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Abstract

Probabilistic Decision Graphs (PDGs) are a class of graphical models that can natu-
rally encode some context specific independencies that cannot always be efficiently
captured by other popular models, such as Bayesian Networks. Furthermore, in-
ference can be carried out efficiently over a PDG, in time linear in the size of the
model. The problem of learning PDGs from data has been studied in the literature,
but only for the case of complete data. We propose an algorithm for learning PDGs
in the presence of missing data. The proposed method is basedon the Expectation-
Maximisation principle for estimating the structure of themodel as well as the
parameters. We test our proposal on both artificially generated data with different
rates of missing cells and real incomplete data. We also compare the PDG mod-
els learnt by our approach to the commonly used Bayesian Network (BN) model.
The results indicate that the PDG model is less sensitive to the rate of missing data
than BN model. Also, though the BN models usually attain higher likelihood, the
PDGs are close to them also in size, which makes the learnt PDGs preferable for
probabilistic inference purposes.

Key words: Machine Learning, Graphical Models, Learning from Incomplete
Data

1. Introduction

The Probabilistic Decision Graph (PDG) model was first introduced by Bozga
and Maler [1], and was originally proposed as an efficient representation of prob-
abilistic transition systems. In this study, we consider the more general version of
PDGs proposed by Jaeger [8].

∗Corresponding author. Address: Instituto de Investigaci´on en Informática de Albacete - I3A,
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PDGs constitute a class of probabilistic graphical models that can represent
some context specific independencies that can not efficiently be captured by con-
ventional directed or undirected graphical models, usually called Markov Network
and Bayesian Network (BN) models respectively. Furthermore, probabilistic infer-
ence can be carried out directly in the PDG structure and has atime complexity
linear in the size of the PDG model. This makes learning of PDGs especially in-
teresting, as we are learning directly the inference structure, which is in contrast to
the usual scenario when learning general graphical models.

The performance of the PDG model w.r.t. general probabilityestimation has
previously been studied and results suggest that the model in general performs
competitively when compared to BN or Naı̈ve BN models [14]. The PDG model
has also been successfully applied to supervised classification problems [15, 16].

In this paper we are concerned with learning PDG models from data. This
problem has been addressed by Jaeger et al. [9], where an algorithm based on the
optimisation of a score is proposed for learning from complete data. However, the
task of learning PDG models in the presence of incomplete data has not yet been
explored in the literature. The difficulty arises in the computation of the score for
a model given the database with missing values. A similar problem is found in the
case of learning BN models from incomplete databases. Friedman [6] addressed
this problem by proposing an algorithm for estimating the structure of a BN model
based on the Expectation-Maximisation (EM) principle [5, 10].

We propose an algorithm for learning PDG models that builds on the algorithm
of Friedman [6] based on the EM principle. Both the structureand the parameters
are re-adjusted in each iteration of the algorithm. That is,the adjustments made
to the structure are guided by the expected increase in some score metric, while
the adjustments made to the parameters are guided by the expected likelihood of a
completed version of the incomplete data.

2. Background and Notation

We will denote random variables by uppercase letters, e.g.X, and sets with
boldface uppercase letters, e.g.X. WhenXi is a discrete categorical random
variable, we will by lowercase letterxi,j refer to thej’th state ofXi under some
ordering. We will byR(Xi) refer to the set of possible states ofXi, and byR(X) =
×Xi∈XR(Xi) whenX is a set of discrete categorical variables. We will useri as
a shorthand for|R(Xi)|. By lowercase bold letters we refer to joint states of sets
of variables, e.g.x ∈ R(X). WhenXi ∈ X andx ∈ R(X) we denotex[Xi] the
projection ofx onto coordinateXi.

Let G = 〈V,E〉 be a directed graph structure with set of verticesV =
{V1, . . . , Vn} and set of directed edgesE ⊂ V × V. We will then bychG(Vi)
andpaG(Vi) refer the set of children ofVi and parents ofVi respectively in struc-
tureG, hencechG(Vi) = {Vj ∈ V : (Vi, Vj) ∈ E} andpaG(Vi) = {Vj ∈ V :
(Vj , Vi) ∈ E}. A directed graph strucuture is a directedacyclic graph (DAG)
structure if it contains no directed cycles. ArootedDAG is a DAG where a unique
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vertexVr is without parents (paG(Vr) = ∅) while all other vertices have at least
one parent. A tree is a rooted DAG where all vertices except the root has exactly
one parent. A forest structure is a set of such trees.

2.1. The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution over a set of categorical random
variablesX = {X1, . . . ,Xn} by a factorisation defined by a structure over a set of
local distributions.

Definition 2.1 (The PDG Structure). Let F be a forest structure over discrete
categorical random variablesX = {X1, . . . ,Xn}. A PDG-structureG = 〈V,E〉
for X w.r.t. F is a set ofrootedacyclic directed graphs over nodesV, such that:

1. Each nodeν ∈ V represents a uniqueXi ∈ X and all Xi ∈ X are rep-
resented by at least one nodeν ∈ V. We will byνi,j refer to thej’th node
representingXi under some ordering of the set of nodes representingXi.

2. For each nodeνi,j, each possible statexi,h of Xi and each successorXk ∈
chF (Xi) there exists exactlyoneedge(νi,j , νk,l) ∈ E with labelxi,h, where
νk,l is some node representingXk.

Let Xk ∈ chF (Xi). By succ(νi,j,Xk, xi,h) we refer to the unique nodeνk,l

representingXk that is reached fromνi,j by following the edge with labelxi,h.

Example 2.1. A forestF over binary variablesX = {X0, . . . ,X7} can be seen
in Figure 1(a), and a PDG structure overX w.r.t. F in Figure 1(b). The labelling
of nodes in the PDG-structure is indicated in subscripts and(redundant) by the
dashed boxes, e.g., the nodes representingX2 are {ν2,0, ν2,1}. Dashed edges cor-
respond to edges labelled 0 and solid edges correspond to edges labelled 1, for
instancesucc(ν5,0,X6, 0) = ν6,1.

A PDG structure is instantiated by assigning to every node a local probability
distribution over the variable that it represents. By a PDG model over discrete
random variablesX = {X1, . . . ,Xn} we refer to a pairG = 〈G,Θ〉 whereG is a
PDG structure overX andΘ is an instantiation ofG. We denote bypνi,j the local
distribution assigned to nodeνi,j, and byp

νi,j
xi,h

the probability for statexi,h in local
distributionpνi,j . The semantics of the local distributionpνi,j is defined by the
path(s) leading to the nodeνi,j from the root, that is, howνi,j can bereached. Let
G be a PDG structure over variablesX w.r.t. forestF . A nodeνi,j in G is reached
by x ∈ R(X) if

• νi,j is a root inG, or

• Xi ∈ chF (Xk), νk,l is reached byx andνi,j = succ(νk,l,Xi,x[Xk]).
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X0
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X3

X2

X4

X5

X6 X7

(a)

X0 ν0,0

X1 ν1,0 ν1,1 X2 ν2,0 ν2,1

X3 ν3,0 ν3,1 ν3,2

X4 ν4,0

X5 ν5,0 ν5,1

X6 ν6,0 ν6,1 X7 ν7,0 ν7,1

(b)

p
ν0,0 = P (X0) p

ν3,0 = P (X3|X0 = 0, X1 = 1) p
ν5,1 = P (X5|X4 = 0)

p
ν1,0 = P (X1|X0 = 0) p

ν3,1 = P (X3|X1 = 0) p
ν6,0 = P (X6|X4 = 1, X5 = 1)

p
ν1,1 = P (X1|X0 = 1) p

ν3,2 = P (X3|X0 = 1, X1 = 1) p
ν6,1 = P (X6|X4 = 0 ∨ {X4 = 1, X5 = 0})

p
ν2,0 = P (X2|X0 = 0) p

ν4,0 = P (X4) p
ν7,0 = P (X7|X4 = X5)

p
ν2,1 = P (X2|X0 = 1) p

ν5,0 = P (X5|X4 = 1) p
ν7,0 = P (X7|X4 6= X5)

(c)

Figure 1: A forestF over binary variablesX = {X0, . . . , X7} is shown in (a), and a PDG-structure
overX w.r.t. variable forestF is shown in (b). In the PDG-structure in (b), solid edges are labelled
with value 1 and dashed edges are labelled with value 0. In (c), we have indicated the probabilistic
interpretation of the parameters for each node in the PDG structure of (b).

By reachG(i,x) we denote the unique node representingXi reached byx in PDG-
structureG.

A PDG modelG = 〈G,Θ〉 over variablesX represents a joint distributionP G

by the following factorisation:

P G(x) =
∏

Xi∈X

p
reachG(i,x)
x[Xi]

. (1)

Example 2.2. To instantiate the PDG structure in Fig. 1(b), we assign a local
distribution to each node in the structure with the probabilistic interpretation given
in Fig. 1(c). We can read some context specific independencies off this table, e.g.
X6 is independent ofX5 only in the contextX4 = 0.

2.2. Selecting PDG models using complete data

For assessing models in the presence of observed data, we canuse a penalised
likelihood score function. LetG be a PDG model over variablesX = {X1, . . . ,Xn}
and letD be a set ofN complete observations ofX, then we define a general score
function as:

Sλ(D,G) = (1 − λ) · L(D,G) − λ · size(G) , (2)

where0 < λ < 1, size(G) is some measure of complexity ofG andL(D,G) is
the log-likelihood ofD given G. A typical definition ofsize(G) is the number
of free parameters in modelG. Assume that dataD is a set of i.i.d samples of
some (unknown) multivariate distribution over then categorical random variables
X = {X1, . . . Xn}. We can use the following notation,D = {xk

i : 1 ≤ i ≤
n, 1 ≤ k ≤ N}, wherexk

i is the sampled value of variableXi in row k. By
xk = {xk

1 , . . . , x
k
n} we will refer to thekth row of D. Then the log-likelihood
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L(D,G) is:

L(D,G) = log

N
∏

k=1

P G(X = xk) =

N
∑

k=1

log P G(X = xk) (3)

=
n
∑

i=1

ri
∑

h=1

vi
∑

j=1

#D(xi,h, νi,j) log p
νi,j
xi,h

, (4)

wherevi is the number of nodes representingXi and#D(E) is the count of in-
stances inD satisfying requirementE. For example, in Eq. (4)#D(xi,h, νi,j) is
the count of data items inD where variableXi is observed in statexi,h and where
theνi,j is reached.

3. Learning from Incomplete Data

When data is incomplete and the values for some variables aremissing in some
of the rows in our database, it becomes problematic to compute the likelihood in
Eq. (3) as not alln variables are always observed. We will augment the database
with a special “?”-state whenever a variable is not observed, and will then use the
notationD = DO ∪ DM , whereDO = {xk

i ∈ D : xk
i 6= ?} is the set of elements

of D containing a value andDM = {xk
i ∈ D : xk

i = ?} = D \DO. Furthermore,
let Xk

O = {Xi : xk
i ∈ DO} be the set of variables observed in thekth row, let

Xk
M = X \ Xk

O and letxk
O = {xk

i ∈ DO} be the observations ofXk
O. Then,

Eq. (3) becomes:

L(D,G) = log

N
∏

k=1

P G(Xk
O = xk

O) (5)

= log

N
∏

k=1

∑

x′∈R(Xk
M

)

P G(Xk
O = xk

O,Xk
M = x′) . (6)

The most typical approach to learn from incomplete data is toapply the Ex-
pectation Maximisation (EM) principle (see [12, 5]). In thefollowing Sec. 3.1 we
review this approach to structural learning in general. Before doing this, however,
we will introduce a few simpler approaches that will later beused for comparison
when evaluating our proposal experimentally in Sec. 6.

A simple approach to avoiding the exponentially large sum ofEq. (6) is to use
an available-case-analysis (ACA) approximation to the complete case formula of
Eq. (4). In ACA one uses as much of the available observed dataas possible. So,
considering the structure of Fig. 1, any row in the database that contains the obser-
vationsX1 = 0 andX3 = 0 would increment the count#D(x3,0, ν3,1) regardless
of the missing values, as any instance withX1 = 0 reachesν3,1.

An even simpler approach to learning from incomplete data iscomplete-case-
analysis (CCA) where any row in the database that misses values for some variables
is removed from the database and any method that requires complete data can then
subsequently be applied.

5



Algorithm 1 The structural EM procedure
1: procedure SEM(D)
2: LetG0 = 〈G0,Θ0〉 be the initial model.
3: n← 0
4: repeat
5: Θ

n+1 ← argmax
Legal Θ

Q(〈Gn,Θ〉,D|DO,Gn)

6: Gn+1 ← argmax
G∈N (Gn)

Q(〈G, ·〉, D|DO, 〈Gn,Θn+1〉)

7: Gn+1 ← 〈Gn+1,Θn+1〉
8: n← n + 1
9: until Q(Gn,D|DO,Gn−1) ≤ Q(Gn−1, D|DO,Gn−1)

10: return Gn−1

3.1. The EM principle in structural learning

If we view the missing partDM of incomplete dataD as a random variable
governed by (unknown) distributionP ∗, we can compute the expected log likeli-
hood ofD in modelG as:

E[L(D,G)|DO , P ∗] =
n
∑

i=1

ri
∑

h=1

vi
∑

j=1

E[#D(xi,h, νi,j)] log p
νi,j
xi,h

, (7)

where the second expectation also is with respect toDO andP ∗. In a structural
EM algorithm like the one proposed by Friedman [6], we optimise the expected
likelihood instead of directly optimising the likelihood which in the presence of
incomplete data no longer decomposes. Decomposability of the likelihood is im-
portant for model selection in which the search procedure ineach step evaluates
candidate models from a neighbourhood that is generated from a current model by
local transformation. We define the expected score as a function Q:

Q(G,D|DO,G∗) = (1 − λ)E[L(D,G)|DO ,G∗] − λsize(G) . (8)

In Eq. (8) we use the current modelG∗ as the reference distributionP ∗. The struc-
tural EM procedure can now be stated as in Algorithm 1.

First, in line 5 of Alg. 1 we basically need to find MAP parameters for G.
Exact methods are usually intractable, so normally some approximation method is
employed. Originally, Friedman [6] proposed to use a standard EM approach in this
step while Peña et al. [17] propose as a more computationally efficient alternative
to use thebranch and boundprocedure of Ramoni and Sebastiani [18]. However,
the choice of approach in this step is not crucial to the following discussion of
Sec. 4.

Second, in line 6 of Alg. 1, the functionN (·) is the neighbourhood generat-
ing function. We will define simple split and merge operations that implement
structural modifications for generating neighbours from a current PDG modelG.
We will explain how to compute the expectations needed to evaluate the expected
score of a neighbour.
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4. Structual EM for PDG Models

In this section we will explain how Alg. 1 can be applied to PDGmodels. First,
for constructing an initial model we need a forest structureover the variables in the
domain. We accomplish this using the classical algorithm ofChow and Liu [4].
This algorithm induces a maximum weight spanning tree usingmutual information
as the edge-weights. In Sec. 5 we explain how to compute mutual information from
incomplete data.

Inducing the initial tree by finding a maximum weight spanning tree using mu-
tual information as edge-weights is different from previously proposed approaches
for inducing variable forests/trees. In [9] aχ2 test for conditional independence
is used to assign marginally independent variables in different trees and condition-
ally independent variables in different sub-trees. In thisstudy we use the above
mentioned mutual information based method as it is less data-intensive compared
to repeatedχ2 tests. Also, the computation of the test statistic for theχ2 test is
problematic when the data is incomplete, and it is known thatthe type II error
associated with the test is high if the data is scarce, which may increase the risk
of acceptance of independencies that are not supported by the data. Restricting
the forest to a single tree does not limit the expressivity ofthe models that can be
obtained, but it may produce models with a higher number of parameters.

Assuming that we have the initial tree structureF over the variables, we ini-
tialise a PDG model as follows: for every variableXi ∈ X with paF (Xi) = Xk,
we createvi = rk new nodes{νi,1, νi,2, . . . , νi,vi

} representingXi. We then con-
nect every nodeνk,j representingXk such thatsucc(νk,j,Xi, xk,z) = νi,z. That
is, for statexk,z of variableXk the nodeνi,z is always reached. Constructing the
initial PDG model in this way allows every variable to be modelled as marginally
dependent on its parent and its set of children inF .

Finally, we use a random parametrisationΘ0 of the initial structureG0.

4.1. The Neighbourhood of a Model

In this subsection we explain how the neighbourhoodN (G) of a PDG struc-
tureG is generated. We include operations that work on the PDG structure only,
and leave the structure over the variables fixed. Operationsthat change the struc-
ture over the variables (e.g. operations that swap the position of two variables) are
problematic as they potentially require the creation of a lot of new node connec-
tions. Offhand, it is not intuitive to us how to best do this ingeneral, and therefore
we choose to focus on the following two less dramatic structural changes, namely
splitting and merging parameter nodes. These operations have both previously
been used by Jaeger et al. [9] for learning in the case of complete data. Jaeger et al.
[9] use an additional third operator that redirects edges. We leave this operator out
of the algorithm for simplicity.

Merging Nodes.The merge operator takes a pair of nodes{νi,a, νi,b} representing
the same variableXi. The nodesνi,a andνi,b are selected such that for any state
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xi,h ∈ R(Xi) and childXj ∈ chF (Xi), succ(νi,a,Xj , xi,h) = succ(νi,b,Xj , xi,h).
The merge operation then simply consists in replacing nodesνi,a andνi,b with a
new nodeνi,c, whereνi,c has as children exactly the children ofνi,a (or νi,b) and as
parents inherits the union of parents ofνi,a and parents ofνi,b.

Splitting Nodes.The splitting operator takes as input a single nodeνi,j with m

parents where2 ≤ m, and replacesνi,j with m new nodes all representingXi.
Each new node inherits all the children ofνi,j, and exactly one unique parent of
νi,j.

4.2. The candidate-space

Before continuing with the further development of the algorithm, we will in-
vestigate the properties of the space of candidate models that we can reach with the
split and merge operations as defined in Sec. 4.1.

We formally define the neighbourhoodN as follows:

Definition 4.1. Let F be a set of functionsf : G → G whereG is the set of all
valid PDG structures according to syntactical definition 2.1. Then the neighbour-
hoodNF of G ∈ G is defined as:

NF (G) = {G′ : ∃f ∈ F [f(G) = G′]} . (9)

The candidate-spaceC is defined as the set of models that can be reached by
traversing neighbourhoods.

Definition 4.2. LetF andG be as in Def. 4.1, then the candidate spaceCF given
an initial modelG0 ∈ G is defined as:

CF (G0) = {G′ : G′ ∈ NF (G0) ∨ ∃G∗[G∗ ∈ NF (G0) ∧ G′ ∈ CF (G∗)]} .

(10)

Lemma 4.1. LetGF the set of PDG structures with the same underlying variable-
forestF , let F = {merge, split} where merge and split are the operations defined
in Sec. 4.1. LetG0 be an arbitrary PDG structure with variable-forestF , then:

CF (G0) = GF . (11)

Proof: We will show that for any two PDG structuresG and G∗ that respects
the same underlying variable forestF , we can transformG into G∗ by a series of
merge and split operations.

The first step in the transformation is to merge all nodes inG from the leaves
and up to the root. This results in a structure in which every variable is represented
by exactly one unique node. Then, from the root and down to theleafs we do the
following for each variableX:
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1. split the single node representingX in G

2. merge the nodes representingX in G to reconstruct the local structure be-
tweenX and its parent inG∗

�

Lemma 4.1 says that any valid PDG structure within the same variable structure
is reachable from the initial model.

4.3. Scoring a Neighbour Model

In this section we detail how to compute the scoreQ(〈G′, ·〉,D|DO , 〈G,Θ〉)
of a neighbourG′ ∈ N (G) generated by merging two nodes or splitting a node.
In fact, we will not compute the full expected score, but onlythe terms that are
different.

4.3.1. Scoring a Merge Operation
Assume PDGG′ is constructed from PDGG = 〈G,Θ〉 by merging nodes

νi,a, νi,b ∈ Vi in structureG. Let the nodeνi,c be the one replacingνi,a andνi,b

in G′, and assume that we have computed (and stored) all expected counts for all
nodes. Then, computing the expected counts for modelG′ under distributionP G

reduces to computing expected counts forνi,c, which can be done efficiently from
expectations#D(xi,h, νi,a) and#D(xi,h, νi,b), that is :

E[#D(xi,h, νi,c)|DO,G] =

E[#D(xi,h, νi,a)|DO,G] + E[#D(xi,h, νi,b)|DO,G] . (12)

Hence, computing the difference in expected score∆Qmerge(νi,a, νi,b) reduces to
computing the difference between the terms of the expected score involving nodes
νi,a andνi,b and the new nodeνi,c:

∆Qmerge(νi,a, νi,b) = Q(G′,D|DO,G) − Q(G,D|DO,G)

= (1 − λ)

(

ri
∑

h=1

E[L
νi,c

h − L
νi,a

h − L
νi,b

h |DO,G]

)

+ λ · (ri − 1) (13)

whereνi,c is the node resulting from mergingνi,a and νi,b, andL
νi,j

h is the
term in the log-likelihood corresponding to nodeνi,j and thehth state ofXi. The
expectation in (13) obviously can be computed term by term, and we see that
E[L

νi,c

h |DO,G] = E[#D(xi,h, νi,c)|DO,G] log E[p
νi,c
xi,h

|DO,G], where the expec-

tationE[p
νi,c
xi,h

|DO,G] is computed as the fractionE[#D(xi,h,νi,c)|DO,G]
E[#D(νi,c)|DO ,G] . The count

#D(νi,a) is just
∑ri

h=1 #D(xi,h, νi,a).
The expectationsE[#D(xi,h, νi,j)|DO,G] for any statexi,h ∈ R(Xi) and node

νi,j ∈ Vi are exactly the expectations we would compute in the parametric EM
step in line 5 of Alg. 1. Therefore, these counts have alreadybeen computed for
structureGn in line 5 of Alg. 1, and can easily be made available at no extracost.
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4.3.2. Scoring a Split Operation

Let inc(νi,j) be the set of edges incoming toνi,j in PDG structureG = 〈V,E〉,
that is inc(νi,j) = {(νk,z, νi,j) ∈ E}. By luνi,j

we will denote theu’th element of
inc(νi,j) under some ordering. Withνu

i,j we denote the node replacingνi,j for its
uth incoming edge. Nodeνi,j is representing variableXi and let the parent ofXi

in the variable forest beXk, hence by the definition of PDG structure, all parent
nodes ofνi,j represent variableXk. The expected countsE[#D(νu

i,j, xi,h)|DO,G]
for the nodeνu

i,j whereluνi,j
= (νk,z, νi,j) is labelled with statexk,g is then:

E[#D(νu
i,j , xi,h)|DO,G] = E[#D(νk,z, xk,g, xi,h)|DO,G] . (14)

The expectation in Eq. (14) can not be reconstructed from expected counts already
computed forG in the structural parametric EM step of Alg. 1 (line 5) as was the
case for the counts needed to evaluate a merge operation. However, anticipating
that we will need such counts, we can store them during the computation of expec-
tations in line 5 of Alg. 1. Assume that we have these expectedcounts available for
structureG under the distribution defined by the PDG modelG = 〈G,Θ〉. We can
then compute the difference∆Qsplit(νi,j) = Q(G′,D|DO,G) − Q(G,D|DO,G)
for PDG modelG′ with structureG′ generated by splitting nodeνi,j in structureG,
as follows:

∆Qsplit(νi,j) = Q(G′,D|DO,G) − Q(G,D|DO,G)

= (1 − λ)

[

ri
∑

h=1

(

m
∑

u=1

E[L
νu

i,j

h |DO,G]

)

− E[L
νi,j

h |DO,G]

]

− λ(|inc(νi,j)| − 1)(ri − 1) , (15)

where the log-likelihood termsL·
· are as described in Sec. 4.3.1. Further, it is clear

that we can not split a root node as it has no parents.

4.4. Computing the Expectations

In order to compute the expected counts in sections 4.3.1 and4.3.2, it is neces-
sary to calculate probabilities of the formP G({ν is reached∧ Xi = xi}|Y = y)
for all Xi ∈ X andν ∈ Vi, whereG is a PDG over variablesX andy is a joint
observation of variablesY ⊂ X.

The computation of such probabilities can be done efficiently by the procedure
described by Jaeger [8], which carries out the inference in time linear in the size of
the PDG model. We will briefly describe this procedure in the following, and we
refer the reader to Jaeger [8], Section 4 for details on PDG inference.

Broadly speaking, belief updating in a PDGG in the presence of evidence
Y = y is done by first restrictingG to Y = y. A PDG G over variablesX
is restricted toY = y by setting for each variableXi ∈ Y and each nodeνi,j

representingXi ∈ Y the parameterpνi,j to 0 for every statexi,k 6= y[Xi] and
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leaving the parameter unchanged for statey[Xi]. What we need to do to compute
the probability of some subsetW ⊂ R(X) obviously is:

P G(W) =
∑

w∈W

∏

Xi∈X

p
reachG(i,w)
w[Xi]

. (16)

WhenG has been restricted to evidenceY = y, the probability of (16) is in fact
P G(W,Y = y). We will be particularly interested in computing (16) whenW is
the partition ofR(X) that reaches a specific nodeν in the model. To do this we
compute for each node in the structure parts of the product in(16), namelyin-flow
andout-flow. Let F denote the forest of variable trees inG, then the out-flow is
computed by the recursive formula:

ofl(νi,j) =
∑

xi,h∈R(Xi)

p
νi,j
xi,h

∏

Y ∈chF (Xi)

ofl(succ(νi,j , Y, xi,h)) . (17)

Whenνi,j is a root, we compute in-flow as

ifl(νi,j) =
∏

ν 6=νi,j ,ν is root

ofl(ν) . (18)

Whenνi,j is not a root andXp is the parent ofXi in the variable forest, in-flow can
be computed as:

ifl(νi,j) =
∑

xp,h∈R(Xp)

∑

νp,k:

νi,j=succ(νp,k,Xi,xp,h)

[ifl(νp,k)p
νp,k
xp,h

∏

Y ∈chF (Xp)\Xi

ofl(succ(νp,k, Y, xp,h))] .

(19)
Computingofl values is easily done recursively bottom-up in the structure, and

in this traversal we store for each nodeνi,j and statexi,j ∈ R(Xi) the value:

π
νi,j
xi,h

=
∏

Y ∈chF (Xi)

ofl(succ(νi,j, Y, xi,h)) . (20)

Now, if W is the set of configurations reaching nodeν, thenP ({ν is reached}) =
P (W) = ifl(ν) · ofl(ν). Whenifl , ofl andπ have been computed for every node
in GY=y and states of the variables, we can computeP G({νi,j is reached∧ Xi =
xi,h}|Y = y) as:

P G({νi,j ∧ xi,h}|Y = y) =
1

P G(Y = y)
ifl(νi,j) · p

νi,j
xi,h

· π
νi,j
xi,h

, (21)

whereP G(Y = y) =
∏

ν∈ rootsofl(ν). The next example is aimed to illustrate the
process of computing probabilities in PDGs.

Example 4.1. Consider a PDGG for variablesX0,X1,X2andX3 and structure
as in the left hand side of Fig. 1(b). Assume that the parameter nodes are instanti-
ated with the following local distributions:
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pν0,0 = (0.2, 0.8) pν1,0 = (0.7, 0.3) pν1,1 = (0.4, 0.6) pν2,0 = (0.1, 0.9)
pν2,1 = (0.8, 0.2) pν3,0 = (0.6, 0.4) pν3,1 = (0.3, 0.7) pν3,2 = (0.5, 0.5)

If we want to compute any probability like, for instance,P G({ν1,0 ∧ X1 =
1}|X3 = 0), the first step is to obtainGX3=0, which is the restriction ofG to
X3 = 0. It is computed by replacingpν3,0, pν3,1 and pν3,2 by pν3,0 = (0.6, 0),
pν3,1 = (0.3, 0) andpν3,2 = (0.5, 0).

Next we have to compute the outflows and finally the inflows. Theoutflows for
the leaf parameter nodes are easy to compute:ofl(ν3,0) = 0.6, ofl(ν3,1) = 0.3,
ofl(ν3,2) = 0.5, ofl(ν2,0) = 1 andofl(ν2,1) = 1. For the other nodes we have

ofl(ν1,0) = 0.7 × ofl(ν3,1) + 0.3 × ofl(ν3,0) = 0.7 × 0.3 + 0.3 × 0.6 = 0.39 .

ofl(ν1,1) = 0.4 × ofl(ν3,1) + 0.6 × ofl(ν3,2) = 0.4 × 0.3 + 0.6 × 0.5 = 0.42 .

ofl(ν0,0) = 0.2 × ofl(ν1,0) × ofl(ν2,0) + 0.8 × ofl(ν1,1) × ofl(ν2,1)

= 0.2 × 0.39 × 1 + 0.8 × 0.42 × 1 = 0.414 .

Now we calculate the inflows. As there is only one root,ifl(ν0,0) = 1. The
other inflows are:

ifl(ν1,0) = ifl(ν0,0) × 0.2 × ofl(ν2,0) = 0.2 .

ifl(ν1,1) = ifl(ν0,0) × 0.8 × ofl(ν2,1) = 0.8 .

ifl(ν2,0) = ifl(ν0,0) × 0.2 × ofl(ν1,0) = 1 × 0.2 × 0.39 = 0.078 .

ifl(ν2,1) = ifl(ν0,0) × 0.8 × ofl(ν1,1) = 1 × 0.8 × 0.42 = 0.336 .

ifl(ν3,0) = ifl(ν1,0) × 0.3 = 0.2 × 0.3 = 0.06 .

ifl(ν3,1) = ifl(ν1,0) × 0.7 + ifl(ν1,1) × 0.7 = 0.2 × 0.7 + 0.8 × 0.7 = 0.7 .

Now, we have that the probability of the observation is the outflow stored in the
root parameter node, that is,P (X3 = 0) = 0.414, and therefore we can compute
the probability we were looking for as follows:

P G({ν1,0 ∧ X1 = 1}|X3 = 0) =
1

0.414
× 0.2 × 0.3 × ofl(ν3,0)

=
0.2 × 0.3 × 0.6

0.414
= 0.869 .

At this point we have all the necessary to compute the expected counts as fol-
lows:

E[#D(xi,h, νi,j)|DO,G] =
N
∑

d=1

P G({νi,j ∧ xi,h}|Yd = yd) , (22)
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whereYd is the set of observed variables in thed-th data case, andyd is the value
observed forYd in thed-th data case. Notice thatP G is equal to 1 if, in recordd,
Xi is observed to its valuexi,h andνi,j is reached, and is equal to 0 if it is observed
to a different value orνi,j is not reached. If the value forXi is missing in recordd,
thenP G is computed as in Eq. (21).

The probabilityP G({xi,h ∧ luνi,j
}|Y = y) for link luνi,j

= (νk,z, xk,g) ∈
inc(νi,j) is needed to construct the expected counts in (15), and can becomputed
in GY=y as:

P G({xi,h ∧ luνi,j
}|Y = y) =

1

P G(Y = y)
ifl(νk,z) · p

νk,z
xk,g

·
π

νk,z
xk,g

ofl(νi,j)
· p

νi,j
xi,h

· π
νi,j
xi,h

. (23)

5. Estimating the Mutual Information with Missing Data

The mutual information between two random variablesX andY is defined as:

I(X,Y ) =

|R(X)|
∑

i=1

|R(Y )|
∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (24)

As the joint distribution ofX and Y is unknown, we need to estimate the
mutual information from data. Assume we have a databaseD probably containing
missing data. We require estimates forθij = p(xi, yj), θi. = p(xi) andθ.j = p(yj)
for i = 1, . . . , |R(X)| andj = 1, . . . , |R(Y )|. Actually, we only need to estimate

θij, sinceθi. =
∑|R(Y )|

j=1 θij andθ.j =
∑|R(X)|

i=1 θij.
SinceD may contain missing data, we can use the EM algorithm to estimate

the required parameters. The detailed procedure is given inAlg. 2. Notice that
steps 5 and 9 in algorithm 2 correspond, respectively, to theE and M steps of
algorithm EM.

The valueEij computed in line 7 of Alg. 2 is the expected number of records
in D whereX takes itsi-th value andY takes itsj-th value. It is computed by
exploring all the recordsd ∈ D and calculating, for each record, the probability
P {X = xi, Y = yj|d,Θn}. That is, we compute:

E [#D(X = xi, Y = yj)|Θ
n] =

∑

d∈D

P {X = xi, Y = yj |d,Θn} . (25)

The probability in Eq. (25) will be equal to 0 if the record hasa value different to
(xi, yj) and equal to1 if the record is exactly equal to(xi, yj). If some of the cells
in the record is missing, the probability is computed using the current estimates
Θn.
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Algorithm 2 EM for estimating the mutual information
1: procedure EM MutualInformation(D)
2: Let Θ0 = {θij , i = 1, . . . , |R(X)|, j = 1, . . . , |R(Y )|} be a random parametrisation of

p(x, y).
3: n← 0.
4: repeat
5: for all i = 1, . . . , |R(X)| do
6: for all j = 1, . . . , |R(Y )| do
7: Eij ← E [#D(X = xi, Y = yj)|Θ

n]

8: Θ
n+1 ← ∅

9: for all i = 1, . . . , |R(X)| do
10: for all j = 1, . . . , |R(Y )| do
11: θn+1

ij ←
Eij

P|R(X)|
k=1

P|R(Y )|
l=1

Ekl

12: Θ
n+1 ← Θ

n+1 ∪ {θn+1
ij }

13: n← n + 1.
14: until L(D|Θn) ≤ L(D|Θn−1).
15: EstimateI(X, Y ) as:

Î(X, Y ) =

|R(X)|
X

i=1

|R(Y )|
X

j=1

θ
n−1
ij log

θn−1
ij

θn−1
i. θn−1

.j

.

16: return Î(X, Y ).

6. Experiments

In this section we investigate experimentally the performance of our proposed
procedure to learning from incomplete data. More specifically, we set out to answer
the following questions:

1. Can we justify the use of the computationally heavy EM-principle for learn-
ing PDG models in situations when more efficient approaches exists?

2. How does the quality of PDG models learned by Alg. 1 compareto the qual-
ity of BN models learned by existing conventional procedures?

In order to test Alg. 1 we have performed experiments over three synthetic
databases. The databases have been generated from random PDG models over 10,
20 and 40 variables. We will refer to these models as rnd10, rnd20 and rnd40
respectively. The models were generated with the followingrestrictions:

1. The models contain a single connected component1.

2. Variables are categorical with between 2 and 5 states.

3. The models contain moderate branching on both the variable tree level and
in the graph structure.

1This means that multiple connected components like the example structure of Fig. 1 is not pos-
sible.
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4. All parameters where initialised to random multivariatedistributions, fol-
lowing the procedure of Caprile [3].

From each of the 3 PDG models, we constructed four databases containing 250,
500, 1000 and 2000 complete samples. For each of the 12 databases, we have con-
sidered different rates of missing values, ranging from5% to 30%. For each rate of
missing values we generated 50 databases from the original (complete) database by
randomly erasing the value in a fraction of the cells according to the rate of missing
values. The learning algorithm was then executed on each of the 50 databases mea-
suring the quality of the learned model as the log-likelihood of a separate validation
database containing 10000 complete samples.

As score function we used theSλ function of equation (2) withλ adjusted
according to the size of the database to give a tradeoff between size and likelihood
equivalent to the one imposed by the BIC score2. Finally, in order to speed up the
algorithm, we put a limit of 10 iterations in each parametricEM3 and 100 iterations
in structural EM (the loop of Alg. 1).

6.1. Initial Results

In Fig. 2(a-c) we show plots of mean and standard deviation ofthe log-likelihood
of models learned in the experiments described above. That is, for each ratem of
missing values and each sample size, 50 databases where generated by randomly
removingm% of the values. The means and standard deviations were then esti-
mated from these 50 results.

First, the plots of Fig. 2 in general show the expected behaviour as mean log-
likelihood decreases as a result of increasing the proportion of missing cells in the
training data, while standard deviation increases. We note, also as expected, that
the experiments on the larger data sets reach higher likelihood on the validation
data and also show a more stable performance with lower increase in standard
deviation as the rate of missing values is increased.

Second, in the experiment using 2000 samples from the rnd10 model (Fig. 2(a))
we observe an increase in likelihood up until a rate of 15% missing values. This
behaviour may be caused by the algorithm over-fitting to the complete (0% miss-
ing values) training data, while the introduction of some missing values helps the
algorithm learn a less specific model with better ability to generalise. That this
over-fitting is most clearly pronounced for the larger databases may be explained
by the fact that parameters where smoothed by adding a fictivecount of 1 to every
count. For smaller databases this will of course yield a moreaggressive smoothing
of parameters. We observe similar though less pronounced behaviour in the other
two plots in Fig. 2(b-c).

2Settingλ =
“

2N
log(N)

+ 1
”−1

whereN is the number of observations yields BIC tradeoff.
3We run a 100 iterations parametric EM to optimise the parameters of the final model.
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Figure 2: Mean and standard deviation of log-likelihood of avalidation set of 10000 complete sam-
ples computed in the models learned from datasets sampled from model rnd10 (a), rnd20 (b) and
rnd40 (c). The log-likelihood of the generating models are indicated beneath the plots.

6.1.1. The importance of the initial tree-structure
In this section we will investigate two aspects of the problem of choosing a

starting point for our SEM algorithm. First, we study the effect of the structural
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learning applied after learning an initial tree from the Chow-Liu tree model. Next,
we investigate the effect of using the generative models tree structure as a starting
point.

The Chow-Liu tree model.As explained earlier, the initial tree structure is cre-
ated using the classical algorithm of Chow and Liu [4] shown in Sect. 4. This
initial model is itself a very commonly used model in probability estimation due to
its simple restricted syntax and consequently efficient learning and inference. We
therefore compare the quality of our final model to this initial model. From each
experiment with missing data (72 total) we measured the likelihood of the valida-
tion data in the initial model as well as in the final PDG model.Using a Wilcoxon
signed rank test for paired samples with significance level 0.05, we found signifi-
cantly lower likelihood of the PDG model in only 2 cases, no significant difference
in 5 cases while in 65 cases we found significant better likelihood of the PDG
model.

The two cases in which the PDG model performed significantly worse was
both using 500 samples of the rnd10 model, one with 25% and theother with 30%
missing cells. This indicates that it is not a generally occurring phenomenon, but
rather an observation that is specific to this one database when the rate of missing
cells is high.

The 5 cases where no significant difference could be established was for the
experiments using the 250 samples of rnd10 with 30% missing,the 500 samples of
rnd10 with 20% missing, the 250 samples of rnd20 with 30% missing, the 500 sam-
ples of rnd20 with 30% missing and the 500 samples of rnd40 with 30% missing.
The general property of these databases is a relatively small number of samples
and a high degree of missing cells. This indicates that when data is limited and the
degree of missing cells is high it has no significant effect onthe model to try to
optimise it by the local structural modifications.

As we do see a significant improvement in quality of the model in the 65 re-
maining experiments we will draw the conclusion in general (when data is not very
limited and with a high degree of missing cells) it is worth the trouble of refining
the induced Chow-Liu tree structure with split and merge operations.

The generating model as seed.The two phased learning procedure of first inducing
a variable tree and the subsequently inducing a PDG model w.r.t. this tree raises
the question of whether the trees learned by the Chow-Liu method is good starting
point for the PDG learning. To gain insight into this question, we repeated the
experiments with the synthetic data, but this time using thetree from the generating
models in all experiments.

For each generative model (rnd10, rnd20 and rnd40) we have performed a
Wilcoxon signed rank test for paired samples using the mean log-likelihood in
the two measurements: 1) from learning a Chow-Liu tree as a starting point to the
structural search and 2) using the trees extracted from the generative model as a
starting point. The null hypothesis is that there are no difference, while the alter-
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native hypothesis is that measurement 2 is higher than measurement 1, hence we
are doing a one-sided test. Thep-values are close to 1 for both rnd10 and rnd20,
while for rnd40 we get ap-value of 6.45E-6. When inspecting the learned mod-
els in all three cases, we saw that the learned models is always much smaller than
the generative model, which may indicate that the generative models contain much
redundancy.

That the use of the tree structure of the generative model as astarting point
for rnd10 and rnd20 does not result in significant improvement in the quality of
the models indicates that for smaller to moderate sized domains, the underlying
structure is less important. However, the lowp-value for rnd40 indicates that for
larger domains, the initial structure is more important to the final quality of the
model.

6.1.2. Alternative approches to learning under the MCAR assumption
When data is missing completely at random (MCAR), there exist at least a

few simple and valid alternatives to the EM-framework. We have experimented
with two simple alternatives to EM, namely complete case analysis (CCA) and
available case analysis (ACA). Both methods was briefly explained in Sec. 3. Here,
we comment on experiments in which CCA (or ACA) was used for estimating
parameters for a given structure (line 5 of Alg. 1).

As expected, CCA proved to be an inadequate alternative as the performance
drops very fast and already performs significantly worse than SEM learning at the
first level of 5% missing cells.

The performance of the more sophisticated ACA procedure is much more com-
petitive. For each generative model (rnd10, rnd20 and rnd40) we performed a
Wilcoxon signed rank test for paired samples using the mean log-likelihood in the
two measurements: 1) from learning by SEM (Alg. 1) and 2) learning by ACA
procedure. The null hypothesis is that there are no difference, while the alterna-
tive hypothesis is that measurement 1 is higher than measurement 2, hence we are
doing a one-sided test. For none of the databases did we find significant support
for stating that SEM performs better than ACA (p-value of 0.2257; 0.2759 and
0.1693, respectively). In Fig. 3 we include a plot showing the development of log-
likelihood for each size of training data and rate of missingvalues. Here it can
be seen that SEM usually performs better on larger training data, while ACA can
beat SEM when training data is small. To answer the question of whether we can
justify the use of the SEM algorithm compared to the conceptually simpler ACA
procedure therefore seems to depend highly on the database,and no general rule
can be stated.

6.2. PDG models vs. BN models

In this section we investigate the quality of the PDG models learned with the
BN models learned by the SEM for BN models proposed by Friedman [6]. To this
end, we have conducted an experimentation on the synthetic data described earlier
as well as on two real databases.
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Figure 3: Comparison between a available case analysis (ACA) learning procedure and Algorithm 1
in plots (a-c).

6.2.1. Synthetic data

The results of the comparison between Alg. 1 for inducing PDGs and Fried-
man’s structural EM for inducing Bayesian networks, for thesynthetic databases
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Figure 4: Comparison between the SEM of Friedman [6] for BN models and our SEM for PDG
models (Alg. 1).

rnd10, rnd20 and rnd40 are displayed in Figure 4, where the average of the log-
likelihood over all the records over a separate 10000-register test database is shown
for database sizes ranging from 250 to 2000 and missing ratesfrom 5% to 30%.
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Figure 5: Comparison between the SEM of Friedman [6] for BN models and our SEM for PDG
models (Alg. 1) on rnd14 generated data. Subfigure (a) compares obtained log-likelihoods while (b)
shows the size in number of free parameters defined by each model respectively.

The target was to show if Alg. 1 is able to obtain PDGs comparable to BNs in terms
of likelihood and size (number of parameters). It would result in an advantage in
favour of PDGs if they are going to be used for probabilistic inference, as they are
generally more efficient, in relation to size, for probabilistic inference tasks, than
BNs [8]. The plots in Figure 4 agree with this target, but usually with an edge
in favour of BN models in terms of likelihood, except for highmissing rates, in
which PDGs get much closer. In order to check whether the sizes of the obtained
models also agreed with the expected results, we measured the number of parame-
ters of the models learnt from each database, finding out thatthe BNs were much
more compact in general than PDGs, especially for high missing rates. This fact
seemed surprising. However, we noticed that the learnt BNs were usually sparse,
with many disconnected variables. It suggests that the dataused in the experiments
actually contained many independencies, especially for small databases and high
missing rates. It would explain that the obtained PDGs have more parameters than
the BNs in general, because unlike the algorithm for learning from complete data
presented in [9], we do not allow the variables to conform a forest, but just a single
tree, due to the difficulties to carry out theχ2 tests. This means that in order to
represent in the structure a variable as independent from the rest, it would have to
be represented by a single node, which in turn means that somemerge operations
should be performed. Our merge operation, as defined in Sec. 4.1 may be too re-
stricted by the requirement that the children of two nodes being considered for a
merge must be the same. Therefore, the PDGs obtained by Alg. 1are prone to be
more complex than necessary if there are many independencies supported by the
data.

We conducted a second experiment to check this conjecture. The scheme was
the same used for the former databases, but now we used another data set con-
taining fewer independencies and larger size compared to the sample space. We
obtained it by sampling 5000 records from a BN densely connected containing 14
binary variables. This network is a subnetwork of the randomnetwork used in
[2]. The results of this experiment, in terms of likelihood measured on a separate
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test set of size 5000, are shown in Figure 5. The obtained models report similar
likelihoods, again with a slight edge for BNs. However, in this case the PDGs are
much more compact, with sizes around one half of the BNs. ThatPDGs are more
compact is important when one wishes to perform exact inference as for PDGs this
is possible in linear time in the model size, while the same isnot true in general for
BN models.

A more restricted version of the BN model is theNäıve Bayes model(NB) for
probability estimation. This is a special kind of BN model inwhich the structure is
fixed to include no connections between the observed variables and include an arti-
ficial latent variable that is the unique parent of every variable. The NB model has
been shown to provide good accuracy when learned from complete data (see [11]),
and we have performed experiments with this model to investigate its performance
when learned from incomplete data. The NBE algorithm proposed by Lowd and
Domingos [11] learns a NB model by iteratively increasing the cardinality of the
latent variable and estimating parameters for the model by applying standard EM,
until the likelihood of the model given a separate hold-out dataset did not increase.
In our experiments we used a modified version of the NBE algorithm where the
main difference was that we used the score of Eq. (2) withλ configured to tradeoff
size and likelihood as the BIC score to determine convergence.

In Fig. 6 we have included plots showing detailed information on the learning
of NB models plotted together with the log-likelihood. While the performance of
NBs for data generated from rnd10 and rnd20 models (Fig. 6(a-b)) agrees with our
corresponding observations for BNs (Fig. 4(a-b)), the picture changes for rnd40
(Fig. 6(c)). For the rnd40 data the NB models do not perform competitively when
compared to PDG models. That NB models performs almost as competitively in
the first two experiments is in accordance with the general findings for complete
data as reported in [11]. As explained above, we use a score metric to determine
convergence instead of monitoring likelihood over a separate hold-out dataset as
was originally done for complete data in [11]. Using likelihood over a separate
hold-out dataset instead of a score metric measured over training data, tackles more
directly the problem of over-fitting. This may provide one explanation to our ob-
servation. One other possible explanation is that the EM-parameter estimation gets
stuck in a local optima, which is a well known problem for the EM procedure. A
typical NB model from the rnd40 experiments contains approximately 30000 free
parameters while no PDG model contained more than 1000 free parameters. This
observation is also important when considering computational complexity of exact
inference, as both models provide exact inference in time linear in their size.

It should be noted that the NB model is a member of a broader class of models
that share the property of allowing exact inference to be computed in time linear in
the size of the model, namely the class of decomposable models. While it is known
that for every decomposable model there exists an equivalent PDG model that has
size at most linear to the size of the given decomposable model, the converse is not
true in general (see [8]).
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Figure 6: Comparison between SEM for PDG models (Alg. 1) and learning of NB models.

6.2.2. Real data
For the experiment with real data, we used two databases containing missing

values, both publicly available from the UCI repository (see [13]).

house-votes-84: This database contains information on the disposition of each of
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PDG BN NB

L
house-votes-84 -7.1256±3.0131 -7.0306±3.2524 -7.1143±2.9824
soybean-large -15.9726±4.7736 -14.1852±4.9756 -17.7534±5.2708

S
house-votes-84 49 152 2973
soybean-large 1085 2091 13693

Table 1: Results of leave-one-out analysis of incomplete real data where the missing completely at
random assumption may not be valid. Numbers in the ’L’ rows are mean and standard deviation of
log-likelihood from leave-one-out analysis. Numbers in the ’S’ rows are the size of a model learned
from the full database.

the 435 U.S. House of Representatives congressmen/-women on 16 key votes
(for or against) and their party affiliation (democrat or republican) from the
year 1984. In 288 cases the disposition of the specific congressman/-woman
was unknown, and we treat this as a missing value.

soybean-large : This database contains 307 observations of soybean plantsand
the general health of the plants. For each plant up to 35 pieces of relevant
information is recorded (eg. stem condition, condition of leafs etc.) and
some auxiliary information (date, temperature) together with a label of one
out of 15 diseases.

As the missing values are fixed in these databases, we followed a leave-one-out
strategy to test the algorithms. The results are shown in Table 1. Once more, the
likelihood is better for BNs, but the PDGs are much more compact, which suggests
that these databases do not contain as many independencies as rnd10, rnd20 and
rnd40.

The answer to the question of PDGs performance in comparisonto existing
BN-based approaches put forth in the beginning of this section would then be that
it depends on the use of the recovered models. While unrestricted BN models and
their structure is a rich tool for discussing dependencies found in the data, PDGs
may provide for a more efficient way to do exact inference.

7. Conclusions

In this paper we have introduced an algorithm for learning PDG models in the
presence of missing data. Our proposal was inspired by previous work on learning
BN models from incomplete data by Friedman [6]. With this algorithm, we have
extended the class of problems that can be approached using PDGs.

The experiments conducted show a reasonably good performance of the algo-
rithm. First, a significant improvement over the initial Markov tree models was
demonstrated. Second, the degrading effect on the performance as the rate of miss-
ing data increases is moderate. Third, the experiments carried out to compare the
PDG models with simpler approaches to the missing completely at random prob-
lem, turned out mainly positive for the PDG learning. Available-case-analysis has
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the most competitive performance, and the preference of ACAmethod vs. our
SEM algorithm seems to depend on the size of the training dataavailable.

The comparison with the BNs obtained by Friedman’s structural EM and the
simpler NB learning is much more level. The BNs and NBs are usually slightly
better in terms of likelihood, but the PDGs are typically smaller than both NBs and
BNs, with the exception of BNs for problems where there are many independen-
cies. However, it must be pointed out that PDGs are usually employed as tools for
probabilistic inference, and in that case the efficiency in relation to the number of
parameters is higher for PDGs [8].

The algorithm introduced here can be extended in various ways. For instance,
the use of other scores could be considered. Also, a Bayesianapproach could
be followed as in [7]. Another aspect to be further studied ishow to allow the
induction of forests of variables instead of a single tree, with the aim of being able
to get more compact models.

It should be noted that the approach presented in this paper does not guaranty
to recover the generative model when such a model exists, even with a large data
sample. In the case of complete data this is also still an openproblem that is to
be investigated in future studies. Another obviously interesting focus for future
studies include the extension of the current algorithm to handle scenarios where
unobserved (hidden) variables are known to influence the observed data.
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