
Learning Probabilistic Decision Graphs

Manfred Jaeger Jens D. Nielsen
Institut for Datalogi
Aalborg Universitet

Frederik Bajders Vej 7,
9220 Aalborg , Denmark

{jaeger, dalgaard}@cs.auc.dk

Tomi Silander
Complex Systems Computation Group

Helsinki Institute for Information Technology
P.O.Box 9800,

FIN-02015 HUT, Finland
tsilander@hiit.fi

Abstract

Probabilistic decision graphs (PDGs) are a representation language for probability distributions
based on binary decision diagrams. PDGs can encode (context-specific) independence relations
that cannot be captured in a Bayesian network structure, and can sometimes provide computation-
ally more efficient representations than Bayesian networks. In this paper we present an algorithm
for learning PDGs from data. First experiments show that the algorithm is capable of learning
optimal PDG representations in some cases, and that the computational efficiency of PDG mod-
els learned from real-life data is very close to the computational efficiency of Bayesian network
models.

1 Introduction

Probabilistic decision graphs (Bozga and Maler,
1999; Jaeger, 2002) are a graphical representation
language for probability distributions that is based
on the representation paradigm of ordered binary
decision diagrams (Bryant, 1986). Probabilistic de-
cision graphs (PDGs) were originally conceived for
applications in automated verification of probabilis-
tic systems (Bozga and Maler, 1999). An initial
study of their potential strengths as a representation
language also for AI applications was conducted in
(Jaeger, 2002). The main result of that study was
that from a computational complexity point of view,
PDGs are always as efficient as Bayesian networks,
and for some types of probability distributions they
are more efficient.

These theoretical results leave the question open,
how efficient representations by PDGs of a given
probabilistic domain can be found in practice; in
particular, whether PDGs can be learned automat-
ically from data. This question is taken up in the
present paper. We here describe an approach to
learning PDGs from data, and compare the PDG
models with Bayesian networks learned from the
same datasets. The basis for the comparison is the
efficiency of probabilistic inference in the models

learned in the learned models.
In the following section we briefly introduce the

language of PDGs, and review some of their essen-
tial properties. In section 3 we describe a learning
algorithm for PDGs. Section 4 reports the results
of an initial comparative study of Bayesian network
and PDG models learned from data.

2 Probabilistic Decision Graphs

In this section we briefly review definitions and
some results given in (Jaeger, 2002; Jaeger, 2004).

Figure 1 shows on the right an example PDG
defining a joint probability distribution for binary
random varibles X1, . . . , X6. The graphical struc-
ture of the PDG is defined in two stages: first, one
defines a forest (a set of trees) over a set of nodes
labeled with the given random variables. This for-
est is shown in the left part of Figure 1. Then, each
node Xi in the forest is expanded into a set Vi of
nodes, and a node ν ∈ Vi is connected as follows:
for each successor Xj of Xi in the variable tree con-
taining Xi, and each possible value of Xi, there
exists exactly one outgoing edge of ν leading to a
node ν ′ ∈ Vj . The resulting structure is a rooted
directed acyclic graph (rdag) for every tree in the
original variable-forest. In our example all variables
are {0, 1}-valued, so that each node ν contains two

PSfrag replacements

ν1

(.3,.7)

ν2

(.8,.2)
ν3

(.9,.1)
ν4

(.5,.5)
ν5

(.4,.6)

ν6

(.1,.9)
ν7

(.2,.8)
ν8

(.5,.5)

ν9

(.1,.9)

ν10

(.4,.6)
ν11

(.8,.2)

V1

V2 V3

V4

V5

V6

X1

X2 X3

X4

X5

X6

Variable-forest PDG

Figure 1: Probabilistic Decision Graph with underlying forest and nodes reached by (1, 0, 1, 1, 0, 0)

outgoing edges for each successor variable in the
variable-forest structure. Edges corresponding to
value 0 here are indicated by dotted lines, edges cor-
responding to value 1 by solid lines. Finally, a PDG
is obtained by annotating each node ν ∈ Vi with a
probability distribution over the possible values of
Xi.

Each joint instantiation of the variables induces
a sub-graph in the PDG that is a forest of the same
structure as the underlying variable-forest. In fig-
ure 1 the nodes of the forest corresponding to the
instantiation X1 = 1, X2 = 0, X3 = 1, X4 =
1, X5 = 0, X6 = 0 are shaded. We say that these
nodes are reached by the given instantiation. The
PDG now defines the probability of the instantiation
as the product of all the probability assignments to
the values of the instantiation according to the dis-
tributions at the nodes reached by the instantiation.
In our example:

P ((X1, . . . , X6) = (1, 0, 1, 1, 0, 0)) =

.7 · .8 · .6 · .9 · .1 · .8 = 0.024192.

The structure of a PDG encodes certain (condi-
tional) independence relations: first, the joint dis-
tribution of the variables contained in one tree of
the underlying variable-forest is independent from
the joint distribution of the variables in another tree.
This is a very strong independence property, and
therefore we will mostly encounter PDGs whose
underlying variable-forest consists of a single tree.
The structure of a single rdag encodes conditional
independence relations among the variables con-
tained in the tree for this rdag. These independence

relations are not characterized as for Bayesian net-
works in terms of subsets of variables, but in terms
of partitions of the state space: each node set Vi

defines a partition of the state space (the set of all
complete instantiations) into the sets of instantia-
tions that reach the same node in Vi. In our example,
the nodes V4 partition the state space into the sets of
instantiations {X3 = 1}, {X1 = 0, X3 = 0} and
{X1 = 1, X3 = 0}. The conditional independence
relations encoded by a PDG now are:

P (Xi | nonsucc(Xi)) = P (Xi | Vi) (1)

where nonsucc stands for the set of variables that
are not successors of Xi in the variable-forest. Such
partition-based independence relations can corre-
spond to context-specific independencies in the
sense of Boutilier et al. (1996). In our example, for
instance, the independence relation (1) applied to
Xi = X4 essentially means that X4 is indepen-
dent of X1 given that X3 = 1. However, there
is no exact match between our partition-based in-
dependence relations and context-specific indepen-
dencies. Furthermore, it can be shown that the class
of independence relations that can be encoded with
PDGs is incomparable to the class of independence
relations that can be encoded with Bayesian net-
works, i.e. each of these two representation lan-
guages can encode independence relations that can-
not be encoded by the other language. For more
detailed information on independence relations en-
coded by PDGs the reader is referred to (Jaeger,
2004).

Based on a PDG representation some key prob-
abilistic inference problems are solvable in linear

time. This includes the computation of poste-
rior marginal distributions for all random variables
given an instantiation of some of the variables in the
PDG, and the computation of the most probable ex-
planation, i.e. the most probable full instantiation
given a partial instantiation. Inference in Bayesian
networks, on the other hand, is linear only in the size
of the junction tree constructed from the Bayesian
network. To compare the complexity of probabilis-
tic inference based on Bayesian network and PDG
representations, one thus has to compare the sizes
of a PDG representation with the size of the junc-
tion tree generated from a Bayesian network. More
precisely, this is the pertinent comparison when one
is interested in exact computation of arbitrary pos-
terior marginal distributions. For more specialized
inference tasks (e.g. classification with all attributes
instantiated), or approximate inference procedures,
inference in Bayesian networks can become linear
already in the size of the Bayesian network.

It was shown in (Jaeger, 2002) that there is a lin-
ear transformation from junction trees into equiv-
alent PDGs. On the other hand, there exist distri-
butions for which a compact PDG representation,
but no compact junction tree representation exists.
An example for such a distribution is the joint dis-
tribution of n + 1 binary random variables, n of
which are independently and uniformly distributed,
and the (n + 1)st represents a parity bit that is
deterministically defined by the other variables as
Xn+1 =

∑n
i=1 Ximod 2. When the set of variables

is fixed, thus, PDGs are a more efficient represen-
tation language than junction trees. For the parity
distribution one can also construct linear size junc-
tion tree representations by introducing suitable ad-
ditional (hidden) variables. This is true in general:
using suitable augmenting sets of hidden variables,
one can always also define a linear transformation
from PDGs to junction trees (Jaeger, 2002).

In some sense, then, PDGs and Junction Trees,
and hence Bayesian networks, provide computa-
tionally equally efficient representations of proba-
bility distributions1 . However, the necessary intro-

1Strictly speaking, to establish the equal efficiency of
Bayesian networks one also has to show that for every distri-
bution there exists a Bayesian network from which a junction
tree can be constructed that has minimal size (up to a linear
factor) among all junction trees for the given distribution.

duction of hidden variables can be a major obsta-
cle for obtaining efficient Bayesian network repre-
sentations when the model is to be learned from
data, since so far no reasonably general and effec-
tive ways of automatically learning hidden variables
are known. This also indicates the challenge posed
by learning PDGs: learning optimal PDGs partially
subsumes the problem of learning hidden variables.

3 Learning PDGs

We use a score-based approach to learning PDGs
from data using a generic score function of the form:

Sλ(M) := (1 − λ)L(M,D) − λ|M | (2)

where L(M,D) is the log-likelihood of the data
given the model M , |M | is the size of the model
(measured by its total number of parameters), and
0 ≤ λ ≤ 1 is a parameter that can be set for
the learning problem at hand. Optimizing (2) with
large λ-values will lead to small and not very ac-
curate models, whereas small λ-values give higher
scores for larger and more accurate models. Setting
λ to log | D | /(2+ | D |), for example, makes
this score function equivalent to BIC score (Fried-
man and Goldszmidt, 1999). One can also use
the generic score function (2) to learn models for
resource-bounded applications by first setting λ to a
large value, and then decrementing until the learned
model exceeds a given size constraint. The last
model learned is then the most accurate model we
can find under the given constraints.

Optimizing Sλ for large λ is easier than optimiz-
ing for small λ, as the strong bias towards smaller
models efficiently reduces the size of the search-
space.

The structure search for PDGs decomposes into
two parts: the search for a variable forest, and the
search for the exact PDG structure based on that
variable forest. One may expect that when we ob-
tain a high scoring PDG for some λ value, then the
variable forest underlying this PDG will also sup-
port high scoring PDGs for other λ-values (this ex-
pectation has been corroborated with minor qualifi-
cations in our experiments). Together with the ob-
servation above that it is much easier to learn PDGs
when scoring with large λ-values, this leads us to
the following population-based approach to learn-
ing (cf. table 1): first a population of candidate

variable forests is created (line 3). Starting with
the largest λ in a set L of λ-parameters, then each
variable forest is refined into an actual PDG using
the LearnPDG sub-routine, which optimizes Sλ.
Forests achieving a poor score in this optimization
are then removed from the population (lines 6-7),
and the process is repeated with the next smaller λ-
value. The subroutine LearnForest that gener-
ates the initial forests is a constraint-based approach
that builds a forest encoding certain conditional in-
dependence relations we find in the data. It requires
a parameter t that determines the level of condi-
tional independence tests inside the routine. The
use of different test-levels promotes diversity in the
structures in F (lines 2-3).

0: Procedure Learn
1: L :=set of decreasing λ-values
2: T :=set of different test-levels
3: F := {LearnForest(t)|t ∈ T}
4: for each λ ∈ L do:
5: G := {LearnPDG(a, λ)|a ∈ F}
6: compute Flow

7: F := F\{a|a ∈ Flow}
8: output highest scoring g ∈ G

Table 1: Main PDG-learning loop

We now describe the two main subroutines in
greater detail. LearnPDG(a, λ) (see table 2) tra-
verses the space of different PDGs over the forest a
in the search for an optimal PDG, w.r.t Sλ. Three
different local operators define the traversal: split,
merge and redirect.

The split-operator takes a node with n > 1 in-
coming edges, and replaces it with n nodes, one for
each incoming edge. The outgoing edges of the new
nodes are directed into the original successors of the
eliminated node. The selection of nodes for split-
ting is randomized, but biased towards those nodes
for which the result of splitting will lead to several
new nodes that are all reached by a significant num-
ber of data items. Splitting nodes with this property
affords the highest potential increase in likelihood
score.

The merge-operator takes two nodes all of whose
outgoing edges are directed to the same successor
nodes, and replaces them with a single node, also
having these same successors. From the number of

data items reaching the original two nodes, and their
local distributions, one can compute the distribution
for the new node and the exact score gain obtained
by the merge operation. A merge therefore always
is executed iff the score gain is positive.

The redirect-operator is the compuationally most
expensive operator. It tests for every node ν in the
PDG, and each of its outgoing edges leading into
some ν ′ ∈ Vi , whether the likelihood score can be
improved by redirecting this edge into some other
ν ′′ ∈ Vi. This is tested by computing the likeli-
hood score of the dataitems reaching ν under the
two marginal distributions defined by ν ′ and ν ′′ for
the variables contained in the subtree rooted at Xi

in the variable forest.

0: Procedure LearnPDG(a, λ):
1: repeat:
2: split nodes top-down
3: merge nodes bottom-up
4: redirect edges bottom-up
5: until no improvement in Sλ

Table 2: LearnPDG procedure

0: Procedure LearnForest(t)
1: Initialize(F, t)
2: for each a ∈ F do:
3: repeat:
4: grow(a, t)
5: LearnPDG(a, λmax)
6: until a, t is complete

Table 3: LearnForest procedure

The LearnForest procedure is sketched in ta-
ble 3. The procedure constructs the variable for-
est incrementally. At each stage, some of the vari-
ables have been built into a variable forests. Each
of the remaining variables is assigned to some leaf
of an existing tree, which means that they will be
built into a subtree rooted at this leaf. Moreover,
using the LearnPDG procedure, the partially con-
structed variable forest has already been expanded
into a small PDG. Figure 2(a) shows this situation
with three variables X2, X4, X6 already built into a
tree, all remaining variables assigned to leaf X4 of

V6

V2 V4

X1 X7 X3 X5

(a)

V6

V2 V4

X1 X7 X3 X5

(b)

V6

V2 V4

V1 V3

X5 X7

(c)

V6

V2 V4

V1 V3

X5 X7

(d)

Figure 2: Snapshots of the procedure for growing PDGs

this tree, and a small PDG for the first three vari-
ables already constructed. In the grow subroutine
we first perform a χ2 independence test for all pairs
of variables assigned to the same leaf, where the test
is conditional on the partition defined by the leaf.
Variables for which the test indicates dependence
are connected by an edge, figure 2(b). Each con-
nected component of the resulting graph becomes a
separate sub-tree under the original leaf. The grow
subroutine finishes by randomly selecting from each
connected component a node as the root for these
new subtrees and assigning the remaining variables
from the connected component to this new leaf,
figure 2(c). One iteration of the LearnForest
procedure then is completed by calling LearnPDG
with a large parameter λmax to refine the expanded
forest into a small PDG, figure 2(d).

We have implemented our PDG learning pro-
cedure in Java. For basic data-handling rou-
tines we made use of the WEKA package
(http://www.cs.waikato.ac.nz/∼ml/weka/).

As a first test of our learning algorithm we have
applied it to a dataset sampled from the parity distri-
bution described in section 2 with n = 7. The algo-
rithm was run setting L to a set of eight different λ-
values. Figure 3(a)-(c) shows the PDGs learned for
three decreasing λ-values. For the middle λ-value
the learned PDG is almost the optimal PDG for the
underlying distribution. An optimal PDG would be
obtained by merging the nodes 8 and 9. By avoid-
ing this merge the algorithm here slightly overfits
the data. For the smallest λ value (figure 3(c)) the
overfitting is much stronger. The ability to learn
the structure for the parity distribution demonstrates
the potential of the split, merge and redirect oper-
ations for an effective PDG-structure search. The

construction of the underlying variable forest here
is not such a difficult problem, as any forest consist-
ing of a single, linear tree can be used in an optimal
PDG for the parity distribution.

bit1

parity

bit7

bit2

bit5

bit6

bit4

bit3

0

1

2

3

4

5

6

7

(a)

parity

bit2

bit1

bit7

bit4

bit3

bit6

bit5

0

12

34

56

978

1110

1213

1415

(b)

parity

bit2

bit1

bit7

bit4

bit3

bit6

bit5

0

1 2

43

7 56

1113 89 1012

15 14161917 18

2120 24 2322

25 26

(c)

Figure 3: Learned PDGs from parity data

4 Learning results: PDG vs. Bayesian
networks

We applied our learning algorithm to several real-
world datasets, and compared the resulting PDGs
with the junction trees constructed from Bayesian
networks learned from the same data. Main ob-
jective of these experiments is to empirically eval-
uate the relative inferential efficiency of PDG and
Bayesian network representations for real-world
distributions. Ideally, we would like to find opti-
mal (i.e. as small as possible) PDG and junction
tree models for the exact distribution that generated

the data. This, of course, is impossible, since the
precise distribution is unknown, and all we have
is a sample drawn from the distribution. Thus, all
models that we learn can only be approximations
of the true underlying distribution. We use the log-
likelihood of a test dataset under a model as a mea-
sure for how accurately the model approximates the
underlying distribution. For this purpose all datasets
have been split into a training set (2/3 of the data)
and a test set (1/3 of the data).

One might avoid some of these problems by
learning from synthetic data sampled from some
model. The known model can then be used to eval-
uate the accuracy of the learned models precisely.
This, however, is problematic in our context, where
we aim to compare different representation frame-
works: the representation used for the generating
model can easily bias the results of the comparison
in favor of that representation framework which is
more closely related to the generating model. If,
for example, we generate data with a Bayesian net-
work, then the data can be expected to contain inde-
pendence structures that are more easily expressible
with Bayesian networks than with PDGs. The con-
verse holds if we sample data from a PDG.

We try to learn models that are as accurate and as
small as possible. The success of this learning task
will be determined by two factors: the existence of
small and accurate models for the given real-world
distributions in the respective representation frame-
works, and our ability to find the best possible mod-
els with our learning methods. Our experiments,
thus, confound two issues that, from a theoretical
point of view, one would like to investigate sepa-
rately. From a practical point of view, however, one
can argue that the mere existence of efficient models
in a given representation language is of little value if
we are unable to learn these models from data. The
’practical efficiency’ of a representation language,
then, would be measured in the size and accuracy
of models we are actually able to learn from data –
which is what we do in our experiments.

In our experiments we do not focus only on learn-
ing a single best approximate model, but we inves-
tigate the size of models over a range of different
accuracies. This is of interest, because it might be
the case that for a resource-bounded application we
are not necessarily interested in the most accurate

model, but in a model that is as accurate as possible
within a given size bound. With our experiments
we aim at obtaining a full picture of the different
size/accuracy tradeoffs that can be realized in the
different representation frameworks. In the case of
PDGs we obtain a spectrum of models representing
different size/accuracy tradeoffs in a single run of
our algorithm which records the best model found
for each λ ∈ L.

For Bayesian network learning we use the B-
course algorithm (Myllymaki et al., 2002). This is a
score-based learning algorithm that performs struc-
ture search by local arc insertion, deletion and re-
versal operations. We use it with the generic score
function (2) and various λ-values. The search in B-
course continues to explore for better models un-
til a timeout, always memorizing the best model
found so far. In our experiments we set the time-
out to 1 hour for every λ value. Bayesian networks
were learned for 6-8 different λ-values, giving a to-
tal runtime for B-course of approximately 6-8 hours
per dataset. The search in our PDG learner, on the
other hand, terminates when no score improvement
has been found within a certain number of itera-
tions. The total runtime of the PDG learner proved
to be highly dependent on the size of the datasets,
because the local structure changing operations re-
quire quite frequent parameter re-estimations, and
hence expensive data-reads. To learn models for
all the given λ-values our algorithm needed in be-
tween 15 minutes for the smallest datasets, and 12
hours for the Adult dataset. To reduce overfitting,
both learning procedures apply parameter smooth-
ing methods to the model learned from optimization
of Sλ.

The data used for the experiments are displayed
in table 4. The preprocessing for all datasets con-
sisted of removing cases with missing values and
continuous variables discretized into uniform inter-
vals.

Figure 4 shows the size and log-likelihood values
obtained by the BN and PDG learners by optimizing
Sλ for a range of λ-values. For Bayesian networks,
the reported size is that of the generated junction
tree. The likelihood scores are per-instance, i.e.
equal to L(M,D)/ |D |. The results show a surpris-
ingly close correspondence for the two frameworks.
One might have expected that for some datasets one

Data #variables size Description Source
Adult 15 45.222 Census data. UCI
Space 7 3197 Geographical analysis spatial data. StatLib
Hall of fame 17 1320 Major League Baseball hall of fame data. StatLib
Yeast 9 1446 Prediction of Cellular Localization Sites of Proteins. UCI
Supreme 8 4052 Prediction of action taken based on supreme court data from legal cases. StatLib

Table 4: Datasets used. The sources are the UCI-repository (http://kdd.ics.uci.edu/) and the StatLib site
(http://lib.stat.cmu.edu/)

-9.8

-9.6

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

 0 500 1000 1500 2000 2500 3000 3500

 Yeast JT

 Yeast PDG

 Supreme JT

 Supreme PDG

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

-13.5

 0 5000 10000 15000 20000 25000 30000 35000

 Adult JT

 Adult PDG

 Hall of fame JT

 Hall of fame PDG

-24

-23

-22

-21

-20

-19

-18

-17

-16

 0 5000 10000 15000 20000 25000

 Space JT

 Space PDG

Figure 4: Size/accuracy tradeoff-curves for PDGs and BNs learned from yeast and supreme data (leftmost
plot) adult and halloffame data (middle) and space data (rightmost). X-axis is Size and Y-axis is log-
likelihood.

representation framework would clearly outperform
the other, because of independence structures in the
data that are more easily expressed in one of the two
frameworks. Overall, the results for Bayesian net-
works are slightly better than for PDGs. The abso-
lute differences in likelihood score are rather small,
however2.

5 Related Work

A related approach to making representations of
probability distributions more compact and thereby
speeding up probabilistic inference is the work
by Darwiche on arithmetic circuit representa-
tions (Darwiche, 2000; Darwiche, 2002). The
key difference between arithmetic circuit represen-
tations and PDGs is that the former are not a dedi-
cated representation framework for probability dis-

2Logarithms here are base 2. To obtain a better intuition for
the magnitude in likelihood differences, consider the follow-
ing: suppose that the test data defines a distribution on binary
variables X1, . . . , Xn+1 such that variable Xn+1 is determin-
istically determined by the values of X1, . . . , Xn. Consider
two models M1, M2 for the data that agree with respect to the
marginal distribution of X1, . . . , Xn, but M1 correctly identi-
fies the functional dependence of Xn+1, whereas M2 models
Xn+1 as independent from the other variables, with probabil-
ity 1/2 for both its values. Then the difference in per-instance
log-likelihood score for these two models will be equal to 1

tributions, i.e. the subclass of circuits that repre-
sent distributions is not characterized by a simple
syntactic criterion. As a consequence, it would ap-
pear very difficult to learn arithmetic circuits di-
rectly from data, as the search space of possible
models is not well circumscribed. Consequently,
Darwiche envisages arithmetic circuits mostly as a
secondary representation that has to be obtained by
compilation from some primary representation (e.g.
a polynomial or a junction tree representation). In
(Darwiche, 2002) some empirical results are given
which show that circuit representations can be much
smaller than junction tree representations.

The most closely related work about learning
PDG-related models is work on learning probabil-
ity estimation trees (PETs)(Provost and Domingos,
2003) and decision graphs for CPT representations
in a Bayesian network (CPT-DG)(Chickering et al.,
1997; Friedman and Goldszmidt, 1999). Both of
these frameworks serve only for the representation
of a distribution of a single variable, conditional
on values of other variables. In case of PETs this
is the distribution of the class variable given at-
tribute values; in the case of CPT-DGs this is the
distribution of a network variable condtional on its
parents. More fundamental than this difference,

however, is the fact that both PETs and CPT-DGs
follow the multi-terminal binary decision diagram
(MTBDD)(Fujita et al., 1997) paradigm of func-
tion representation: the internal nodes of the rep-
resentations only serve to determine the argument
for the function; they do not as in PDGs already
contain numerical information from which the func-
tion value (i.e. a probability) is incrementally con-
structed while descending through the tree or graph.
As a result, such representations always require as
many leaves as there are different function values,
whereas in the case of PDGs the number of function
values only induces a lower bound on the number of
paths through the graph.

The structure search for good PETs or CPT-DGs
on the one hand, and PDGs on the other hand, has
to focus on somewhat different problems: for the
former types of representations one main question
is which variables to include in the graph or tree,
so as to obtain an informative case-distinction for
the distribution of the target variable at the leaves.
For PDGs, the set of variables is given, and the la-
belling of nodes in the PDG with variables follows
much stricter rules than imposed in a PET or CPT-
DG. Nevertheless, Chickering et al. (1997) use in
the structure search for CPT-DGs split and merge
operations that somewhat resemble our split and
merge operations. However, Chickering et al. apply
their split and merge operations only at leaf nodes.
Moreover, their application of split and merge oper-
ations is purely random, and not based on any score
improvement heuristics as in our algorithm.

6 Conclusion

We have developed and implemented a method for
learning probabilistic decision graphs from data.
Applying the method to the artificial parity dataset
we found that we are able to learn PDG models
which are more efficient than any Bayesian network
model for the same data. Similar advantages, so far,
have not been found for real-life datasets. However,
there is still much potential for improving the PDG
learning method. In combination with a better un-
derstanding for what types of data might be most
appropriate for PDG modelling, this may still lead
to applications where learned PDGs have a clear ad-
vantage over learned Bayesian networks. Further-

more, more specialized applications for PDGs (e.g.
in classification) should be investigated.

References

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
1996. Context-specific independence in Bayesian net-
works. In Proceedings of UAI-96, pages 115–123,
Portland, Oregon.

M. Bozga and O. Maler. 1999. On the representation of
probabilities over structured domains. In Proceedings
of CAV-99, number 1633 in Lecture Notes in Com-
puter Science.

R. E. Bryant. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, 35(8):677–691.

D. M. Chickering, D. Heckerman, and C. Meek. 1997.
A Bayesian approach to learning Bayesian networks
with local structure. In Proceedings of UAI–97, pages
80–89, San Francisco, CA. Morgan Kaufmann Pub-
lishers.

A. Darwiche. 2000. A differential approach to inference
in Bayesian networks. In Proceedings of UAI–2000.

A. Darwiche. 2002. A logical approach to factoring be-
lief networks. In Proceedings of KR-2002.

N. Friedman and M. Goldszmidt. 1999. Learning
bayesian networks with local structure. In M. I.
Jordan, editor, Learning in Graphical Models. MIT
Press.

M. Fujita, P. C. McGeer, and J.C.-Y. Yang. 1997. Multi-
terminal binary decision diagrams: an efficient data
structure for matrix representation. Formal Methods
in System Design, 10:149–169.

M. Jaeger. 2002. Probabilistic decision graphs: Com-
bining verification and AI techniques for probabilistic
inference. In Proceedings of PGM02, pages 81 – 88.

M. Jaeger. 2004. Probabilistic decision graphs - com-
bining verification and ai techniques for probabilis-
tic inference. Int. J. of Uncertainty, Fuzziness and
Knowledge-based Systems, 12:19–42.

P. Myllymaki, T. Silander, H. Tirri, and P. Uronen. 2002.
B-course: A web-based tool for Bayesian and causal
data analysis. International Journal on Artificial In-
telligence Tools, 11(3):369–387.

F. Provost and P. Domingos. 2003. Tree induction
for probability-based ranking. Machine Learning,
52:199–215.

