 1, and can easily be made available at no ectist.
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4.3.2. Scoring a Split Operation

Letinc(v; ;) be the set of edges incomingutg; in PDG structures = (V, E),
that isinc(v;,;) = {(vk,z,vi;) € E}. By [y, . we will denote thew'th element of
inc(v; ;) under some ordering. With; we denote the node replacimg; for its
uth incoming edge. Node; ; is representing variabl&’; and let the parent ok
in the variable forest b&,, hence by the definition of PDG structure, all parent
nodes ofy; ; represent variablé(,.. The expected counts[#p (v}';, zi )| Do, g]
for the node/gfj wherelﬁi’j = (v, v4,5) is labelled with statey, , is then:

El#p (v}, 7in) Do, 9] = E[#bD (Vi 2 Th.g, 7in)| Do, G] - (14)

The expectation in Eq. (14) can not be reconstructed fromeeep counts already
computed forG in the structural parametric EM step of Alg. 1 (line 5) as waes t
case for the counts needed to evaluate a merge operationevdgvanticipating
that we will need such counts, we can store them during theatation of expec-
tations in line 5 of Alg. 1. Assume that we have these expembedts available for
structureG under the distribution defined by the PDG modek (G, ©). We can
then compute the differenc&Q it (vi ;) = Q(G',D|Do,G) — Q(G,D|Do, G)
for PDG modelg’ with structureG’ generated by splitting node ; in structureG,
as follows:

AQspiit(vi,j) = Q(G', D|Do, G) — Q(G,D|Do, G)

Ti

=(1-X) [Z (Z E[LZ%IDO,QO - E[in’”Do,g]]
h=1 \u=1
— A(linc(vi )| = 1)(ri = 1), (15)

where the log-likelihood terms: are as described in Sec. 4.3.1. Further, itis clear
that we can not split a root node as it has no parents.

4.4, Computing the Expectations

In order to compute the expected counts in sections 4.3. 4@, it is neces-
sary to calculate probabilities of the forff ({v is reachedA X; = z;}|Y =y)
forall X; € X andr € V,;, whereG is a PDG over variableX andy is a joint
observation of variableY C X.

The computation of such probabilities can be done effigidmntlthe procedure
described by Jaeger [8], which carries out the inferenciria linear in the size of
the PDG model. We will briefly describe this procedure in tbkofving, and we
refer the reader to Jaeger [8], Section 4 for details on PD&sence.

Broadly speaking, belief updating in a PD&in the presence of evidence
Y = y is done by first restricting; to Y = y. A PDG G over variablesX
is restricted toY = y by setting for each variabl&; € Y and each node; ;
representingX; € Y the parametep”:s to O for every stater; , # y[X;] and
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leaving the parameter unchanged for ssat&;]. What we need to do to compute
the probability of some subs® C R(X) obviously is:

=3 TI paidet™. (16)

weW X, eX

WhengG has been restricted to eviden¥e = y, the probability of (16) is in fact
PY9(W,Y =y). We will be particularly interested in computing (16) wh is
the partition of R(X) that reaches a specific noden the model. To do this we
compute for each node in the structure parts of the produdity namelyin-flow
andout-flow Let F' denote the forest of variable treesgn then the out-flow is
computed by the recursive formula:

ofivig) =Y pes ] ofi(suce(viy,Y,min)). (17)

x5 h ER(X;) Yechp(X;)

Wheny; ; is a root, we compute in-flow as

ifivig)= [ ofiv). (18)

v#V; j,V is Toot

Wheny; ; is not a root andX,,, is the parent ofX; in the variable forest, in-flow can
be computed as:

ifl(vig) = Z Z [iﬂ(yp,k)p?;’,]; H ofl(succ(vpk, Y, Zpn))] -
:L'p’hER(Xp) Vp k* YGChF(Xp)\Xi
v j=succ(Vp 1, Xi,Tp,n)
(19)
Computingofl values is easily done recursively bottom-up in the stre;tand
in this traversal we store for each node and stater; ; € R(X;) the value:
wZ:; = H ofl(succ(vij,Y,xin)). (20)

Yechp(X;)

Now, if W is the set of configurations reaching nadeéhenP ({v is reachedl) =
P(W) = ifi(v) - ofil(v). Whenifi, oft andw have been computed for every node
in Gy—y and states of the variables, we can comp®fé{v; ; is reachedA X; =
zin}|Y =y)as:

1 . i, i,
({u”/\xzh}\Y y) = mzﬂ( e szjh' Z{,th (21)

wherePY(Y =y) = [1,c oo 01 (). The next example is aimed to illustrate the
process of computing probabilities in PDGs.

Example 4.1. Consider a PD&J for variables X, X1, Xoand X3 and structure
as in the left hand side of Fig. 1(b). Assume that the paranmetées are instanti-
ated with the following local distributions:
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p”0 = (0.2,0.8) p“° =(0.7,0.3) p“! =(0.4,0.6) p“2° = (0.1,0.9)
p2! = (0.8,0.2) p“* =(0.6,0.4) p“* =(0.3,0.7) p’*2=(0.5,0.5)

If we want to compute any probability like, for instandé,g({um ANXy =
1}/ X5 = 0), the first step is to obtaigx,—o, which is the restriction of; to
X3 = 0. Itis computed by replacing”s°, p¥*! and p*3:2 by p*3¢ = (0.6, 0),
p”*! = (0.3,0) andp”32 = (0.5,0).

Next we have to compute the outflows and finally the inflowsotitilews for
the leaf parameter nodes are easy to compuig(vz ) = 0.6, ofl(v3,:) = 0.3,
ofl(vs2) = 0.5, ofl(r20) = 1 and ofi(1»,1) = 1. For the other nodes we have

Oﬂ(Vl,O) =0.7 x 0ﬂ(1/371) + 0.3 x 0ﬂ(1/370) =0.7%x03+0.3x0.6=0.39 .

Oﬂ(Vl,l) =04 x 0ﬂ(1/371) + 0.6 x 0ﬂ(1/372) =04x03+06x05=042 .

ofi(roo) = 0.2x ofl(v1,0) X ofl(v2,0) + 0.8 x ofl(v1,1) X 0fl(r2,1)
= 02x039%x14+08x042x1=0.414 .

Now we calculate the inflows. As there is only one refityyo) = 1. The
other inflows are:

Z'ﬂ(l/l,o) = Z'ﬂ(l/(],o) x 0.2 % 0ﬂ(1/270) =02 .

ifl(v11) = ifl(vop) X 0.8 X ofl(re1) =0.8 .
ifl(r20) = ifl(voo) x 0.2 X ofl(v10) =1 x 0.2 x0.39 =0.078 .
ifl(va1) = ifl(Mo0) X 0.8 x ofi(v11) =1 x 0.8 x 0.42 = 0.336 .
ifl(vs0) = ifi(vio) x 0.3 = 0.2 x 0.3 = 0.06 .
ifi(vsr) = ifl(vio) % 0.7+ ifi(vi1) x 0.7 = 0.2 x 0.7+ 0.8 x 0.7 = 0.7 .

Now, we have that the probability of the observation is thfl@w stored in the
root parameter node, that id7(X3 = 0) = 0.414, and therefore we can compute
the probability we were looking for as follows:

1
Pg({I/LO ANX1= 1}|X3 = 0) = 0414 x 0.2 x 0.3 x 0ﬂ(1/370)
0.2x03x0.6
= oa U9

At this point we have all the necessary to compute the exgaxiants as fol-
lows:

N
El#p (i, vi)Do, Gl = > P({vij Azin}[Ya=ya), (22)
=1
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whereY is the set of observed variables in ith data case, ang; is the value
observed fofY ; in the d-th data case. Notice th&? is equal to 1 if, in record,
X, is observed to its value; ;, andy; ; is reached, and is equal to O if it is observed
to a different value or; ; is not reached. If the value fo; is missing in record/,
thenPY is computed as in Eq. (21).

The probability P9 ({;n A I}, Y = y) for link 1Y = = (v, 1) €
inc(v; ;) is needed to construct the expected counts in (15) and caarbputed
in Gy—y as:

PO{aip NI, YY =) =
1 Vi,z

: Vi, z . ka,g Vi, j . sz 23
Pg(Y:y)Zﬂ(Vkvz) Py g Oﬂ(Vi,j) “Paiy Ty - ( )

5. Estimating the Mutual Information with Missing Data

The mutual information between two random variableandY is defined as:

\R(X)| |R(Y))|
= Z Z (x4, y;) log ————~ Dl y;) . (24)
2 2 PERON

As the joint distribution ofX andY is unknown, we need to estimate the
mutual information from data. Assume we have a datalbapeobably containing
missing data. We require estimatesfigr = p(z;,y;), 6;. = p(x;) andf ; = p(y;)
fori =1,...,|R(X)|andj = 1,...,|R(Y)|. Actually, we only need to estimate
91']', sinced; = Z'fi(ly)‘ eij and9_j = ZLESX” 92]

SinceD may contain missing data, we can use the EM algorithm to astim
the required parameters. The detailed procedure is givéign2. Notice that
steps 5 and 9 in algorithm 2 correspond, respectively, toEtted M steps of
algorithm EM.

The valueE;; computed in line 7 of Alg. 2 is the expected number of records
in D where X takes itsi-th value andY” takes itsj-th value. It is computed by
exploring all the recordel € D and calculating, for each record, the probability
P{X =z;,Y =y,|d,®"}. Thatis, we compute:

E#p(X =2,V =¢,)|0"] = Y P{X =;,Y =y,|d, "} . (25)
deD

The probability in Eq. (25) will be equal to 0 if the record tesalue different to
(x;,y;) and equal td if the record is exactly equal to;, y;). If some of the cells
in the record is missing, the probability is computed usimg ¢urrent estimates
[CHN
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Algorithm 2 EM for estimating the mutual information
1: procedure EM_MutuallnformationD)
2. Let®® = {05, i =1,...,|R(X)|, 5 = 1,...,|R(Y)|} be a random parametrisation of

p(z,y).

3. n+<0.

4: repeat

5: forall i =1,...,|R(X)|do

6: forall j=1,...,|R(Y)|do

7 Eij — E#p(X =2:,Y =y;)|©"]

8: et —

9: forall i =1,...,|R(X)| do

10: forall j=1,...,|R(Y)|do

. n+1 Eiz'

11: UREES ST IR

12: et —emtu gt

13: n+«—n-+1.
14:  untl L(D|®™) < L(D|®@™ ).
15: Estimatd(X,Y) as:

IRCOIR(Y) g1
I(X,Y) = 07" og —2L— .
HN e

16: return I(X,Y).

6. Experiments

In this section we investigate experimentally the perfaragaof our proposed
procedure to learning from incomplete data. More specificake set out to answer
the following questions:

1. Can we justify the use of the computationally heavy EMgiple for learn-
ing PDG models in situations when more efficient approachists®

2. How does the quality of PDG models learned by Alg. 1 compathe qual-
ity of BN models learned by existing conventional proced@re

In order to test Alg. 1 we have performed experiments ovezettsynthetic
databases. The databases have been generated from rand@mdrigls over 10,
20 and 40 variables. We will refer to these models as rnd1d20rand rnd40
respectively. The models were generated with the followewgrictions:

1. The models contain a single connected compdnent
2. Variables are categorical with between 2 and 5 states.

3. The models contain moderate branching on both the variadé¢ level and
in the graph structure.

1This means that multiple connected components like the pastructure of Fig. 1 is not pos-
sible.
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4. All parameters where initialised to random multivaridistributions, fol-
lowing the procedure of Caprile [3].

From each of the 3 PDG models, we constructed four databasdaiting 250,
500, 1000 and 2000 complete samples. For each of the 12 datahee have con-
sidered different rates of missing values, ranging fidinto 30%. For each rate of
missing values we generated 50 databases from the origimalplete) database by
randomly erasing the value in a fraction of the cells acew i the rate of missing
values. The learning algorithm was then executed on eatte&Q databases mea-
suring the quality of the learned model as the log-likelithoba separate validation
database containing 10000 complete samples.

As score function we used thg, function of equation (2) with\ adjusted
according to the size of the database to give a tradeoff leetwize and likelihood
equivalent to the one imposed by the BIC scoféinally, in order to speed up the
algorithm, we put a limit of 10 iterations in each paramefihd and 100 iterations
in structural EM (the loop of Alg. 1).

6.1. Initial Results

In Fig. 2(a-c) we show plots of mean and standard deviatidheolog-likelihood
of models learned in the experiments described above. $hhdrieach raten of
missing values and each sample size, 50 databases wheratgdray randomly
removingm% of the values. The means and standard deviations were gien e
mated from these 50 results.

First, the plots of Fig. 2 in general show the expected behavéas mean log-
likelihood decreases as a result of increasing the prapodf missing cells in the
training data, while standard deviation increases. We, rad$® as expected, that
the experiments on the larger data sets reach higher ldaditon the validation
data and also show a more stable performance with lowerdserén standard
deviation as the rate of missing values is increased.

Second, in the experiment using 2000 samples from the rndti@hiFig. 2(a))
we observe an increase in likelihood up until a rate of 15%simisvalues. This
behaviour may be caused by the algorithm over-fitting to ttraplete (0% miss-
ing values) training data, while the introduction of somessing values helps the
algorithm learn a less specific model with better ability engralise. That this
over-fitting is most clearly pronounced for the larger dat#s may be explained
by the fact that parameters where smoothed by adding a fibiwet of 1 to every
count. For smaller databases this will of course yield a mggressive smoothing
of parameters. We observe similar though less pronoundealvtmir in the other
two plots in Fig. 2(b-c).

-1
2Setting\ = (% + 1) whereN is the number of observations yields BIC tradeoff.
3We run a 100 iterations parametric EM to optimise the pararseif the final model.
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Figure 2: Mean and standard deviation of log-likelihood eb#dation set of 10000 complete sam-
ples computed in the models learned from datasets sammledrfrodel rnd10 (a), rnd20 (b) and
rnd40 (c). The log-likelihood of the generating models adidated beneath the plots.

6.1.1. The importance of the initial tree-structure
In this section we will investigate two aspects of the problef choosing a
starting point for our SEM algorithm. First, we study theeeff of the structural
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learning applied after learning an initial tree from the @Hou tree model. Next,
we investigate the effect of using the generative modeésgteicture as a starting
point.

The Chow-Liu tree modelAs explained earlier, the initial tree structure is cre-
ated using the classical algorithm of Chow and Liu [4] showrSect. 4. This
initial model is itself a very commonly used model in probipiestimation due to
its simple restricted syntax and consequently efficienhieg and inference. We
therefore compare the quality of our final model to this alithodel. From each
experiment with missing data (72 total) we measured thdili&ed of the valida-
tion data in the initial model as well as in the final PDG modi#ding a Wilcoxon
signed rank test for paired samples with significance lev@,0we found signifi-
cantly lower likelihood of the PDG model in only 2 cases, gnfficant difference
in 5 cases while in 65 cases we found significant better hkeld of the PDG
model.

The two cases in which the PDG model performed significantyse was
both using 500 samples of the rnd10 model, one with 25% andther with 30%
missing cells. This indicates that it is not a generally odog phenomenon, but
rather an observation that is specific to this one database e rate of missing
cells is high.

The 5 cases where no significant difference could be edtaolisvas for the
experiments using the 250 samples of rnd10 with 30% mis#iegh00 samples of
rnd10 with 20% missing, the 250 samples of rnd20 with 30% imgsshe 500 sam-
ples of rnd20 with 30% missing and the 500 samples of rnd4b 8686 missing.
The general property of these databases is a relativelyl smalber of samples
and a high degree of missing cells. This indicates that wiaé¢aid limited and the
degree of missing cells is high it has no significant effectlt@model to try to
optimise it by the local structural modifications.

As we do see a significant improvement in quality of the moddhie 65 re-
maining experiments we will draw the conclusion in generdié¢n data is not very
limited and with a high degree of missing cells) it is wortle tihouble of refining
the induced Chow-Liu tree structure with split and mergeratiens.

The generating model as seethe two phased learning procedure of first inducing
a variable tree and the subsequently inducing a PDG modgl this tree raises
the question of whether the trees learned by the Chow-Litnatkeis good starting
point for the PDG learning. To gain insight into this questieve repeated the
experiments with the synthetic data, but this time usingréaxefrom the generating
models in all experiments.

For each generative model (rnd10, rnd20 and rnd40) we havderped a
Wilcoxon signed rank test for paired samples using the megslikelihood in
the two measurements: 1) from learning a Chow-Liu tree aaréirg point to the
structural search and 2) using the trees extracted fromedhergtive model as a
starting point. The null hypothesis is that there are ncediffice, while the alter-

17



native hypothesis is that measurement 2 is higher than mezasut 1, hence we
are doing a one-sided test. Thevsalues are close to 1 for both rnd10 and rnd20,
while for rnd40 we get a-value of 6.45E-6. When inspecting the learned mod-
els in all three cases, we saw that the learned models is almagh smaller than
the generative model, which may indicate that the generativdels contain much
redundancy.

That the use of the tree structure of the generative modelsaaréng point
for rnd10 and rnd20 does not result in significant improvenierthe quality of
the models indicates that for smaller to moderate sized dmnthe underlying
structure is less important. However, the Ipwalue for rnd40 indicates that for
larger domains, the initial structure is more importanttie final quality of the
model.

6.1.2. Alternative approches to learning under the MCARiagdion

When data is missing completely at random (MCAR), thereteatideast a
few simple and valid alternatives to the EM-framework. Weéaxperimented
with two simple alternatives to EM, namely complete casdyaim (CCA) and
available case analysis (ACA). Both methods was brieflyarpd in Sec. 3. Here,
we comment on experiments in which CCA (or ACA) was used faimeging
parameters for a given structure (line 5 of Alg. 1).

As expected, CCA proved to be an inadequate alternativeeagdtiormance
drops very fast and already performs significantly worse tB&M learning at the
first level of 5% missing cells.

The performance of the more sophisticated ACA proceduraushrmore com-
petitive. For each generative model (rnd10, rnd20 and e performed a
Wilcoxon signed rank test for paired samples using the megdtikelihood in the
two measurements: 1) from learning by SEM (Alg. 1) and 2)reey by ACA
procedure. The null hypothesis is that there are no differewhile the alterna-
tive hypothesis is that measurement 1 is higher than measmte2, hence we are
doing a one-sided test. For none of the databases did we findisant support
for stating that SEM performs better than ACp-\alue of 0.2257; 0.2759 and
0.1693, respectively). In Fig. 3 we include a plot showing dievelopment of log-
likelihood for each size of training data and rate of missiadues. Here it can
be seen that SEM usually performs better on larger trainatg,dvhile ACA can
beat SEM when training data is small. To answer the quesfiovhether we can
justify the use of the SEM algorithm compared to the concaptisimpler ACA
procedure therefore seems to depend highly on the datadvadeno general rule
can be stated.

6.2. PDG models vs. BN models

In this section we investigate the quality of the PDG modetsried with the
BN models learned by the SEM for BN models proposed by Friedi®g To this
end, we have conducted an experimentation on the syntregtticdgscribed earlier
as well as on two real databases.
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Figure 3: Comparison between a available case analysis JA&a#ning procedure and Algorithm 1
in plots (a-c).

6.2.1. Synthetic data

The results of the comparison between Alg. 1 for inducing B@&d Fried-
man’s structural EM for inducing Bayesian networks, for fiyathetic databases
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Figure 4: Comparison between the SEM of Friedman [6] for BNdai® and our SEM for PDG
models (Alg. 1).

rnd10, rnd20 and rnd40 are displayed in Figure 4, where theage of the log-
likelihood over all the records over a separate 10000+4giest database is shown
for database sizes ranging from 250 to 2000 and missing fiates5% to 30%.
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models (Alg. 1) on rnd14 generated data. Subfigure (a) casspabitained log-likelihoods while (b)
shows the size in number of free parameters defined by eacal mespectively.

The target was to show if Alg. 1 is able to obtain PDGs comgar@BNs in terms
of likelihood and size (number of parameters). It would hesuan advantage in
favour of PDGs if they are going to be used for probabilistieience, as they are
generally more efficient, in relation to size, for probatiiti inference tasks, than
BNs [8]. The plots in Figure 4 agree with this target, but liyuaith an edge
in favour of BN models in terms of likelihood, except for highissing rates, in
which PDGs get much closer. In order to check whether thes sizéhe obtained
models also agreed with the expected results, we measwrenlithber of parame-
ters of the models learnt from each database, finding outhleaBNs were much
more compact in general than PDGs, especially for high mgssates. This fact
seemed surprising. However, we noticed that the learnt B&le wsually sparse,
with many disconnected variables. It suggests that theudatd in the experiments
actually contained many independencies, especially fallstatabases and high
missing rates. It would explain that the obtained PDGs haweerparameters than
the BNs in general, because unlike the algorithm for legrfiom complete data
presented in [9], we do not allow the variables to conformragt but just a single
tree, due to the difficulties to carry out thé tests. This means that in order to
represent in the structure a variable as independent fremett, it would have to
be represented by a single node, which in turn means that s@rge operations
should be performed. Our merge operation, as defined in Seedy be too re-
stricted by the requirement that the children of two nodeageonsidered for a
merge must be the same. Therefore, the PDGs obtained by Alg fdrone to be
more complex than necessary if there are many independesgjported by the
data.

We conducted a second experiment to check this conjectime stheme was
the same used for the former databases, but now we used adatheset con-
taining fewer independencies and larger size comparedetedmple space. We
obtained it by sampling 5000 records from a BN densely caeigecontaining 14
binary variables. This network is a subnetwork of the randwtwork used in
[2]. The results of this experiment, in terms of likelihoogdasured on a separate
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test set of size 5000, are shown in Figure 5. The obtained Isoeort similar
likelihoods, again with a slight edge for BNs. However, iistbase the PDGs are
much more compact, with sizes around one half of the BNs. PBeds are more
compact is important when one wishes to perform exact inferes for PDGs this
is possible in linear time in the model size, while the sammidrue in general for
BN models.

A more restricted version of the BN model is tNeive Bayes mod€NB) for
probability estimation. This is a special kind of BN modelwhich the structure is
fixed to include no connections between the observed vasabid include an arti-
ficial latent variable that is the unique parent of everyalaieé. The NB model has
been shown to provide good accuracy when learned from coengidda (see [11]),
and we have performed experiments with this model to ingastiits performance
when learned from incomplete data. The NBE algorithm preddsy Lowd and
Domingos [11] learns a NB model by iteratively increasing ttardinality of the
latent variable and estimating parameters for the modepbpjyang standard EM,
until the likelihood of the model given a separate hold-catbdet did not increase.
In our experiments we used a modified version of the NBE algoriwhere the
main difference was that we used the score of Eqg. (2) witbnfigured to tradeoff
size and likelihood as the BIC score to determine convergenc

In Fig. 6 we have included plots showing detailed informatim the learning
of NB models plotted together with the log-likelihood. Wihe performance of
NBs for data generated from rnd10 and rnd20 models (FigbH(agrees with our
corresponding observations for BNs (Fig. 4(a-b)), theyseetchanges for rnd40
(Fig. 6(c)). For the rnd40 data the NB models do not performpetitively when
compared to PDG models. That NB models performs almost apetitiely in
the first two experiments is in accordance with the generdirfgs for complete
data as reported in [11]. As explained above, we use a scamicrtiedetermine
convergence instead of monitoring likelihood over a sepahald-out dataset as
was originally done for complete data in [11]. Using likeldd over a separate
hold-out dataset instead of a score metric measured owa@ngalata, tackles more
directly the problem of over-fitting. This may provide ongkanation to our ob-
servation. One other possible explanation is that the EMfpater estimation gets
stuck in a local optima, which is a well known problem for thigl Brocedure. A
typical NB model from the rnd40 experiments contains apionaxely 30000 free
parameters while no PDG model contained more than 1000 &eeneters. This
observation is also important when considering computatioomplexity of exact
inference, as both models provide exact inference in timesli in their size.

It should be noted that the NB model is a member of a broadss dbmodels
that share the property of allowing exact inference to bemgded in time linear in
the size of the model, namely the class of decomposable sod&iile it is known
that for every decomposable model there exists an equivBlBG model that has
size at most linear to the size of the given decomposable itbdeconverse is not
true in general (see [8]).
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Figure 6: Comparison between SEM for PDG models (Alg. 1) aadriing of NB models.

6.2.2. Real data
For the experiment with real data, we used two databaseginog missing
values, both publicly available from the UCI repositoryg$&3]).

house-votes-84: This database contains information on the dispositioracheof
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PDG BN NB
house-votes-84  -7.12563.0131  -7.0306:3.2524  -7.11432.9824

L soybean-large  -15.97261.7736 -14.18524.9756 -17.75345.2708
S house-votes-84 49 152 2973
soybean-large 1085 2091 13693

Table 1: Results of leave-one-out analysis of incomplest data where the missing completely at
random assumption may not be valid. Numbers in the 'L’ rovessraean and standard deviation of
log-likelihood from leave-one-out analysis. Numbers ia 18’ rows are the size of a model learned
from the full database.

the 435 U.S. House of Representatives congressmen/-womEhley votes
(for or against) and their party affiliation (democrat orublican) from the
year 1984. In 288 cases the disposition of the specific caagran/-woman
was unknown, and we treat this as a missing value.

soybean-large: This database contains 307 observations of soybean @adts
the general health of the plants. For each plant up to 35 pieteslevant
information is recorded (eg. stem condition, condition edft etc.) and
some auxiliary information (date, temperature) togethith & label of one
out of 15 diseases.

As the missing values are fixed in these databases, we falaigave-one-out
strategy to test the algorithms. The results are shown iteTebOnce more, the
likelihood is better for BNs, but the PDGs are much more cahpghich suggests
that these databases do not contain as many independeaciedl®, rnd20 and
rnd40.

The answer to the question of PDGs performance in compats@xisting
BN-based approaches put forth in the beginning of this seatiould then be that
it depends on the use of the recovered models. While uroestrBN models and
their structure is a rich tool for discussing dependencaiemd in the data, PDGs
may provide for a more efficient way to do exact inference.

7. Conclusions

In this paper we have introduced an algorithm for learningsRDodels in the
presence of missing data. Our proposal was inspired byquswivork on learning
BN models from incomplete data by Friedman [6]. With thisagithm, we have
extended the class of problems that can be approached usiag.P

The experiments conducted show a reasonably good perfoararihe algo-
rithm. First, a significant improvement over the initial Mdav tree models was
demonstrated. Second, the degrading effect on the penfaeras the rate of miss-
ing data increases is moderate. Third, the experimentigedavut to compare the
PDG models with simpler approaches to the missing completetandom prob-
lem, turned out mainly positive for the PDG learning. Avhlcase-analysis has
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the most competitive performance, and the preference of A@thod vs. our
SEM algorithm seems to depend on the size of the trainingalatidable.

The comparison with the BNs obtained by Friedman’s stratteM and the
simpler NB learning is much more level. The BNs and NBs arallgslightly
better in terms of likelihood, but the PDGs are typically $erahan both NBs and
BNs, with the exception of BNs for problems where there areyriadependen-
cies. However, it must be pointed out that PDGs are usualiyl@yed as tools for
probabilistic inference, and in that case the efficiencyelation to the number of
parameters is higher for PDGs [8].

The algorithm introduced here can be extended in variouswagr instance,
the use of other scores could be considered. Also, a Bayesigroach could
be followed as in [7]. Another aspect to be further studietiass to allow the
induction of forests of variables instead of a single treigh the aim of being able
to get more compact models.

It should be noted that the approach presented in this pagesy mbt guaranty
to recover the generative model when such a model exists, itk a large data
sample. In the case of complete data this is also still an @pelblem that is to
be investigated in future studies. Another obviously ie$ting focus for future
studies include the extension of the current algorithm todle scenarios where
unobserved (hidden) variables are known to influence therebd data.
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