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In this paper we address the problem of inducing Bayesian network models for regression
from incomplete databases. We use mixtures of truncated exponentials (MTEs) to repre-
sent the joint distribution in the induced networks. We consider two particular Bayesian
network structures, the so-called näıve Bayes and TAN, which have been successfully
used as regression models when learning from complete data. We propose an iterative
procedure for inducing the models, based on a variation of the data augmentation method
in which the missing values of the explanatory variables are filled by simulating from
their posterior distributions, while the missing values of the response variable are gener-
ated using the conditional expectation of the response given the explanatory variables.
We also consider the refinement of the regression models by using variable selection and
bias reduction. We illustrate through a set of experiments with various databases the
performance of the proposed algorithms.
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1. Introduction

Mixtures of truncated exponentials (MTEs)18 are receiving increasing attention in

the literature, as a tool for handling hybrid Bayesian networks, as they are com-

patible with standard inference algorithms and no restriction on the structure of

the network is imposed.3,17,24 Recently, MTEs have also been successfully applied

to regression problems considering different underlying network structures8,9,20 ob-

tained from complete databases. In a previous preliminary work10 we approached

the problem of inducing Bayesian networks for regression from incomplete databases

by using an iterative algorithm for constructing näıve Bayes regression models. The

algorithm was based on a variation of the data augmentation method27 in which

the missing values of the explanatory variables are filled by simulating from their

posterior distributions, while the missing values of the response variable are gener-

ated from its conditional expectation given the explanatory variables. In this paper

we extend the above mentioned method to obtain networks with TAN12 structures.

Also, the algorithm is extended to incorporate variable selection. Finally, we intro-

duce a method for reducing the bias in the predictions that can be used in all the

models, regardless they have been induced from complete or incomplete databases.

2. The MTE model

We denote random variables by capital letters, and their values by lowercase letters.

We use boldfaced characters to represent random vectors and their values. The

support of the variable X is denoted by ΩX. A potential of class MTE is defined as

follows:18

Definition 1. (MTE potential) Let X be a mixed n-dimensional random vector.

Let W = (W1, . . . , Wd) and Z = (Z1, . . . , Zc) be the discrete and continuous parts

of X, respectively, with c+d = n. We say that a function f : ΩX 7→ R
+
0 is a Mixture

of Truncated Exponentials potential (MTE potential) if for each fixed value w ∈ ΩW

of the discrete variables W, the potential over the continuous variables Z is defined

as:

f(w, z) = a0 +
m

∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)

for all z ∈ ΩZ, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , c are real

numbers. We also say that f is an MTE potential if there is a partition D1, . . . , Dk

of ΩZ into hypercubes and in each Di, f is defined as in Eq. (1).

Definition 2. (MTE density) An MTE potential f is an MTE density if

∑

w∈ΩW

∫

ΩZ

f(w, z)dz = 1 .



July 24, 2009 10:26 WSPC/INSTRUCTION FILE missing˙V2

Learning Bayesian networks for regression from incomplete databases 3

A conditional MTE density can be specified by dividing the domain of the con-

ditioning variables and specifying an MTE density for the dependent variable for

each configuration of splits of the conditioning variables.18,19

Example 1. Consider two continuous variables X and Y . A possible conditional

MTE density for Y given X is the following:

f(y|x) =























1.26− 1.15e0.006y if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18− 1.16e0.0002y if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07− 0.03e−0.4y + 0.0001e0.0004y if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y if 5 ≤ x < 19, 5 ≤ y < 43 .

(2)

3. Regression using MTEs

Assume we have a set of variables Y, X1, . . . , Xn, where Y is continuous and

the rest are either discrete or continuous. Regression analysis consists of find-

ing a model g that explains the response variable Y in terms of the explanatory

variables X1, . . . , Xn, so that given an assignment of the explanatory variables,

x1, . . . , xn, a prediction about Y can be obtained as ŷ = g(x1, . . . , xn). Previous

works on regression using MTEs8,9,20 proceed by representing the joint distribution

of Y, X1, . . . , Xn as a Bayesian network, and then using the posterior distribution

of Y given X1, . . . , Xn (more precisely, its expectation) to obtain a prediction for

Y . The learning procedure consists of fixing the structure and afterwards learning

the parameters of the corresponding conditional densities using a procedure based

on least squares estimation.25

Y

X1 X2 Xn· · ·

Fig. 1. Näıve Bayes structure for regression. The explanatory variables are assumed to be inde-
pendent given the response variable Y .

In this paper we will focus on two particular Bayesian network structures, the so-

called näıve Bayes (NB) and Tree Augmented Näıve Bayes (TAN). The näıve Bayes6

structure is an extreme case in which all the explanatory variables are considered

independent given the response variable. This kind of structure is represented in fig-

ure 1. The reason to make the strong independence assumption behind näıve Bayes

models is that it is compensated by the reduction of the number of parameters to
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Y

X1 X2 Xn

Fig. 2. A TAN structure for regression. Some more dependencies among the explanatory variables
are allowed.

be estimated from data, since in this case, it holds that the conditional distribution

of the response variable can be factorised as

f(y|x1, . . . , xn) = f(y)

n
∏

i=1

f(xi|y) , (3)

which means that, instead of one n-dimensional conditional densities, n one-

dimensional conditional densities are estimated.

The tree augmented näıve Bayes (TAN)12 represents a compromise between the

strong independence assumption and the complexity of the model to be estimated

from data. In this kind of models, additional dependencies are allowed, expanding

the näıve Bayes structure so that the subgraph over the explanatory variables is a

directed rooted tree (see figure 2).

3.1. Constructing a regression model from incomplete data

As we use the conditional expectation of the response variable given the observed

explanatory variables, our regression model will be

ŷ = g(x1, . . . , xn) = E[Y |x1, . . . , xn] =

∫

ΩY

yf(y|x1, . . . , xn)dy ,

where f(y|x1, . . . , xn) is the conditional density of Y given x1, . . . , xn, which we

assume to be of class MTE.

A conditional distribution of class MTE can be represented as in Eq. (2), where

actually a marginal density is given for each element of the partition of the support

of the variables involved. It means that, in each of the four regions depicted in

Eq. (2), the distribution of the response variable Y is independent of the explanatory

variables within each region.

Therefore, from the point of view of regression, the distribution for the response

variable Y given an element in a partition of the domain of the explanatory variables

X1, . . . , Xn, can be regarded as an approximation of the true distribution of the

actual values of Y for each possible assignment of the explanatory variables in that

region of the partition. This fact justifies the selection of E[Y |x1, . . . , xn] as the
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predicted value for the regression problem, because that value is the one that best

represents all the possible values of Y for that region, in the sense that it minimises

the mean squared error between the actual value of Y and its predictions ŷ, namely

mse =

∫

ΩY

(y − ŷ)2f(y|x1, . . . , xn)dy , (4)

which is known to be minimised for ŷ = E[Y |x1, . . . , xn]. Thus, the key point to find

a regression model of this kind is to obtain a good estimation of the distribution of

Y for each region of values of the explanatory variables. The original näıve Bayes

and TAN models8,20 estimate that distribution by fitting a kernel density to the

sample and then obtaining an MTE density from the kernel using least squares.19,25

Obtaining such an estimation is more difficult in the presence of missing values. The

first approach to estimating MTE distributions from incomplete data was developed

in the more restricted setting of unsupervised data clustering.14 In that case, the

only missing values are on the class variable, which is hidden, while the data about

the features are complete.

Here we are interested in problems where the missing values can appear in the

response variable as well as in the explanatory variables. A first approach to solve

this problem could be to apply the EM algorithm,4 which is a commonly used

tool in semi-supervised learning.2 However, the application of the methodology is

problematic because the likelihood function for the MTE model cannot be optimised

in an exact way.16,25

Another way of approaching problems with missing values is the so-called data

augmentation (DA) algorithm.27 The advantage with respect to the EM algorithm is

that DA does not require a direct optimisation of the likelihood function. Instead, it

is based on imputing the missing values by simulating from the posterior distribution

of the missing variables, which is iteratively improved from an initial estimation

based on a random imputation. The DA algorithm leads to an approximation of

the maximum likelihood estimates of the parameters of the model, as long as the

parameters are estimated by maximum likelihood from the complete database in

each iteration. As maximum likelihood estimates cannot be found in an exact way,

we have chosen to use least squares estimation, as in the original näıve and TAN

regression models.

Furthermore, as our main goal is to obtain an accurate model for predicting

the response variable Y , we propose to modify the DA algorithm in connection to

the imputation of missing values of Y . The next proposition is the key on how to

proceed in this direction.

Proposition 1. Let Y and YS be two continuous independent and identically dis-

tributed random variables. Then,

E[(Y − YS)2] ≥ E[(Y − E[Y ])2] . (5)
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Proof.

E[(Y − YS)2] = E[Y 2 + Y 2
S − 2Y YS ]

= E[Y 2] + E[Y 2
S ]− 2E[Y YS ]

= E[Y 2] + E[Y 2
S ]− 2E[Y ]E[YS ]

= 2E[Y 2]− 2E[Y ]2

= 2(E[Y 2]− E[Y ]2)

= 2Var(Y )

≥ Var(Y ) = E[(Y − E[Y ])2] .

In the proof we have relied on the fact that both variables are independent and

identically distributed, and therefore the expectation of the product is the product

of the expectations, and the expected value of both variables is the same.

Proposition 1 motivates our proposal for modifying the data augmentation al-

gorithm, since it proves that using the conditional expectation of Y to impute the

missing values instead of simulating values for Y (denoted as YS in the proposi-

tion), reduces the mse of the estimated regression model. Notice that it is true

even if we are able to simulate from the exact distribution of Y conditional on any

configuration on a region of the values of the explanatory variables.

3.2. The algorithm for learning a regression model from

incomplete data

Our proposal consists of an algorithm which iteratively learns a regression model

(which can be a näıve Bayes or a TAN) by imputing the missing values in each

iteration according to the following criterion:

• If the missing value corresponds to the response variable, it is imputed

with the conditional expectation of Y given the values of the explanatory

variables in the same record of the database, computed from the current

regression model.

• Otherwise, the missing cell is imputed by simulating the corresponding vari-

able from its conditional distribution given the values of the other variables

in the same record, computed from the current regression model.

As the imputation requires the existence of a model, for the construction of

the initial model we propose to impute the missing values by simulating from the

marginal distribution of each variable computed from the observed values. In this

way we have reached better results than using pure random initialisation, which is

the standard way of proceeding in data augmentation.27 Another way of proceeding

could be to simulate from the conditional distribution of each explanatory variable

given the response, but we rejected this option because the estimation of the condi-

tional distributions requires more data than the estimation of the marginals, which

can be problematic if the number of missing values is high.
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Algorithm 1: Bayesian network regression model from missing data

Input: An incomplete database D for variables Y, X1, . . . , Xn. A test

database Dt.

Output: A Bayesian network regression model for response variable Y and

explanatory variables X1, . . . , Xn.

for each variable X ∈ {Y, X1, . . . , Xn} do1

Learn a univariate distribution fX(x) from its observed values in D.2

end3

Create a new database D′ from D by imputing the missing values for each4

variable X ∈ {Y, X1, . . . , Xn} by simulating from fX(x).

Learn a Bayesian network regression model M ′ from D′.5

Let srmse′ be the sample root mean squared error of M ′ computed using Dt6

according to Eq. (6)

srmse←∞.7

while srmse′ < srmse do8

M ←M ′.9

srmse← srmse′.10

Create a new database D′ from D by imputing the missing values as11

follows:

for each variable X ∈ {X1, . . . , Xn} do12

for each record z in D with missing value for X do13

Obtain fX(x|z) by probability propagation in model M .14

Impute the missing value for X by simulating from fX(x|z).15

end16

end17

for each record z in D with missing value for Y do18

Obtain fY (x|z) by probability propagation in model M .19

Impute the missing value for Y with EfY
[Y |z].20

end21

Re-estimate model M ′ from D′.22

Let srmse′ be the sample root mean squared error of M ′ computed using23

Dt.
end24

return M25

The algorithm (see algorithm 1) proceeds by imputing the initial database, learn-

ing an initial model and re-imputing the missing cells. Then, a new model is con-

structed and, if the mean squared error is reduced, the current model is replaced

and the process repeated until convergence. As the mse in Eq. (4) requires the

knowledge of the exact distribution of Y conditional on each configuration of the

explanatory variables, we use as error measure the sample root mean squared error,
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Algorithm 2: Selective Bayesian network regression model from missing data

Input: An incomplete database D for variables Y, X1, . . . , Xn. A test

database Dt.

Output: A Bayesian network regression model made up of the response

variable Y and a subset of explanatory variables S ⊆ {X1, . . . , Xn}.

for i← 1 to n do1

Compute Î(Xi, Y ).2

end3

Let X(1), . . . , X(n) be a decreasing order of the feature variables according to4

Î(X(i), Y ).

Using algorithm 1, construct a regression model M with variables Y and5

X(1) from database D.

Let rmse(M) be the estimated accuracy of model M using Dt.6

for i← 2 to n do7

Let M1 be the model obtained by the algorithm 1 with the variables of8

M plus X(i).

Let rmse(M1) be the estimated accuracy of model M1 using Dt.9

if rmse(M1) ≤ rmse(M) then10

M ←M1.11

end12

end13

return M .14

computed as

srmse =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)2 , (6)

where m is the sample size, yi is the observed value of Y for record i and ŷi is its

corresponding prediction through the regression model.

The details are given in algorithm 1. Notice that, in steps 5 and 22 the regression

model is learnt from a complete database, and therefore the existing estimation

methods for MTEs can be used.25,20 Also, notice that the algorithm is valid for any

Bayesian network structure, and therefore it is valid for our purpose, which is to

learn a NB or a TAN, just by calling to the appropriate procedure in steps 5 and

22. For learning the NB regression model, we use the method described in Morales

et al.20 and for learning the TAN, the algorithm in Fernández et al.8

We have also incorporated variable selection in the construction of the regression

models9,20 as described in algorithm 2. We have followed a filter-wrapper approach,

based on the one proposed by Ruiz et al.,23 using as filter measure the mutual infor-

mation between each variable and the class. The filter-wrapper approach proceeds
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by sorting the variables according to a filter measure, and then constructing a se-

ries of models including the variables in sequence, one by one, in such a way that

a variable is kept in the model only if it increases the accuracy with respect to the

previous model.

The mutual information has been successfully applied as filter measure in classi-

fication problems with continuous features.21 The mutual information between two

random variables X and Y is defined as

I(X, Y ) =

∫

∞

−∞

∫

∞

−∞

fXY (x, y) log2

fXY (x, y)

fX(x)fY (y)
dydx , (7)

where fXY is the joint density for X and Y , fX is the marginal density for X and

fY is the marginal for Y .

In the case of MTE densities, the integral in Eq. (7) cannot be obtained in closed

form. Therefore, we have estimated it by Monte Carlo.20

Algorithm 3: Computing a vector of bias to refine the predictions

Input: A full database D for variables Y, X1, . . . , Xn.

A regression model M .

Output: vBias, a vector of biases.

Run a hierarchical clustering to obtain a dendrogram for the values of Y .1

Determine the number of clusters, numBias, using the dendrogram.2

Partition D into numBias partitions D1, . . . , DnumBias by clustering Y3

using the k-means algorithm.

for i← 1 to numBias do4

Compute vBias[i] by (8) using Di and M .5

end6

return vBias, a vector of estimated expected biases.7

4. Improving the final estimations by reducing the bias

In existing approaches to using MTEs for regression, the prediction that is used is

a corrected version computed by subtracting an estimated expected bias from the

prediction provided by the model.20 That is, if Y is the response variable and Y ∗ is

the response variable actually identified by the model, i.e., the one that corresponds

to the estimations provided by the model, then the expected bias is E[b(Y, Y ∗)] =

E[Y − Y ∗], which is estimated as20

b̂ =
1

m

m
∑

i=1

(yi − y∗

i ) , (8)
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where yi and y∗

i are the exact values of the response variable and their estimates in

a test database of m records.

Finally, the estimates were corrected by giving y∗

i − b̂ as the final estimation for

item number i.

We have improved the estimation of the expected bias by detecting homogeneous

regions in the set of possible values of Y and then estimating a different expected

bias in each region. The domain of the response variable is split using the k-means

clustering algorithm, determining k by exploring the dendrogram. In this work we

have considered a maximum value of k = 4, as we didn’t reach any improvement

by increasing its value in the experiments carried out.

Therefore, instead of a single estimation of the expected bias, b̂ now we compute

a vector of estimations of the expected bias, b̂j, j = 1, . . . , k, and the final estimation

given is y∗

i − b̂j(i), where j(i) denoted the cluster where y∗

i lies in. The procedure

for estimating the bias is detailed in algorithm 3.

This new bias estimation heuristic is not really costly, and provides important

increases in accuracy. Therefore, we have used it in the experiments reported in

Sec. 5.

Database Size # Cont. # Disc.

abalone 4176 8 1

auto-mpg 392 8 0

bodyfat 251 15 0

cloud 107 6 2

concrete 1030 9 0

forestfires 517 11 2

housing 506 14 0

machine 209 8 1

pollution 59 16 0

servo 166 1 4

strikes 624 6 1

veteran 137 4 4

mte50 50 3 1

extended mte50 50 4 2

tan 500 3 2

extended tan 500 4 3

Table 1. A description of the databases used in the experiments, indicating their size, number of
continuous variables and number of discrete variables.
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5. Experimental evaluation

In order to test the performance of the proposed regression models, we have carried

out a series of experiments over 16 databases, four of which are artificial (mte50,

extended mte50, tan and extended tan).

The mte50 dataset20 consists of a random sample of 50 records drawn from a

Bayesian network with näıve Bayes structure and MTE distributions. The aim of

this network is to represent a situation which is handled in a natural way by the

MTE model. In order to obtain this network, we first simulated a database with

500 records for variables X , Y , Z and W , where X follows a χ2 distribution with 5

degrees of freedom, Y follows a negative exponential distribution with mean 1/X ,

Z = ⌊X/2⌋, where ⌊·⌋ stands for the integer part function, and W is a random

variable with Beta distribution with parameters p = 1/X and q = 1/X . Out of

that database, a näıve Bayes regression model was constructed using X as response

variable, and a sample of size 50 drawn from it using the Elvira software.7 Database

extended mte50 was obtained from mte50 by adding two columns independently

of the others. One of the columns was drawn by sampling uniformly from the set

{0, 1, 2, 3} and the other by sampling from a N (4, 3) distribution.

Database tan was constructed in a similar way. We generated a sample of size

1000 for variables X0, . . . , X4, where X0 is a N (3, 2), X1 is a negative exponential

with mean 2 × |X0|, X2 is uniform in the interval (X0, X0 + X1), X3 is sampled

from the set {0, 1, 2, 3} with probability proportional to X0 and X4 has a Poisson

distribution with mean λ = log(|X0 −X1 −X3|+ 1). Out of that database, a TAN

regression model8 was generated, and a sample of size 500 drawn from it using

the Elvira software.7 Finally, the dataset extended tan was obtained from tan by

adding two independent columns, one of them drawn by sampling uniformly from

the set {0, 1, 2, 3} and the other by sampling from a N (10, 5) distribution.

The aim of using the two extended databases (extended mte50 and

extended tan) is to test the performance of the variable selection scheme in two

databases where we know for sure that some of the explanatory variables do not

influence the response variable.

The other databases are available in the UCI1 and StatLib26 repositories. A

description of the used databases can be found in Tab. 1.

In each database, we randomly inserted missing cells, ranging from a percentage

of 10% to 50%. The missing cells have been created in an incremental way, i.e., a

database D with 20% of missing cells is constructed from the same database with a

10% of missing values and so on. That is, these two data sets have the same missing

cells in a 10% of their positions. Over the resulting databases, we have run 5 algo-

rithms: NB, TAN, SNB and STAN, where the last two correspond to the selective

versions of NB and TAN. We have also included the M5’ algorithm in the com-

parison. The M5’ algorithm28 is an improved version of the model tree introduced

by Quinlan.22 The model tree is basically a decision tree where the leaves contain

a regression model rather than a single value, and the splitting criterion uses the
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variance of the values in the database corresponding to each node rather than the

information gain. We chose the M5’ algorithm because it was the state-of-the-art in

graphical models for regression,11 before the introduction of MTEs for regression.20

We have used the implementation of that method provided by Weka 3.4.11.29 Re-

garding the implementation of our regression models, we have included it in the

Elvira software,7 which can be downloaded from http://leo.ugr.es/elvira.

We have used 10-fold cross validation to estimate the srmse. The missing cells

in the databases were selected before running the cross validation, therefore, in this

case both the training and test databases contain missing cells in each iteration

of the cross validation. We discarded from the test set the records for which the

value of Y was missing. If the missing cells in the test set correspond to explanatory

variables, algorithm M5’ imputes them as column average for numeric variables and

column mode for qualitative variables.29 The regression models do not require the

imputation of the missing explanatory variables in the test set, as the posterior

distribution for Y is computed by probability propagation and therefore, the vari-

ables which are not observed are marginalised out. The results of the experimental

comparison are displayed in figures 3, 4 and 5. The values represented correspond

to the average srmse computed by 10-fold cross validation.

We used Friedman’s test5 to compare the algorithms, reporting statistically

significant difference among them, with a p-value of 2.2 × 10−16. Therefore, we

continued the analysis by carrying out a pairwise comparison, following the proce-

dure discussed by Garćıa and Herrera,15 based on Nemenyi’s, Holm’s, Shaffer’s and

Bergmann’s tests. The ranking of the algorithms analysed, according to Friedman’s

statistic, is shown in Tab. 2 Notice that a higher rank indicates that the algorithm

is more accurate, as we are using the rmse as target. The result of the pairwise

comparison is shown in Tab. 3. It can be seen that SNB and STAN outperform

their versions without variable selection. Also, M5’ is outperformed by SNB and

STAN. Finally there are no statistically significant difference between the two most

accurate methods: SNB and STAN. The conclusions are rather similar regardless of

the test used. The only difference is that Holm’s and Bergmann’s tests also report

significant differences between NB and TAN and between TAN and M5’.

Algorithm Ranking

NB 2.4687500000000004

TAN 1.7916666666666676

SNB 4.302083333333335

STAN 3.9895833333333313

M5’ 2.447916666666668

Table 2. Average rankings of the algorithms tested in the experiments using Friedman’s test.
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Fig. 3. Comparison of the different models for the data sets.
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Fig. 4. Comparison of the different models for the data sets. The legends are the same as in figure 3.
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Fig. 5. Comparison of the different models for the data sets. The legends are the same as in figure 3.
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Hypothesis Nemenyi Holm Shaffer Bergmann

TAN vs. SNB 3.8173E-27 3.8173E-27 3.8173E-27 3.8173E-27

TAN vs. STAN 5.9273E-21 5.3346E-21 3.5564E-21 3.5564E-21

SNB vs. M5’ 4.4902E-15 3.5922E-15 2.6942E-15 2.6942E-15

NB vs. SNB 9.4913E-15 6.6439E-15 5.6948E-15 3.7965E-15

STAN vs. M5’ 1.4259E-10 8.5557E-11 8.5557E-11 4.2778E-11

NB vs. STAN 2.6655E-10 1.3328E-10 1.0662E-10 5.3310E-11

NB vs. TAN 0.0301 0.0120 0.0120 0.0120

TAN vs. M5’ 0.0403 0.0121 0.0121 0.0121

SNB vs. STAN 1 0.3418 0.3418 0.3418

NB vs. M5’ 1 0.9273 0.9273 0.9273

Table 3. Adjusted p-values for the pairwise comparisons using Nemenyi’s, Holm’s, Shaffer’s and
Bergmann’s statistical tests.

5.1. Results discussion

The experimental evaluation shows a satisfactory behaviour of the proposed regres-

sion methods. The selective versions outperform the sophisticated M5’ algorithm.

Notice that the M5’ algorithm also incorporates variable selection, through tree-

pruning. The difference between the models based on Bayesian networks and model

trees becomes sharper as the rate of missing values grows. Also, the use of vari-

able selection always increases the accuracy. The fact that there are no significant

differences between SNB and STAN make the first one preferable, as it is simpler

(contains fewer parameters).

Finally, consider the line corresponding to M5’ in the graph for database bodyfat

in figure 3. In that case, the error decreases abruptly for 40% and 50% of missing

values, which is counterintuitive. We have found out that this is due to the presence

of outliers in the database, which are removed when the rate of missing values is

high. It suggests that M5’ is more sensitive to outliers than the models based on

Bayesian networks.

6. Conclusions

In this paper we have studied the induction of Bayesian network models for regres-

sion from incomplete data sets, based on the use of MTE distributions. We have

considered two well known network structures in classification and regression: the

näıve Bayes and TAN.

The proposal for handling missing values relies on the data augmentation algo-

rithm, which iteratively re-estimates a model and imputes the missing values using

it. We have shown that this algorithm can be adapted for the regression problem

by distinguishing the imputation of the response variable, in such a way that the

prediction error is minimised.

We have also studied the problem of variable selection, following the same ideas
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as in the original näıve Bayes and TAN models for regression. The final contribution

of this paper is the method for improving the accuracy by reducing the bias, which

can be incorporated regardless of whether the model is obtained from complete or

incomplete data.

The experiments conducted have shown that the selective versions of the pro-

posed algorithms outperform the robust M5’ scheme, which is not surprising, as M5’

is mainly designed for continuous explanatory variables, while MTEs are naturally

developed for hybrid domains.

References

1. C.L. Blake and C.J. Merz. 1998. UCI repository of machine learning databases.
www.ics.uci.edu/∼mlearn/MLRepository.html. University of California, Irvine, Dept.
of Information and Computer Sciences.

2. O. Chapelle, B. Shölkopf and A. Zien. ”Semi-supervised learning”. MIT Press. 2006.
3. B. Cobb and P.P. Shenoy. 2006. Inference in hybrid Bayesian networks with mixtures of

truncated exponentials. International Journal of Approximate Reasoning, 41:257–286.
4. A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1 –
38.

5. J. Demsar. 2006. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1 – 30.

6. R.O. Duda, P.E. Hart, and D.G. Stork. “Pattern classification”. Wiley Interscience,
2001.

7. Elvira Consortium. 2002. Elvira: An environment for creating and using probabilistic
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