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Chapter 1
Introdution

Probabilisti graphial models (PGMs) is a mathematial framework for representing jointprobability distributions over sets of random variables (Cowell et al., 1999; Jensen, 2001;Lauritzen, 1996; Pearl, 1988). PGMs have beome a standard approah for representationand handling of unertainty in the �eld of Arti�ial Intelligene. Also in the related �elds ofPattern Reognition and Mahine Learning, PGMs have reeived a lot of attention and havebeen applied with suess in numerous domains (Bishop, 2006; Mithell, 1997; Duda et al.,2001).When PGMs are learnt from data (as opposed to being manually onstruted), some sorefuntion is used to assess the quality of models and, thereby, disriminate between alternatives.The learning proedure then selets from amongst alternative models the one that is optimalw.r.t. the sore funtion. A typial sore-funtion ombine in a weighted sum a reward forauray (omputed w.r.t. a database) and a penalty for omplexity. In general, we all suhsore-funtions for penalised likelihood sores, and they take the following simple form:
S(M,D) = λ · L(D|M)− (1− λ) · size(M), (1.1)for PGM M , data D, likelihood L, and some trade-o� oe�ient 0 < λ < 1. Typially, thenumber of di�erent alternative models is muh too big to allow exhaustive searh, and studieshave shown that many instanes of learning tasks for PGMs are NP-hard (Chikering et al.,2004; Chikering, 1996). Consequently, heuristi proedures are appropriate and often nees-sary in pratise.The study reported in this dissertation has foused on aspets of learning PGMs from data.In the following, we will brie�y disuss the problems addressed and the solutions proposed.

One of the most popular types of PGMs is the Bayesian Network (BN) (Pearl, 1988; Jensen,2001). The learning of BN models has reeived muh attention and both disouraging andenouraging results have been found. While it has been proved that the problem of learningBN models that optimise (1.1) is NP-hard (Chikering et al., 2004), learning proedures thatreover the optimal BN models have been shown to be tratable for many relevant domains(the SGS algorithm (Spirtes et al., 2000) and the GES algorithm (Chikering and Meek, 2002;1



1 Introdution
Meek, 1997)). These learning proedures, however, rely on the strong assumption that thedata generating proess that exhibits independene relations between the observed variablesthat an be enoded in the direted ayli graph (DAG) struture of the BN model, thatis, the proess exhibits DAG faithfulness. This assumption is often unrealisti in real worldappliations, and the quality of the models that are learnt may be very dependent on thisassumption being satis�ed. Therefore, the pratial appliability of suh learning proeduresmay be limited.In this dissertation we propose a simple generalisation of a greedy searh proedure. Thegeneralisation introdues a parameter for trading o� greediness for randomness in the deision-rule guiding the searh. By employing multiple restarts in onnetion with stohasti deisionrule, the algorithm maintains the theoretial optimality of greedy searh, and, in addition, itallows a broader exploration of the searh spae. This is important when the strong assumptionof a DAG faithful generative distribution is violated. In this ase, the deterministi searhimplemented by a greedy deision rule may lead to a suboptimal model while a multiple restartstohasti searh will identify multiple loal optimal models.

In most appliation areas, one of the main tasks for PGMs is to provide a representationthat allows for e�ient belief updating. By belief updating we understand the proess of om-puting all posterior marginal probability distributions for all variables in the domain givenobservations of a subset of variables. For BN models this task is NP-hard (Cooper, 1987).Often, however, it is possible to obtain a omputationally tratable BN model that still of-fers a su�iently aurate approximation. On the other hand, example distributions an beonstruted where any model less omplex than the maximally omplex model will be un-able to approximate the distribution aurately (Jaeger, 2004; Beygelzimer and Rish, 2003).Suh hallenging examples are onstruted by de�ning distributions that ontains ontext-spei� (in)dependene (CSI) relations, also sometimes alled asymmetri (in)dependenies.The existene of CSI relations not representable by the BN model has motivated the develop-ment of extensions to the BN model that are able to e�iently represent suh distributions.Examples inlude the Bayesian Multinets (BM) by Geiger and Hekerman (1996), Mixturesof Bayesian Networks (MBN) by Thiesson et al. (1997) and Reursive Bayesian Multinets(RBM) by Peña et al. (2002). These are all variations of the following ommon arhiteture:a ontext is de�ned by a (set of) distinguished variable(s), and onditioned on the ontext, aBN representation over the remaining variables is seleted. For MBNs the ontext is de�nedby a non-observed latent variable, and for RBMs the ontext is de�ned by a set of observedvariables. Inferene algorithms in these models an bene�t from the CSI relations enoded bythe model, but ultimately the inferene omplexity of BN models persists.In this dissertation we propose a proedure for learning of Probabilisti Deision Graph(PDG) models. The PDG language is a reent addition to the growing set of PGM represen-tation language for disrete joint probability distributions (Jaeger, 2004). PDGs o�er botha natural enoding of a ertain lass of CSI relations between the observable variables andalso o�ers e�ient belief updating in the presene of evidene. One partiularly welomingproperty of the PDG language is that the representation struture is itself a primary struture2



for e�ient omputations of general belief updating. This is important for learning proedureswhen the learnt models are expeted to o�er e�ient belief updating. In this senario, we anthen readily disriminate between models w.r.t. omputational omplexity of belief updatingfrom the given representation. Retrieving a meaningful measure of omputational omplexityis troublesome for many other relevant PGM languages � in partiular for BN models, wheredetermining the omputational omplexity of a model involves an NP-omplete optimisationproblem (Arnborg et al., 1987).
It is often neessary to assume data to be omplete in the sense that no latent (non-observed) variables in�uenes the observed variables through non-trivial interations. How-ever, this is often a very strong assumption and may not be onsistent with the understandingprovided by domain experts. The existene of suh latent variables may yield a data gener-ating proess that exhibits a set of independene relations that is not representable by theDAG struture of BN models. Reovering the existene of suh latent variables expliitly isan ambitious task. Nevertheless, many reent studies have pursued a solution to the prob-lem of learning latent variables both in a general DAG strutured BN model (Elidan, 2004)and when fousing on hierarhial (tree) strutures (Kar£iauskas, 2005). A tree-struturedBN model that models all observed variables onditionally independent given the state of asingle latent variable (usually denoted a Naïve Bayes (NB) model), is well studied for prob-abilisti soft lustering of data instanes (Duda et al., 2001). However, suh models an alsojust as easy and naturally be used for general omputation of probabilisti inferene tasks.Reent studies have shown enouraging results favouring the NB model when omparing NBto BN models w.r.t. omputational omplexity and auray of the approximation o�ered(Lowd and Domingos, 2005).In this dissertation we perform a omparative analyses of di�erent PGM languages, theirability to e�iently and aurately approximate distributions and our ability to learn suhapproximations from a �nite data sample. Suh analyses are not new, and we therefore aug-ment the analyses performed in previous studies suh as the omparative analyses of empirialmeasurements of e�ieny and auray of BN and NB models by Lowd and Domingos (2005)and the more theoretial study of the range of di�erent approximations o�ered by BN modelsby Beygelzimer and Rish (2003). First, in our analysis we employ the analytial tool of SL-urves. SL-urves show language harateristis by plotting e�ieny and auray of modelsfrom the language. For e�ieny we use a measure of omputational omplexity whih is,therefore, a theoretial quantity, while for auray we use the likelihood of the data given themodel. Seond, we perform an empirial analysis of omputational e�ieny using implemen-tations of state-of-the-art algorithms for probabilisti inferene. We also inlude a omparisonof auray measured empirially by averaging over randomly generated queries. Third, weinlude the novel PGM language of PDGs in the omparative analyses.Finally, as a somewhat separate issue, we propose an algorithm that onstruts a PDGmodel from a Clique Tree (CT) representation of a distribution. We ombine BN learning andPDG learning by onstruting a CT representation of the distribution represented by the BN3



1 Introdution
model, then translating this CT into an equivalent PDG model that is then exposed to opti-misation operations that may yield a representation that is ompetitive with the original BNmodel. We denote this approah �hybrid learning� of PDG models as it ombines a learnt BNmodel and its CT representation with learning a re�ned and optimised PDG representation.
1.1 Outline of The Dissertation

In Chapter 2 we give an introdution to relevant bakground onepts and basi notationalonventions used in the remainder of this dissertation. Chapter 3 introdues formally the PGMrepresentation languages that we investigate in the later analysis. We inlude disussions onomputational omplexity of general probabilisti inferene by presenting for eah languageproedures for performing exat belief updating. In Chapter 4, we propose proedures forlearning models from data for eah of the PGM languages presented earlier. Chapter 5 ontainsa desription of experiments on learning PGMs from data, and we perform both theoretial andempirial omparative analyses of the PGM languages using the proposed learning proedures.In addition, Chapter 5 ontains an analysis of hybrid learning of PDG models.Finally, inChapter 6 we summarise important observations made from the omparative analyses anddisuss the onlusions that an be drawn from the study reported in this dissertation.

4



Chapter 2
Preliminaries and Notation

2.1 Probability theory
In this setion we introdue probability theory as a framework for handling unertainty. Wewill limit this introdution to onepts that are of partiular relevane to the study reportedin this thesis. For a omplete formal introdution to the �eld of probability theory, the readermay onsult the books of DeGroot (1986) and Billingsley (1986). Also Hájek (2003) and thereferenes found there should be mentioned as an exellent review of di�erent interpretationsof probability theory.Let Ω be an arbitrary set where eah element ω ∈ Ω represents a possible state of nature.An event is a subset of Ω, and an event spae R w.r.t. Ω is a non-empty set of eventsinluding Ω that is losed under the operations of omplement and �nite union, and thereforealso losed under �nite intersetion as A ∩B = A ∪B. In measure theory, the pair 〈Ω,R〉 isalled a measurable spae. A real-valued funtion P on R is a probability measure on Ω when

P satis�es the basi axioms of probability (Kolmogorov, 1950):Axiom 2.1 (Non-negativity)
P (E) ≥ 0, for all E ∈ R.Axiom 2.2 (Normalisation)
P (Ω) = 1.Axiom 2.3 (Finite additivity)For any sequene of disjoints E1, E2, . . . , En ∈ R

P (∪n
i=1Ei) =

n
∑

i=1

P (Ei). (2.1)
From these axioms it follows that P (E) = 1 − P (Ω \ E), P (∅) = 0 and P (E) ≤ 1 for all

E ∈ R. 5



2 Preliminaries and Notation
The triple 〈Ω,R, P 〉 is alled a probability spae. We usually think of the probability ofevent E (denoted P (E)) as the likelihood that E will our, where E ours if the urrentstate of nature ω ∈ Ω is inluded in E.
Ω is sometimes viewed as the set of all possible outomes of some experiment. Some shoolsof probability theory (e.g., frequentists) requires experiments to be (in priniple) repeatablein order to assign a probability measure to an event spae. The probability of an event E isthen de�ned as the limiting relative frequeny with whih E ours:

P (E) := lim
n→∞

NE

N
, (2.2)where N is the number of times the experiment has been performed and NE is the number oftimes E has ourred. From this de�nition, a probability P (E) is an objetive measure.Other shools of probability theory (e.g., Bayesians) do not require experiments to berepeatable in order to talk about probabilities of events. For instane, when we talk aboutthe probability of our loal soer lub winning the national league this year, we are notable to establish this number by repeated experiments. Instead, we have to ome up withsome number that sounds �right� to us, so this will be a subjetive measure. Proponents ofsubjetive probabilities usually term a persons subjetive probability as this persons belief.Your belief in some event E an be determined by having you set a prie of a bet of 1 � onwhether E ours or not. You must set the prie x while not knowing whether you will haveto sell or buy the bet. That is, if I deide to buy the bet from you for the prie of x �, you willhave to pay me 1 � in the ase that E ours, and otherwise pay me nothing (and, thereby,earn the x �). The value of x for whih you are indi�erent of whether to buy or sell the betis your belief in E. When x is seleted suh that one is not expose to ertain loss againsta prudent opponent with the same prior knowledge, beliefs will satisfy Axiom s2.1-2.3, see(Bernardo and Smith, 1994; Skyrms, 1984).

2.1.1 Random VariablesGiven a probability spae 〈Ω,R, P 〉, a disrete random variable X is a mapping:
X : Ω→ R(X), (2.3)where R(X) is a �nite set of states. When X is de�ned w.r.t. probability spae 〈Ω,R, P 〉, werequire for eah x ∈ R(X), {ω ∈ Ω : X(ω) = x} ∈ R, and de�ne the probability of disreterandom variable X being in state x as:

P (X = x) := P ({ω ∈ Ω : X(ω) = x}). (2.4)We denote by P (X) the probability distribution or probability mass funtion of variable X,whih is then a funtion on R(X).From the basi axioms of probability, it follows that P (X) satis�es:1. 0 ≤ P (X = x) ≤ 1 for all x ∈ R(X), and2. ∑x∈R(X) P (X = x) = 1. 6



2.1 Probability theory
Let X = {X1, X2, . . . , Xn} be a set of disrete random variables w.r.t. probability spae

〈Ω,R, P 〉. X then de�nes a mapping from Ω to R(X), where R(X) = ×Xi∈XR(Xi):
X : Ω→ R(X). (2.5)As R is losed under �nite intersetion, it follows that {ω ∈ Ω : X(ω) = x} ∈ R for any

x ∈ R(X). We an de�ne the joint probability of X being in joint state x as:
P (X = x) := P ({ω : ω ∈ Ω,X(ω) = x}). (2.6)We will use the notation P (X) to refer to the joint probability distribution of random variables

X whih is then a funtion on R(X).From the basi axioms of probability, it follows that P (X) satis�es:1. 0 ≤ P (X = x) ≤ 1 for all x ∈ R(X), and2. ∑x∈R(X) P (X = x) = 1.A set of random variables X is therefore equivalent to a single random variable with statespae R(X).Let X be a set of random variables, Y ⊆ X, and x ∈ R(X). Then we denote by x[Y] theprojetion of x onto variables Y. Let X = {X1, . . . , Xn} be a set of disrete random variables,and let P (X) be a distribution for X. We an derive the marginal distribution for a subset
Y ⊂ X by marginalisation, whih amounts to summing over all joint states of R(X \Y):

P (Y = y) =
∑

x:x∈R(X)and x[Y]=y

P (X = x). (2.7)
2.1.2 Conditional DistributionsLet X be a set of random variables w.r.t. probability spae 〈Ω,R, P 〉, and let A be a partitionof Ω into the k olletively exhaustive and mutually exlusive sets {A1, A2, . . . , Ak} where
Al ∈ R for 1 ≤ l ≤ k. We an onstrut the joint onditional probability or joint posteriorprobability of X being in joint state x given some Al (1 ≤ l ≤ k), as:

P (X = x|Al) =
P (Al ∩ {ω ∈ Ω : X(ω) = x})

P (Al)
. (2.8)As R is losed under intersetion it is lear that Al ∩ {ω ∈ Ω : X(ω) = x} ∈ R, and therefore

P is de�ned on the intersetion. However, equation (2.8) requires the denominator P (Al)to be non-zero for P (X = x|Al) to be de�ned, and we will leave the onditional probabilityunde�ned when the ondition Al has zero probability1.We denote by P (X|A ) the joint onditional distribution of X given partition A whih isa funtion on R(X)×A .1While intuitively it may not make muh sense to allow onditioning on the impossible event (that is, apartitions of zero probability), it is allowed within ertain formalisations of probability theory suh as that ofDe Finetti. 7



2 Preliminaries and Notation
There are several ways that one an de�ne a partitioning of Ω. Given set a of variables X,we an de�ne a partition A in terms of R(X). That is, a partitioning R = {R0, . . . , Rk} of

R(X) immediately de�nes the partitioning A = {A0, . . . , Ak} of Ω: Ai = {ω ∈ Ω : X(ω) =

x and x ∈ Ri}. Then we get a speial ase of eq. (2.8):
P (X = x|Al) =







P (X=x)
P

x′∈Rl
P (X=x′) if x ∈ Rl,

0 otherwise. (2.9)
A partitioning that is often used is the one indued by a subset of variables Z ⊆ X, suh thatevery joint state zl ∈ R(Z) indues Al = {ω ∈ Ω : Z(ω) = zl}. Then we get yet anotherspeial ase of eq. (2.8):

P (X = x|Al) =

{

P (X=x)
P (Z=zl)

if x[Z] = zl,
0 otherwise. (2.10)

We will denote by P (X|Z) the joint onditional distribution of X given the partition of Ωindued by Z, whih is then a funtion on R(X)×R(Z).By suitable marginalisation and reursive appliation of (2.10) one an onstrut the fol-lowing fatorisation of a joint distribution P (X) over a set of variables X:
P (X) =

n
∏

i=1

P (Xi|Xi+1, . . . , Xn). (2.11)
2.1.3 IndependeneLet X be a set of random variables de�ned on probability spae 〈Ω,R, P 〉. We say thatdisjoint subset of random variables W,Y ⊂ X are marginally independent under P i�:

∀w ∈ R(W), ∀y ∈ R(Y) : P (W = w,Y = y) = P (W = w)P (Y = y), (2.12)and we will use notation W⊥⊥Y[P ] to denote this relation.Let A = {A1, . . . , Ak} be a partition of Ω. We then say that W and Y are onditionallyindependent given A under P i�:
∀w ∈ R(W), ∀y ∈ R(Y), ∀Al ∈ A :

P (W = w,Y = y|Al) = P (W = w|Al)P (Y = y|Al). (2.13)We will use Y ⊥⊥W|A [P ] to denote this relation. Marginal independene is just a speialase of onditional independene where the onditioning partition is the trivial partitioning
A = {Ω}.When the partitioning of Ω is indued by a subset of variables Z disjoint from Y and W,we will write Y⊥⊥W|Z[P ] to denote that Y and W are onditionally independent given thestate of Z under joint distribution P . Equation (2.13) an then be rewritten as:8



2.1 Probability theory
∀w ∈ R(W), ∀y ∈ R(Y), ∀z ∈ R(Z) :

P (W = w,Y = y|Z = z) = P (W = w|Z = z)P (Y = y|Z = z). (2.14)We allow the onditioning set Z of variables to be empty, but using the notation Y ⊥⊥

W|∅[P ] is onfusing as P (∅) = 0, and (2.14) would not be de�ned. However, Z = ∅ generatesthe trivial partitioning A = {Ω}, and instead of Y⊥⊥W|∅[P ] we understand Y⊥⊥W|Z[P ] as
Y⊥⊥W[P ] when Z = ∅.If Y ⊥⊥W[P ] (respetably Y ⊥⊥W|Z[P ]) is not true, we write Y 6⊥⊥W|P (respetively
Y 6⊥⊥W|Z[P ]).De�nition 2.1 (Dependeny Model)A statement of onditional independene is an expression of the form Y⊥⊥W|A . Let 〈Ω,R〉be measurable spae, and let X be a set of random variables de�ned on Ω. A dependenymodel over X is a rule that assigns a truth value to all statements of onditional independeneof the form:

Y⊥⊥W|A ,where Y and W are disjoint non-empty subsets of X and A is any partitioning of Ω from aertain lass A of partitionings.Example 2.1Consider a probability spae 〈Ω,R, P 〉. Probability measure P enodes a dependeny modelover any set of variables X de�ned on Ω as any statement Y⊥⊥W|A [P ] an be veri�ed byinspeting relation (2.13) under P .Example 2.2Consider a measurable spae 〈Ω,R〉. One lass A of partitionings all those partitionings thatpartition Ω into measurable partitions A = {A1, . . . , Al}, that is Al ∈ R for any 1 ≤ l ≤ l.This is the least restritive lass of partitionings. Another lass of partitionings arises froma set variables X de�ned on Ω. A lass AX of partitionings of Ω is generated from allpossible partitionings R = {R0, . . . , Rk} of R(X). Here, partitioning R immediately de�nesthe partitioning A = {A0, . . . , Ak} of Ω: Ai = {ω ∈ Ω : X(ω) = x and x ∈ Ri}. A veryommon lass of partitionings is the sublass of AX that is generated by any proper subset
Z ⊂ X.Given two partitionings B and C , we will de�ne the partition I (B,C ) as the partitiononsisting of the elements {B ∩ C : B ∈ B, C ∈ C }.Let Y be a set of disrete random variables w.r.t. probability spae 〈Ω,R, P 〉. Thepartitioning A (Y) is then de�ned as:

A (Y) =

{

{{ω ∈ Ω : Y(ω) = y}(y ∈ R(Y))} if Y 6= ∅,

{Ω} otherwise. (2.15)
9



2 Preliminaries and Notation
Axiomati Charaterisations of Conditional IndependeneExtensive work has been done to haraterise dependeny models of a joint probability dis-tribution. In the following we will review a set of axioms provided by Pearl (1988).2 Let
X be a set of random variables w.r.t. probability spae 〈Ω,R, P 〉, and let U, Y and W bearbitrary disjoint subsets of variables X. Also, let S be some partition of the sample spae
Ω.3 The following axioms 2.4, 2.7, then provide a sound haraterisation of the dependenymodel enoded by P .4Axiom 2.4 (Symmetry)

W⊥⊥Y|S ⇔ Y⊥⊥W|S . (2.16)Axiom 2.5 (Deomposition)
W⊥⊥{Y ∪U}|S ⇒W⊥⊥Y|S ∧W⊥⊥U|S . (2.17)Axiom 2.6 (Weak Union)
W⊥⊥{Y ∪U}|S ⇒W⊥⊥Y|I (S ,A (U)). (2.18)Axiom 2.7 (Contration)

W⊥⊥Y|I (S ,A (U)) ∧W⊥⊥U|S ⇒W⊥⊥{Y ∪U}|S . (2.19)From ontration, weak union and deomposition follows the so alled blok independenelemma:
W⊥⊥Y|I (S ,A (U)) ∧W⊥⊥U|S ⇔W⊥⊥{Y ∪U}|S . (2.20)Furthermore, if P is positive, then we also have the Intersetion axiom:Axiom 2.8 (Intersetion)

W⊥⊥Y|I (S ,A (U)) ∧W⊥⊥U|I (S ,A (Y))⇒W⊥⊥{U ∪Y}|S . (2.21)A three-way relation that satis�es Axioms 2.4 to 2.7 are alled the semi-graphoid, and ifaxiom 2.8 is also satis�ed, the relation is alled graphoid. Conditional independene is a semi-graphoid relation. A set of inferene rules is omplete i� all true statements an be inferredusing the set of inferene rules. It was shown by Studený (1989) that the semi-graphoids doesnot provide a omplete haraterisation of onditional independene. Still, the set of axioms2It should be mentioned that the axiomatisation of Pearl (1988) was preeded by an alternative but equiv-alent axiomatisation of onditional independene proposed by Dawid (1979).3Originally, the axioms proposed by Pearl (1988) only onerned onditional independene relations, wherethe onditioning partition was generated by a subset of variables. The axioms, however, are still true whenthe onditioning partition is allowed to be any general partition of Ω.4A set of inferene rules forms a sound haraterisation if no sequene of appliations of the rules an infera false statement from a set of true statements, but rather only true statements an be inferred from truestatements. 10



2.2 Graphial Conepts
provides a sound haraterisation, and an therefore still be used to infer more onditionalindependene relations from a set of true relations.
2.1.4 Sampled Data and likelihoodGiven a joint distribution P (X) over random variable X, an independent and identiallydistributed (iid) sample of X of length l is a set of l random variables X1, . . . ,Xl, eah withstate-spae R(Xi) = R(X) and distribution P (Xi) = P (X). A database of ases or instanesof X is a set D = {d1, . . . , dn} where eah element di is a realisation of variable Xi in an iidsample of X of length n. We will not emphasise the distintion between an iid sample anda database of realisation of an iid sample, and will for simpliity say that D is an iid sampleof X of length n when in fat D is a realisation of an iid sample of X of length n. When
D = {d1, . . . , dn} is an iid sample of X, Y ⊂ X, and di ∈ D, we will denote by di[Y] theprojetion of realisation di onto variables Y.Let D be an iid sample of random variables X and let P (X) be an arbitrary distributionover variables X. The likelihood of data D under P is then de�ned as:

l(D|P ) =
∏

d∈D

P (X = d[X]). (2.22)
Taking the log of (2.22) yields the log-likelihood (L(D|P )) that deomposes into a sum of logsof probabilities:

L(D|P ) =
∑

d∈D

logP (X = d[X]). (2.23)
2.2 Graphial Conepts

An undireted graph (UDG) is a pair G = 〈V,E〉, where V is a �nite set of distint nodesand E is a �nite set of edges, de�ned as unordered pairs of distint nodes, E ⊆ {{X,Y } :

X ∈ V, Y ∈ V and X 6= Y }. In a graph G = 〈V,E〉, i� {X,Y } ∈ E we say that X and
Y are adjaent in G. We denote the set of all adjaent nodes of node X in graph G by
adjG(X) = {Y ∈ V : {Y,X} ∈ E}.For a graph G = 〈V,E〉, a subset A ⊆ V indues the subgraph GA = 〈A,EA〉, where
EA = {{X,Y } : {X,Y } ∈ E, X ∈ A and Y ∈ A}. A path π from node A to node B in a UDG
G = 〈V,E〉 is a sequene of n nodes X1, X2, . . . , Xn where n ≥ 2 and {Xi, Xi+1} ∈ E for all
1 ≤ i ≤ n, and X1 = A and Xn = B.Let G = 〈V,E〉 be an UDG and A, B and S be disjoint subsets of V. Then A and B areseparated by S i� all paths between nodes A and B, where A ∈ A and B ∈ B, ontains atleast one node S ∈ S.A path π from A to B in graph G = 〈V,E〉, is a yle i� A = B.A graph is onneted i� there exists a path between any two distint nodes. Otherwise itis disonneted. A onneted omponent in a graph G = 〈V,E〉 is a subgraph of G induedby a maximal subset A ⊆ V where GA is onneted.11



2 Preliminaries and Notation
A direted graph or digraph is a pair G = 〈V,E〉 of nodes V and direted edges E, de�nedas ordered pairs of distint nodes. We will denote a pair of nodes as being ordered by enlosingthe pair in parenthesis (Xi, Xj), whih represents an edge with orientation Xi → Xj .The skeleton of a graph G = 〈V,E〉 is the undireted graph obtained from G by droppingthe orientation of all edges. We denote the skeleton of G by Gu. The skeleton of UDG G isjust G itself.Extending paths and yles to digraphs gives rise to both undireted and direted versions.Let G = 〈V,E〉 be a digraph. A sequene of nodes X1, . . .Xn in digraph G forms an undiretedpath i� it is a path in Gu, and it forms an undireted yle i� it is a yle in Gu. Furthermore,the sequene of nodes forms a direted path i� Xi → Xi+1 ∈ E for all i ∈ [1..n], and forms adireted yle i� it forms a direted path and X1 = Xn.A direted ayli graph (DAG) is a digraph G = 〈V,E〉 that does not ontain any diretedyles.If G = 〈V,E〉 is a DAG and (X,Y ) ∈ E, we say (as for undireted graphs) that X and

Y are adjaent, and in addition we say that Y is a hild of X and X is a parent of Y in
G. The set of all parents and hildren of node X in digraph G will be denoted paG(X)respetively chG(X). If there exists a direted path from node X to node Y in DAG G, wesay that Y is a desendant of X in G, and we denote the set of all desendants of node Xin graph G by deG(X). By de∗G(X) we denote deG(X) ∪ X. By pa∗

G(X) we denote the set
{Y ∈ V : X ∈ deG(Y )}. A set of nodes A is anestral i� for any node X ∈ A the parents of
X are also inluded in A. By pa∗

G(A) we denote the smallest anestral set in G inluding A,that is pa∗
G(A) = A ∪ {∪X∈Apa∗

G(X)}.A rooted DAG is a DAG where a single unique node (the root node) has no parents.A tree is a rooted DAG with no yles, whih also implies that any node X only hasat-most one parent. A forest is a set of trees.A poly-tree is a UDG that does not ontain any yles.In direted graph G = 〈E,V〉 the set of non-desendants of node X is denote by ndG(X) =

V \ de∗G(X).A hain graph is a pair G = 〈V,E〉 of nodes V and edges E, where an edge an either bedireted or undireted. The graph obtained by removing all undireted edges from G must bea DAG (onneted or disonneted). Both DAGs and UDGs are hain graphs.The moral graph of a DAG G = 〈V,E〉 is onstruted by onneting all non-adjaent pairsnodes A and B where A and B have a ommon hild ({chG(A)∩ chG(B)} 6= ∅) and droppingall diretions of edges in G. We denote the moral graph of G by Gm.A graph G = 〈V,E〉 is said to be omplete if all nodes in V are pairwise onneted byedges in E. A lique of graph G = 〈V,E〉, is a maximal subset of nodes C ⊆ V, where GC isomplete. By Cliques(G), we denote the set of all liques in graph G.
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Chapter 3
Probabilisti Graphial Models

In this hapter we introdue three di�erent types of probabilisti graphial models. A proba-bilisti graphial model is a ompat representation of a joint probability distribution over a�nite domain of random variables, and it is omposed of two parts:1. a dependeny model, and2. a set of parameters.The suess of graphial models in a pratial appliation often relies on the existene ofe�ient algorithms for solving di�erent kinds of inferene tasks. Together with the generalsyntax and semantis of three di�erent probabilisti graphial model languages, we will alsointrodue algorithms for e�ient and exat omputation of inferene.We will introdue the Bayesian Network (BN) model in Setion 3.2, the Naïve Bayes (NB)model in Setion 3.4, and the Probabilisti Deision Graph (PDG) model in Setion 3.3.The BN model is probably one of the most popular graphial models, and it has be-ome a standard method for handling unertainty in many �elds of researh, espeially in the�eld of arti�ial intelligene (Jensen, 2001; Castillo et al., 1997; Pearl, 1988). The BN modelrepresents a distribution over a set of variables through a fatorisation of loal onditional dis-tributions. The dependeny model enoded by the BN model is de�ned by a DAG strutureand using ertain separation riteria, the dependeny model an easily be enumerated fromthat DAG.The NB model represents a distribution over a set of variables X by introduing a speialunobserved or latent variable C. The dependeny model enoded by the NB model rendersall pairs of disjoint subsets of X onditionally independent given C.The PDG model is still a fairly new language for probabilisti graphial modelling, andwas �rst introdued by Jaeger (2004). Like the BN model, the PDG model also represents adistribution over a set of variables X through a fatorisation of loal onditional distributionsfor eah variable. The dependeny model enoded by the PDG model is di�erent from the BNdependeny model, as it ditates variables as independent given ertain partitions of R(X).
13



3 Probabilisti Graphial Models
3.1 Inferene Tasks

There are many di�erent kinds of relevant probabilisti queries that we might want to inferanswers for using PGMs. For a set of random variables X and a joint probability distribution
P (X) over X, the most ommon queries inlude:Belief Updating: This is the task of updating probabilities in the presene of evidene, thatis observations of a subset of variables E ⊂ X. Given that variables E ⊂ X have beenobserved in joint state e ∈ R(E), ompute the posterior marginal P (Xi|E = e) for all

Xi ∈ {X \E}.Most Probable Explanation (MPE): The task of �nding the joint on�guration of unob-served variables with maximal joint posterior probability given some evidene. That is,given E ⊂ X have been observed in joint state e ∈ R(E), then the solution to MPE is:
y = argmax

y′∈R(Y)
P (Y = y′|E = e), (3.1)

where Y = {X \E}.Maximum a Posteriori Hypothesis (MAP): This is a generalisation of the MPE (3.1),where Y is not neessarily all remaining variables but may be a proper subset Y ⊆

{X \E}.We regard belief updating as the primary task for any general purpose language for prob-abilisti graphial modelling. We will, therefore, identify for eah language the omplexityassoiated with solving this problem in general. In partiular, for a model M from language
L, we will identify the e�etive size of model M , denoted sizeeff (M). The e�etive size is amodel spei� parameter suh that in M general belief updating is omputable in linear timein sizeeff (M). This will enable easy omparison of the (theoretial) e�ieny of models fromdi�erent languages.
3.2 Bayesian Network Models

A BN B = 〈G, θ〉 is a pair onsisting of a DAG G = 〈V,E〉 and parameters θ. Let
X = {X1, . . . , Xn} be a set of n disrete random variables. A DAG over X is a DAG G =

〈V,E〉, where nodes are de�ned in a 1-to-1 orrespondene with variables in X. We willnot distinguish between nodes of a DAG and assoiated random variables, when the meaningis lear from ontext. Thus, for random variable X assoiated with node V , we will usethe notation paG(X) to mean both the parents of V in G, and the set of random variablesassoiated with parents of V in G.A BN B = 〈G, θ〉 over X represents P (X) by the direted fatorisation de�ned by (3.2),where θ de�nes loal distributions for eah variable Xi onditional on its parents in G,
P (Xi|paG(Xi)). 14



3.2 Bayesian Network Models
De�nition 3.1 (Direted Fatorisation(DF))A joint probability distribution P over variables X is said to fatorise w.r.t. DAG G over Xi�:

P (X) =
∏

Xi∈X

P (Xi|paG(Xi)). (3.2)
3.2.1 The Bayesian Network Dependeny ModelThe dependeny model enoded by the BN has reeived enormous attention (Lauritzen et al.,1990; Castelo, 2002; Pearl, 1988; Ko£ka, 2001). It is usually termed the DAG Markov model,and we will review the so-alled Markov properties that follows from De�nition 3.1. Thedependeny model is important for our learning proedure for BN models and for e�ientinferene in a BN model. Some of the most popular algorithms for exat inferene in BNmodels does not work on the DAG struture, but instead ompiles the DAG into an equivalentundireted (UDG) model on whih omputations are then performed. Suh algorithms aretypially referred to as lique tree algorithms, juntion tree algorithms, or variable lusteringalgorithms. We will review the basi arhiteture of suh algorithms in Setion 3.2.3. For ourlearning algorithms, it is important to establish an e�ient haraterisation of equivalenelasses of BN models. The study of suh haraterisations builds on results of UDG models.Therefore we will brie�y review important results onerning the UDG model.Fatorisation w.r.t. an undireted graph over random variables X is de�ned as a fatori-sation over lique potentials of the graph in De�nition 3.2.De�nition 3.2 (Undireted Fatorisation (UF))A joint probability distribution P over variables X is said to satisfy undireted fatorisation(UF) w.r.t. UDG G = 〈V,E〉, i� there exists non-negative mutually independent lique-potential funtions ψA for whih:

P (X) =
∏

A∈Cliques(G)

ψA, (3.3)
where ψA is a funtion or potential over lique A.De�nition 3.3 (Undireted Global Markov Property (UG))A joint probability distribution P over random variables X satis�es the Undireted GlobalMarkov Property (UG) w.r.t. UDG G i� for any triple of disjoint subsets A, B and S of X,where S separates A from B in G, the following holds:

A⊥⊥B|S[P ]. (3.4)
UF and UG are onneted by Proposition 3.1. It was �rst stated and proved by Lauritzen et al.(1990): 15



3 Probabilisti Graphial ModelsProposition 3.1(Lauritzen et al., 1990, Proposition 1) If joint distribution P over random variables X satisfyUF w.r.t. UDG G, then P satis�es UG w.r.t. G.Lauritzen et al. (1990) onnets undireted and direted fatorisations (De�nitions 3.1 and3.2) in Lemmas 3.1 and 3.2:Lemma 3.1(Lauritzen et al., 1990, Lemma 1) If joint probability distribution P satis�es DF w.r.t. DAG
G, then P satis�es UF w.r.t. Gm (and therefore UG w.r.t. Gm).Lemma 3.2(Lauritzen et al., 1990, Lemma 2) If joint probability distribution P over random variables Xsatis�es DF w.r.t. DAG G, and A is an anestral set in G, then the marginal distribution
P (A) satis�es DF w.r.t. GADe�nition 3.4 (Direted Global Markov Property (DG))A disrete joint probability distribution P over random variables X is said to satisfy thedireted global Markov property (DG) w.r.t. DAG G over X i� for any triple of disjoint subsets
A ⊆ X, B ⊆ X and S ⊆ X, where S separates A from B in (Gpa∗

G
(A∪B∪S))

m:
A⊥⊥B|S[P ]. (3.5)From Lemmas 3.1 and 3.2, it follows that if P satis�es DF w.r.t. DAG G, then P satis�esthe DG w.r.t. G (Lauritzen et al., 1990, Corollary 1).De�nition 3.5 (Direted Loal Markov Property (DL))A disrete joint probability distribution P over variables X satis�es the direted loal Markovproperty w.r.t. DAG G i� for any variable X ∈ X:

X⊥⊥ndG(X)\paG(X)|paG(X)[P ]. (3.6)
Lauritzen et al. (1990) state and prove equivalene of direted fatorisation, direted globaland direted loal Markov properties (De�nitions 3.1, 3.4 and 3.5):Theorem 3.1(Lauritzen et al., 1990, Theorem 1) For a disrete probability distribution P over randomvariables X and DAG G over X, the following statements are equivalent:1. P satis�es DF w.r.t. G,2. P satis�es DG w.r.t. G,3. P satis�es DL w.r.t. G. 16



3.2 Bayesian Network Models
When distribution P fatorise w.r.t. DAG G, G is alled an I-map of P . Let I be astatement of onditional independene, we then say that DAG G entails I i� I is true for alldistributions P for whih G is an I-map (denoted G |=P I).A popular graphial riterion for reading independene relations entailed by a DAG is thed-separation riterion (Pearl and Verma, 1987), de�ned as:De�nition 3.6 (d-separation)Let G = 〈V,E〉 be a DAG with nodes V and direted edges E. Two distint nodes X,Y ∈ Vare said to be d-separated in DAG G by Z ⊂ V i� for every path π (undireted or direted)between X and Y there exists a node W suh that either:
• W ∈ Z and there is no head-to-head onnetion at W w.r.t. path π, or
• W 6∈ Z, non of deG(W ) are inluded in Z and there is a head-to-head onnetion at Ww.r.t. path π.The de�nition extends to sets of variables by denoting U ⊂ X being d-separated from subset

W ⊂ X by Z ⊂ X in G i� any two nodes U ∈ U and W ∈W are d-separated by Z in G.We denote by G |=d-sep X⊥⊥Y |Z the statement that in DAG G, X and Y are d-separatedby Z. As a rule for inferring onditional independenies entailed by DAG G, d-separation isboth sound ([G |=d-sep I] ⇒ [G |=P I]) and omplete ([G |=P I]⇒ [G |=d-sep I]), �rst provedby Geiger and Pearl (1988).If G is an I-map of P , and P does not ontain any more independenies than those entailedby G, then G is a perfet map of P . If some DAG G is a perfet map of distribution P , then
P is alled DAG-faithful.Lauritzen et al. (1990) prove that d-separation is equivalent to the direted global Markovproperty as a separation riterion.De�nition 3.7 (Bayesian Network Dependeny Model)The BN B with DAG struture G over variables X de�nes a dependeny model in whih thetrue independenies are:

M(G) = {A⊥⊥B|S : G |=P A⊥⊥B|S}. (3.7)So any distribution P that fatorise w.r.t. DAG G will ontain (at least) all the indepen-denies M(G). Using the terminology of De�nition 2.1, we say that the lass of partitioningsused in BN dependeny models, is the lass of all partitionings that an be indued by somesubset of variables S ⊂ X.Given a DAG G = 〈V,E〉, and disjoint subsets A,S ⊆ V, Geiger et al. (1990) presentan algorithm for omputing the set B of all nodes that are d-separated from A given S.We present it here as funtion getDSeparated (Algorithm 3.2), whih uses the subroutinegetReahable to determine a set of nodes that are reahable by a legal path (see Algorithm3.1). getReahable has omplexity O(|E| · |V|) in general, however Geiger et al. (1990) showthat when the set of illegal pairs of edges is onstruted as in line 4 of getDSeparated,getReahable will run in time linear in |E|. As no operation in getDSeparated has worseomplexity than O(|E|), the overall omplexity of getDSeparated is therefore O(|E|).17



3 Probabilisti Graphial Models
Algorithm 3.1 This algorithm is needed by algorithm 3.2.Input: G : DAG over X; F: a set of illegal pairs of edges; A: a set of nodes A ⊂ X.Output: A set of nodes R ⊂ X reahable from A via a legal path.1: funtion getReahable(G, F, A)2: X := X ∪Xs3: R := {Xs} ∪A4: for all X ∈ A do5: E := E ∪Xs → X6: label Xs → X with 17: i := 18: repeat9: Let U be the set of unlabelled edges Xk → Xl from E s.t. there exists Xj → Xklabelled i and (Xj → Xk, Xk → Xi) 6∈ F.10: for all Xk → Xl ∈ U do11: R := R ∪ {Xl}12: label Xk → Xl with i+ 1.13: i := i+ 114: until U = ∅15: return R

Algorithm 3.2 This funtion omputes and returns the set of variables B d-separated froma target set A given a separating set S in a DAG G.Input: G : DAG struture over variables X; disjoint subsets A,S ⊂ X.Output: The set of variables B d-separated from A by S.1: funtion getDSeparated(B, A, S)2: Construt the graph G′ = 〈V,E′〉 where E′ := E ∪ {Xi → Xj : Xj → Xi ∈ E}.3: Construt the table desendant(Xi) :=

{

true if {{Xi} ∪ deG(Xi)} ∩ S 6= ∅

false otherwise4: Construt the set FC of pairs of edges (Xj → Xk, Xk → Xl) where Xj 6= Xl and either
• Xj → Xk, Xk ← Xl ∈ E and desendant(Xk) = true, or
• Xj → Xk, Xk ← Xl 6∈ E and Xk 6∈ S.5: B′ := getReachable(G′,E′ \ FC ,A)6: return V \ {B′ ∪A ∪ S}

18
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(d)Figure 3.1. 4 di�erent DAG strutures over X = {X,Y, Z}. (a) is not equivalent with any of theother, and (b), () and (d) are all equivalent.
3.2.2 BN Model Equivalene and InlusionIn this setion, we de�ne a partial ordering of BN dependeny models. By De�nition 3.7, theBN dependeny model is the set of statements of independene that are entailed by the DAGstruture of the BN model. Inlusion of one dependeny model in another is now de�ned w.r.t.the set of distributions that an be represented by the models:De�nition 3.8Let G1 = 〈X,E1〉 and G2 = 〈X,E2〉 be DAGs. We say that model M(G2) distributionallyinludes M(G1) i� M(G2) ⊆M(G1). We will denote this by M(G1) ⊆D M(G2).If M(G1) ⊆D M(G2) then for any parametrisation θ of BN B1 = 〈G1, θ〉 there exists aparametrisation θ′ of BN B2 = 〈G2, θ

′〉 suh that PB1(X) = PB2(X).De�nition 3.9Let G and H be DAGs over the same set of variables X. G and H are distributionallyequivalent i� M(G) = M(H). We will denote distributional equivalene by G ≈ H.In the reminder of this thesis, we will refer to distributional inlusion and distributionalequivalene by simply inlusion and equivalene unless otherwise stated.Example 3.1The empty DAG G∅ with no edges de�nes dependeny model M(G∅) = {A⊥⊥B|S : A,B ∈

X,S ⊆ X \ {A,B}}, i.e., all pairs of disjoint sets of variables are marginally and onditionallyindependent. The dependeny model M(G∅) is inluded in all other BN dependeny modelsover X. The omplete DAG G∗ where all pairs of nodes are onneted by an edge, de�nes thedependeny model M(G∗) = ∅, i.e., G∗ entails no independenies. M(G∗) obviously inludesall other BN dependeny models over X.De�nition 3.10For a DAG G we de�ne the equivalene lass E(G) as:
E(G) = {H : H ≈ G}.
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X2
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X4

X5()Figure 3.2. (a) shows DAG G, (b) shows the pattern ommon to all members of E(G) and () showsthe ompleted pattern that identi�es all ompelled and reversible edges.
Example 3.2The 4 di�erent DAG strutures Ga, Gb, Gc and Gd over X = {X,Y, Z} in Figure 3.1(a)-(d)respetively, are related in terms of equivalene as: Ga 6≈ Gb ≈ Gc ≈ Gd. Gb, Gc and Gd allentail the single statement X⊥⊥Y |Z, while Ga entails the statement X⊥⊥Y .A v-struture in a DAG G = 〈X,E〉 is a triple of nodes (X,Z, Y ) ∈ X where X → Z ∈ Eand Y → Z ∈ E and X 6∈ adjG(Y ). A lassi haraterisation of DAG equivalene was givenby Verma and Pearl (1991):Theorem 3.2(Verma and Pearl, 1991, Theorem 1) Let G and H be DAGs over the same set of nodes X.Then G ≈ H i� G and H have the same skeleton (Gu = Hu) and ontains the same set ofv-strutures.Theorem 3.2 says that not only is the skeleton invariant for equivalent DAGs, but also theorientation of some edges, in partiular those partiipating in v-strutures. An edge in DAG
G that has the same orientation in all DAGs G′ ∈ E(G) is said to be ompelled. An edge thatis not ompelled is reversible.Verma and Pearl (1991) de�nes the pattern of a DAG as the partially direted ayligraph (PDAG) onstruted by dropping the orientation of any edge not partiipating in av-struture. By theorem 3.2, the pattern of a DAG G provides anonial representation of
E(G).Given a DAG G, we will denote the PDAG that ontains direted edges for all ompellededges and undireted edges for all reversible edges in G, as the ompleted PDGA (CPDAG)for G.Example 3.3For a DAG G, there may be more edges than the ones partiipating in a v-struture thatare ompelled and, hene, the pattern and the ompleted PDAG does not always oinide.Consider for example the DAG G in Fig. 3.2(a) for whih 3 edges are ompelled (X1 → X3,20



3.2 Bayesian Network Models
Algorithm 3.3 Convert a DAG struture to its pattern.Input: DAG G = 〈V,E〉Output: Pattern of DAG G1: funtion DAGToPattern(G)2: G′ := copy(Gu)3: L := ∅4: for all Xi → Xk ∈ E do5: if Xi → Xk 6∈ L then6: if paG(Xk) \ {adjG(Xi) ∪Xi} 6= ∅ then7: for all Xj ∈ {paG(Xk) \ {adjG(Xi)} do8: diret Xj → Xk in G′9: L := L ∪ (Xj → Xk)10: return G′

X4 → X3 and X3 → X5). The pattern of G is shown in Fig. 3.2(b) and the CPDAG of G inFig. 3.2().A simple algorithm for onstruting the pattern from a DAG is given in Algorithm 3.3. Itvisits every edge only one, and for eah edge a set subtration is performed, whih an bedone in linear time in the size of the largest set. The size of the largest set is bounded by |E|,and the omplexity of the algorithm will then be bounded by O(k · |E|2). When DAGs aresparsely onneted (as is typially the ase for BN models) the sets paG(Xi) and adjG(Xi)are small ompared to E, yielding in pratise sub-polynomial omplexity.A haraterisation of equivalent DAGs based on a loal transformation was developed byChikering (1995) using the onept of overed edges in DAGs. An edge Xi → Xj in DAG Gis overed i� paG(Xi) = paG(Xj) \Xi.Lemma 3.3(Chikering, 1995, Lemma 1) Let G be a DAG over variables X ontaining the edge Xi → Xj .Let H be a DAG idential to G with the single exeption that H ontains Xi ← Xj insteadof Xi → Xj. Then G ≈ H i� Xi → Xj is overed in G.Chikering (1995) uses Lemma 3.3 to develop the following haraterisation of E(G):Theorem 3.3(Chikering, 1995, Theorem 2) Let G and H be DAGs over the same set of variables X, let
G ≈ H and let n be the number of edges that do not have the same orientation in H and G.Then there exists a sequene of n distint edge reversals in G where:1. eah edge when reversed is overed,2. after eah reversal G is a DAG and G ≈ H, and3. after all reversals G = H, that is G and H are idential.
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3 Probabilisti Graphial Models
In the ordering of models de�ned by the inlusion relation, we an de�ne the boundary ofa model, the inlusion boundary (Ko£ka, 2001; Ko£ka et al., 2001) of a BN dependeny model

M(G):
De�nition 3.11 (Inlusion Boundary)Let B = 〈G, θ〉 be a BN model. The Inlusion Boundary of BN dependeny model M(G),denoted IB(M(G)) is de�ned as:

IB(M(G)) = UIB(M(G)) ∪ LIB(M(G)), (3.8)
where:

UIB(M(G)) = {M(U) : M(G) ⊂D M(U), ∄U ′[M(G) ⊂D M(U ′) ⊂D M(U)]}, (3.9)
LIB(M(G)) = {M(L) : M(L) ⊂D M(G), ∄L′[M(L) ⊂D M(L′) ⊂D M(G)]}. (3.10)

LIB(M(G)) onsists of BN dependeny models that ontains more statements of onditionalindependene than M(G), and UIB(M(G)) onsists of BN dependeny models that ontainsless statements of onditional independene thanM(G). Both boundaries onsists of the set ofBN models �losest� to M(G). A transformational haraterisation of the inlusion boundarywas provided by Castelo and Ko£ka (2003):
Theorem 3.4(Castelo and Ko£ka, 2003, Theorem 3.2) Let G be a DAG, and let G+e and G−e be the setof DAGs that an be onstruted from G by a single edge addition or removal, respetively.The inlusion boundary of the BN dependeny model de�ned by DAG struture G is:

IB(M(G)) = {M(Q′) : Q′ ∈ {Q−e ∪Q+e} and Q ≈ G}. (3.11)
It is ertainly the ase that IB(M(G)) ⊇ {M(G′) : G′ ∈ {G−e ∪G+e}}. However, not allmodels in IB(M(G)) an be generated by adding or removing an edge from DAG G, as thefollowing example (Example 3.4) shows.

Example 3.4Consider a domain X = {X,Y, Z}. Let G be the DAG shown in Figure 3.3(a). The inlusionboundary IB(M(G)) is de�ned by the DAGs with patterns shown in Figure 3.3(b)-(f). Notiethat from DAG G we an not onstrut a DAG with the pattern shown in Figure 3.3(e) byedge addition or removal. However, by reversing the overed edge X → Y , reating DAG
Q ≈ G and adding Z → Y to Q we get the single DAG of Figure 3.3(e).

22



3.2 Bayesian Network Models
X

Z

Y

(a)
X

Z

Y

(b)
X

Z

Y

()
X

Z

Y

(d)
X

Z

Y

(e)
X

Z

Y

(f)Figure 3.3. A DAG and its inlusion boundary. Figure (a) shows DAG G over X = {X,Y, Z}, Figure(b), (), (d) and (e) shows the patterns representing the 4 equivalene lasses in UIB(M(G)). Figure(f) shows the single model in LIB(M(G)), the empty DAG.
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Figure 3.4. A DAG G (a) and its underlying moral graph Gm (b).

3.2.3 InfereneThe general problem of belief updating in BNs is NP-hard (Cooper, 1987) and this is trueeven for algorithms that only ompute approximate solutions (Dagum and Luby, 1993). Inthis setion, we will give an overview of the nature of popular approahes to the problem ofexat belief updating and general inferene in BNs.Consider the BN B = 〈G, V 〉 over variables X = {X0, X1, . . . , X6} with the struture Gshown in Fig. 3.4(a). We have the following fatorisation:
P (X) = P (X0)P (X1|X0)P (X2|X1, X3)P (X3|X0)

P (X4|X3)P (X5|X2, X6)P (X6|X4).
(3.12)
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3 Probabilisti Graphial Models
We will �rst fous on alulating PB(Y = y) for some Y ⊂ X and y ∈ R(Y). Let

Z = {x : x ∈ R(X) and x[Y] = y}. Then :
PB(Y = y) =

∑

x∈Z

PB(X = x) (3.13)
However, it is not tratable to ompute the full joint distribution PB(X) as that would requirestorrage-spae of exponential size in the number of variables. By systemati query spei�manipulations of (3.12) we an often redue the omplexity of (3.13).Query spei� simpli�ationThis approah aims at simplifying the fatorisation (3.12), before an answer to a given query isomputed through repeated multipliations and summations. The simpli�ations are apturedgraphially by the removal of variables that are irrelevant w.r.t. the spei� query. Shahter(1988) introdues the onept of barren variables:De�nition 3.12Let G be a DAG over variables X, Y ⊆ X and y ∈ R(Y). A variable X ∈ X in a BN
B = 〈G, θ〉 is barren w.r.t. a query P (Y = y) if X is a leaf and X 6∈ Y.Let B be a BN model over random variables X, Y and y be like in De�nition 3.12, andlet B′ be the BN obtained from B by removing all barren variables X and the assoiatedpotentials PB(X|paG(X)). Shahter (1988) then shows that:

PB(Y = y) = PB′

(Y = y).Removal of barren variables is equivalent to removing potentials in the fatorisation that willsum to 1. When removing a barren variable, more variables may beome barren. In fat, byrepeatedly removing barren variables, we end up with a BN over X′ = {X : X ∈ pa∗
G(Y)} withstruture Gpa∗

G
(Y). After removing from B all variables X 6∈ pa∗

G(Y), we an further removevariables that are d-separated from Y. These variables an be identi�ed using Algorithm 3.2in linear time in the number of edges in the struture. By removing all variables that areirrelevant w.r.t. our query in BN B we get a redued BN B′, and we an ontinue alulating
P (Y = y) using the simpler struture of B′ instead of the original struture B.The variable elimination algorithm by Zhang and Poole (1994) starts by pruning variablesthat are irrelevant to the spei� query. After variable pruning, the remaining variables thatare not irrelevant but not inluded in the �nal result (i.e., not in Y), are eliminated throughsummation as in eq. (3.13). This summation may be done in more stages, in eah stage onlyperforming the required multipliations. Assume that we wish to ompute P (X5 = x5,h) inthe model with struture G shown in Figure 3.4(a). We ould for instane partition the sumin (3.13) into two sums, one over joint on�gurations of the variables X \X1 and one over all
x1,h ∈ R(X1), and get the equivalent sum:

PB(X5 = x5,h)
∑

x′∈
R(X\X1)

∑

x1,h∈

R(X1)

P (X = (x′, x1,h)), (3.14)
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3.2 Bayesian Network Models
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(a)

X0, X1, X3

X1, X2, X3

X2, X3, X6

X3, X4, X6

X2, X5, X6(b)Figure 3.5. A triangulated version of the DAG shown in Fig. 3.4(a), and a join tree over the liquesonstruted from this triangulation (b).
For this operation we need to reate the potential φ = P (X1|X0)P (X2|X1, X3), then sumover values R(X1) of entries in φ reating the new potential φ′ over X0, X2 and X3 whihwe then work with from here on. Di�erent sequenes of suh summations lead to di�erentsized potentials that we need to handle in the omputation. Some sequenes might leadto intratably large potentials, and a good elimination sequene has to be established. Anoptimal elimination sequene results in working only with potentials of minimal size.The moral graph of the DAG struture reveals the ost of an elimination sequene in termsof the size of the potentials one will need to perform operations on. In the moral graph, anytwo variables that are ontained in the same fator are adjaent. Fig. 3.4(b) shows the moralgraph of the DAG in Fig. 3.4(a). When eliminating a variable X, one reates a potentialover all neighbours of X in the moral graph. If the moral graph is triangulated,1 it is possibleto �nd an elimination sequene that does not introdue potentials larger than the originalfators. Suh a sequene an be onstruted by repeatedly removing variables from the graph,always hoosing as the next variable to be removed, a variable that is only a member of onesingle lique. The moral graph in Fig. 3.4(b) is not triangulated, but we an triangulate itby adding an extra �ll-in edge, either X2 −X4 or X3 −X6. In Fig. 3.5(a) the �ll-in X3 −X6has been added to triangulate the moral graph in Fig. 3.4(b). The liques of the triangulatedmoral graph determines the size of the potentials that we need to work with in a summation.In our example we see that liques over at most 3 variables are neessary. Depending on therange of the variables in the domain, the size of the potentials over the liques an be di�erentfor di�erent triangulations. Finding a minimum triangulation is NP-omplete (Arnborg et al.,1987), but e�ient heuristis are known, see (Kjærul�, 1990) for an empirial omparison ofsome ommon heuristi approahes to minimal triangulation.

1A graph is triangulated i� there are no ordless yles. A ordless yle is a yle π of length 4 or morewhere no proper subset of nodes from π forms a yle.25



3 Probabilisti Graphial Models
Clique Tree PropagationA somewhat di�erent approah is taken in lique tree based algorithms. These algorithms workon a seondary lique tree struture build from the triangulated moral graph. A lique treefor a graph is any tree struture over the liques satisfying the running intersetion property.The running intersetion property is satis�ed if and only if for any two liques Ci and Cj inthe lique tree, all liques on the path between Ci and Cj ontain the variables Ci ∩ Cj .Figure 3.5(b) shows a lique tree over the liques in the triangulated moral graph of Figure3.5(a). By attahing eah potential P (Xi|paG(Xi)) from the original BN model to a singlelique Cj ontaining Xi ∪ paG(Xi), we onstrut lique-potentials:

Φj =

{

∏

Aj
P (Xi|paG(Xi)) Aj 6= ∅

1 otherwise
,

where Aj is the set of potentials attahed to lique Cj . The undireted fatorisation of thepotentials w.r.t. the lique tree over liques C is then:
P (X) =

∏

Cj∈C

Φj . (3.15)
Algorithms for inferene in a lique tree struture have been studied extensively (Jensen et al.,1990a,b; Lauritzen and Spiegelhalter, 1988; Shafer and Shenoy, 1990), and they are all vari-ations over the ommon idea of absorbing evidene and passing messages. For answering aquery on the posterior distribution P (Xi|E = e), evidene e is absorbed as follows: for eahvariable E ∈ E �nd a lique Ci ontaining E and update the potential Φi as:

Φi = Φi · 1e[E](E), (3.16)where 1e[E](E) is the indiator funtion:
1e[E](E) =

{

1 if E = e[E] ,

0 otherwise.In the message passing phase, messages are send between adjaent liques. The message φi→jsend from lique Ci to adjaent lique Cj is onstruted as:
φi→j =

∑

Ci\Cj

Φi. (3.17)
A message an be sent from Ci to Cj when Ci has reeived a message from all otherneighbours, whih means that initially only leafs an send messages. When a message φi→j isreeived in lique Cj , the potential Φj is updated as:

Φj = Φj ·
φi→j

φj→i
, (3.18)

where φj→i = 1 if no message has yet been sent from lique Cj to lique Ci.26



3.2 Bayesian Network Models
When one message has been sent in both diretions along every link in the lique tree, theposterior P (Xi,E = e) an be onstruted from any lique potential Φj ontaining Xi by:

P (Xi,E = e) =
∑

Xj∈Cj\{Xi}

Φj . (3.19)
From (3.19) the posterior P (Xi|E = e) an easily be onstruted by multipliation with
P (E = e)−1 = (

∑

xi∈R(Xi)
P (Xi = xi,E = e))−1.For the general query ontaining multiple query variables Q, it is lear that P (Q = q|E =

e) an be omputed by �rst absorbing both Q = q and E = e as evidene to ompute the jointprobability P (Q = q,E = e) and thereafter omputing P (E = e), and �nally produing theposterior P (Q = q|E = e). If all of the variables Q are members of the same lique C ′, theomputation an be done simply by absorbing E = e and performing one full propagation. Thevariable propagation approah desribed in (Jensen, 2001, Setion 6.2) is a general approahto onstruting the posterior distributions P (Q|E = e) of arbitrary sets Q.
ComplexityClique tree propagation approahes require absorption of evidene as de�ned in Eq. (3.16),omputation of messages as de�ned in Eq. (3.17), propagation of messages and updating ofpotentials as de�ned in Eq. (3.18) and �nally marginalisation as de�ned in Eq. (3.19). Thetime omplexity of these omputations is linear in the total number of parameters in the liquetree, that is, the number of entries in lique potentials. The number is bounded only by thesize of the joint state-spae of all variables |R(X)| as we may (in the worst ase senario) havea single lique ontaining all variables, so the overall omplexity ends up being exponential inthe number of variables.The query spei� simpli�ation of the fatorisation employed in diret approahes like thevariable elimination algorithm does not mitigate this problem, as we still need to onstruta good elimination sequene, whih is equivalent to �nding a triangulation of the moralisedgraph yielding minimal liques. Thus the omplexity is the same as lique tree propagation.Zhang (1998) ompares lique tree propagation and variable elimination approah in termsof exeution times. He �nds that variable elimination is advantageous when the subset of thequeried variables is relatively small. The di�erene in performane dereases as more variablesare added to the query and, for larger queries, lique tree propagation is shown to outperformvariable elimination.Madsen and Jensen (1998) studies ombinations of the two approahes, and propose alazy evaluation sheme in the general lique tree arhiteture. In short, query spei� pruningof barren variables and simpli�ations from d-separation an be employed to minimise theneessary omputations of messages. See also (Madsen, 1999).
3.2.4 Representation and E�etive SizeAs previously stated, we regard the problem of belief propagation as the primary task forPGMs. Then, given a lique tree for the BN model, belief updating is solved by absorbing27



3 Probabilisti Graphial Models
evidene and performing one full propagation. The omplexity of this operation is linear in thenumber of parameters in the lique tree. We de�ne e�etive size of a BN model B (denoted
sizeeff (B)) as the size of the minimal lique tree onstruted from B:

sizeeff (M) =
∑

C∈C

|R(var(C))|, (3.20)
where C is the set of liques in the lique tree and var(C) is the set of variables that aremembers in lique C. In general there will not be only a single unique lique tree for M ,and, as mentioned above, onstruting the minimal lique tree is an NP omplete problem. Inour experiments we will rely on lique trees onstruted through heuristis. In partiular, weuse the default triangulation method implemented in the Hugin system (Jensen, 2006), whihombines good (loal) triangulations of prime omponents of the moral graph to get a goodglobal triangulation. As we shall see later, the triangulation provided by the Hugin systemusually is very satisfatory.The representational size of a BN model M is the number of free parameters de�ned bythe model, and is trivially omputed from its DAG struture G over variables X:

sizerep(M) =
∑

X∈X

(|R(X)| − 1) · |R(paG(X))|. (3.21)
3.3 Probabilisti Deision Graphs

The Probabilisti Deision Graph (PDG) model was �rst introdued by Bozga and Maler(1999), and was originally proposed as an e�ient representation of probabilisti transitionsystems. In this study, we onsider the more generalised version of PDGs introdued by Jaeger(2004).A PDG struture is de�ned w.r.t. an underlying variable forest:De�nition 3.13 (Variable Forest)Let F be a forest of rooted and direted trees F = {T0, . . . , Tk} and let X = {X0, . . . , Xn}be a domain of n random variables. F is a variable forest over X when nodes from F andvariables from X are assoiated in a one-to-one relation.De�nition 3.14 (PDG Struture)Let F be a variable forest over domain X. A PDG-struture G = 〈V,E〉 for X w.r.t. F is aset of rooted DAGs (RDAGs), suh that:1. Eah node ν ∈ V is labelled with some Xi ∈ X. By Vi, we will refer to the set of allnodes in a PDG-struture label-led with the same variable Xi.2. For eah node νi label-led with Xi, eah possible state xi,h of Xi and eah suessor
Xj ∈ chF (Xi) there exists exatly one edge label-led with xi,h from νi to some node νjlabel-ed with random variable Xj. Let Xj ∈ chF (Xi) and νi ∈ Vi. By succ(νi, Xj , xi,h)we will then refer to the unique node νj ∈ Vj that is reahed from νi by an edge label-led
xi,h. 28
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V6 ν11 ν12 V7 ν13 ν14(b)Figure 3.6. A variable forest F over binary variables X = {X0, . . . , X7} is shown in (a), and aPDG-struture over X w.r.t. variable forest F is shown in (b).
Example 3.5A variable forest F over binary variables X = {X0, . . . , X7} an be seen in Figure 3.6(a), and aPDG struture over X w.r.t. F in Figure 3.6(b). The labelling of nodes ν in the PDG-strutureis indiated by the dashed boxes, e.g., the nodes label-led with X2 are visualised as the set
V2 = {ν3, ν4}. Dashed edges orresponds to edges labelled 0 and solid edges orresponds toedges labelled 1, for instane succ(ν9, X6, 0) = ν12.A PDG model is a speial instane of a general Real Funtion Graph (RFG) model:De�nition 3.15 (Real Funtion Graph)A Real Funtion Graph (RFG) model D = 〈G, θ〉 over disrete random variables X onsistsof a PDG-struture G = 〈V,E〉 w.r.t. variable forest F and independent parameters θ. θde�nes for eah node ν labelled with Xi a loal real funtion over R(Xi):

pν : R(Xi)→ R. (3.22).De�nition 3.16 (Probabilisti Deision Graph)Let D = 〈G, θ〉 be an RFG model over X. If for all Xi ∈ X and ν ∈ Vi, pν de�nes a probabilitydistribution for random variable Xi we all D a Probabilisti Deision Graph (PDG) model.29



3 Probabilisti Graphial Models
For notational onveniene, we will refer to the loal distribution at node ν in a PDG/RFGin the form of a parameter vetor pν = (pν

1 , . . . p
ν
ki

) ∈ Rki , where ki = |R(Xi)| is the numberof distint states of Xi. We will by pν
xi,h

refer to the h'th element of pν under some orderingof R(Xi).The remainder of this setion will be foused on reviewing important aspets of the se-mantis of the PDG model w.r.t. its dependeny model and e�ient methods for performingexat inferene, previously developed by Jaeger (2004). To make the interpretation of thePDG model more smooth, we give the following Example 3.6. This is meant to help thereader build a more intuitive understanding of the PDG model.Example 3.6A patient arrives at the dotor with pain in the stomah. The dotor onsiders three possibleauses of the pain: food poisoning (p), stomah �u (f) or an uler (u). Under the assumptionthat these three auses are mutually exlusive and olletively exhaustive, we an represent theunknown ause of the stomah pain by a random variable H with possible states {p, f, u}. Toperform the diagnostis of the patient, the dotor is interested in the presene (p) or absene(a) of two symptoms: diarrhoea and fever. We an represent these two symptoms by twobinary random variables D and F with possible states {p, a}. The dotors beliefs are thefollowing:
• If the patient is su�ering from food poisoning, he/she is likely to experiene diarrhoeabut not neessarily fever whih is only likely in severe ases where diarrhoea is ertainlypresent. In terms of onditional (in)dependene, this is expressed as D 6⊥⊥F |H = p.
• If, however, the patient is su�ering from stomah �u, the dotor expets the patient tohave a fever but not neessarily any diarrhoea. Again, if the �u is unusually severe,diarrhoea may be present, and then ertainly also the patient has a fever. In terms ofonditional (in)dependene this is expressed as D 6⊥⊥F |H = f

• Lastly, if the patient su�ers from an uler, the dotor does not imagine any onnetionbetween the presene/absene of diarrhoea and fever. This is aptured in terms ofonditional (in)dependene as D⊥⊥F |H = c.The senario desribed above an be represented in the PDG model over variables H, Dand F shown in Figure 3.7(a). Outgoing edges from ν0 have been labelled aording to thestates of H, and edges outgoing from ν1, ν2 and ν3 are solid orresponding to state p anddashed orresponding to state a of variable F .The parameters of the PDG shown in Figure 3.7 have the probabilisti interpretation listedin Table 3.1.Assume that the dotor has the same belief of the likelihood of observing diarrhoea giventhe two following unexpeted states of nature:1. the patient su�ers from food poisoning (H = p) and has fever, and2. the patient su�ers from stomah �u (H = f) and has diarrhoea.30



3.3 Probabilisti Deision Graphs
H ν0

F ν1 ν2 ν3

D ν4 ν5 ν6 ν7 ν8

u p f

(a)

H ν0

F ν1 ν2 ν3

D ν4 ν5 ν6 ν7

u p f

(b)Figure 3.7. Sub-�gure (a) shows the PDG struture apturing the belief of the dotor from Example3.6, and (b) shows one example of re�ning the model by reusing parameters.
Parameter vetor Loal distribution Example instantiation
pν0 = P (H) = {.3, .3, .4}

pν1 = P (F |H = u) = {.2, .8}

pν2 = P (F |H = p) = {.7, .3}

pν3 = P (F |H = f) = {.6, .4}

pν4 = P (D|H = u) = {.7, .3}

pν5 = P (D|H = p, F = p) = {.1, .9}

pν6 = P (D|H = p, F = a) = {.5, .5}

pν7 = P (D|H = f, F = p) = {.1, .9}

pν8 = P (D|H = f, F = a) = {.3, .7}Table 3.1. Probabilisti interpretation of the parameters de�ned by the PDG-struture in Figure3.7(a).
This means that pν5 = pν8 in Figure 3.7(a), and suh reuse of parameters are easily apturedin the graph struture by redireting the edge ν3

a
−→ ν8 to ν5 and then removing ν8, see Figure3.7(b).Example 3.7A full parametrisation of the PDG struture in Fig. 3.6(b) onsists of a binary probabilitydistribution for eah parameter-node νi, an example is shown in Table 3.2 inluding also theprobabilisti interpretation of the parameters.The following two de�nitions introdue the onepts of a node being reahed by a jointstate x ∈ R(X) (De�nition 3.17) and the onept of a path (De�nition 3.18).
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3 Probabilisti Graphial Models
Parameter vetor Loal distribution Example instantiation
pν0 = P (X0) = {.9, .1}

pν1 = P (X1|X0 = 0) = {.7, .3}

pν2 = P (X1|X0 = 1) = {.1, .9}

pν3 = P (X2|X0 = 0) = {.5, .5}

pν4 = P (X2|X0 = 1) = {.4, .6}

pν5 = P (X3|X0 = 0, X1 = 1) = {.9, .1}

pν6 = P (X3|X1 = 0) = {.8, .2}

pν7 = P (X3|X0 = 1, X1 = 1) = {.5, .5}

pν8 = P (X4) = {.2, .8}

pν9 = P (X5|X4 = 1) = {.2, .8}

pν10 = P (X5|X4 = 0) = {.7, .3}

pν11 = P (X6|X4 = 1, X5 = 1) = {.6, .4}

pν12 = P (X6|{X4 = 1, X5 = 0} ∨ {X4 = 0}) = {.1, .9}

pν13 = P (X7|X4 = X5) = {.5, .5}

pν14 = P (X7|X4 6= X5) = {.2, .8}Table 3.2. One possible PDG-parametrisation of the struture in Fig. 3.6(b) and the probabilistiinterpretations of the parameters.De�nition 3.17 (Reah)Let D = 〈G, θ〉 be a PDG over variables X w.r.t. forest F . A node ν in G labelled with Xi isreahed by x ∈ R(X) if
• ν is a root, or
• Xi ∈ chF (Xj), ν ′ ∈ Vj , ν ′ is reahed by x and ν = succ(ν ′, Xi,x[Xj]).Proposition 3.2Let G be a PDG struture over variables X, then for any joint state x ∈ R(X) and anyvariable Xi ∈ X, x reahes a single parameter-node ν ∈ Vi.

Proof: Proposition 3.2 an be proved by indution in the depth of G. When G has depth1 only a single parameter-node exists and is then trivially the unique node reahed by every
x ∈ X. Assume Proposition 3.2 is true for struture G. Now, onstrut struture G′ by addinga new variable Xj as leaf under Xi in the forest. Then, for any instane x ∈ R(X) a singlenode ν is reahed in Vi, and by the de�nition of a PDG-struture (Def. 3.14), a single node
ν ′ ∈ Vj will be reahed by x, namely the node ν ′ = succ(ν,Xj,x[Xi]).We denote by reach(i,x) the single parameter-node ν ∈ Vi reahed by x.Example 3.8Consider the PDG-struture of Figure 3.6(b), and the full instantiation x = 01100111 (i.e.,
x[X0] = 0, x[X1] = 1 et.). reach(i,x) is then:
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3.3 Probabilisti Deision Graphs
i 0 1 2 3 4 5 6 7
reach(i,x) ν0 ν1 ν5 ν3 ν8 ν10 ν12 ν14De�nition 3.18 (Path)Let D = 〈G, θ〉 be a PDG over variables X. Let ν ∈ Vi, pa∗

F (Xi) ⊆ Y ⊆ X. Then
Path(ν,Y) := {y ∈ R(Y) : ν = reach(i,x) and x[Y] = y}. (3.23)

Example 3.9Consider the PDG-struture of Figure 3.6(b). In this struture we have:
Path(ν6, {X0, X1}) = {(0, 0), (1, 0)},by whih we see that whether ν6 is on the path de�ned by x only depends on whether x[X1] =

0, and is independent of the value of any other variable.We de�ne the real valued funtion fG represented by RFG D = 〈G, θ〉 as follows:De�nition 3.19LetD = 〈G, θ〉 be an RFG over variables X w.r.t. forest F , ν ∈ Vi and chF (Xi) = {Y1, . . . , Yl}.De�ne funtion fν
G reursively on R(X)[de∗F (Xi)] as:

fν
G(xi,h, z1, . . . , zl) := pν

h

l
∏

j=l

f
succ(ν,Yj ,xi,h)
G (zj), (3.24)

where xi,h ∈ R(Xi) and zj ∈ R(X)[chF (Yj)]. The base ase of (3.24) is when Xi is a leaf of
F and, therefore, de∗F (Xi) = {Xi} and we get:

fν
G(xi,h) := pν

h, (3.25)for ν ∈ Vi. De�ne the funtion fG:
fG(x) :=

∏

ν:ν is root fν
G(x). (3.26)

Example 3.10Consider the PDG of Figure 3.6(b) with the parametrisation given in Table 3.2. In this model,we alulate fν9
G (x) where x[X5] = 1, x[X6] = 0 and x[X7] = 1 as:

fν9
G (x) = pν9

2 · f
ν11
G ({0}) · fν13

G ({1})

= pν9
2 · p

ν11
1 · pν13

2

= 0.8 · 0.6 · 0.5 = 0.24Proposition 3.3Let D = 〈G, θ〉 be a PDG model over variables X w.r.t. variable forest F . Funtion fG de�nesa probability distribution PD over X. 33



3 Probabilisti Graphial Models
Proof: We need to show that 1) 0 ≤ PD(x) ≤ 1 and 2) ∑x∈R(X) P

D(x) = 1.1) First, note that as PD is a produt over fators that are all between 0 and 1, hene PDmust be between 0 and 1.2) Next, notie that:
∑

x∈R(X)

PD(x) =
∑

x∈R(X)

∏

ν:root
in D

fν
G(x)

=
∏

ν:root
in D

∑

x′∈
R(de∗

F (Xi))

fν
G(x′),

where variable Xi generating the set x ∈ R(de∗F (Xi)) is the variable represented by the singleparameter-node ν, and therefore the root of a variable tree. Then, to prove∑x∈R(X) P
D(x) =

1 we only need to prove that for any root variable Xi:
∑

x∈R(de∗F (Xi))

fν
G(x) = 1, (3.27)

where {ν} = Vi. This an be proved by indution in the depth of the tree. Assume that (3.27)is true for a PDG struture G over variables X. Construt PDG struture G′ by adding anew leaf-node Xi to the variable forest underlying G, let X′ = X ∪Xi and let |R(Xi)| = ki.The sum for fν
G′ an be onstruted as:

∑

x′∈R(X′)

fν
G′(x′) =

∑

x∈R(X)



fν
G(x)

∑

xi,h∈R(Xi)

pν′

h





=
∑

x∈R(X)

fν
G(x) · 1

= 1where ν ′ = succ(reach(j,x), Xi,x[Xj ]).In addition to the reursive de�nition of PD above, Jaeger (2004) provides the followingtwo alternative haraterisation of the PD:Proposition 3.4(Jaeger, 2004, Proposition 2.5(A)) Let D = 〈G, θ〉 be a PDG over variables X (w.r.t. forest
F ), then:

PD(x) =
∏

Xi∈X

p
reach(i,x)
x[Xi]

. (3.28)
Proof: Equation (3.28) follows immediately from equations (3.24) and (3.26).
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3.3 Probabilisti Deision GraphsProposition 3.5(Jaeger, 2004, Proposition 2.5(B)) Let D = 〈G, θ〉 be a PDG over random variables X w.r.t.forest F . Let G\Xi denote the PDG struture obtained from G by removing all nodes labelledwith some Xj ∈ de∗F (Xi). For any ν ∈ Vi, and any x ∈ Path(ν,X) then
PD(x) = fG\Xi

(x[X \ de∗F (Xi)]) · f
ν
G(x[de∗F (Xi)]). (3.29)

Proof: Note that x[X \ de∗F (Xi)] will reah exatly the same nodes for X \ de∗F (Xi) in G \Xias x in G. Also, note that when x ∈ Path(ν,X) and ν ∈ Vi then x[de∗F (Xi)] reahes the samenodes in the sub-graph of G rooted at ν as those reahed by x in G. Therefore:
fG\Xi

(x[X \ de∗F (Xi)]) =
∏

Xj∈X\de∗F (Xi)

p
reach(j,x)
x[Xj ]

, (3.30)
and

fν
G(x[de∗F (Xi)]) =

∏

Xj∈de∗
F (Xi)

p
reach(j,x)
x[Xj ]

. (3.31)
From (3.30) and (3.31) the following an be derived:

fG\Xi
(x[X \ de∗F (Xi)]) · f

ν
G(x[de∗F (Xi)]) =

∏

Xj∈de∗
F (Xi)

p
reach(j,x)
x[Xj ]

∏

Xj∈X\de∗F (Xi)

p
reach(j,x)
x[Xj ]

=

∏

Xi∈X

p
reach(i,x)
x[Xi]

= PD(x),

where the last equality is due to Proposition 3.4.
3.3.1 The PDG Dependeny ModelA PDG struture enodes independene relations that are ontext spei�. A parameter-node
ν in a PDG-struture partitions R(X) into Path(ν,X) and its omplement.Proposition 3.6(Jaeger, 2004, Proposition 3.2) Let D = 〈G, θ〉 be a PDG over disrete random variables Xw.r.t. forest F . Let ν ∈ Vi, Y = pa∗

F (Xi). Then for all y ∈ Path(ν,Y):
pν = PD(Xi|Y = y) = PD(Xi|Path(ν,Y)) (3.32)Further, we identify the loal funtion fν

G de�ned in (3.31) as:
fν

G = PD(de∗F (Xi)|Y = y) = PD(de∗F (Xi)|Path(ν,Y)) (3.33)
Proof: We �rst prove eq. (3.32) then (3.33).35



3 Probabilisti Graphial Models
(3.32): By the fundamental rule of onditional probability we onstrut PD(Xi|Y = y) =

P D(Xi,Y=y)
P D(Y=y)

. To onstrut the joint marginal PD(Xi = xi,h,Y = y), we sum over U = {x ∈

R(X) : x[Xi] = xi,h and x[Y] = y}:
PD(Xi = xi,h,Y = y) =

∑

x′∈U

∏

Xj∈X

p
reach(j,x′)
x′[Xj ]

(3.34)
All x′ ∈ U reahes the same parameter-node for any Xl ∈ {Xi ∪Y} as Y = pa∗

F (Xi). Letthis parameter-node be denoted νl, we an then extrat the ommon fator ∏Xl∈{Xi∪Y} p
νl

h(where x′[Xl] = xl,h, x′ ∈ U) from the sum in (3.34), whih an then be expressed as:
PD(Xi = xi,h,Y = y) =

∏

Xl∈{Xi∪Y}

pνl

h

∑

x′∈U

∏

Xk∈

{X\{Xi∪Y}}

p
reach(k,x′)
x′[Xk] (3.35)

=
∏

Xl∈{Xi∪Y}

pνl

h . (3.36)
Through a similar derivation, we an show that:

PD(Y = y) =
∏

Xj∈Y

p
reach(j,y)
y[Xj ]

. (3.37)
The division then anels all fators exept from pνi

h .(3.33): Notie that:
fν

G(x) =
∏

de∗F (Xi)

p
reach(i,x)
x[Xi]

.

Therefore, the proof follows similar arguments as the proof of (3.32) above.A set of nodes Vi in a PDG struture over variables X generates the partitioning onsistingof the sets {x ∈ R(X) : x ∈ Path(ν,X)}(ν ∈ Vi), and we will denote this partition A (Vi).Using suh partitions we haraterise the independenies enoded by a PDG struture inProposition 3.7.Proposition 3.7(Jaeger, 2004, Proposition 3.3) The probability distribution PD represented by a PDG D =

〈G, θ〉 satis�es the onditional independene relations:
PD(Xi|X \ de∗F (Xi)) = PD(Xi|pa

∗
F (Xi)) = PD(Xi|A (Vi)). (3.38)A PDG struture G therefore de�nes the dependeny modelM(G) inluding the independenerelations:

M(G) = {Xi⊥⊥Xj |A (Vi) : Xj ∈ {X \ de∗F (Xi)}, Xi ∈ X}. (3.39)Proposition 3.8Let F be a variable forest over variables X, and let Xi, Xj ∈ X be ontained in di�erent trees.Then any PDG model with underlying variable forest F inludes the marginal independene
Xi⊥⊥Xj . 36



3.3 Probabilisti Deision Graphs
Proof: LetXk be the root of the tree ontainingXi, then by (3.39) we have thatXk⊥⊥Xj |A (Vk)and Xi ⊥⊥ Xj |A (Vi). As Xk is root, A (Vk) is the trivial partition {Ω}, and therefore
B = I (A (Vk),B) for any other partition B. Then, Xi ⊥⊥ Xj |I (A (Vk),A (Vi)) is true,and ontration (Axiom 2.7) then implies:

Xi⊥⊥Xj |I (A (Vk),A (Vi)) ∧Xk⊥⊥Xj |A (Vk)⇒ {Xi, Xk}⊥⊥Xj |A (Vk). (3.40)Finally, by deomposition Xi ⊥⊥ Xj|A (Vk) and as A (Vk) is the trivial partition, this is amarginal independene: Xi⊥⊥Xj .
Proposition 3.9Let Xi, Xj and Xk be members of the same tree T in variable forest F , let T branh at Xkand let Xi and Xj be in separate sub-branhes underneath Xk. Then any PDG model w.r.t.variable forest F will enode the independene relation: Xi⊥⊥Xj |I (A (Xk),A (Vk)).
Proof: For x ∈ R(X), membership aording to A (Vi) is independent of the value of Xj as
Xj ∈ X \ de∗F (Xi), and Proposition 3.9 immediately follows as an instane of Eq. (3.39).

For a distribution P , any PDG struture G that only enodes independene relations thatare also true in P is alled an I-map of P . This is analogous to the notion of an I-map for BNmodels, disussed earlier (see Setion 3.2.1). In addition, any variable forest F that supportsa PDG struture G that is an I-map of P , is also alled an I-map of P .Similarly analogous to BN models, we use the notion of faithfulness. When PDG struture
G is an I-map of P , and P does not ontain any more independene relations than those thatan be read of G, we say that P is faithful to G. We all a distribution P for PDG-faithful,i� there exists a PDG struture G suh that P is faithful to G.
3.3.2 InfereneIn this setion we present an algorithm for solving inferene in a PDG. Central onepts arein-�ow and out-�ow of a node ν in a PDG. They are de�ned as:De�nition 3.20Let D = 〈G, θ〉 be an RFG over random variables X w.r.t. forest F . Let ν ∈ Vi and G \Xibe as in Proposition 3.5. The in�ow of node ν (denoted ifl(ν)) is de�ned as:

ifl(ν) :=

{

∑

y∈Path(ν,X\de∗F (Xi))
fG\Xi

(y) when X \ de∗F (Xi) 6= ∅,

1 otherwise. (3.41)
The speial ase X \ de∗F (Xi) = ∅ in eq. (3.41) only happens when F onsists of a singletree rooted at Xi. 37



3 Probabilisti Graphial ModelsDe�nition 3.21Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest F , and ν ∈ Vi. The out�owof node ν (denoted ofl(ν)) is de�ned as:
ofl(ν) :=

∑

z∈R(X)[de∗F (Xi)]

fν
G(z). (3.42)

Note that when D is a PDG, ofl(ν) = 1 for any ν.Lemma 3.4Let D = 〈G, θ〉 be an RFG over random variables X and let ν be a node in D, then:
ifl(ν)ofl(ν) =

∑

x∈Path(ν,X)

fG(x). (3.43)
Proof: Equation (3.43) follows immediately from Proposition 3.5 and De�nitions 3.20 and3.21.

From Lemma 3.4, it follows that when D is a PDG in�ow of a node is the probability ofthat node being reahed by x ∈ R(X) drawn under distribution PD.Corollary 3.1Let D be a PDG over variables X, then:
PD(Xi = xi,h) =

∑

ν∈Vi

pν
hifl(ν), (3.44)

for any Xi ∈ X.Lemma 3.5(Jaeger, 2004, Lemma 4.3 (a)) Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest
F , and let ν ∈ Vi and ki = |R(Xi)|. Then:

ofl(ν) =

ki
∑

h=1

pν
h

∏

Y ∈chF (Xi)

ofl(succ(ν, Y, xi,h)). (3.45)
Lemma 3.6(Jaeger, 2004, Lemma 4.3 (b)) Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest
F , and ν ∈ Vi where Xi is a root of some tree in F . Then:

ifl(ν) =
∏

ν′ 6=ν and

ν′ root in D

ofl(ν ′). (3.46)
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3.3 Probabilisti Deision Graphs
Algorithm 3.4 Compute out-�ow of node ν and all node in the sub-tree rooted at ν in PDG
D = 〈G, θ〉. Global data-struture ofl is used to store out-�ows and global data-struture πis used to store intermediate results needed for subsequent omputation of in-�ow.Input: RFG D over variables X w.r.t. forest F , and a node ν ∈ Vi1: proedure omputeOfl(D, ν)2: ofl(ν) := 03: if chF (Xi) 6= ∅ then4: for h = 1, . . . ki do5: π(ν, h) := 16: for all Y ∈ chF (Xi) do7: if ofl(succ(ν, Y, xi,h)) has not been omputed then8: omputeOfl(succ(ν, Y, xi,h)))9: π(ν, h) := π(ν, h) · ofl(succ(ν, Y, xi,h))10: ofl(ν) := ofl(ν) + pν

h · π(ν, h) ⊲ Eq. (3.45)11: else12: for h = 1 . . . ki do13: ofl(ν) := ofl(ν) + pν
h

Lemma 3.7(Jaeger, 2004, Lemma 4.3 ()) Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest
F , ν ∈ Vi where Xi is not a root of F , and paF (Xi) = {Xj}. Then:

ifl(ν) =

kj
∑

h=1

∑

ν′∈Vj :

ν=succ(ν′,Xi,xj,h)

[ifl(ν ′)pν′

h

∏

Y ∈chF (Xj)\Xi

ofl(succ(ν ′, Y, xj,h))] (3.47)
The out-�ow of all nodes in a RFG an be omputed by invoking the proedure omputeOflin Algorithm 3.4 on all roots ν of RFG struture G.Computing out�ow for root node ν in a RFG by proedure omputeOfl (Algorithm 3.4)onsists of traversing the struture of D omputing (3.45) for eah parameter node. ForPDG/RFG struture with underlying variable forest F , the omplexity is O(k) where:

k =
∑

Xi∈X

|R(Xi)| · |Vi| ·max(1, |chF (Xi)|). (3.48)
Computing the in-�ow of any node and all predeessor nodes in a RFG D = 〈G, θ〉 anbe done e�iently if out-�ow of all nodes has �rst been omputed.Line 14 of Algorithm 3.5 implements eq. (3.47) by using the following relation:

∏

Y ∈chF (Xj)\Xi

ofl(succ(ν ′, Y, xj,h)) =

∏

Y ∈chF (Xj)
ofl(succ(ν ′, Y, xj,h))

ofl(succ(ν ′, Xi, xj,h))
, (3.49)

where Xj = paF (Xi) and ν ∈ Vi. Reall that we ompute the numerator of (3.49) and store itas π(ν ′, h) during the omputation of out�ows in line 9 of Algorithm 3.4. Therefore, assuming39



3 Probabilisti Graphial Models
Algorithm 3.5 Compute in-�ow of a node ν in a PDG D = 〈G, θ〉. Assumes that ofl and πdata-strutures are updated through invoking omputeOfl on all roots of G.Input: RFG D = 〈G, θ〉 where struture G is over variables X w.r.t. forest F , node ν ∈ Vi1: proedure omputeIfl(D, ν)2: if ν is root in G then3: ifl(ν) := 14: for all ν ′ 6= ν and ν ′ is root in G do5: ifl(ν) := ifl(ν)ofl(ν ′) ⊲ Eq. (3.46)6: else7: ifl(ν) := 08: Xj := paF (Xi)9: for all ν ′ ∈ Vj do10: if ifl(ν ′) has not been omputed then11: omputeIfl(D, ν ′)12: for h = 1, . . . , kj do13: for all ν ′ ∈ Vj where succ(ν ′, Xi, xj,h) = ν do14: ifl(ν) := ifl(ν) + ifl(ν ′)pν′

h
π(ν′,h)
ofl(ν) ⊲ Eq. (3.47)

that proedure omputeOfl has been invoked on all roots and π(ν ′, h) has been saved for alledges, we an e�iently ompute (3.49).Algorithm 3.6 Compute in-�ow and out-�ow of every node in a PDG.1: proedure omputeIflOfl(D)2: for all roots νr of D do3: omputeOfl(D, νr)4: for all leaves νl of D do5: omputeIfl(D, νl)
In proedure omputeIflOfl (Algorithm 3.6) both in-�ow and out-�ow are omputed forevery node in the PDG.To ompute the marginal PD(Y = y) of an arbitrary subset of variables Y ⊆ X in a PDG

D = 〈G, θ〉, we �rst onstrut a speial RFG DY=y from D by inserting evidene Y = ydesribed by the simple operations of the insertEvidene proedure (Algorithm 3.7).Construting evidene RFG DY=y by the insertEvidene proedure of Algorithm 3.7has omplexity O(
∑

Xi∈Y |Vi|), assuming that updating parameter vetors is done in onstanttime instead of the suggested loop onstrut in line 5.It is lear that when DY=y is onstruted from PDG D by insertEvidene(D, Y, y)(Algorithm 3.7), then for any x ∈ R(X) we have:
fDY=y

(x) =

{

PD(x) if x[Y] = y

0 otherwise40
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Algorithm 3.7 Construt evidene RFG from PDG D by inserting evidene Y = y.1: funtion insertEvidene(D, Y, y)2: DY=y := copy(D)3: for all Xi ∈ Y do4: for all ν ∈ Vi do5: for all xi,h ∈ R(Xi) do6: if xi,h 6= y[Xi] then7: set pν

h := 0 in DY=y8: return DY=y

If ofl has been omputed for all roots in DY=y, we an then get PD(Y = y) by multipliationof root out�ows, whih is shown in the following derivation:
PD(Y = y) =

∑

x∈R(X)

fDY=y
(x)

=
∑

x∈R(X)

∏

ν root
in D

fν
DY=y

(x[de∗D(Xi)]), (3.50)
where the projetion x[de∗D(Xi)] is onto desendandt variables of variable Xi that is repre-sented by root parameter-node ν. The equality of (3.50) holds beouse of Proporsition 3.5,and from the de�nition of out-�ows (De�nition 3.21) we then have:

PD(Y = y) =
∏

ν root
in D

ofl(ν) (3.51)
The omplexity of alulating PD(Y = y) therefore onsists of onstruting DY=y, alu-lating out-�ows in DY=y and the multipliation of root out�ows (3.51). Construting DY=yhas omplexity O(

∑

Xi∈Y |Vi|) but this is dominated by the omplexity for alulating out�ows(3.48). The overall omplexity therefore remains O(k) where k is omputed by (3.48).The in-�ows are only neessary for alulating all posterior marginals by equation (3.44).Therefore, omputing a spei� query on the probability PD(Y = y|E = e) an be done basi-ally by omputing out�ows twie, one in DE=e to get PD(E = e) and one in D(Y,E)=(y,e)to get the joint PD(Y = y,E = e).
3.3.3 Representation and E�etive SizeWe have established that general inferene in PDG models has linear time omplexity in thequantity of (3.48), and we therefore use this measure as the e�etive size of PDG model Dover variables X w.r.t. variable forest F :

sizeeff (D) =
∑

Xi∈X

|R(Xi)| · |Vj | ·max(1, |chF (Xi)|). (3.52)
41
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X0 ν0

X1 ν1 ν2

X2 ν3 ν4

Xn odd even

...
(a)

X1 X2 . . . Xn

X0(b)
X0 X1

H1

X2

H2 . . . Xn()Figure 3.8. The parity distributions PDG (a) and BN (b) representation. Fig. () shows a BNrepresentation with linear e�etive size by allowing auxiliary variables H1, . . . , Hn to be inluded inthe network.
We de�ne the representational size of PDG M (sizerep(M)) as the number of free parame-ters de�ned by the model. For PDG modelM over variables X, this size measure is omputedby:

sizerep(D) =
∑

Xi∈X

(|R(Xi)| − 1) |Vi|. (3.53)
Therefore, the di�erene between sizeeff (D) and sizerep(D) depends on the degree of branhingof the underlying variable forest F , as:

sizeeff (D)− sizerep(D) =
∑

Xi∈X

(1 + |R(Xi)|[|chF (Xi)| − 1])|Vi|. (3.54)
Expressibility of PDGsThe development of the PDG language was initially an attempt to extend the languageof binary deision diagrams to represent probabilisti transition systems (Bozga and Maler,1999) and later generalised to represent disrete probability distribution over sets of variables(Jaeger, 2004). The following Example 3.11 illustrate the expressibility and potential e�ienyof the PDG language, using the distribution de�ned by the logial �parity�-funtion.Example 3.11(Parity) Let X = {X0, . . . , Xn} be a set of binary random variables, and let P be the jointdistribution over X de�ning uniform marginals for every Xi ∈ X. Let P (X = x) = 2−(n−1)
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3.3 Probabilisti Deision Graphs
for any joint on�guration x with even parity (that is, the sum ∑

Xi∈X x[Xi] is even), and
P (X = x) = 0 otherwise. This restrition yields the onditional distributions:

P (Xi = 1|X \ {Xi}) =





∑

Xi∈X

Xi



 mod 2.

The parity distribution is e�iently represented by the PDG-struture over a linear orderof the variables depited in Figure 3.8(a). Two parameter-nodes for eah variable summarisesthe parity of all variables preeding it in the linear ordering. The bottom variable Xn is nowdetermined exatly depending on parity of the rest of the variables.When representing the parity distribution by a BN model, we need a struture like theone in Figure 3.8(b) to apture the parity of every instane x ∈ R(X). While the PDGrepresentation has an e�etive size that is linear in the number of variables (4(n − 1) + 2),the BN will need exponentially many parameters (2n) assuming a full tabular representationof the onditional probability distributions. From a modelling perspetive, we an produea more e�ient BN model by introduing auxiliary variables, denoted by Hi (1 ≤ i ≤ n) inFigure 3.8(). These variables are binary, and ollets intermediate parity of the variables,whih makes it possible to model the distribution exatly with only 8(n−1)+4 parameters. Ingeneral, there always exists suh an e�ient transformation from a PDG into a BN representingthe same distribution over X, by the introdution of latent auxiliary variables.Theorem 3.5(Jaeger, 2004, Theorem 5.3) Let D be a PDG model over variables X = {X0, . . . , Xn}. Thenthere exists a BN model B suh that:1. B is de�ned over variables X ∪ {H0, . . . , Hn},2. PB(X) = PD(X), where PB is the joint distribution de�ned by B, and3. there exists a juntion tree of size O(|D|2), where |D| is the size of D.From this theorem we an onlude that in theory BNs and PDGs provide representationsthat have similar e�ieny. However, when learning models from data rather than onstrutinga BN model from a given PDG model, the problem of learning the latent auxiliary variablesemerges. In the general setting, not onstraining the struture of the BN nor assuming priorknowledge on the existene and ardinality of latent variables, this problem is still widelyregarded as open. For solutions to speial instanes of the problem using more or less restritiveprior knowledge, see Kariauskas et al. (2004); Zhang (2004); Elidan and Friedman (2005).Theorem 3.5 establishes the ability of BNs to e�iently represent distributions enodedby PDGs. Jaeger (2004) further proves that for any BN model, there exists an e�ienttransformation into a PDG model representing the same distribution:Theorem 3.6(Jaeger, 2004, Theorem 5.1) Let B be a BN model over variables X. Then there exists a PDG
D over variables X that represents the same distribution as B, and sizeeff (D) = O(sizeeff (B)).43



3 Probabilisti Graphial Models
The proof of Theorem 3.6 provided by Jaeger (2004), ontains an algorithm that transformsa lique tree onstruted from B into an equivalent PDG. This algorithm will be presented inSetion 4.6.

3.4 The Naïve Bayes Model
The Naïve Bayes (NB) model represents a joint probability distribution P (X) over randomvariables X by introduing a latent variable C that models a set of omponents R(C). TheNB model assoiates to eah variable Xi ∈ X a onditional distribution P (Xi|C) and to latentvariable C a prior distribution P (C). The NB model then represents P (C,X) through thefatorisation:

P (C,X) = P (C)
∏

Xi∈X

P (Xi|C). (3.55)
NB models have traditionally been used mostly for lassi�ation and lustering problems.When used for lassi�ation, the latent variable C models lass membership and C has a �xednumber of states, one for eah possible lass. Eah variable Xi ∈ X models an attribute (orfeature) and has a disrete state-spae. The lassi�ation problem is the problem of assigningthe orret lass-label to an instane E = 〈E, e〉, where E ⊆ X, and e ∈ R(E). This problemis solved using a NB model by assigning to E the most likely lass label c given E, that is

c = argmax
c′∈R(C)

P (C = c′|E = e).In lassi�ation, C is not a latent variable outside our domain, but rather C is inludedin our domain by assoiating a known (and observed) lass label with eah omponent in aone-to-one mapping.Unsupervised lustering is losely related to lassi�ation, but no lass-labels exists. Thelatent C variable then models luster membership, but the number of lusters (omponents) istypially unknown. The problem is to �nd the �best� number of lusters (the �best� ardinalityof C), and a prior for P (C). What is meant by �best� is usually problem spei�, but prefereneis typially given to models of small ardinality that de�ne few dense lusters.Many studies have demonstrated the ompetitiveness of the NB model over more sophisti-ated and omplex models for lassi�ation and unsupervised lustering (Cheeseman and Stutz,1996; Langley et al., 1992; Domingos and Pazzani, 1997; Vilalta and Rish, 2003).The NB model has reently reeived some attention in the area of probabilisti inferene(Lowd and Domingos, 2005). Applying the NB model for general probabilisti inferene andgeneral belief updating is quite di�erent from the two traditional (and suessful) appliationsof the NB model disussed above. In the setting of general probabilisti inferene, the learningtask is then to onstrut an NB model with latent luster variable, that approximates someprobability distribution over the set X of observable variables. Moreover, we are interested inanswering arbitrary probabilisti queries over X, and not in the spei� lustering provided bythe model. Given a spei� NB model, we would, therefore, not be interested in the ardinalityof C to the extent that inferene is still tratable. Nor would we be interested in the priors
P (C), rather we would always query the model for a joint marginal or onditional distribution44
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C

X0 X1 . . . Xn

Figure 3.9. The DAG struture apturing the Naïve Bayes dependeny model.
that never inludes the latent variable C. We will disuss the learning problem in Chapter 4.
3.4.1 The Naïve Bayes dependeny modelDe�nition 3.22Let N be a NB model over variables X with latent variable C. The dependeny model de�nedby N is then:

M(N) = {A⊥⊥B|C}, (3.56)where A,B ⊆ X.Interation between variables are only possible indiretly through C. The ardinality of Cditates how many parameters are to be de�ned. With |R(X)| omponents (|R(X)| = |R(C)|),there will be enough parameters to independently represent eah distint joint state of R(X).
3.4.2 InfereneFrom the dependeny model de�ned by the NB model (Def. 3.22), it is lear that the depen-denies an be aptured graphially by a DAG struture where C is the single parent of all
X ∈ X, see Figure 3.9. Then, we see that in omputing the posterior P (Q|E = e) for disjointsubsets Q and E of X, all variables B = X \ {Q∪E} are barren (by De�nition 3.12) and ansafely be removed. This then yields the e�ient omputation of posterior probabilities:

P (Q = q|E = e) =

β
∑

c∈R(C)

P (C = c)
∏

Q∈Q

P (Q = q[Q]|C = c)
∏

E∈E

P (E = e[E]|C = c), (3.57)
where β is the normalisation onstant P (E = e)−1. The problem of belief updating in NBmodel M given evidene E = e then onsists of omputing (for every Xi ∈ X):

P (Xi,E = e) =
∑

c∈R(C)

P (C = c)P (Xi|C = c)
∏

E∈E

P (E = e[E]|C = c). (3.58)
The omplexity of (3.58) is O(|R(C)| · |E|). Construting all entries R(Xi) in P (Xi|E = e)requires |R(Xi)| − 1 suh omputations. Then, the overall omplexity of performing beliefupdating in NB models is O(|R(C)| · |E| · k) where k =

∑

X∈{X\E}(|R(X)| − 1). However,the produt P (C,E = e) = P (C) ·
∏

E∈E P (E = e[E]|C = c) an be reyled as this same45
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produt is required in all omputations of posteriors, and then only adds to the omplexityone. We get O(|R(C)| · (k+ |E|)), and (k+ |E|) is maximal when E = ∅ as all variables thenontribute to k.
3.4.3 Representation and E�etive SizeFrom the above disussion, we de�ne the e�etive size of NB model M over disrete variables
X with latent omponent variable C as:

sizeeff (M) := |R(C)| ·
∑

Xi∈X

(|R(Xi)| − 1). (3.59)
The number of free parameters that needs to be spei�ed for NB model M , that is therepresentational size of M (sizerep(M)), is:

sizerep(M) = |R(C)| − 1 + |R(C)|
∑

Xi∈X

(|R(Xi)| − 1). (3.60)
So for NB models, e�etive size (3.59) and representational size (3.60) is related as:

sizerep(M) = |R(C)| − 1 + sizeeff (M). (3.61)
Expressibility of the NB modelReall the parity distribution introdued in Example 3.11. To represent the parity distributionover n variables, the NB model will need the latent variable C to have ardinality 2n. In thisway, C an be seen as representing the joint state of the n variables in X and the prior P (C)an be on�gured to be 0 when the given on�guration has odd parity. Thus, for eah variable
Xi we will need 2n independent parameters, whih yields a total e�etive size of the NB modelof n · 2n + (2n − 1).The NB model an represent any disrete distribution over variables X by �xing theardinality of the latent variable to |R(X)|. However, in general a latent variable of this sizewould yield intratable inferene in the NB model.
3.5 Related Work

In this hapter we have introdued three di�erent probabilisti graphial model languages.We have introdued the independene model enoded by eah language and derived omplex-ity of performing belief updating in the models. We introdued the PDG language apable ofapturing ertain ontext-spei� (in)dependenies that are not expressible by the DAG stru-ture of a BN model. Many studies have previously foused on inorporating suh asymmetri(in)dependenies as an extension to the popular BN language, we will review a few importantontributions below.Boutilier et al. (1996) propose to use a deision tree representation of loal distributionsin a BN model instead of the more usual full tabular representation. By using suh tree46
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strutures ontext spei� independenies are expliitly represented. From suh loal treerepresentations, Boutilier et al. (1996) proposes a deterministi deomposition of parents byintroduing suitable so-alled multiplexer -nodes, whih e�etively redues the sizes of familiesin the network. By reduing the size of families, Boutilier et al. (1996) shows that the impaton omplexity of inferene using lique tree approahes an be signi�ant.Cano et al. (2000) propose to use tree representations of lique potentials in general liquetree probagation. Here, the aim is not so muh to represent ontext spei� independeniesthat an be identi�ed in loal lique potentials, but rather to approximate the potentials bya tree representation. This approah o�ers a natural tradeo� between auray and e�ienyof the inferene omputation: with larger trees, the approximation is more aurate whilee�ieny is degraded, while smaller trees provides a (potentially) less aurate approximationbut faster inferene.Many extensions to the global struture of BN models to represent ertain asymmetriindependenies has been proposed, e.g., Bayesian Multinets (Geiger and Hekerman, 1996),Mixtures of Bayesian Networks (Thiesson et al., 1997) and Reursive Bayesian Multinets(Peña et al., 2002). Eah of these languages de�nes a deision tree struture that ontains atits leaves di�erent BN strutures. Eah leaf orresponds to a di�erent, and the di�erene inthe above languages redues to whether the ontext is deided by one of more variable andwhether a latent ontext-de�ning variable is allowed. In the Bayesian Multinets proposed byGeiger and Hekerman (1996) a single hypothesis variable de�nes the ontext. The ReursiveBayesian Multinets proposed by Peña et al. (2002) de�nes the ontext using a set of variables.The framework of Mixtures of Bayesian Networks proposed by Thiesson et al. (1997) uses alatent variable to de�ne the ontext, and then basially omputes an average over a small setof di�erent Bayesian Networks.
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Chapter 4
Learning Probabilisti Graphial

Models

The problem addressed in this hapter is the following:Let X be a set of disrete random variables w.r.t. a probability spae
〈Ω,R, P 〉. Given a database D of iid samples of P (X), onstrut a PGM
M over X suh that PM provides an aurate and e�ient approximationof P (X).

To assess whether M provides an aurate approximation of P we use a distane mea-sure for probability distributions, and the relative distane from P to PM is then used as ameasure of auray. By the e�ieny of the approximation provided by M we understandthe omplexity of belief updating, that is, omputing all posterior marginal distributions from
PM . Both measures are important when seleting models from a single language and also foromparison of di�erent languages for probabilisti graphial modelling.
4.1 Seleting Models and Comparing Languages

Given a spei� language of probabilisti graphial models L and a probability distribution
P (or a �nite sample D of P ), we are interested in extrating a harateristi of L that tellus whih alternative approximations to P L has to o�er. Suh harateristis is also relevantboth for omparing di�erent languages and when seleting among alternative models from thesame language.
4.1.1 Auray and E�ienyLet M be a probabilisti graphial model and let P be a target distribution, where P and
M are de�ned over the same set of disrete variables X. Let PM be the distribution de�nedby M . One standard measure for omparing probability distributions is the Kullbak-Leibler49



4 Learning Probabilisti Graphial Models
distane (KL-distane) (Cover and Thomas, 1991; Kullbah and Leibler, 1951).1 KL-distaneis an information theoreti measure that assigns a distane from a �true� distribution P to anapproximation Q. For disrete distributions, it is de�ned as:

DKL(P ||Q) =
∑

x∈R(X)

P (x) log
P (x)

Q(x)
, (4.1)

where we adopt the onvention (following Cover and Thomas (1991)) that 0 log 0
q

= 0 for
0 ≤ q ≤ 1 and p log p

0 = ∞ for p 6= 0, whih makes (4.1) well de�ned for any pair of disretedistributions (not neessarily positive) over the same domain.2Lemma 4.1Let X be a set of disrete random variables. Let P be a �xed distribution over X. Then,
DKL(P ||·) is a funtion:

DKL(P ||·) : PX → [0,∞], (4.2)where PX is the set all distributions over X. DKL(P ||·) is a ontinuous funtion on {Q ∈ PX :

Q(x) = 0⇒ P (x) = 0}.
Proof: Under the onvention that 0 · log 0

q
= 0 for 0 ≤ q ≤ 1, ontinuity of DKL(P ||Q) atany {Q : Q(x) = 0⇒ P (x) = 0} is immediate.

DKL(P ||Q) is always non-negative, 0 only when P = Q, and asymmetrial (hene, (4.1)is not a metri). When logarithms are base 2, the information theoretial interpretation of
DKL(P ||Q) is the expeted extra bits that will be ommuniated when a oding sheme thatis optimal under the distribution of messages Q is used, in a setting where P is the truedistribution of messages. From our point of view, we will interpret DKL(P ||PM ) as a measureof in-auray of model M . When using M for inferene, we an express the in-auray ofthe inferred posterior joint distribution PM (Q|E = e) as DKL(P (Q|E = e)||PM (Q|E = e)).Then the expeted inauray of inferring the joint posterior of variables Q given that variables
E are observed is:

∑

e∈R(E)

P (E = e)DKL(P (Q|E = e)||PM (Q|E = e)). (4.3)
DKL(P ||PM ) is an upper bound for (4.3) (Cover and Thomas, 1991, Theorem 2.5.3), and antherefore be used as a onservative estimate for suh expeted inauray. The entropy ofdisrete distribution P is de�ned as:

H(P ) = −
∑

x∈R(X)

P (x) logP (x), (4.4)1Kullbak-Leibler distane is also sometimes referred to as information divergene, information gain orrelative entropy.2The onvention of replaing 0 log 0
q
with 0 makes sense as limp→0 p log p

q
= 0, and replaing p log p

0
with

∞ when p 6= 0 makes sense beause limq→0 p log p

q
= ∞ for p > 0. However, there exists alternative measuresfor omparing disrete probability distributions, that does not require paying speial attention to zeros, e.g.,the Hellinger's distane: DH(P ||Q) =

P

x∈X
(P (x)

1
2 − Q(x)

1
2 )2.50
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and DKL(P ||PM) an then be expressed as:

DKL(P ||PM ) = −H(P )−
∑

x∈R(X)

P (x) logPM (x). (4.5)
We usually do not have the �true� distribution P at our disposal, but only a �nite sample Dof P .3 We then use the empirial distribution PD de�ned by maximum likelihood estimatesunder the assumption of multinomial sampling D (Agresti, 1990):

PD(x) =
Nx

|D|
, (4.6)where Nx is the ount of x in D, that is, the number of instanes d ∈ D where d = x.Substituting PD for P in equation (4.5), we then get:

DKL(PD||PM ) = −H(PD)−
∑

x∈R(X)

Nx

|D|
logPM (x)

= −H(PD)−
1

|D|
L(D|PM ), (4.7)where L(D|PM ) is the log-likelihood of D under PM , de�ned by Eq. (2.23). As the right-hand side of (4.7) only depends onM through L(D|PM ), we an use L(D|PM ) as a meaningfullmeasure of auray of a model M learned from data D. Furthermore, as 0 ≤ DKL(PD||PM )we see that −H(PD) provides an upper bound on 1

|D|L(D|PM ).In Chapter 3, we identi�ed parameters for eah of the model language introdued, in whihgeneral belief updating will be omputable in linear time, making it possible to disriminatebetween models from di�erent languages based on theoretial e�ieny. Popular metris forassessing the quality of a single model given a database, ombines likelihood and a measureof size in a weighted sum. We refer to suh metris as penalised likelihood sores, and theyhave the general form:
Sλ(D,M) := (1− λ)L(D|PM )− λ · size(M), (4.8)where size(M) is some measure of omplexity (not always diretly related to omplexity ofinferene) and 0 ≤ λ ≤ 1. Popular penalised likelihood sores for BN models use the repre-sentational size (number of free parameters) of the BN model as the measure of omplexity.For instane, substituting sizerep(M) for size(M) in (4.8), the Bayesian Information Crite-rion (BIC) (Shwarz, 1978) is proportional to (4.8) with λ = 1 − log(|D|)

2+log(|D|) , and the AkaikeInformation Criterion (AIC) (Akaike, 1974) is proportional to (4.8) for λ = 1
2 .Penalised likelihood metris are often used to selet among alternative models in a learningproedure. It may, however, not be lurative to settle for a model that optimise the onespei� (maybe arbitrarily hosen) λ tradeo� between auray and e�ieny ditated bythe sore metri. Depending on the spei� appliation domain, we might want to penaliseoverly omplex models di�erently. Also, if we are to ompare models from di�erent languages,settling for one spei� tradeo� may (unintentionally) give favour to models from one languageover models from another language.3KL-distane has been and often still is used as a riterion in developing proedures for learning PGM fromdata, see Chow and Liu (1968) or Beygelzimer and Rish (2003).51
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Figure 4.1. Ideal SL-urves. 'Training' plots SL oordinates for non-dominated models where log-likelihood is measured over DA, and 'Test' plots SL oordinates for the same models where log-likelihood is measured over DB . The straight lines titled 'onstant tradeo� (training)' displays linesonstruted by linear extrapolation of SL oordinates that sore equally under that spei� tradeo�.
4.1.2 SL-CurvesTo evaluate our ability to learn a model M from data D that e�iently and aurately ap-proximates the empirial distribution PD, we will use plots of e�etive size vs. log-likelihood(L(D|PM )) of a range models. The range of models will ideally eah yield optimal Sλ sorefor som λ. Figure 4.1 shows idealised plots of e�etive model size vs. model likelihood fora range of models optimising Sλ (see Eq. 4.8) for di�erent settings of λ. We all suh plotsSL-urves.First, in Figure 4.1, the urve titled �Training� plots the likelihood over the data set usedfor learning (heneforth referred to as DA) vs. e�etive size. The urve titled �Test� plotsthe likelihood of the same models but now omputed over a separate test dataset not used inthe learning phase (heneforth referred to as DB ). Eah of the straight lines titled �Constanttradeo� (Training)� is onstruted by extrapolation of a set of models that sores equallyunder some onstant tradeo�. Therefore, when seleting models aording to a onstant λ,the optimal model an be identi�ed in SL spae as the model with SL-oordinates on urve�Training� at whih the tangent has slope λ

1−λ
.SL-urves over likelihood obtained from DA will show the ability of the spei� modellanguage to apture the empirial distribution PDA . The interpretation of likelihood valuesobtained over DA is non-trivial. While a relatively high value is preferable, any model M thatsuessfully enumerates DA (and thereby represents the empirial distribution PDA exatly),will reeive a maximal likelihood value over DA of L(DA|P

M ) = −|D|H(PDA). Any modellanguage that has the ability to represent any distribution over the observed variables is, ofourse, expeted to approah this value asymptotially as the number of free parameters is52
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inreased. Suh models are not interesting unless we are on�dent that the empirial distri-bution PDA and the data generating distribution P are lose to indistinguishable. Whetherthe assumption of PDA being lose to P is reasonable, depends on the size of DA, the lessdata we have the less reasonable the assumption is. As data will always be limited in anypratial appliation, models that enumerate DA by apturing PDA perfetly, typially su�erfrom over�tting as any idiosynrasies of DA are aptured and as a result does not generalisewell to new samples from P . We de�ne the onept of an over�tting model in De�nition 4.1.4De�nition 4.1Given a model language L, a dataset D and partition into training data DA and test data DB .A model M ∈ L over�t DA if there exists a model M ′ ∈ L suh that:

L(DA|P
M ) > L(DA|P

M ′

), and (4.9)
L(DB |P

M ) < L(DB |P
M ′

). (4.10)Likelihood values obtained over dataset DB , an be used to provide some stability toour onlusions and guide seletion of models. L(DB |P
M ) is then typially used to detetover�tting DA.When omparing multiple languages using SL-urves we have 2 urves for eah language,one for likelihoods over DA and one for likelihoods over DB . For eah language L, the model

M = argmax
M ′∈L

L(DB |P
M ′

) an be identi�ed, and will automatially be the model amongst allmodels from L that maximise L(DA|P
M ) without over�tting DA (aording to De�nition 4.1).We an then ompare suh optimal models from the di�erent languages w.r.t. dominane andselet the dominating model if one exists or selet one of the alternatives based on requirementson auray or e�ieny.Consider the onstruted SL urves in Figure 4.2 for languages PGM1 and PGM2. Theupper urves shows log likelihood over DA while the lower shows log likelihood over DB . Weuse DB for guiding the seletion amongst alternative models. The models that maximise loglikelihood over DB is indiated by M1 and M2 for PGM1 and PGM2 respetively. These are themodels that would be seleted (from the respetive language) by a model seleting proedurethat uses DB to detet over�tting. As M1 and M2 have similar log-likelihood values over DB ,and M1 has higher log-likelihood value over DA than M2, then, omparing M1 and M2 we seethat M2 has higher likelihood over the entire dataset. This observations should not be hastilyinterpreted as an indiation that M1 provides the more aurate approximation of the datagenerating distribution. Instead, we an only onlude that M1 and M2 provide an equallyaurate approximation, while M2 provides the more e�ient approximation. On the level oflanguage omparison, we an make the observation that PGM1 onsistently dominates PGM2in approximating DA, however, PGM1 su�ers aordingly from over�tting DA and aurayon DB degrades quikly. When seleting a single model in a spei� senario, this observationis less interesting. However, for a more general omparison of model language performanein a senario where models are learned from real data, suh observations are learly relevant.4De�nition 4.1 is a slightly modi�ed version of a more traditional de�nition (see (Mithell, 1997, p. 67)),where log-likelihood over DA and DB has been substituted for predition error over DA and the entire dataset.53
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Figure 4.2. Example of SL-urves used to selet models from two di�erent languages PGM1 andPGM2. The upper urves are log-likelihood values over DA while the lower urves are over DB .
When omparing the languages PGM1 and PGM2 rather than the models M1 and M2 usingFigure 4.2, we would make the observation that PGM1 has less propensity to over�tting thanPGM2.
4.1.3 Related MethodologiesBeygelzimer and Rish (2003) use tradeo� urves that display the tradeo� between tree-widthand likelihood of BN models. The tree-width of a BN model is a measure of the size ofthe smallest juntion tree representation, and is therefore equivalent to our notion of e�e-tive size of BN models. The urves used by Beygelzimer and Rish (2003) are equivalent toour SL-urves, but the motivation for the analysis is somewhat di�erent from our analysis.Beygelzimer and Rish (2003) aims at identifying the so-alled approximabillity of probabilitydistributions by BN models. That is, a measure of how e�etive a BN approximation of agiven distribution an be. In the present study, we aim at a omparison of di�erent languagesof probabilisti graphial models using SL-urves with likelihoods for both DA and DB . Whenonly onsidering a single language, our SL-urves (for DA) tell exatly the same story as thetradeo�-urves of Beygelzimer and Rish (2003).SL-urves are losely related to urves showing predition error against omplexity, whihare ommonly used in mahine learning for the assessment of generalisation performane inboth unsupervised and supervised model seletion (Hastie et al., 2001; Mithell, 1997). A stan-dard learning proedure then inreases the omplexity by adding parameters to the model,and eventually selets the model that minimises the predition error on DB . It is natural toview log-likelihood over DB as a bound on the expeted auray in prediting new instanessampled from the generative distribution, and the model yielding maximal log-likelihood over
DB is then the same model that has minimal predition error on DB . A slight di�erene, how-54
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ever, is that we expliitly use e�etive size that is proportional to omputational omplexityof general inferene in the model, instead of the more ommon representational omplexitytypially used for suh analyses.
4.2 Parameter Estimation

In this setion we disuss the problem of estimating parameters of a model given a datasetof observations. Assume that for model struture M over disrete variables X, we need to �nda good parametrisation for M . Let D be a dataset of iid samples of joint distribution P (X).Assume that after observing data D we an onstrut the posterior density P (Θ|D), e�etivelyassigning a onditional probability to any parametrisation θ given the observed samples D. ABayesian approah to estimation would then selet the mean of P (Θ|D), that is:
θ′ = E[Θ|D] =

∫

Θ
θP (θ|D)dθ. (4.11)Another Bayesian approah is the maximum a posterior (or MAP) estimation, where theparametrisation attaining the maximum posterior probability is seleted:

θ′ = argmax
θ

P (θ|D). (4.12)The posterior P (θ|D) = P (D|θ)P (θ)/P (D) an be simpli�ed by assuming that any sequeneof observations is equally likely a priori, orresponding to a uniform prior P (D) whih anthen be disregarded when omparing posteriors. Further, if we assume a uniform prior onparameters, the posterior P (θ|D) beomes proportional to the likelihood of data P (D|θ).Then (4.12) beomes the popular maximum likelihood estimator:
θ′ = argmax

θ

P (D|θ). (4.13)If we assume multinomial sampling, the ML estimate for the onditional probability P (Y =

y|U = u) from data D is given by the fration:
P (Y = y|U = u) =

Ny,u

Nu

, (4.14)where Ny,u is the number of data instanes d ∈ D for whih d[Y,U] = (y,u), and Nu =
∑

y∈R(Y)Ny,u. Therefore, when data D is omplete (i.e., fully observed), ML estimates anbe omputed in losed form by simple proportions of ounts. When data is inomplete, wean not ompute this estimate diretly and must rely on methods suh as the EM algorithm,that produes an ML estimate using expeted ounts. For NB models, we fae the problemeven for omplete data. The di�ulty arises from estimating parameters in the presene ofthe latent variable C for whih no observations exit. We will disuss the solution providedby the EM algorithm in dealing with the problem of inomplete data and latent variables inSetion 4.4.1. For now, we will fous on the simpler task of ML estimation in BN and PDGmodels from omplete data. 55
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Algorithm 4.1 The proedure sores a smoothing parameter α by a ross-validation method.Input: Model M , smoothing value α, fully observed data D.Output: A sore for smoothing value α.1: funtion CVSore(M,α,D)2: Randomly divide D into n equal size disjoint folds D1,D2 . . . ,Dn3: s := 0.04: for all folds Di do5: Let θi be α-smoothed ML-parameters for M estimated from D \ Di.6: s := s+ L(Di|θi)7: return s/n
SmoothingPure ML estimation of parameters are often not desired, as a ount of zero will yield a zeroprobability on�guration in the model. As data is always limited, onsidering any event whihis not observed in the data as an impossible event is never justi�able (in theory) as either theevent (or the data-sample) may just be partiularly unlikely in nature.A standard method to avoiding suh zero ounts is to use smoothed ML-parameters, whihamounts to adding a smoothing fator (or pseudo ount) α to the ount when alulating theestimate of P (Y = y|U = u):

P (Y = y|U = u) =
Ny,u + α

Nu + α · |R(Y)|
(4.15)

We will denote parameters alulated from eq. (4.15) α-smoothed ML-parameters.5The larger the α, the more aggressive the smoothing and parameters will approah unifor-mity and the ounts from data will vanish. Choosing α too small may not provide su�ientsmoothing to anel out the unlikely events observed in the data. A good value for α is there-fore very dependent on the nature of data. By �a good value� we understand a value for whih
α-smoothed parameters yields a loser and more aurate approximation of the generatingdistribution than pure un-smoothed ML parameters.For a given parameterised model M representing distribution PM , the likelihood of sepa-rate test dataset DB may be used as valid measure of auray of the approximation providedby PM . Alternatively, instead of leaving out a subset of the dataset for validation purposesonly, we an use a ross-validation approah to estimate the auray of an approximation.We will employ a ross-validation approah in assessing the quality of a smoothing value α.Funtion CVSore of Algorithm 4.1 assesses the quality of a α-value by ross-validation.We will assume that CVScore(M,α,D) de�nes a unimodal funtion in the α argument.Empirial observations has shown that this is not an unreasonable assumption. Figure 4.3shows CVScore(M,α,DA) and L(DB |M) for a PDG model M over the variables observed ina real dataset. Not only does this plot support our assumption of unimodal CVSore in α,5Equation (4.15) orresponds to MAP estimation of parameters with prior P (θ) following a Dirihlet dis-tribution with parameter α for eah dimension, see Hekerman (1995).56
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Figure 4.3. The plot shows CVScore(M,DA, α) for �xed model M and �xed data DA depited by thesolid line. The dashed line plots the value of L(Dtest|M) for a separate data-sample Dtest and for Mwith α-smoothed ML parametrisation. The dataset used is the Abalone dataset with |DA| = 3758 and
|DB | = 419.
but also we see that L(DB |M) and CVScore attains their maximum value in the same regionof smoothing values α.Aepting the assumption of unimodality, we will use a simple searh proedure to estimate
α that yields maximal CVSore. The proedure tuneSmooth (Algorithm 4.2) optimises an αusing a simple narrowing searh. The result of tuneSmooth is plotted in Figure 4.3 as a vertialdashed line.The vertial line in the plot in Figure 4.3 shows the α value resulting from our implemen-tation of the tuneSmooth proedure (Algorithm 4.2).
4.3 Learning Bayesian Network Models

This setion is onerned with the problem of learning BN models from data. The reentbook by Neapolitan (2003) serves both as an exellent introdution to the topi and a om-prehensive referene ontaining many important results that have emerged over the past 10-15years of intensive researh in this spei� �eld of automated learning.In this setion we propose an algorithm for learning BN models from data. In short, theproedure performs a stohasti searh in the spae of equivalene lasses of BN models. Majorparts of the material presented in this setion is based on the ideas previously published in(Nielsen et al., 2003).Our proposed proedure, the k-greedy Equivalene Searh (or KES) proedure, is a gen-eralisation of the Greedy Equivalene Searh (or GES) proedure, �rst proposed by Meek57



4 Learning Probabilisti Graphial Models
Algorithm 4.2 Given a dataset and a model M this algorithm optimises a smoothing fatorby using the ross-validation sore, CVSore.Input: Dataset D and model MOutput: Optimal smoothing parameter α.1: funtion tuneSmooth(D,M)2: l := 03: u := αmax4: repeat5: if CVScore(M, l + ǫ,D) > CVScore(M, l,D) then6: l := l + ǫ7: if CVScore(M,u+ ǫ,D) > CVScore(M,u,D) then8: u := u− ǫ9: until neither u nor l hanged, or u− l is small enough.10: if CVScore(M,u,D) > CVScore(M, l,D) then11: return u12: else13: return l
(1997).
4.3.1 Seleting Optimal BN ModelsWe say that a distribution P is representable by BN dependeny modelM(G) i� G is an I-mapof P , whih then implies that for some parametrisation θ, BN model B = 〈θ,G〉 representsdistribution PB = P . We will by BD

G denote the BN model with DAG struture G and MLparameters θ estimated from data D.De�nition 4.2 (Loal (Inlusion) Optimality)A BN dependeny modelM(G) is inlusion optimal w.r.t. distribution P i� P is representableby M(G) and no model M(G′) stritly (distributionally) inluded in M(G) exists for whih
P is representable.De�nition 4.3 (Global (Parameter) Optimality)A model M(G) is said to be parameter optimal w.r.t. distribution P i� P is representable by
M(G) and no other model with fewer free parameters is P representable.Proposition 4.1Let P be a distribution faithful to DAG G, then the model M(G) is the unique global optimalmodel w.r.t. P .
Proof: As P is faithful to G, for any other model M(H) 6= M(G) that an represent Pit must be the ase that M(G) ⊂D M(H). For any suh model M(H), DAG H an beonstruted from DAG G by a series of overed edge reversals and single edge additions (by58



4.3 Learning Bayesian Network Models
De�nition 3.11 and Theorem 3.4). It an easily be shown that reversing a overed edge annot hange the number of free parameters in the model de�ned by the DAG, see (Chikering,1995). However, edge additions always will inrease the number of free parameters. Therefore
M(H) must neessarily ontain more free parameters than M(G), whih proves unique globalparameter optimality of M(G).For learning proedures that traverse the spae of equivalene lasses representing eahequivalene lass by a DAG, it is desirable that the sore funtion does not disriminatebetween equivalent DAGs, and instead assign the same sore to equivalent models. We allsuh sore funtions sore equivalent.De�nition 4.4 (Sore Equivalene)Sore funtion S is sore equivalent i� for any pair of DAGs G and H where G ≈ H it is thease that S(D, BD

G ) = S(D, BD
H).Generi sore funtions like Sλ (equation (4.8)) disussed in Setion 4.1 are typially usedto assess the quality of BN models. For reovering a model that represents the data generatingdistribution, onsisteny of the sore funtion is important.De�nition 4.5 (Consistent Sore Funtions)Let D be a dataset of iid samples of a positive disrete probability distribution P (X). A sorefuntion for BN models S is then onsistent if, asymptotially as |D| → ∞, the followingholds:1. If DAG G is an I-map of P while H is not, then S(D, BD

G) > S(D, BD
H).2. If both G and H are I-maps of P but sizerep(M(G)) < sizerep(M(H)), then S(D, BD

G) >

S(D, BD
H).For learning proedures, that traverse the spae of DAGs by loal transformations suh assingle edge addition and removal operations, the requirement of loal onsisteny is important.De�nition 4.6 (Loally Consistent Sore Funtions)Let D be a dataset of iid samples of a positive disrete probability distribution P (X). Let Gbe a DAG over X and let G′ be the DAG onstruted from G by adding the edge Xi → Xj .A sore funtion for BN models S is then loally onsistent if, asymptotially as |D| → ∞,(4.16) and (4.17) below hold:

Xi 6⊥⊥Xj |paG(Xj)[P ]⇒ S(D, BD
G′) > S(D, BD

G) (4.16)
Xi⊥⊥Xj |paG(Xj)[P ]⇒ S(D, BD

G′) < S(D, BD
G) (4.17)Assuming DAG-faithfulness of the generative distribution, the inlusion boundary neigh-bourhood ensures asymptoti optimality, as shown by Castelo and Ko£ka (2003).Theorem 4.1(Castelo and Ko£ka, 2003, Theorem 4) Let D be a fully observed dataset of iid samples froma disrete joint probability distribution P . Let P be faithful to DAG struture G and let S be59



4 Learning Probabilisti Graphial Models
Algorithm 4.3 The k-greedy Equivalene Searh proedure (KES). S is any loally onsistentsore riterion and IB+(·) is the set de�ned in (4.18).Input: Data D; 0 ≤ k ≤ 1Output: DAG struture of loal optimal BN model.1: proedure KES(D, k)2: G := empty DAG model over observed variables in D3: B := IB+(G,D)4: while B 6= ∅ do5: C := random subset of B of size max(1, k|B|)6: G := argmax

G′:M(G′)∈C

S(D, BD
G′)7: B := IB+(G,D)8: return G

a loally onsistent sore funtion. Then, as |D| → ∞, for any DAG H 6≈ G with probability1 there is a model M(H ′) ∈ IB(M(H)) s.t. S(D, BD
H) < S(D, BD

H′).4.3.2 Greedy and k-greedy Model SeletionThe GES algorithm for seleting optimal BN models was proposed by Meek (1997), and theoptimality was later proved by Chikering (2002). A generalisation of the GES algorithm wasproposed by Nielsen et al. (2003), the k-greedy Equivalene Searh (KES). Algorithm 4.3 givesa simple high-level formulation of the KES proedure. With k = 1, KES e�etively redues toGES.We de�ne the set IB+(G) as:
IB+(G,D) := {M(G′) ∈ IB(M(G)) s.t. S(D, BG′

D ) > S(D, BG
D)}. (4.18)where S is a loally onsistent and sore equivalent sore funtion.We will by GES refer to KES with k = 1.Theorem 4.2(Nielsen et al., 2003, Theorem 3) Let D be a dataset of fully observed iid samples of disretejoint probability distribution P , let P be faithful to DAG G and let 0 ≤ k ≤ 1. Then,asymptotially for |D| → ∞, with probability 1, KES(D, k) returns DAG H ≈ G.

Proof: Theorem 4.2 follows almost immediately from Theorem 4.1. As the KES proedureof Algorithm 4.3 at eah iteration moves to a model in the inlusion boundary of the urrentmodel, that has higher sore than the urrent model, by Theorem 4.1 KES will only terminatewhen the global optimal model G is reahed. As the number of dependeny models for any�nite set of variables is �nite, KES will eventually terminate and return G.The original formulation of the GES algorithm by Meek (1997) implemented a two-phasedsearh. In the �rst phase only the upper inlusion boundary UIB(G) was used in the generation60
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P (X,Y )

x0 x1 x2 x3

y0 0.22 0.03 0.22 0.03
y1 0.03 0.22 0.03 0.22 P (Y, Z)

y0 y1

z0 0.35 0.15
z1 0.15 0.35

P (X,U)

x0 x1 x2 x3

u0 0.22 0.22 0.03 0.03
u1 0.03 0.03 0.22 0.22 P (U,Z)

u0 u1

z0 0.35 0.15
z1 0.15 0.35Table 4.1. Marginal joint distributions for the undireted seletion-four-yle distribution.

of IB+(G,D) (eq. (4.18)), and in the seond phase only the lower inlusion boundary LIB(G)was used. The original formulation ould lead to super�uous addition of edges in the �rst(forward) phase that would then be removed in the seond phase. Our formulation uses thefull inlusion boundary in eah step and, thereby, may avoid some super�uous additions, whileleading to the same theoretial results.The assumption of DAG faithfulness in Theorem 4.2 is a strong assumption to make ona joint probability distribution. We will give an example of a distribution for whih DAGfaithfulness is not satis�ed and whih exhibits multiple loal maxima.Example 4.1(Nielsen et al., 2003, Example 1) Let X = {X,Y, U, Z} be a set of disrete random variableswhere X has 4 states and Y , U and Z are all binary. Let P be a probability distributionover X that satis�es the onditional independenies X ⊥⊥Z|{Y, U}[P ] and Y ⊥⊥U |{X,Z}[P ],and with marginal joint probability distributions given in Table 4.1. The (in)dependenies ofthis distribution are perfetly aptured by the undireted graph in Fig. 4.4(a). This UDG isnot deomposable (that is, not triangulated) and therefore no equivalent DAG model exists(Andersson et al., 1997, Corollary 4.1). Two distint BN dependeny models are inlusionoptimal w.r.t. P , the DAG strutures in Fig. 4.4(b) and () represents these models. Themodel in Fig. 4.4(b) ontains 19 independent parameters while the model in Fig. 4.4() requires23 independent parameters, therefore the global optimal model is the model in Fig. 4.4(b).As one last note, the model in Figure 4.4(d) is a direted model that aptures the distri-bution by inluding the latent seletion variable S. Variable S is a speial variable that willalways be in one unique state for all observations, but is never inluded in the observationsitself. It an be seen as a variable that selets the observations that are observed.We will denote this distribution the undireted seletion-four-yle distribution.Random parametrisation of the seletion-four-yle distribution of Example 4.1 was usedfor experiments by Chikering and Meek (2002) in experimenting on GES performane in thepresene of multiple inlusion optimal models. The spei� parametrisation we bring here wasmanually designed to guide a greedy searh to a suboptimal model.Meek (1995) investigates some aspets of the assumption of DAG faithfulness and �rstproves existene of faithful (disrete) distributions for any DAG struture. Furthermore,if parameters are seleted at random over a uniform distribution of legal parameters, withprobability 1, parameters will yield a probability distribution faithful to G (Meek, 1995).61
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However, these theoretial results are of little importane to the pratial problem of learningBN models from data. It is not hard to imagine situations where this assumption is invalidated.The existene of a relationship like the one desribed by the DAG in Figure 4.4 (where S isthe hidden seletion variable), learly invalidates the assumption of DAG faithfulness. Thisobservation prompted Chikering and Meek (2002) to propose its replaement by the weakerassumption of satisfation of the omposition property assumption.The omposition property (or omposition axiom of independene (Pearl, 1988)) is de�nedas:De�nition 4.7 (Composition property)A disrete joint probability distribution P over variables X, satis�es the omposition propertyi� for any X ∈ X and any nonempty disjoint subsets U,W of X and subset Z of X:

X⊥⊥U|Z[P ] ∧X⊥⊥W|Z[P ]⇒ X⊥⊥{U ∪W}|Z[P ]. (4.19)
Sometimes the ontra-positive of (4.19) is easier to apply when working with a spei� example:

X 6⊥⊥{U ∪W}|Z[P ]⇒ X 6⊥⊥U|Z[P ] ∨X 6⊥⊥W|Z[P ]. (4.20)The distribution of Example 4.1 satis�es the omposition property. The omposition prop-erty is a less restritive assumption than the assumption of DAG-faithfulness, as distributionsthat are DAG-faithful automatially satis�es the omposition property (Pearl, 1988). Theonverse is not true, whih the distribution in Example 4.1 exempli�es. That the modelin Example 4.1 satis�es the omposition property an be seen by the fat that no pairs ofonditional independene relations from the model �ts the left-hand side of equation (4.19).Therefore, the omposition property is trivially ful�lled.Still, the lass of distributions that satis�es the omposition property may be too restri-tive. For instane, one relevant distribution that does not satisfy the omposition property isthe parity distribution (see Example 3.11). To realise this, let P be the parity distribution overbinary variables X and let Y = {Xi, Xj, Xl} ⊂ X. We then have that Xi 6⊥⊥{Xj , Xl}|X\Y[P ]but neither Xi 6⊥⊥Xj |X \Y[P ] nor Xi 6⊥⊥Xl|X \Y[P ], and the impliation of (4.20) is then notsatis�ed. 62



4.3 Learning Bayesian Network Models
Substituting the assumption of satisfying the omposition property for the assumption ofDAG faithfulness, Chikering and Meek (2002) prove inlusion optimality of GES. This resultextends to KES whih we formally state in Theorem 4.3. The proof of Theorem 4.3 proeeds inthe same manner as the proof for GES inlusion optimality provided by Chikering and Meek(2002).Theorem 4.3(Nielsen et al., 2003, Theorem 4) Let D be a dataset of fully observed iid samples from a jointprobability distribution P that satis�es the omposition property, and let M(H) be inlusionoptimal w.r.t. P . Then, for any 0 ≤ k ≤ 1 and |D| → ∞, with probability 1 KES(D,k) returnDAG G ≈ H.

Proof: We will prove Theorem 4.3 by ontradition. Assume KES(D, k) returns DAG Gthat is not inlusion optimal w.r.t. P . That KES returns G implies that there is no DAG
G′ : M(G′) ∈ IB(M(G)) s.t. S(D, BD

G) < S(D, BD
G′). That G is not inlusion optimalw.r.t. P implies that M(G) does not inlude P , and G is therefore not an I-map of P .Then, for some Xi in G it must be true that Xi 6⊥⊥ {ndG(Xi) \ paG(Xi)}|paG(Xi)[P ]. Byrepeated appliation of (4.20), a singleton Xj ∈ {ndG(Xi) \ paG(Xi)} an be identi�ed forwhih Xi 6⊥⊥Xj|paG(Xi)[P ]. Adding the edge Xj → Xi to G will produe graph H, and as

Xj ∈ ndG(Xi), H will remain a DAG. By the de�nition of loally onsistent sore funtions(De�nition 4.6) we get S(D, BD
G) < S(D, BD

H). By Theorem 3.4, M(H) ∈ IB(M(G)), whihontradits the assumption that KES ould return G.Theorem 4.3 establishes inlusion optimality of KES. For a distribution satisfying the om-position property, the number of inlusion optimal models may be exponential in the numberof variables, while only a single (or a some small subset) of these models may be global pa-rameter optimal. The distribution presented in Example 4.1 is an example of this. We anonstrut a distribution by inluding n opies of the undireted seletion-four-yle of Fig-ure 4.4(a). For eah suh opy, 2 distint inlusion optimal models exists, only one of whihis global parameter optimal. Therefore, the distribution over all 4n variables would exhibit
2n distint loal inlusion optimal models while still only one unique model is the globalparameter optimal model.The greedy traversal of the neighbourhood implemented by GES is not guaranteed toreover the global parameter optimal model. However, by relaxing greediness and hoosing
k < 1 we introdue some randomness into the searh and thereby may explore a larger areaof the searh spae. Con�guring KES for maximal randomness (by setting k = 0) we are ableto reover any inlusion optimal model.Theorem 4.4(Nielsen et al., 2003, Theorem 5) Let D be a dataset of fully observed iid samples from adisrete joint probability distribution P that satis�es the omposition property. Let G be aDAG representing a BN model M(G) that is inlusion optimal w.r.t. P . Then, as |D| → ∞,with non-zero probability, KES(D, 0) will return G.63
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Proof: Let M(G) be any inlusion optimal model w.r.t. P . We an then prove Theorem 4.4by onstruting a sequene of models M(G0), . . . ,M(Ge), where G0 is the empty DAG and
M(Ge) = M(G), and eah model M(Gi) ∈ IB+(Gi−1,D) for 1 ≤ i ≤ e.Consider the sequene of DAGs G0, . . . , Ge, where G0 is the empty DAG, eah DAG isonstruted from the immediately preeding DAG by a single edge addition, and Ge = G.For all 0 ≤ i < e it is lear that M(Gi+1) ∈ UIB(Gi), hene we only need to show that
S(D, BD

Gi
) < S(D, BD

Gi+1
) to prove M(Gi+1) ∈ IB+(Gi,D). As every model in the sequene isin the upper inlusion boundary of the immediately preeding model,M(Gi) ⊂P M(Gj) for all

0 ≤ i < j ≤ e, in partiular M(Gi) ⊂P M(G) for any 0 ≤ i < e. AsM(G) is inlusion optimalw.r.t. P , no model stritly inluded in M(G) (and therefore no model in our sequene) anrepresent P . For any model M(Gi) where i < e, Gi is therefore not an I-map of P , and then,for some variable X:
X 6⊥⊥{ndGi

(X) \ paGi
(X)}|paGi

(X)[P ]. (4.21)However, as G is an I-map of P , for the same X we have:
X⊥⊥{ndG(X) \ paG(X)}|paG(X)[P ]. (4.22)As Gi is a subgraph of G, it is lear that {ndG(X) \ paG(X)} ⊂ {ndGi

(X) \ paGi
(X)}. Ittherefore follows from (4.21) and (4.22) (by the blok independene lemma (2.20)), that:

X 6⊥⊥{paG(X) \ paGi
(X)}|paGi

(X)[P ]. (4.23)We an then (using (4.20)) identify a singleton Y ∈ {paG(X) \ paGi
(X)} for whih X 6⊥⊥

Y |paGi
(X)[P ]. Adding the edge Y → X to Gi produing Gi+1 will (asymptotially for |D| →

∞) yield a sore improvement for any loally onsistent sore funtion, hene M(Gi+1) ∈

IB+(M(Gi)) for all 0 ≤ i < e.
4.3.3 ImplementationIn this setion we disuss some important issues relating to the implementation of KES (Alg. 4.3).In partiular we will prove onsisteny od the general penalised likelihood sore funtion anddisuss our approah to generating IB+(G,D) (4.18).
The λ-sore for BN modelsFor BN models, we will use Sλ as a sore funtion with sizerep as penalty. Let B be theparametrised BN model, then we de�ne the sore:

SBN
λ (D, B) = (1− λ)L(D|PB)− λsizerep(B). (4.24)Lemma 4.2

SBN
λ is sore equivalent for BN models for 0 ≤ λ ≤ 1.64
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Proof: Chikering (1995) proves that for equivalent DAGs G and H, L(D|BD

G) = L(D|BD
H)and sizerep(M(G)) = sizerep(M(H)). As SBN

λ is the sum of two quantities that are equivalentfor equivalent models, SBN
λ is itself equivalent.

A sore funtion for BN models is deomposable if it an be expressed as a sum overterms, eah of whih is only a funtion of one variable and its parents in the DAG strutureof the BN model. As both terms of SBN
λ deompose into suh terms, we see that SBN

λ is itselfdeomposable for BN models.Lemma 4.3
SBN

λ is a onsistent sore for BN models when 0 < λ < 1.
Proof: Let D be iid samples from the disrete distribution P (X). Then, with probability 1,
PD → P when |D| → ∞. We prove eah of the requirements of De�nition 4.5 in the following:1. Consider two DAGs G and H, and let G be an I-map of the generative distribution Pwhile H is not. We then need to prove that as |D| → ∞:

SBN
λ (D, BD

G)− SBN
λ (D, BD

H) > 0. (4.25)Combining (4.24) and (4.25) we get:
SBN

λ (D,M(G))− SBN
λ (D,M(H)) =(1− λ)[L(D|PBD

G )− L(D|PBD
H))]

− λ[sizerep(BD
G)− sizerep(B

D
H)]

>0.Then, by (4.7) we get:
(1− λ)(−|D| · [DKL(P ||PBD

G )−DKL(P ||PBD
H )]) > c, (4.26)where c = sizerep(M(G))− sizerep(M(H)). For |D| → ∞, with probability 1 PBD

G → P(and, therefore, DKL(P ||PBD
G )→ 0). (4.26) is then asymptotially satis�ed if:
(1− λ)|D|DKL(P ||PBD

H ) > c, (4.27)for some c > 0. Consider the set H of probability distributions representable by M(H).Now, onstrut the non-empty setHr = {Q ∈ H : DKL(P ||Q) ≤ r} for some r <∞.6 Byontinuity of DKL(P ||·) (Lemma 4.1), Hr is a ompat set. Then, a well known resultfrom topology (Apostol, 1974, Theorem 4.25) guarantees that there exists a minimalelementQ′ = argmin
Q∈Hr

DKL(P ||Q). Reall thatH is not an I-map of P . ThenDKL(P ||Q′)is positive (non-zero) and (4.27) is then satis�ed for |D| → ∞ and λ < 1.6That Hr will be non-empty for some r < ∞ is easily realised by the fat that any DAG an represent auniform distribution, and for uniform distribution Q, DKL(P ||Q) < ∞ for any P .65
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2. The seond requirement for onsisteny an be proved to be satis�ed by somewhatsimilar arguments. When both G and H are I-maps of P , for |D| → ∞ with probability1 PBD

G → P and PBD
H → P , and the di�erene in likelihood L(D|PBD

G )−L(D|PBD
H ) willapproah 0. Then, as 0 < λ, we have:

sizerep(M(G)) < sizerep(M(H))⇒ SBN
λ (D, BD

G) > SBN
λ (D, BD

H). (4.28)
From Lemma 4.3, Corollary 4.1 immediately follows:Corollary 4.1Let D be a dataset of iid samples from joint probability distribution P , and let P be faithfulto DAG G. Then, asymptotially for D →∞ and any H 6≈ G:

SBN
λ (D, G) > SBN

λ (D, H). (4.29)Lemma 4.3 then establishes global onsisteny for seleting BN models aording to SBN
λ .Lemma 4.4

SBN
λ for BN models is a loally onsistent sore funtion.The proof for Lemma 4.4 follows similar arguments as the proof for loal onsisteny ofthe Bayesian sore (Chikering, 2002, Lemma 7).Proof: As SBN

λ is deomposable, the di�erene SBN
λ (D, BD

G)− SBN
λ (D, BD

G′) is invariant forall pairs of DAGs that only di�ers in the single adjaeny Xi → Xj . We are, therefore, free tohoose the struture ommon to G and G′. Let G′ be a fully onneted DAG. Then,M(G′) = ∅and M(G) = {Xi⊥⊥Xj |paG(Xj)}. AsM(G′) an represent any distribution, M(G′)is triviallyan I-map for P . If Xi 6⊥⊥Xj |paG(Xj)[P ], then M(G) is not an I-map of P and by onsistenyof SBN
λ the impliation of (4.16) is true. If Xi⊥⊥Xj |paG(Xj)[P ], then both M(G′) and M(G)are I-maps of P and sizerep(M(G)) < sizerep(M(G′)), and by onsisteny of SBN

λ , impliation(4.17) is true.
On the Choie of Size MeasureIt may seem more natural (or even more fair) to use the e�etive size as the penalty term inthe lambda sore of (4.24) instead of the representational size. Espeially when onsideringthat in Chapter 5 we are going to base our omparative analysis on e�etive sizes. How-ever, our reasons for not doing so are mainly the ompliations onneted with omputingthe inrease/redution of the e�etive size loally given a loal modi�ation like addition orremoval of an edge. Having a deomposable sore is preferable from a pratial point of view,as it yields a straightforward way of reusing omputations by ahing loally omputed sores.Also, the theoretial results of Setion 4.3.1 and Setion 4.3.2 very muh depends on the sorebeing deomposable and loally onsistent. 66



4.3 Learning Bayesian Network Models
Algorithm 4.4 Given a DAG G, this algorithm produes a representative DAG for a randommember of IB(G)Input: DAG GOutput: Random member of IB(G)1: funtion sampleIB(G)2: H := G3: r := random integer between 0 and |E|4: for r times do5: reverse a random overed ar in H6: (X,Y ) := random pair of nodes in H7: if Y ∈ adjH(X) then8: Remove the adjaeny (X,Y ) from H.9: else10: Introdue the adjaeny (X,Y ) with random orientation into H without introdu-ing a yle.11: return H

Obviously, rebuilding a full lique tree representation whenever omputing the hange insore implied by a modi�ation is not a loal operation. Instead, we ould onsider buildingthe lique tree inrementally during the BN learning proedure. Inremental onstrution andmaintenane of a lique tree representation was studied by Flores et al. (2003). Given a liquetree model and a strutural modi�ation of the original BN model (add/remove a link), theproedure of Flores et al. (2003) identi�es small sub-graphs (Maximal Prime Sub-graphs) ofthe lique tree that needs re-triangulation. In pratise, this an be muh simpler than re-building the full lique tree representation, but in the worst ase it still may turn out to beequivalent to a full global re-triangulation.We are not aware of any reliable loally (and e�iently) omputable estimates for theinrease in e�etive size resulting from a loal modi�ation to the BN model struture. Forthese reasons, we hoose to use the representational size as the penalty in our sore funtionfor BN models.
Generating the Inlusion BoundaryTheorems 3.3 and 3.4 suggest a simple way of sampling a random member of the inlusionboundary of any DAG G. By reversing overed edges and adding or removing a single edgewe will generate a DAG G′ that represents a model in IB(G). The funtion sampleIB (Algo-rithm 4.4) gives a high-level formulation of this proedure.The sampleIB funtion of Algorithm 4.4 is able to sample any member of IB(G). First,by Theorem 3.3 the sequene of r random overed edge reversals (line 5) an generate anymember G′ ∈ E(G). Next, by Theorem 3.4 the random addition/removal (lines 8 and 10)an generate any member of IB(G). However, the sampling of DAG models equivalent to Gin line 5 is not uniform, as �lose� DAGs requiring only a few overed ar reversals are more67
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likely to be sampled than �distant� DAGs requiring more overed ar reversals. The intuitionbehind this observation is that only a few of the edges that needs to be reversed to get fromDAG G to distant (equivalent) DAG H may be overed in G. After reversing overed edge ein G produing G′, the set of overed edges will then typially have hanged between G and
G′, but one edge remains overed in both, namely e. Therefore, there is a hane that in G′,
e is reversed again, e�etively produing G again from G′.The implementation of IB+(G,D) is based on the sampleIB funtion, whih means thatinstead of exhaustively enumeration of IB(G), we sample from IB(G) su�iently many times.The sampleIB proedure performs sampling with replaement from the set IB(G). Let X(R)be the number of distint models in a random sample of size R. That is, assuming that wedraw (with replaement) R models from IB(G), X(R) then is the number of distint modelsdrawn. Assuming uniform sampling, the expetation of X(R) is:

E[X(R)] =
R−1
∑

i=1

(

N − 1

N

)(i−1)

, (4.30)
where N is the size of IB(G) (see Appendix B for the proof). The mean perentage of IB(G)that will be represented in a sample of size R is then E[X(R)]

N
. Therefore, if we want to generatea random sample of average size k · N from IB(G), we an simply draw R samples, where

E[X(R)]
N

= k. We an not solve (4.30) diretly, instead we expand the sum one term at a timeand hek if we are within some small error ǫ of k. Allowing for an error of ǫ is neessary forany omputer implementation as otherwise we would expand the sum with in�nitely manyterms for k = 1.0. Figure 4.5 shows E[X(R)]
N

for N = 100 against R. In the plot of Figure 4.5we have indiated orresponding k (that is E[X(R)]
N

) and R values for ǫ = 0.001. For example,we see that for k = 0.8 we will sample R = 162 times, and for k = 0.9 we will sample R = 231.In KES, however, we need to sample IB+(G) rather than IB(G). For simpliity, we �rstsample IB(G) by the method outlined above, and then selet from this sample the model withhighest sore. If no suh model was found in the �rst sample, a new sample is drawn, and soforth. Eventually, we terminate the searh when the full IB(G) has been sampled.This reversal of operations only has an impat on the implementation of KES, none of thetheoretial properties of KES is a�eted by this.The above proposed method still laks e�ient omputation of N = |IB(G)|. This value isdi�ult to obtain without exhaustive enumeration. In our implementation, we approximate Nby the number of edges that an be added to the empty graph over variables X, i.e., |X|2−|X|.7This approximation is justi�ed by the fat that any model in the inlusion boundary of DAGmodel G has one more or one less edge than G. On one hand this is an underestimate asmore than one unique equivalene lass may exist for whih the same onnetion has beenadded/removed from G. On the other hand it is an overestimate as not all node onnetionsare possible as some onnetions may result in yles. In pratise we have found this estimateto be adequate.7Chikering (2002) proposed this estimate. 68
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4.3.4 Testing the BN Learning ProedureOne motivation for developing a proedure that allows trading o� greediness for random-ness was the identi�ation of distributions with multiple loal inlusion optimal models.An example of suh a distribution was the seletion-four-yle distribution used by bothChikering and Meek (2002) and Nielsen et al. (2003) and repeated here in Example 4.1.To investigate the performane of both greedy and stohasti heuristis in searh spaesontaining numerous loal optima, we �rst onstrut a distribution exhibiting numerous loalinlusion optimal DAG models. We an onstrut a model representing a distribution exhibit-ing 2n loal inlusion optimal DAG models, by onstruting the UDG model onsisting of nopy's of the seletion-four-yle of Example 4.1. In this experiment, we use a model on-struted in this way with n = 10 whih then is a model over 40 random variables that exhibits1023 loal inlusion optimal DAG models and a single global optimal DAG model. We thensample 20000 instanes from this model and invoked the KES proedure (Algorithm 4.3) usingthis data. We use 11 di�erent settings of k ∈ {0.0, 0.1, . . . , 1.0}, and for eah setting of k, theKES proedure was restarted 1000 times, and we used the BIC sore in all experiments. Resultsare displayed in the plots of Figure 4.6(a) and (b). First, Fig. 4.6(a) show the lowest settings of
k yielding the more stohasti searh. We have also inluded the deterministi and maximallygreedy version with k = 1.0 (orresponding to the GES proedure of Chikering and Meek(2002)) for omparison. We observe that all models learnt for k ∈ {0.0, 0.1} and most modelsfor k ∈ {0.2, 0.3, 0.4} attain higher BIC sore than the single model obtained by GES. For
k ∈ {0.4, 0.5, . . . , 0.9} (Fig. 4.6(b)), we again observe that for k < 1.0 we are able to reovermodels that attain higher BIC sore than GES.The results reported above shows that GES may gets trapped in a low quality loal in-69
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(b)Figure 4.6. Result of 1000 restarts of KES learning from data sampled from the seletion-four-yledistribution (see Example 4.1). Models are sorted in asending order of BIC sore.
lusion optimal model. This is not surprising, as the distribution from whih the data wassampled is a manually onstruted distribution spei�ally designed to trap GES. The inlu-sion optimal model reovered by GES is (asymptotially) the lowest soring inlusion optimalmodel over the 1024 di�erent inlusion optimal models.To investigate the e�et of learning from data sampled from a DAG faithful distribution,70
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we use data sampled from 2 di�erent standard BN models:8
• The Alarm model represents medial knowledge of relationships between �ndings anddiagnoses in the domain of patient are in an operating room (Beinlih et al., 1989). Itontains 37 disrete variables and 46 ars, and the struture of the model is displayedin Figure 4.10 and the table ontains desriptive names for the node indexes.
• The Hail�nder model was developed by Abramson et al. (1996) as a weather foreastingsystem. It ombines meteorologial data and expert knowledge in foreasting of severeweather onditions in Northeaster Colorado. The model ontains 56 disrete randomvariables and 66 ars, the struture is displayed in Figure 4.11.For eah of the two above models, we generated databases by sampling 20000 instanes.The results of the 1000 restarts of the KES proedure is plotted in Figure 4.7 and 4.8.Figure 4.7(a)-(b) shows the results of learning from Alarm-sampled data. As expeted,we observe that the model reovered by GES (KES for k = 1.0) is the highest soring model,and the greedier the KES proedure, the better models are reovered on average over the 1000restarts. In addition, from the plots orresponding to k < 1.0 we an observe that a lot of loalinlusion optimal models still exists in the data. Reall that we use a sore-equivalent sore-funtion, and therefore any two models attaining di�erent sore are not equivalent. Therefore,for every di�erent sore-value in the plots of Figure 4.7 there exists a distint inlusion optimalmodel. From Theorem 4.1 we see that only a single inlusion optimal model exists in the limitof large data, therefore this observation is explained by the fat that our data-sample is oflimited size.Figure 4.8(a)-(b) shows the results of learning from Hail�nder-sampled data. From Fig-ure 4.8(b) we observe that the model reovered by the GES proedure is not the highestsoring model over all the di�erent settings of k. This is explained by the fat that optimalityof GES is an asymptoti property, and for any �nite dataset we then are not guaranteed tooptimality. In fat, as reported by Nielsen et al. (2003), in any pratial appliation of KESusing real world datasets, we often reover better models by k < 1. In addition, this exper-iment shows us that even in the ases where DAG faithfulness is a safe assumption, limiteddata may yield suboptimal result of GES.Lastly, Figure 4.9 shows the average learning times for KES with di�erent settings of k.It is notable that the learning time inreases dramatially from an almost onstant level atapproximately 2.2 seonds for k = 0.0, 0.1, . . . , 0.9 to approximately 4.9 seonds for k = 1.0.The reason is found in the way we sample the inlusion boundary and the exponential natureof (4.30), see Figure 4.5. For k = 0.0 up to k = 0.9 there are only moderate inreases inthe atual number of models sampled, while for k = 1.0 we need to inrease the number ofmodels sampled muh more than for any other inrease in k. This also explains why we donot see a lear inrease in exeution time for k = 0.0 to k = 0.9, as these exeution times areall dominated by the �nal steps of the algorithm. In any �nal step we need to sample the fullinlusion boundary to guarantee there are no models in the boundary of better sore.8Both models are obtainable from many on-line repositories, see for examplehttp://genie.sis.pitt.edu/networks.html. 71
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(b)Figure 4.7. Result of 1000 restarts of KES learning from data sampled from the Alarm BN model.Results are sorted in asending order of BIC sore.

As an initial test, these experiments show us that our implementation of KES and, inpartiular, the sampling of the inlusion boundary (as disussed in the previous subsetion),performs as expeted on syntheti datasets. 72
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(b)Figure 4.8. Result of 1000 restarts of KES learning from data sampled from the Hail�nder BN model.Results are sorted by asending order of BIC sore.
4.3.5 Related WorkOne of the earliest works on learning BN models inlude the work by Chow and Liu (1968)on learning tree strutured BN models. Restriting the searh to only inlude tree struturesredues the size of the searh spae dramatially from exponential in the number of variables(the ase for unrestrited DAG strutures) to quadrati. Chow and Liu (1968) proposes aproedure that produes a tree strutured BN model that has maximal weight, where the73
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1 entral venous pressure2 pulmonary apillary wedge pressure3 history of left ventriular failure4 total peripheral resistane5 blood pressure6 ardia output7 heart rate obtained from blood pressure monitor8 heart rate obtained from eletroardiogram9 heart rate obtained from oximeter10 pulmonary artery pressure11 arterial-blood oxygen saturation12 fration of oxygen in inspired gas13 ventilation pressure14 arbon-dioxide ontent of expired gas15 minute volume, measured16 minute volume, alulated17 hypovolemia18 left-ventriular failure19 anaphylaxis

20 insu�ient anesthesia or analgesia21 pulmonary embolus22 intubation status23 kinked ventilation tube24 disonneted ventilation tube25 left-ventriular end-diastoli volume26 stroke volume27 ateholamine level28 error in heart rate reading due to low ardia output29 true heart rate30 error in heart rate reading due to eletroautery de-vie31 shunt32 pulmonary-artery oxygen saturation33 arterial arbon-dioxide ontent34 alveolar ventilation35 pulmonary ventilation36 ventilation measured at endotraheal tube37 minute ventilation measured at the ventilatorFigure 4.10. The DAG struture of the Alarm BN model and the table of labels for eah node. Thee�etive size of the Alarm model is 771.
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Figure 4.11. The Hail�nder network for severe weather foreasting, developed by Abramson et al.(1996). The e�etive size of the Hail�nder BN model is 9406.
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4.3 Learning Bayesian Network Models
weight of the tree is the aumulated mutual information between hild-parent variable pairsin the tree, whih orresponds to minimising KL-distane (4.1).Later works, where the restrition on struture is relaxed to inlude general DAG stru-tures, inlude the SGS algorithm (see Spirtes et al. (2000)). This algorithm performs statis-tial tests of onditional independene, and inrementally builds a DAG struture entailingd-separation properties orresponding to the onditional (in)dependenies that are veri�edfrom data. One problem with this approah is that it assumes a reliable way of testing on-ditional independene. Using a statistial hypothesis tests we are always running the risk ofthe test failing by hane while the hypothesis is in fat true. This problem beomes inreas-ingly important when multiple suh tests are needed, whih is typially the ase for the SGSalgorithm. However, it an be proved that the SGS algorithm returns the optimal model ifgiven a reliable test of onditional (in)dependene. Approahes following the general reipe ofexpliitly induing a struture that entails orret (in)dependene relations is usually referredto as onstraint based searh approahes.Apart from the already mentioned GES algorithm (Meek, 1997), another important earlywork on learning general BN models is the work by Cooper and Herskovits (1992). Here,the K2 proedure is proposed for reovering a BN struture by a heuristi searh for �ndingthe most probable struture. The K2 proedure requires an ordering of the variables asinput and in addition an upper bound on the number of parents that a node may have.Cooper and Herskovits (1992) shows promising results by learning from datasets sampled fromthe Alarm network (Beinlih et al., 1989). The K2 proedure employs a greedy searh for thebest parents for eah node, hoosing the parent that inreases a loal sore (based on likelihoodof the model) the most without violating the ordering or the threshold for number of parents.Approahes to learning BN models that aims at optimising some sore funtion are usuallyalled sore based searh approahes.The result of multiple restarts of KES was used by Peña et al. (2004) in assisting the user inthe interpretation of a BN model learnt from data. Spei�ally, after a sequene of restarts ofKES, a speial graph an be onstruted over the variables where eah edge is annotated witha relative frequeny of existene of the edge in the set of inlusion optimal models reoveredin the sequene of restarts of KES.It was shown by Cowell (2001) that onstrain based searh and sore based searh areidential approahes when learning BN models under the assumptions that: 1) an ordering ofthe variables is given; 2) data is omplete; 3) the statistial test is based on ross entropy, and;4) the sore metri is based on maximising log-likelihood (possibly with some penalty). Underthese assumptions, sore based and onstraint based approahes will have idential preferenebetween models and should therefore only be viewed as di�erent interpretations of the sameapproah.The justi�ation for using restarts of the KES algorithm was based on the fat that theremay be exponentially many loal optima and in suh settings, restarts of the stohasti searhproedure enables KES to investigate a larger area of the searh spae. Gomes and Selman(1997) investigates ost pro�les of searh proedures in a more general ombinatorial problem.They show that when the ost pro�le is haraterised by a heavy tailed distribution, the average77



4 Learning Probabilisti Graphial Models
performane of a sequene of searh proedures an be improved dramatially by introduingrandom restarts of the searh. We an view the event that KES reovers a loal optimal modeland not the global optima as a heavy tail of the ost pro�le of KES, and therefore, the restartsan be seen as a similar way of exploiting the heavy-tailed behaviour as the random restartsused by Gomes and Selman (1997).
4.4 Learning Naïve Bayes Models

The problem of leaning a NB model from data redues to the problem of learning theardinality of the latent omponent variable C, a prior distribution over latent omponents
P (C) and marginal onditional distributions P (Xi|C) for all variables Xi observed in data.
4.4.1 Estimating Parameters from Inomplete Data: The EM-AlgorithmAs the latent omponent variable of the NB model is never observed in data, maximumlikelihood estimation from Equation (4.14) is not possible, as we lak the possibility to ountobservations of C in D. The standard approah to estimating parameters in the preseneof inomplete data and latent variables is the Expetation-Maximisation (EM) algorithm(Dempster et al., 1977; MLahlan and Krishnan, 1997; Lauritzen, 1995). The EM algorithmalternates between two steps, the E-step and the M-step. The E-step amounts to omputingexpeted ounts for the missing observations, while the M-step uses these expeted ountsas if they were observed in the e�ient omputation of maximum likelihood parameters. Byiterating over these two steps, the EM algorithm onverges to a parameterisation that isde�nes a loal maximum of the likelihood funtion. Assuming some initial (typially random)parameterisation θ0 of NB model M , EM is then implemented by the two steps:E-step: augment eah instane d ∈ D by a vetor of frational ounts for C of PM (C|X = d),where M is the urrent NB model with parameters θn. In this way, we an onstrutthe expeted ounts:

N∗
c =

∑

d∈D

PM (C = c|X = d), (4.31)
N∗

c,xi,h
= Nxi,h

· PM (C = c,Xi = xi,h). (4.32)
M-step: onstrut parameters θn+1 by ML estimation using expeted ounts as if they wereatual observed ounts. This amounts to updating onditional distributions PM (Xi|C)for every Xi ∈ X and prior PM (C) as:

PM (C = c) =
N∗

c

N
, (4.33)

PM (Xi = xi,h|C = c) =
N∗

c,xi,h

N∗
c

. (4.34)
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4.4 Learning Naïve Bayes Models
Algorithm 4.5 Simple algorithm for learning a range of NB models from data.Input: Fully observed data D.Output: Range of NB models of inreasing e�etive size.1: proedure LearnNB(D)2: initialise NB model M with kmin latent omponents3: repeat4: estimate parameters of M by EM5: output M6: prune low weight omponents of M7: split large omponents of M8: add k new omponents to M9: until stopping riteria is met
The EM algorithm iterates between these two steps until a termination riterion is met.Common termination riteria inlude onvergene in parameters, and setting a threshold onthe number of iterations allowed.The EM algorithm is only guaranteed to onverge to a loal maximum, and there may bemany suh loal maxima where only a small fration are lose to the global maximum. Theommon strategy used to mitigate the problem of poor EM estimates is to perform multiplerestarts of EM with di�erent random starting points.
4.4.2 Learning the Cardinality of the Latent Component VariableWe aim at learning NB models for approximation of a probability distribution and for per-forming belief updating inferene task using the model. This aim is somewhat di�erent frommost previous appliations of the NB model, as mentioned in Setion 3.4. Typially, the learn-ing of a NB model with latent omponent variable is aimed at disovering hidden strutureamong the variables or to attain a soft lustering of instanes. In both ases, it is preferable tokeep the ardinality of the latent variable from growing unbounded, as too many lusters anmake it hard for users to use the lustering for understanding latent struture in the domain.However, for general probabilisti inferene, bounding the ardinality of the latent variable isonly relevant from the point of view of bounding the loss of e�ieny.Lowd and Domingos (2005) proposes the NBE algorithm for learning NB models for gen-eral probabilisti inferene. In the NBE algorithm, the ardinality of the latent omponentvariable is optimised by basially repeating the three steps: 1) inrease the urrent ardinality,2) estimate parameters by EM, and 3) prune low weight omponents.9 Low weight ompo-nents are omponents with relatively low prior probability. As a termination riterion, theNBE algorithm uses a separate hold-out dataset and measures likelihood over this dataset. Thefailure to improve likelihood then makes the algorithm terminate returning the model of maxlikelihood over the hold-out dataset. We adopt the NBE algorithm of Lowd and Domingos9In our appliation of the EM algorithm we do not employ any heuristi in order to esape loal optima,suh as random restarts. 79



4 Learning Probabilisti Graphial Models
(2005) with minor modi�ations. To obtain a range of NB models of di�erent e�ieny andauray rather than a single model, we do not need a holdout dataset to deide on termi-nation. Instead we will ontinue to inrease the ardinality to get more and more omplexmodels. Algorithm 4.5 gives a high-level desription of our LearnNB proedure.In LearnNB, when the ardinality has been inreased from m to k, we initialise the prior ofeah of the k−m new omponents to 1

k
. While we have no theoretial justi�ation to hooseexatly 1

k
as the initial prior of new omponents instead of any other initialisation, it seemsat least reasonable to hoose a uniform prior for all new omponents. Also, subsequently, theEM proedure will be applied to estimate better parameters. To ensure that P (C) remainsnormalised, them old priors are saled by m

k
. For all variables X, probabilities P (Xi|C = cnew )is initialised by a randomly drawn instane d ∈ D as follows:

P (Xi = xi,h|C = cnew ) :=

{

1+0.1·P ′(xi,h)
1.1 if xi,h = d[Xi],

0.1·P ′(xi,h)
1.1 otherwise, (4.35)

where P ′(xi,h) =
Nxi,h

|D| . This way of initialising new omponents is intuitive if we view thelearning of an NB model as the proess of disovering unlabelled natural groups within thedataset, i.e., latent lusters. By initialising a new omponent by a randomly seleted datainstane d, we then initialise a new latent luster with entre at d.The pruning of low weight omponents (line 6 of Algorithm 4.5) imposes an impliit upperbound on the ardinality of the latent omponent variable, and thereby on the omplexityof the NB model, in the following way: all omponents c′ with a prior P (C = c′) ≤ 1
w
areremoved from the model, for some integer w. This automatially yields a maximum ardinality

|R(C)| of w, and in our implementation we use w = 1000.All aspets of the LearnNB proedure introdued so far are adopted diretly from theNBE algorithm of Lowd and Domingos (2005). One new addition to the proposal of Lowdand Domingos is the introdution of omponent splitting. If we view the learning of an NBmodel as the proess of disovering lusters within the data, the splitting of omponents(or lusters) is the substitution of one existing luster for two new lusters. This makessense when a single omponent aptures two (or more) lusters. To selet omponents thataptures more than one omponent, it would be natural to selet omponents c ∈ R(C) forwhih the joint onditional distribution P (X|C = c) is inhomogeneous, that is, low entropy.The exat omputations of the onditional entropy H(X|C = c) =
∑

x∈R(X) P (X = x|C =

c) logP (X = x|C = c) requires a sum of |R(X)| terms. A more e�ient approah wouldbe to approximate the distribution P (X|C = c) by simulation or sampling tehniques (see(Neal, 1993) or (Castillo et al., 1997, Setion 9.3)). However, we use a muh more simpleheuristi for hoosing omponents for splitting whih simply hooses a omponent c if theprior P (C = c) has aptured the majority of the total probability mass. The reasoningbehind hoosing omponents of high prior is that splitting suh omponents has the largestpotential for inreasing the overall auray. In our implementation, we will split omponent cwhen P (C = c) ≥ 0.9. The splitting of omponents (line 7 of Algorithm 4.5) is performed forlarge omponent cl by replaing cl with 2 new omponents c′l and c′′l , eah with prior P (C =

c′l) = 1
2P (C = cl), where P (C = cl) is the prior of the omponent cl before splitting. Eah80



4.5 Learning Probabilisti Deision Graph Models
onditional P (Xi|C = c′l) and P (Xi|C = c′′l ) is initialised as a opy of the old P (Xi|C = cl)exposed to a random perturbation.
4.4.3 Related WorkLearning the ardinality of the latent omponent variable of a NB model is a problem thathas reeived onsiderable attention. One diret approah would be to perform an exhaustivesearh over a range of possible ardinalities, hoosing the one that results in a NB modelthat attains maximal sore (Cheeseman and Stutz, 1996). However, to sore eah model,parameters needs to be estimated by EM whih may be too time onsuming onsidering alsothat multiple restarts of EM for eah ardinality may be required.Elidan and Friedman (2001) proposes an approah to learning the ardinality of hiddenvariables in BNmodels that avoids expensive EM algorithm in the searh for a good ardinality.They work with hard assignments of instanes in the data to eah latent state of the hiddenvariable, that is, eah instane in the data is at any point in time assoiated with a single latentstate of the hidden variable. Initially, the hidden variable has a relatively large ardinality andin eah iteration, states are merged to redue the ardinality and the model is sored using theurrent hard assignment of instanes. Eventually, the ardinality an not be redued furtherand the best ardinality enountered during the searh is returned.The operation of splitting omponents in learning the ardinality of C in a NB model haspreviously been proposed (see eg. Kar£iauskas (2005) or Elidan (2004)). The heuristi forhoosing omponents for splitting used by Kar£iauskas (2005) is an exhaustive searh over allpossible splits, hoosing the one that yields the model of maximal sore.
4.5 Learning Probabilisti Deision Graph Models

In this setion we will address the problem of learning PDG models that optimise sorefuntion Sλ (see Eq. 4.8) for some λ. Major parts of the material presented in this setion isbased on ideas previously published in (Jaeger et al., 2004). It was established in Setion 4.2,that the problem of estimating ML parameters from omplete data with no latent variables isomputable by taking frations of ounts. By (3.28), the likelihood funtion for PDG model
M over variables X is :

l(D|M) =
∏

d∈D

∏

Xi∈X

p
reach(i,d)
d[Xi]

. (4.36)
Then, the log likelihood of data D given PDG model M over variables X is:

L(D|M) =
∑

d=D

∑

Xi∈X

log p
reach(i,d)
d[Xi]

=
∑

Xi∈X

ki
∑

h=0

∑

νi∈Vi

Nνi

h log pνi

h , (4.37)
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4 Learning Probabilisti Graphial Models
where Nνi

h is the number of instanes d ∈ D reahing νi ∈ Vi for whih d[Xi] = xi,h, and
ki = |R(Xi)|. For a given PDG struture G, the ML estimate p̂νi for parameters attahed toparameter node νi ∈ Vi is:

p̂νi

h =
Nνi

h

Nνi
, (4.38)

where Nνi =
∑ki

h=0N
νi

h . We an then express (4.37) as:
L(D|M) =

∑

Xi∈X

ki
∑

h=0

∑

νi∈Vi

Nνi

h log
Nνi

h

Nνi
, (4.39)

Then the general penalised log-likelihood sore Sλ for PDG model M beome:
Sλ(D,M) = (1− λ)L(D|M)− λsizeeff (M)

= (1− λ)
∑

Xi∈X

ki
∑

h=0

∑

νi∈Vi

Nνi

h log
Nνi

h

Nνi
− λ

∑

Xi∈X

(max(1, |chG(Xi)|) · |Vi| · ki)

=
∑

Xi∈X



(1− λ)

ki
∑

h=0

∑

νi∈Vi

Nνi

h log
Nνi

h

Nνi
− λ (max(1, |chG(Xi)|) · |Vi| · ki)



 (4.40)
For the rest of this setion, we will fous on the searh for a struture G that optimises(4.40). For a given domain X = {X1, X2, . . . , Xn} there exists n! distint orderings of theelements, so n! is a (onservative) lower bound on the number of distint forest strutures.For eah forest struture, the number of distrint PDG strutures is at least exponential inthe number of variables ontained in the tree of maximal depth in the forest. The ardinalityof the searh spae therefore makes exhaustive struture searh intratable, and we will resortto heuristi proedures for learning strutures.

4.5.1 Strutural Learning in PDGsWe will divide the searh for good PDG strutures into two oneptually disjoint tasks:1. learning a good forest struture over the variables, and2. learning a PDG struture w.r.t. that forest.This deomposition is motivated by the following points:
• Coneptually, this deomposition is natural, while in pratie they are not ompletelyindependent omponents of the learning task.
• Considering e�ieny of the learning proedure, �xing a variable forest struture Fe�etively redues the spae of possible PDG strutures to be onsidered by the learningproedure. 82



4.5 Learning Probabilisti Deision Graph Models
Algorithm 4.6 The proedure LearnPDGs that learns a set of PDG models from a fully ob-served dataset D. The two oneptually distint phases are implemented by the LearnForestproedure of Algorithm 4.12 and the LearnPDG of Algorithm 4.7.Input: D : fully observed dataset; Λ : list of values from [0, 1]; T : list of values from [0, 1].

λ ∈ Λ.1: funtion LearnPDGs(D,Λ,T)2: F := ∅ ⊲ Population of forest strutures3: G := ∅ ⊲ Population of PDGs4: for all t ∈ T do ⊲ Phase I5: F := F ∪ {LearnForest(D, t)}6: for λ from λmax . . . λmin in Λ do ⊲ Phase II7: for all F ∈ F do8: G := G ∪ {LearnPDG(F, λ,D)}9: output argmax
G∈G

Sλ(D, G)10: prune low forests yielding low soring PDGs from F11: G := ∅

For the reasons mentioned above, we deompose our strutural learning algorithm intotwo phases. In Phase I, a variable forest is indued from data. By performing suitablestatistial tests of onditional independene relations, we build a tree struture that onlyentails independenies that were veri�ed through the test. In the seond phase (Phase II)we then optimise a PDG struture w.r.t. the variable forest from the Phase I, for the sorefuntion of (4.40).Algorithm 4.6 ontains a pseudo-ode desription of the top-level learning proedureLearnPDGs. The two phases are implemented in lines 4-5 and 6-11 respetively. We in-orporate a population based searh for good forest strutures. That is, a population F ofvariable forests is onstruted in Phase I. Next, this population is pruned by removing foreststrutures for whih we fail to build high-soring PDG strutures in Phase II.We will postpone the detailed desription of Phase I, and in the following assume that aPDG forest have already been onstruted.
Optimising the PDG-struture: Phase IIAlgorithm 4.7 desribes the LearnPDG proedure. The LearnPDG proedure optimises aPDG struture w.r.t. variable forest F for (4.40).Initially a minimal PDG struture is build, and this struture is then repeatedly exposedto a sequene of loal sore optimising strutural transformations, until the sore onverges.In the following, we desribe the proedures splitNodes, mergeNodes and rediretEdges,that implements loal operations for sore optimisation.
Splitting nodes The splitNodes proedure introdues new parameters by replaing exist-ing parameter nodes with a set of new parameter nodes. The strutural transformation of83



4 Learning Probabilisti Graphial Models
Algorithm 4.7 This proedure searhes for a optimal (w.r.t. (4.40)) PDG struture w.r.t.a variable forest F . The loal proedures splitNodes (Alg. 4.8), mergeNodes (Alg. 4.9) andrediretEdges (Alg. 4.10) are used to optimise the sore funtion.1: proedure LearnPDG(F, λ,D)2: G := minimal PDG for F3: repeat4: for all trees T of F do5: Xr := root of T6: splitNodes(Vr, λ,D)7: mergeNodes(Vr, λ,D)8: rediretEdges(Vr, λ,D)9: until Sλ(D, G) did not improve10: return G

Vi ν1 ν2

Vj ν3 ν4

Vk ν5 ν6 ν7(a)

Vi ν1 ν2

Vj ν3 ν ′4 ν ′′4 ν ′′′4

Vk ν5 ν6 ν7(b)
Figure 4.12. The strutural modi�ation performed when splitting node ν4 by the split operation isshown. (a) shows the loal struture before the split, and (b) shows the resulting struture. Only therelevant setion of the PDG shown.

splitting a parameter-node by the split operation an be seen in Figure 4.12.
When splitting a parameter-node νi having an in-degree of n, we replae νi with n newparameter-nodes, one for eah inoming edge. The set of hildren of νi are opied to eah ofthe n new parameter-nodes. Parameters for new nodes needs to be re-estimated, while ountsfor no other nodes in the PDG will hange as a result of the split operation. Denote by

new(νj , l, νi) the node that would be reated for edge νj
l
→ νi when splitting νi, and let in(ν)be the set of edges inoming to ν. We an then express the sore gain assoiated with splitting84
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νi ∈ Vi in PDG struture G as:

Sλ(D,M2)− Sλ(D,M1) =(1− λ)[L(D|M2)− L(D|M1)]− λ[sizeeff (M2)− sizeeff (M1)]

=(1− λ)













∑

νj
l
→νi

∈in(νi)

(

ki
∑

h=0

N
νj

lh log p̂
new(νj ,l,νi)
h

)

−
ki
∑

h=0

Nνi

h log pνi

h













− λ[(|paG(νi)| − 1) ·max(1, |chG(Xi)|) · ki] (4.41)whereM1 is the PDG model before splitting νi andM2 is the model after the split. p̂new(νj ,l,νi)in (4.41) is the ML estimates for pnew(νj ,l,νi):
p̂
new(νj ,l,νi)
h =

N
νj

lh

N
νj

l

, (4.42)
where Nνj

lh is the number of instanes d ∈ D reahing νj for whih d[Xj] = xj,l and d[Xi] = xi,h.If we assume ML parameters, we an reover the ounts for data instanes reahing node
νi by Nνi = |D| · ifl(νi). Then ounts Nν

h an also easily be reovered from ML parameter pν
hby (4.38). However, Nνi

lh is not easily reonstruted without aessing the data.To avoid data aess needed to extrat ount Nνj

lh in (4.42) neessary for omputing theexat sore gain through (4.41), we will instead fous on a heuristi sore for seletion of nodes.Let νi ∈ Vi and paF (Xi) = Xj . The potential for positive ontribution to the sore bysplitting νi very muh depends on the number of data instanes reahing νi. Denote by γ(e)the probability mass �owing into νi via edge e, that is:
γ(νj

h
→ νi) = ifl(νj) · p

νj

h . (4.43)The relative distribution of ontributions to the in�ow over inoming edges is also importantto the potential of splitting a node. Even for a relatively high ifl(νi), if most of the probabilitymass �ows into νi via a single edge, the possible auray gain will be low, as a split wouldbasially produe one node idential to νi and a number of �low inome� nodes that, therefore,an not impat the total auray signi�antly. For this reason, we prefer nodes for whih thedistribution of inoming probability mass {γ(e) : e ∈ in(νi)} is less peaked and, hene, hashigh entropy.From the above disussion, we arrive at the heuristi sore given in equation (4.44):
splitPotential(νi) = ifl(νi) ·

H({ γ(e)
ifl(νi)

: e ∈ in(νi)})

log(|in(νi)|)
, (4.44)where H(·) is the entropy funtion, and log(|in(νi)|)

−1 then normalise H(·).Algorithm 4.8 desribes the splitNodes proedure that selets nodes for splitting usingthe splitPotential measure of (4.44). The splitNodes proedure may ause the PDG tobe fully expanded by splitting all nodes top down. To avoid this, in our implementation wesimply disallow the splitting of nodes that have one or more parents that was split in theurrent traversal of the struture. 85
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Algorithm 4.8 This proedure randomly selets node for splitting by the split operation,biasing the seletion towards nodes with relatively high splitPotential. The aggressivenessof the seletion is ontrolled by the λ value, the larger the λ, the more aggressive the seletionwill be. The split operation of line 6 performs the strutural modi�ation of the split (seeFig. 4.12).1: proedure splitNodes(Vi, λ)2: if paF (Xi) 6= ∅ then3: for all ν ∈ Vi do4: rnd := random number from [0, 1)5: if (1− λ) · splitPotential(ν) > rnd then ⊲ See (4.44).6: split(ν)7: for all Xj ∈ chF (Xi) do ⊲ The top-down traversal8: splitNodes(Vj,λ)

Vi ν1 ν2

Vj ν3 ν4 ν5

Vk ν6 ν7 ν8(a)

Vi ν1 ν2

Vj ν3 ν ′

Vk ν6 ν7 ν8(b)
Figure 4.13. The strutural modi�ation performed when merging nodes ν4 and ν5 by the mergeoperation is shown. (a) shows the loal struture before the merge, and (b) shows the resultingstruture. Only the relevant setion of the PDG shown.
Merging Nodes Redundant parameters that do not ontribute signi�antly to the aurayof the model but only ontributes to the size-penalty should be removed from the model.The merge proedure obtains this by merging parameter-nodes. Figure 4.13(a)-(b) shows thestrutural modi�ation of merging nodes ν4 and ν5. In Figure 4.13(a), ν4 and ν5 have identialhildren, and this removes the problem of deiding whih hild to keep, had the hildren notbeen idential succ(ν4, Xk, h) 6= succ(ν5, Xk, h). We will require of two nodes being onsideredfor merging that they have idential hildren. Then the sore gain of merging two nodes
νi1 , νi2 ∈ Vi an be omputed as:
Sλ(D,M2)− Sλ(D,M1) =

(λ− 1)[L(D|M2)− L(D|M1)]− λ[sizeeff (M2)− sizeeff (M1)], (4.45)
86
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where M1 is the PDG model before the merge and M2 is the model after the merge. It islear that the e�etive size is redued by max(1, |paF (Xi)|) · |R(Xi)| when merging two nodes
νi1 , νi2 ∈ Vi. For omputing the possible loss in auray, we need to ompute the ML estimate
p̂

νi1+2 for the node νi1+2 reated by merging νi1 and νi2 . This estimate is:
p̂

νi1+2

h =
N

νi1
h +N

νi2
h

Nνi1 +Nνi2

=
p̂

νi1
h · ifl(νi1) + p̂

νi2
h · ifl(νi2)

∑

xi,l∈R(Xi)
p̂

νi1
l · ifl(νi1) + p̂

νi2
l · ifl(νi2)

. (4.46)
Please note that only existing values of ifl and ML estimates of the parameters p for the nodes
νi1 and νi2 are used to ompute (4.46), and no data aess is neessary. The loss in aurayan be expressed as:
L(D|M2)− L(D|M1) =

∑

xi,h∈R(Xi)

(

(N
νi1
h log p

νi1
h +N

νi2
h log p

νi2
h )− (N

νi1
h +N

νi2
h ) log p̂

νi1+2

h

)

=
∑

xi,h∈R(Xi)

(

N
νi1
h (log p

νi1
h − log p̂

νi1+2

h ) +N
νi2
h (log p

νi2
h − log p̂

νi1+2

h )
)

=
∑

ν∈{νi1
,νi2

}

NνDKL(pν ||p̂νi1+2 ), (4.47)
where Equality 4.47 assumes ML parameters pν1 and pν2 . By (4.46) these are obtainablewithout aessing data. As Nν = ifl(ν) ·N , for omparing (4.47) for di�erent pairs of nodes,we an use the in�ows of the nodes involved. We then arrive at the general sore mergeSoreof (4.48):

mergeScore(νi1 , νi2) =
∑

ν∈{νi1
,νi2

}

ifl(ν) ·DKL(pν ||p̂νi1+2 ). (4.48)
It is lear that (4.48) is omputable without aessing data. Algorithm 4.9 shows the bottom-up merging of nodes. Nodes are seleted for merge based on a λ-weighted sum of themergeSore and number of parameters that will be removed from the model.Redireting Edges The loal strutural transformation of rediretion of edge νj → νiassigns a new head ν ′i for the edge. We will need the following notation: For data D and PDGmodel M over variables observed in D, we will denote by Dνi (where νi ∈ Vi) the subset ofdata instanes {d ∈ D : reach(i, d) = νi}, i.e., the part of D that reahes νi. Maintaining Dνifor all nodes is possible for limited sized D. Eah parameter-node νi an e�iently represent
Dνi by a list of pointers to instanes in a stati version of D. For eah variable Xi ∈ X everyinstane d ∈ D reahes a unique node, so in total we will need to store |D||X| pointers inaddition to the stati data D. The number of pointers is then invariant to the struture ofthe PDG model, and the storage requirement is therefore stati for a given database D. Inaddition, we will by Dνi

h denote the set {d ∈ Dνi

h : d[Xi] = xi,h}.Returning to the rediretion of edges, let νj ∈ Vj , νi ∈ Vi and paF (Xi) = Xj. Reall thatevery parameter-node de�nes a marginal distribution over desendant variables in the variable87
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Algorithm 4.9 The mergeNodes proedure merges parameter-nodes by the merge operation(see Fig. 4.13) in a top down traversal of a PDG struture.Input: Vi : set of parameter-nodes representing Xi in a PDG struture G w.r.t. variableforest F ; λ : value from [0, 1]Output: Valid PDG struture1: proedure mergeNodes(Vi, λ)2: for all j suh that Xj ∈ chG(Xi) do3: mergeNodes(Vj, λ)4: for all {νi1 , νi2} ∈ Vi s.t. νi1 6= νi2 do5: if νi1 and νi2 have the same hildren then6: if then(1− λ) · mergescore(νi1 , νi2) < λ · ki ·max(1, |paF (Xi)|)7: merge(νi1,νi2)Algorithm 4.10 The rediretEdges proedure performs �ne grained optimisation on a PDGstruture, by redireting edges in optimising (4.41).Input: Vi : set of nodes; λ : value from [0, 1].1: proedure rediretEdges(Vi, λ)2: for all Xj ∈ chG(Xi) do3: rediretEdges(Vj, λ)4: for all νi ∈ Vi do5: for all xi,h ∈ R(Xi) do6: for all Xj ∈ chG(Xi) do7: νj := succ(νi, Xj, xi,h)8: ν∗j := argmax

ν∈Vj\νj

(L(Dν
h|f

ν
G))9: if L(Dνi

h |f
ν∗

j

G ) > LL(Dνi

h |f
νj

G ) then10: rediret νi
h
→ νj to new head node ν∗j11: Remove any orphan nodes

forest de�ned by the reursive funtion fνi

G (see Def. 3.19). Therefore, when seleting a newhead node ν ′i ∈ Vi for edge νj
h
→ νi, we prefer a node ν ′i ∈ Vi for whih data Dνj

h is more likelyunder fν′
i

G than under fνi

G .The log-likelihood of Dνi

h under fνi

G is:
L(Dνi

h |f
νi

G ) =
∑

d∈D
νi
h

log fνi

G (d[de∗G(Xi)]). (4.49)
Algorithm 4.10 shows the rediretEdges proedure whih performs rediretions bottom-up in a PDG-struture, maximising (4.49).The strutural transformation of the rediretion operator an result in some nodes beingorphaned. As a result, a set of parameter-nodes (potentially more nodes than the orphannodes) may beome unreahable by any direted path from the root parameter-node. After88
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all rediretions have been performed, we remove suh nodes from the PDG-struture.Complexity Let M be a PDG model of struture G w.r.t. variable forest F over variables
X. The splitNodes proedure (Alg. 4.8) omputes splitPotential by eq. (4.44) for everyparameter-node in M with more than one parent. The omplexity of omputing (4.44) fornode ν is linear in the number of inoming edges O(|in(ν)|). In general, |in(ν)| an beexponential in the |X| − 1 when F ontains a single linear tree and the sets of parameter-nodes are maximal for all but the leaf variable that ontains a single node. As explainedearlier, we do not onsider node ν for splitting if a parent of ν has already been split in thesame traversal. Also, in-between onseutive invoations of the splitNodes proedure, wemerge nodes through the mergeNodes proedure (Alg. 4.9), whih further redues the riskof experiening exponential blowup. The omplexity in pratie is therefore expeted to besub-exponential, and indeed the splitNodes proedure exhibits tratable exeution times inpratise.In the mergeNodes proedure (Alg. 4.9), we ompute the mergeSore (eq. (4.48)) for everypair of parameter nodes {νi1 , νi2} in eah node set Vi. Therefore, the omplexity is quadratiin the largest set Vi of parameter-nodes O(|Vi|

2). This size an again in theory be exponentialin the number of variables, given suitable sequenes of splits. However, as explained above, theaggressiveness of the splitNodes proedure is e�iently suppressed, making the proeduretratable in pratie.For the rediretEdges proedure (Alg. 4.10), for every edge νi
h
→ νj where νj ∈ Vj and

νi ∈ Vi, the marginal likelihoods are omputed through (4.49) for every node ν ′j ∈ vj \ {νj}.In general, this yields quadrati omplexity in the largest set Vi, i.e., O(|Vi|
2). By argumentssimilar to those above, we expet that even though |Vi| an be exponential in the number ofvariables, in pratie the size of |Vi| is sub-exponential. Computing (4.49), however, is not free.Rather, it is an expensive proedure, as it inludes aessing the data Dνi . For this reason,in our implementation of the LearnPDG proedure (Alg. 4.7), we invoke the rediretEdgesproedure less often than the splitNodes and mergeNodes proedures.Induing the variable forest: Phase IThe type of onditional independene relation that are enoded in a PDG model D w.r.t. avariable forest F , are based on partitions of the state-spae de�ned by sets of parameter-nodes

Vi:
PD(Xi|X \ de∗F (Xi)) = PD(Xi|pa

∗
F (Xi)) = PD(Xi|A (Vi))

⇒Xi⊥⊥pa∗
F (Xi)|A (Vi)[P

G] (4.50)On the variable level, the partition A (Vi) is de�ned by the value of paF (Xi), and theonly onditional independene that are identi�able from the variable forest without inspetingthe PDG struture are Xi⊥⊥X \ {pa∗
F (Xi) ∪ de∗F (Xi)}|pa

∗
F (Xi). Variables that are membersof di�erent trees in the variable forest F will be marginally independent in any distributionrepresented by a PDG model w.r.t. forest F . Therefore, when learning the variable-forest, wewish to organise variables as follows: 89
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1. Marginally independent variables are assigned to di�erent trees, and marginally depen-dent variables to the same tree.2. Within trees, the struture will branh at variable Xk suh that for all pairs {Xi, Xj} ⊆

chF (Xk) it is the ase that Xi⊥⊥Xj |{pa
∗
F (Xk) ∪Xk}.On Testing for Conditional Independene To deide on marginal and onditional inde-pendene relations amongst the variables we use a χ2-test of independene (DeGroot, 1986).We will onstrut the X2 (or Pearson) statisti for the test. The X2 statistis is:

X2 =
∑

B∈B

ki
∑

h=1

kj
∑

l=1

(NB
hl − E[NB

hl ])
2

E[NB
hl ]

, (4.51)
where B is the onditioning partitioning, NB

hl is the observed ount of instanes d ∈ D where
d[Xi, Xj ] = (xi,h, xj,l) and d ∈ B, and E[NB

hl ] is the expeted ount NB
hl under the assumptionthat Xi⊥⊥Xj |B is true. This expetation is then omputed as:

E[NB
hl ] = |D|

NB
h+ ·N

B
+l

|DB|2
, (4.52)

where NB
h+ =

∑kj

l=1N
B
hl and NB

+l =
∑ki

h=1N
B
hl and DB = {d ∈ D : d ∈ B}. For marginalindependene tests, the onditioning partitioning will be trivial partition B = {Ω}.When the tested independene holds true, then statisti X2 will be χ2 distributed with

|B| · (ki − 1) · (kj − 1) degrees of freedom. The degrees of freedom is the number of freeparameters that needs to be estimated, see Agresti (1990) (pages 174�175) for a disussion ofthe χ2-test and degrees of freedom. We will redue the degrees of freedom by one for eah ellount of zero, whih is a ommon approah (Spirtes et al., 2000).As mentioned above, we wish to build a variable tree suh that the tree branhes at variable
Xk and Xi⊥⊥Xj |{pa

∗
F (Xk) ∪Xk} for all pairs of hildren {Xi, Xj} of Xk. The ardinality ofthe onditioning set {pa∗

F (Xk) ∪ Xk} is exponential in the size of the set. Therefore, it isvery likely that data is too limited for us to perform reliable tests. However, the atualonditional independene relation enoded by the PDG struture is typially not based onthe full A ({pa∗
F (Xk) ∪ Xk}) as onditioning partition, but rather a more oarse grainedpartition. That is, diret hildren of Xk will be independent in a PDG struture onditionalon I (A (Vk),A (R(Xk))), whih is typially not as �ne grained as A ({pa∗

F (Xk) ∪Xk}). Wetherefore, in addition to building the underlying variable trees, also indue a simple PDGstruture. As will beome apparent soon, we an do this by interleaving inremental buildingof variable trees through tests of independene, by an indution of a partial PDG strutureover the variables urrently inluded in the trees. We will then only need to estimate atmostas many parameters as the full partition generated by all predeessor variables, and in pratisethe number of parameters will be muh smaller.We need to have a strategy for handling situations where the amount of data is too limitedto provide reliable estimates for the X2 statistis of (4.51). For simpliity, we will only performthe test when we have more than 5 data instanes (on average) per parameter for estimation90
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Algorithm 4.11 The Grow proedure grows a partially build PDG struture by inreasing thedepth by one more level. The depGraph funtion builds a dependeny graph over variables byperforming pairwise tests of onditional independene, using a χ2 test and signi�ane level t.Input: T : partially build PDG struture; t : signi�ane level from [0, 1].1: proedure Grow(T, t)2: for all leaves Vi of T where below(Xi) 6= ∅ do3: B := I (A (Vi),A (Xi))4: H := depGraph(below(Xi),B, t)5: for all onneted omponents C in H do6: Xj := random variable from C7: Vj := {νj}8: chF (Xi) := chF (Xi) ∪Xj9: below(Xj) := C \Xj

in omputing the X2 statisti. This is a ommonly used rule-of-thumb (see eg. Spirtes et al.(2000) (pages 94�95)). When the ardinality of the onditioning partition beomes less than5 instanes we will assume the independene relation to be true without performing the test.Statistially, of ourse, this is an unjusti�ed assumption, however, we will still use this heuristito promote simpler models with fewer parameters and thereby the ability to obtain morereliable estimates for the parameters.10,11
Growing Variable Trees Algorithm 4.11 desribes the Grow proedure, whih is the entralproedure in learning the variable forest. The Grow proedure extends the underlying variabletree of a partially build PDG-struture by adding another level of variables to the leafs of thetree. Eah leaf Xl has an assoiated (possibly empty) set below(Xl) of variables that are to beinluded in the subtree rooted at Xl. The depGraph(Y,B, t) funtion returns a dependenygraph over variables Y where Xi, Xj ∈ Y are onneted if Xi 6⊥⊥ Xj |B tests positive by astatistial test for onditional independene, using signi�ane level t.Figure 4.14 depits an example of the strutural transformations performed by the Growproedure. Figure 4.14(a) depits the initial situation. The partially build PDG struturealready ontains the variables X6, X2 and X4, and variables below(X4) = {X1, X3, X7, X5}will the members of the subtree rooted at X4. The next step, depited in Figure 4.14(b), thenbuilds a dependeny graph over variables below(X4). The third and last step, depited inFigure 4.14(), then initialises a separate branh rooted at X4 for eah onneted omponentin the dependeny graph over variables below(X4). A branh is initialised by hoosing avariable Xi at random as the root of the branh, and then plaing the remaining variables from10An alternative approah ould be to use a sore funtion instead of a statistial test to evaluate onditionalindependene when data is limited. Suh approahes was investigated by Abellán et al. (2006).11It should be mentioned that Fisz (1980) (pages 439�440) onsiders the neessary amount of data for the
χ2 test to give reliable results, and Fisz (1980) mentions the work of Vessereau (1958). Vessereau (1958)shows that when the expeted frequenies are onstant, one only needs a single data instane per parameterin (4.51). However, in our ase, the expeted frequenies are not neessarily onstant as the partitions doesnot neessarily partition the data uniformly. 91
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Figure 4.14. Snapshots of the proedure for growing variable forests. In this example, a tree is beingbuild over 7 variables X1 to X7. The sets below(·) is indiated by the solid box attahed underneathleafs.
the onneted omponent {C \Xi} in the set below(Xi). Figure 4.14(d) depits the partiallybuild PDG after having been exposed to loal strutural transformations implemented in theLearnPDG proedure of Algorithm 4.7.
Building Variable Forests Algorithm 4.12 desribes the proedure LearnForest. Thisproedure builds a full variable forest over variables X by �rst building a dependeny graphover X, using the trivial partitioning as onditioning partitioning, that is, marginal indepen-dene tests (line 4). Then, for eah onneted omponent in this dependeny graph, we growa tree using the Grow proedure desribed above (see Alg. 4.11).In line 11 of Algorithm 4.12, trees are grown by alternating between the Grow proedureand the LearnPDG proedure that optimises the partially build PDG struture returned fromGrow. A tree is fully grown when no leaf Vi has a non-empty below(Xi) set.92
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Algorithm 4.12 The LearnForest proedure builds a variable forest by growing eah treethrough alternating between the Grow proedure and the LearnPDG proedure.1: funtion LearnForest(D, t, λmax)2: X := variables from D3: F := ∅4: H :=depGraph(X, {Ω}, t)5: for all onneted omponents C in H do6: Xi :=rndVar(C)7: Vi := {νi}8: below(Xi) := C \Xi9: Ti := tree w. Vi as root10: F := F ∪ {Ti}11: repeat12: Grow(Ti, t)13: LearnPDG(F, λmax)14: until Ti is full-grownreturn F
4.5.2 Testing the PDG LearnerTo perform initial quality heks of the PDG learning proedure of Algorithm 4.6, we experi-mented with several di�erent databases onsisting of iid samples from distributions representedby a PDG models. We performed two distint experiments:1. learning PDG strutures with the orret variable forest given as a starting point, and2. learning the PDG struture inluding the indution of a variable forest.Clearly, the latter is both the harder and the more relevant test, the former was mainlyperformed as an initial sanity hek of the LearnPDG proedure.
PDG sampled dataThe merits of the PDG model is most learly visible when representing logial relations asdemonstrated by the parity distribution in Example 3.11. It is therefore natural to inludemanually onstruted models that represents ertain logial relationships.We used 5 di�erent PDG models, 3 of whih were manually onstruted (shown in Fig-ure 4.15) and 2 randomly generated (shown in Figure 4.16). We sampled full instanes fromeah model to get a fully observed dataset. This dataset was then partitioned into DA and
DB , where |DA| = 10000 and |DB | = 5000.The 3 manually onstruted PDG models (Logi1, Logi2 and Logi3) and the proeduresfor generating the 2 random PDG models (Rnd15 and Rnd20) are desribed below.
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Figure 4.15. PDG strutures: Logi1 (a) enodes a distribution ontaining the logial relationshipslisted in Table 4.2; Logi2 (b) enodes the parity distribution over 10 binary variables (see Exam-ple 3.11); Logi3 () enodes a relation where one variable assumes the value de�ned by the disjuntionof pairwise onjuntions of the remaining variables (see Eq. (4.53)).

Variable C D F G I JTruth-value A ∨B A ∧B D ⊕ E ¬C ¬(F∨H) ¬(F∧H)Table 4.2. Logial funtions enoded in model Logi1. Variables A, B, E and H models input bitswith a uniform ( 1
2 ,

1
2 ) prior.
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Logi1 This PDG model (depited in Fig. 4.15(a)) represents a distribution over 9 binaryrandom variables, 4 of whih models input bits with a uniform (1

2 ,
1
2) prior, while the othersare determined by the logial relations listed in Table 4.2.

Logi2 This PDG model (depited in Fig. 4.15(b)) enodes the parity distribution desribedin Example 3.11 over 5 binary variables X0, . . . , X4.Logi3 The last manually onstruted PDG model (depited in Fig. 4.15()) representsa distribution over the binary variables. Eah variable, exept a speial variable H, has auniform (1
2 ,

1
2) prior, while H is determined by a disjuntion of pairwise onjuntions of therest of the variables, expressed as:

H =
n
∨

i=0

(Xi ∧Xi+1). (4.53)
For the onrete Logi3 model we inluded 8 binary variable in total.
Random PDG Models In the last two experiments, we used randomly generated PDGmodels. Parameters were randomly generated, following the method proposed in (Caprile,2001). The strutures were fored to be single tree forests as underlying variable forests andthe ardinality of variables were randomly seleted to be either 2 or 3 for simpliity.Figure 4.16(a) shows the Rnd15 model over 15 disrete random variables and with ane�etive size 182. Figure 4.16(b) shows the Rnd20 model over 20 disrete random variablesand with an e�etive size 233.
Results

The results of applying the PDG learning algorithm on the PDG-sampled data are sum-marised in Table 4.3. Also in Table 4.3 we list the initial size of the population of foreststrutures (#F ) and the number of λ-values for whih a model was optimised (#λ). For eahdataset we report the SL-oordinates (e�etive size and auray on DA and DB ) of the modelseleted for optimal auray over test data, that is M = argmax
M ′

L(DB |M
′). Figure 4.17(a)shows the learning times for both experiments measured in seonds. Figure 4.17(b) shows thee�etive sizes relative to the e�etive sizes of the true models.

Reovering Logial Models From results of Experiment 1 we observe that the true mod-els are mathed in SL-spae by the learned models for Logi1-3. From the more relevantExperiment 2 where indution of the variable forest is inluded in the learning task, we arestill suessful in reovering an approximation as aurate as the true model for Logi1-3,however, only for Logi2 are we able to reover the approximation at the same e�etive sizeas the true model. 95
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Figure4.16.RandomPDGmodelsusedinexperiments.(a)showsmodelRnd15whihisarandomlygeneratedPDGmodelover15disrete

randomvariables.TheRnd15modelhase�etivesize182.(b)showsmodelRnd20whihisgeneratedover20disreterandomvariablesandhas

e�etivesize233.
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Experiment 1 Experiment 2 True model
#F #λ sizeeff L(DA) L(DB) sizeeff L(DA) L(DB) sizeeff L(DA) L(DB)Logi1 30 22 46 -4.000 -4.000 76 -4.000 -4.000 46 -4.000 -4.000Logi2 30 10 18 -4.000 -4.000 18 -4.000 -4.000 18 -4.000 -4.000Logi3 30 21 40 -6.998 -7.001 68 -6.998 -7.001 40 -7.000 -7.000Rnd15 30 16 143 -14.860 -14.859 323 -14.959 -15.037 182 -14.852 -14.833Rnd20 30 21 211 -18.088 -18.102 449 -18.684 -18.714 233 -18.082 -18.081Table 4.3. Summary of our experiments on PDG sampled data. Column '#F ' ontains the size of theinitial population of variable forests, whih is only relevant for Experiment 2. Column '#λ' ontainsthe number of lambda values for whih a model was optimised. Experiment 1 and Experiment 2 refersto experiments using the orret variable forest as a starting point, and experiments where the forest isautomatially indued, respetively. Columns L(DA) and L(DB ) lists log-likelihood values for trainingand test data respetively (per data instane).
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Figure 4.18(a) and (b) shows the models seleted from Experiment 1 and 2 respetively,using the Logi1 sampled data, while Figure 4.18() and (d) shows the models seleted fromexperiments using the Logi3 sampled data. We observe that the reovered models in Fig-ure 4.18(a) and () only di�ers from the orresponding true models (Figure 4.15(a) and ())by a few loal transformations that are of no signi�ane to the representation. Both modelssuessfully represents the orret logial relations by assigning probability 0 to all and onlythe joint on�gurations that are false. For the models in Figure 4.18(b) and (d), the orretlogial formula was not represented as some false joint on�gurations were assigned a non-zeroprobability. For the Logi2 sampled data, the orret model representing the orret logialformula was reovered in both experiments.

Reovering Random Models The results of using data sampled from the Rnd15 andRnd20 models are quite similar, and we will disuss them in the following. For the �rstexperiment we are not able to obtain an approximation of the same auray as the truemodels, but the seleted models have smaller e�etive size than the true models, and they arethen not dominated by the true models. For the seond experiment the seleted models areboth less aurate and has larger e�etive size than the true models.Figure 4.19(a)-(b) shows SL-urves for the four distint experiments involving Rnd15 andRnd20 sampled data respetively. First, from the SL-urve Figure 4.19(a) we observe thatfor the �rst experiment, the attainable level of likelihood seems to be lose to the level ofthe true model. That is, using the orret variable forest as a starting point we do not gainmuh from inreasing the size beyond the size of the true model. For the seond experiment,where the learning proedure was not restrited to the orret variable forest, models of betterauray over DA are reovered. However, as we have already observed, these models o�er apoor auray over DB .Similar observations were made from the experiments using Rnd20 sampled data. In theorresponding SL-urves shown in Figure 4.19(b), disrepanies between the two experimentsare more lear than for Rnd15 sampled data.
DisussionFrom the observations made from the results of these preliminary experiments, we onludethat the indution of a good variable forest as a basis for the PDG learner is the harder task.It is of great importane to the quality and e�ieny of the �nal PDG model, as we learlyobserved for Rnd15 and Rnd20 sampled data. It is not surprising that the underlying variableforest an have a huge impat on the learning proedure. Any independene enoded in avariable forest is also imposed on any PDG model with that forest as underlying struture.However, if the forest fails to apture important independene relations, these must then beenoded either numerially in the parameters or in the PDG struture. Our experiments showthat without the orret forest, we may need muh larger struture than the orret strutureto ompensate for the suboptimal underlying variable forest.On the positive side, when a good variable forest is given, our PDG learning proedure isvery suessful in �nding good models by the loal transformations. Even though relying on99
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heuristis for traversing the spae of PDG models, the merge, split and rediret operationssuessfully reover high soring models. 100



4.5 Learning Probabilisti Deision Graph Models
4.5.3 Related WorkA reent framework that is losely related to PDGs is the that of ase-fator diagrams (CFDs)of MAllester et al. (2004). The CFD language is (like the PDG language) inspired by binarydeision diagrams, and also supports omputation of belief updating in time linear in the sizeof the representation. The strutural onstraints of CFD models di�er from the struturalonstraints of PDG language in two key points: 1) CFD models do not allow undiretedyles, whih means that reuse of parameters in a similar natural way as in the PDG languageis not possible; and, 2) in two di�erent paths through the CFD model, variables may ourin di�erent orderings, whih is not possible in PDG models. MAllester et al. (2004) does notpropose learning proedures for CFDs, and, to our knowledge, no study on learning CFDs hasbeen published.A framework that is very losely related to PDGs (and CFDs) is the Independeny Tree(IT) model, investigated by Flores et al. (2006). Flores et al. (2006) proposes a proedure forlearning ITs from data, and reports initial and promising results when using the IT model infor lustering.Probability estimation trees (PETs) represent a onditional probability distribution for atarget variable given a set of onditioning variables, see e.g. (Provost and Domingos, 2003;Liang et al., 2006). Learning of PETs usually follow a traditional proedure for learningDeision Trees (eg. the popular ID3 algorithm (Quinlan, 1986)) with few modi�ations. ThePET is then used to give a ranking in form of probabilities of lass membership onditional onattribute variables, and CSI relations an easily be represented in a ompat way. The PETframework, however, is not able to e�iently represent a joint probability distribution over adomain of variables, and therefore does not o�er a natural and e�ient way to perform beliefupdating in a domain.Many studies have foused on using loal CSI relations to improve learning of BN mod-els. Boutilier et al. (1996) propose to use a PET representation for eah loal onditionaldistribution in a BN model. These loal PETs are then used to guide a deomposition of theBN model in whih auxiliary multiplexer variables are introdued to redue the size of liquepotentials in the assoiated Clique Tree representation. Finally, this then yields faster liquetree inferene in the deomposed BN model. Thus, the loal PET representation is only usedas a preproessing step to obtain a simpler BN model.Chikering et al. (1997) use a Deision Graph (DG) representation of the loal onditionaldistributions in a BN model, and propose an algorithm for obtaining both the BN model andloal DG representations simultaneously. The learning proedures of the loal DG represen-tations proposed by Chikering et al. (1997) ontains splitting and merging operators thatresemble the operators presented here for PDG learning. However, the heuristis for hoosingnodes for splitting and merging employed by Chikering et al. (1997) is purely random, andnot guided by the gain in sore as is the ase for our appliation. Also, Chikering et al. (1997)only onsider leaf nodes and not internal nodes for splitting and merging. Using the loal DGstruture, Chikering et al. (1997) show how to further simplify the global struture of theBN model.The Reursive Bayesian Multinets (RBM) of Peña et al. (2002) apture CSI relations by a101



4 Learning Probabilisti Graphial Models
deision tree over a set of distinguished variables. Eah leaf ot the deision tree then ontainsa BN model over the variables that was not inluded on the path from the root to the leaf.Conerning omputational omplexity, RBMs aims at representing a omplex domain in withmany CSI relations, by a few simpler models, one for eah relevant ontext. In the study ofPeña et al. (2002), the leaf BN models are onstrained to ertain lasses of NB models.
4.6 Combining BN and PDG Learning: A Hybrid LearningApproah

In the previous setion, we observed that the variable forest indution is often the �Ahillesheel� of our PDG learning proedure. Motivated by this observation, we will introdue analternative way to handle the onstrution of variable forest. The material presented in thissetion is based on ideas previously published in (Jaeger et al., 2006).As previously stated in Theorem 3.6, there exists an e�ient translation from a lique treemodel into an equivalent PDG model. Given that a lique tree model for some domain exists,we an then onvert this model into an equivalent PDG model, and thereby evading the diretindution of a variable forest. This PDG model an then be exposed to the sore optimisingloal transformations of the LearnPDG proedure (Alg. 4.7), and we will denote this approahas the hybrid approah.Jaeger (2004) proposes an algorithm for performing suh a onversion, and we will reviewthis algorithm in the following. We need the following de�nition:De�nition 4.8 (Fully Expanded PDG)A PDG D over variables X w.r.t. forest F is said to be fully expanded i� any parameter node
ν has only a single parent.From De�nition 4.8, it follows that |Vi| = |R(pa∗

F (Xi))| for any set of parameter nodes Viin a fully expanded PDG D over variable forest F .Lemma 4.5Let X be a set of disrete random variables. A fully expanded PDG struture D w.r.t. anylinear ordering of X an represent any probability distribution over X.
Proof: Let D be a fully expanded PDG w.r.t. a linear order X0, X1, . . . , Xn of variable X,that is, for the underlying variable forest F the relation pa∗

F (Xi) = {X0, . . . , Xi−1} holds forany Xi ∈ X. Furthermore, as D is fully expanded, Path(ν, pa∗
F (Xi)) ontains a single elementfrom R(pa∗

F (Xi)) for any ν ∈ Vi. Denote this element y. Then by Propositions 3.4 and 3.6
pν = PD(Xi|pa

∗
F (Xi) = y), and PD fatorises as:

PD(X) =
∏

Xi∈X

PD(Xi|Xi+1, . . . , Xn). (4.54)
By the hain-rule of onditional distributions (2.11), any multivariate distribution fatoriseaording to (4.54), and therefore D an represent any multivariate distribution over X.102



4.6 Combining BN and PDG Learning: A Hybrid Learning Approah
Algorithm 4.13 Transforms a direted lique tree into an equivalent PDG. The underlyingvariable tree is build by the buildVariableTree proedure of Algorithm 4.14.Input: J : lique tree.Output: D: PDG model equivalent to J .1: proedure liqueTreeToPDG(J)2: Let Cr be the root of J3: T :=buildVariableTree(Cr, J)4: Let D be an empty PDG-struture w.r.t. variable tree T5: buildPDGFromCliques(Cr, J , D)6: return DAlgorithm 4.14 A variable tree is build from a direted lique tree J at from lique-node Cand all lique-nodes below C.Input: C: lique of lique tree JOutput: T : variable tree representing variables of lique C and all liques below C in J1: funtion buildVariableTree(C)2: Let T be a linear tree over variables new(C)3: Let Xl be the leaf of T4: for all Cc ∈ chJ(C) do5: Tc :=buildVariableTree(Cc, J)6: Attah Tc to T as a branh, rooted at Xl7: return T

Lemma 4.5 states a key property of PDGs, and it is entral to onstruting a PDG modelfrom a lique tree model.Proedure liqueTreeToPDG (Algorithm 4.13) implements the top-level transformationfrom a lique tree to an equivalent PDG. Invoking this proedure for eah tree in a diretedlique forest, a general lique forest is transformed to an equivalent PDG struture.Proedure buildVariableTree (Algorithm 4.14) builds a variable tree from a lique tree
J . The produed variable tree essentially has the same struture as J , but with eah lique
C exhanged for a linear order branh over ertain new variables new(C). new(C) ontainsvariables that appears in lique C and that have not appeared in any lique above C in thelique tree struture, that is:

new(C) = var(C) \ {∪C′∈pa∗
J
(C)var(C ′)}, (4.55)where var(C) is the set of variables assoiated with lique C. Any lique potential φC overlique node C is fully spei�ed by |R(var(C))| − 1 parameters. The e�etive size of a fullyexpanded PDG w.r.t. variable forest F over var(C) is ∑Xi∈var(C) |R(pa∗

F (Xi) ∪Xi)|, whihis bounded by 2|R(X)|.Example 4.2Consider the lique tree of Figure 4.20(a). We have hosen the lique ontaining variables
{X1, X2, X3} as the root lique Cr, and invoke the buildVariableTree proedure on Cr. As103
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Figure 4.20. A lique tree (a) and the variable tree onstruted by proedure buildVariableTreeinvoked on lique {X1, X2, X3}.
Algorithm 4.15 Proedure for reursively building a PDG from a direted lique tree. Cliquesare expanded into suitable sets of parameter-nodes by the expandClique proedure of Algo-rithm 4.16.Input: C: root lique; J : lique tree; D: empty PDG struture build from lique tree J .1: proedure buildPDGFromCliques(C, J , D)2: expandClique(C, J , D)3: for all C ′ ∈ chJ(C) do4: buildPDGFromCliques(C ′, J , D)
new(Cr) = var(Cr), we �rst build a linear tree X1 → X2 → X3. For the two remainingliques {X1, X4} and {X3, X5, X6} the tree fragments X4 and X5 → X6 are onstruted, andthis �nally yields the tree in Figure 4.20(b).Proedure buildPDGFromCliques (Algorithm 4.15) reursively expands an empty PDG Dby reating sets of parameter-nodes for all variables in the underlying variable forest. Nodesare onneted suh that PDG D an represent the distribution enoded by lique tree J .This task is aomplished by always mathing a free parameter in the lique tree model by aorresponding free parameter in the PDG model.The expandClique proedure (Algorithm 4.16) essentially ensures this, by expanding vari-ables new(C) of lique C into sets of parameter-nodes. First, variables var(C) \ new(C) havealready been inluded in the PDG, and we ensure that new(C) 6⊥⊥ var(C) \ new(C) in PDG
D. The reateParameterNodes proedure reates parameter nodes for variable Xi, and on-nets these nodes in PDG D suh that any free parameter in the JT will be mathed by a freeparameter in D.Example 4.3Consider the variable-tree from Example 4.2 depited in Figure 4.20(b), and assume all vari-ables are binary. Invoking proedure buildPDGFromCliques(C, J,D) (Alg. 4.15), where lique104



4.6 Combining BN and PDG Learning: A Hybrid Learning Approah

Algorithm 4.16 Expand a lique node C from lique tree J into sets of parameter nodes ina PDG D.Input: C: lique node; J lique tree (ontaining C); D: PDG struture not ontainingparameter-nodes for variables new(C).1: proedure expandClique(C, J , D)2: Let F be the variable forest underlying D3: Y := var(C) \ new(C)4: for all Xi ∈ new(C) do5: reateParameterNodes(Xi, Y, D)6: Y := Y ∪ {Xi}
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4 Learning Probabilisti Graphial Models
Algorithm 4.17 Given a variable Xi in variable forest F and a subset of variables Y ⊆

pa∗
F (Xi) on whih Xi depends, proedure reateParameterNodes reates the neessary pa-rameter nodes needed to represent this dependene in PDG D over variable forest F .Input: Xi: random variable; Y: set of dependent variables; D partially build PDG struture.1: proedure reateParameterNodes(Xi, Y, D)2: let F be the underlying variable forest of D3: let Xj = paF (Xi)4: Vi := ∅5: U := pa∗

F (Xi)6: for all y ∈ R(Y) do7: add new parameter node νy to Vi8: for all ν ∈ Vj do9: for all u ∈ Path(ν,u) : u[Y] = y do10: set succ(ν,Xi,u[Xi]) to be νy
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V4 V5

V6()Figure 4.21. The result of applying the buildPDGFromCliques proedure to the lique-tree and vari-able forest from Example 4.2 (Figure 4.20(a) and (b)). The three steps orresponding to the threeliques of the lique-tree are depited in sub-�gures (a),(b) and ().
C is the root of the lique tree J in Fig. 4.20(a) and D is the empty PDG struture of thevariable tree in Figure 4.20(b). Figure 4.21 shows snapshots of the proess of building aPDG by this proedure. First, Figure 4.21 shows the result of expanding the root lique bythe expandCligue proedure. The lique ontains variables {X1, X2, X3}, and gives rise to alique table with 23 = 8 entries. To math every entry, the sub-tree over X1, X2 and X3 isfully expanded. In Figure 4.21(b), the result of expanding the lique ontaining X1 and X4an be seen. This lique gives rise to a table with 22 = 4 entries over joint on�gurations of
X1 and X4. Consequently, instead of expanding this subtree fully, we just reate a new node
ν ∈ V4 for eah value of X1. Figure 4.21() then shows the �nal result after expansion of thelast lique.
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4.6 Combining BN and PDG Learning: A Hybrid Learning Approah
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V6(b)Figure 4.22. Example of ollapsing non-reahed nodes. Light-gray nodes in (a) are not reahed byany data instane and are thus removed, reating the dark-gray garbage-nodes of (b).
Collapsing Non-reahed Nodes We aim at re�ning the newly onstruted PDG modelusing data. This means that we are ultimately less interested in atually apturing the distri-bution represented by the lique tree model, but rather we wish to onstrut a good approx-imation to the unknown generative distribution from whih data was sampled. To this end,we perform an initial sweep through the newly onstruted PDG model, removing nodes thatare not reahed by any data instanes. A new �garbage�-node is reated for eah node-set, andany edge inoming to a node that is removed is direted into the garbage-node. For a newlyreated garbage-node, we an assign the garbage-node(s) of the sueeding variable(s) in theunderlying variable forest as hildren. Suh garbage-nodes ν are assigned a parameter vetor
pν of uniform values.Example 4.4Consider the PDG model shown in Figure 4.22(a), and assume that the light-gray parameter-nodes are not reahed by any instanes d ∈ DA. Removal of non-reahed nodes and reationof suitable garbage-nodes then results in the struture of Figure 4.22(b), where garbage-nodesare dark-gray.In this toy example, the e�etive size of the PDG is redued from 38 to 36, assuming allvariables as binary.Instead of keeping the garbage nodes that results from merging the non-reahed nodesin the model, these garbage nodes ould be removed ompletely. One would then need torediret eah edge inoming to a garbage-node to another existing parameter-node. Thisrediretion ould be to any other node without a�eting the likelihood of training data, asno data-instanes is assoiated with the edge. Rather, the removal would yield a sure sore-improvement from the redution in size. However, we hoose to keep the garbage nodes in themodel for two reasons:1. In pratise, the redution in size resulting from ompletely removing garbage nodes,proved to be insigni�ant ompared to the dramati redution from the initial mergingof non-reahed nodes. 107



4 Learning Probabilisti Graphial Models
Algorithm 4.18 The hybridLearn proedure learns a sequene of PDG models from aninitial onstrution of a PDG model from a lique tree J . This initial PDG struture is theniteratively re�ned by a sequene of merge operations. The merge operations use inreasing λvalues, thus the merging of nodes will be more and more aggressive.1: proedure hybridLearn(J,Λ)2: D := cliqueTreeToPDG(J)3: Collapse non-reahed nodes in D4: for λmin up to λmax in Λ do5: mergeNodes(D,λ)6: output D

2. The garbage nodes may still be useful, even when no instane d ∈ DA justify theirexistene. They provide uniform parameters for instanes d ∈ DB that still may reahthem, and hene may improve the auray of the model.The hybridLearn proedure of Algorithm 4.18 ombines the approah to learning PDGmodels desribed in this setion with a subsequent optimisation of the struture. We �rsttranslate a lique tree model into an equivalent PDG model. Then we perform a series ofmerges by the mergeNodes proedure (see Algorithm 4.9). The sequene of merges are in-reasingly aggressive, and in this way we expet to produe a series of models dereasing insize and auray.
4.6.1 Related WorkDarwihe (2002) propose to use Arithmeti Ciruit (AC) representations for probabilisti in-ferene. AC is a general representation framework for multi-linear funtions, and are notdediated to representing joint probability distributions. Unlike PDGs, no simple syntatiriterion haraterise the set of ACs that do represent probability distributions. It would,therefore, seem di�ult to learn ACs diretly from data diretly. Instead, Darwihe (2002)proposes a proedure for ompiling a BN model into an equivalent AC representation, whiheasily apture and exploit CSI relations yielding a more omputationally e�ient represen-tation. Compared to our hybrid learning of PDGs, Darwihe (2002) does not propose anyoptimisations of the AC after the ompilation from a BN model. ACs do not naturally lendthemselves to parameter re-estimation as is the ase for PDGs, and re-estimation of param-eters is espeially important in suh post-ompilation optimisations to ensure that the lossin auray is minimised. However, the empirial results reported by Darwihe (2002) oftenshows a signi�ant improvement in omputational omplexity of the ompiled AC omparedto the Clique Tree representation, even without suh post-ompilation optimisations.
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Chapter 5
Comparative Analysis

In this hapter we perform a omparative analyses of the PGM languages presented in Chap-ter 3 and the methods for learning presented in Chapter 4. The overall goal of this hapteris to evaluate the ability of model languages to e�iently and aurately approximate a dis-tribution, and to evaluate our learning methods ability to reover suh e�ient and auratemodels. Major parts of the material presented in this hapter is based on ideas previouslypublished in (Nielsen and Jaeger, 2006).
5.1 Methodology and Experimental Setting

We have applied our learning algorithms for BN, NB and PDG models to several datasetsboth real and syntheti, and produed SL-urves for eah model language and eah dataset.Eah dataset was split up in two separate sets, one set for training (heneforth denoted DA)and one set of testing (heneforth denoted DB ), and SL-urves over likelihood values obtainedfrom both DA and DB was then produed. SL-urves were introdued in Setion 4.1.2 as ananalytial tool for ross-language omparisons.As mentioned above, we will use both real and syntheti datasets in the omparative study.The use of syntheti data has the advantage that the generating distribution P is known. Thisapproah is therefore popular for initial benhmarking of algorithms for the obvious reasonthat it avoids the di�ulty of having to approximate the true generating distribution P by theempirial distribution PD of a small sample D from P . Using data D sampled from knowndistributions P for the learning of model M will then enable us to evaluate the quality of theapproximation provided by PM diretly by omputation of DKL(P ||PM ). However, in ouranalysis the obvious reasons for not only taking this approah are the following:1. We wish to ompare multiple PGM languages, and depending on the hosen distribution
P we may give unfair treatment to some languages and favour others. It would be fairto assume that if data D has been sampled from a distribution P that is represented bya (non-trivial) model from PGM language L1, then P ontains independene relationsthat are e�iently expressible in language L1 while these independene relations are lesse�iently expressible in language L2, if expressible at all. Results reported in Setion 5.2109



5 Comparative Analysis
support this assumption to some extent.2. Suessful learning from real data is typially the ultimate end goal of a learning algo-rithm. Any experiments on syntheti data is then only of interest in preliminary studiesand benhmarking. In the �nal appliation of the learning algorithm, the data generatingdistribution will not be available, and all we have is a �nite data-set of observations.By optimising (4.8) we attempt to learn models that yield optimal e�etive-size/likelihoodtrade-o�s (SL-optimal), i.e., models that are non-dominated in SL-spae.1 If the SL-urve forone model language L1 onsistently dominates the SL-urve for another language L2, therean be (at least) two explanations for this:1. for any SL-optimal L2 model M there exists a L1 model M ′ that dominates M (for thisspei� real-world distribution), or2. we are unable to learn SL-optimal models for L2 by our learning proedures.In our experiments we use real-world data, and are unable to guarantee that the SL-urve weonstrut onsists of the SL-oordinates for SL-optimal models. We are therefore never able toonlude that explanation 1 above true. Again, as our learning proedures have no guaranteesof learning SL-optimal models, explanation 2 an never be dismissed as false. Moreover,the existene of e�ient and aurate SL-optimal models is of little pratial value if we areunable to reover these models from data. The �pratial� e�ieny and auray of a modellanguage will then be the e�ieny and auray of the models we are able to learn, and these�pratial� properties are then the basis for our omparative analysis.As disussed previously (Setion 4.1.2) when using SL-urves for seleting a single model,the model that attains maximal likelihood value over the testing data would typially be theanonial hoie. For every experiment we will ompare suh models from eah language.Instead of avoiding over�tting by using the test dataset DB (or ross-validation when data islimited), a model optimising some �xed tradeo� between e�ieny and auray (suh as BICor AIC sores) may be seleted. We therefore also investigates the models optimising BIC andAIC sores for eah dataset.

5.1.1 Empirial Auray and E�ienyThe analysis disussed thus far onerns the use of SL-urves that plots the tradeo�s betweene�etive size and likelihood, o�ered by a model language. The e�etive size was previouslyintrodued as a parameter of the model, suh that general belief updating is omputable intime linear in that parameter (see Setion 4.1.2). The use of e�etive size allows onlusionsabout the di�erenes in e�ieny (of belief updating) only up to a linear fator. The linearfator depends on the spei� implementation, and only then will it be measurable. We are1A model M1 is dominated by another model M2, if M2 has SL-oordinates that are to the left and above theother model's SL-oordinates, that is, M2 has both smaller e�etive size and better likelihood sore omparedto M1. Model M1 is non-dominated if there does not exist a model M2 from the same language that dominates
M1. 110



5.1 Methodology and Experimental Setting
interested in this fator as onlusions may be sensitive to hanging the e�ieny measurefrom the theoretial measure of e�etive size to an empirially measured exeution time.We then measure the e�ieny of exat inferene empirially by the exeution times forupdating beliefs given random evidene. That is, we ompute all marginal posteriors given ajoint observation of a random set of evidene variables E, and measure the average exeutiontime of suh random queries.In addition to measuring the empirial e�ieny, we also measure the empirial auray.Following the methodology of Lowd and Domingos (2005), a random query is generated asfollows: draw an instane d at random from test data DB and generate two random disjointsubsets of variables Q and E from X. The random query is then P (Q = d[Q]|E = d[E]).The empirial auray of model M on this query, is then the log posterior probability:
logPM (Q = d[Q]|E = d[E]). Compared to the global auray measure of log-likelihood oftest data L(DB |M), the empirial auray an be seen as a measure for �loal� auray, i.e.,restrited to spei� marginal onditional distributions of PM .
Setup of Experiments for Performing Empirial MeasuresIn pratie, we generate n random queries, i.e., pairs of disjoint sets of variables 〈Q,E〉 andorresponding observations 〈q = d[Q], e = d[E]〉 extrated from randomly drawn instanes
d from a set of test-data (as explained above). Then, belief updating is performed in eahmodel M both for evidene E = e and evidene (Q,E) = (q, e). After a belief update,we store the joint probabilities (PM (E = e) and PM (Q = q,E = e) respetively) and themeasured exeution time. From the joint posteriors, we ompute the empirial auray
logP (Q = q|E = e). In this way, we measure both the empirial e�ieny of belief updatingand the empirial auray of joint posteriors given random evidene.
5.1.2 General Experimental SetupFor learning BN models, the KES proedure (Algorithm 4.3) with the SBN

λ sore (see (4.24))was used. BN models were optimised for a range of di�erent λ values, and for eah value of λwe used 11 di�erent k values k ∈ {0.0, 0.1, . . . , 1.0}. For eah pair of k and λ, 100 restarts ofKES was performed, and for eah spei� λ value the highest soring BN model was seleted.For learning PDG models, we used the LearnPDGs proedure of Algorithm 4.6. The initialpopulation size was manually tuned for eah dataset, as was the spei� signi�ane levels usedin the onditional independene tests in building the initial variable forests for eah dataset.2Finally, for learning NB models, the NB learning algorithm desribed in Setion 4.4 wasused. Reall that learning NB models with inreasing e�etive size is espeially simple as the2The manual tuning of the initial population size and the signi�ane levels was aimed at learning a rangeof di�erent models. For some initial settings we experiened that the learning proedure was only able toreover a small set of di�erent models. More spei�ally, we would typially start with a small populationsize and subsequently inrease the size if the variane in learned models turned out to be too small. Also, thesigni�ane level used in the independene test would sometimes yield forest strutures so simple that only avery small set of di�erent PDG strutures were possible. In suh ases we would restart the proedure withless strit signi�ane levels. 111



5 Comparative Analysis
Name |X| |E| Rmax Rmin Rmean sizeeff L(DA|P

M ) L(DB |P
M )Alarm 37 42 2 4 2.8 771 -13.720 -13.839Hail�nder 56 66 2 11 4.0 9406 -70.812 -70.785Table 5.1. Charateristis of the BN models used for sampling syntheti data. olumns Rmax , Rminand Rmean lists maximum, minimum and mean range of the random variables, sizeeff lists the e�etivesize of the model, while L(DA|P

M ) and L(DB |P
M ) lists log-likelihood values of the models averagedover instanes in the respetive datasets.

struture is given and the only parameter that a�ets the e�ieny is the number of latentomponents. The termination riterion for the EM algorithm (that is, maximum iterationsand minimum hange in parameters) was tuned manually for eah dataset.3
Implementations The KES proedure (Alg. 4.3) was implemented in the C language, usinge�ient state-of-the-art Mahine Learning libraries.4 Both the LearnPDGs (Alg. 4.7) and theLeandNB (Alg. 4.5) proedures were implemented in the Java language using standard librariesof JDK v. 1.5 and the Weka pakage for basi data handling routines.5, 6 All the learningexperiments was performed on a Sun Fire X4100, 2.4 GHz CPU arhiteture with 4096 MBRAM running the RedHat-Enterprise Linux4 64bit operating system.
5.2 Learning from Syntheti Data

We will learn models from a olletion of syntheti databases. Eah database was generatedby drawing random samples under a distribution represented by a known model. For produingSL-urves, we will use log-likelihood values averaged over the size of the data, and we willinlude in the plots a horizontal line representing the (negative) entropy of the data −H(DA),as this is the maximal attainable log-likelihood value for any model.
5.2.1 Learning from BN Generated DataIn this setion, we report on experiments using data sampled from manually onstruted BNmodels. We use two widely studied models, the Alarm network (Beinlih et al., 1989) andthe Hail�nder network (Abramson et al., 1996). We used data sampled from these models,in Setion 4.3.4. Data sampled from these models was previously used in testing the KESproedure in Setion 4.3.4. Charateristis of these networks an be seen in Table 5.1.3The tuning was mainly neessary in order to ensure aeptable run times. For the larger datasets it wasneessary to terminate EM after fewer iterations than for smaller datasets. The run time of EM is of ausediretly dependent on the ardinality of the latent omponents.4These libraries were initially developed at the AutonLab, Carnegie Mellon University, and most kindlymade available to us by Dr. Andrew W. Moore.5For information on the Java language, see http://java.sun.om/6Weka is a library of tools and algorithms for Mahine Learning and Data Mining tasks implemented inJava. The libraries an be obtained online at http://www.s.waikato.a.nz/~ml/weka/, and for futher detailon the Weka-toolbox, see (Witten and Frank, 2005).112
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5.2 Learning from Syntheti Data
Name |X| |R(C)| Rmin Rmax Rmean sizeeff L(DA|P

M ) L(DB |P
M )NB10 15 10 2 4 3.13 470 -20.468 -20.512NB20 15 20 2 4 2.9 880 -19.641 -19.614Table 5.2. Charateristis of NB models used for generating syntheti NB data. Columns L(DA|P

M )and L(DB |P
M ) lists likelihood values (averaged over instanes in the training data) for datasetsgenerated from the respetive models.

Results on BN Generated Data
Figure 5.1 shows SL-urves generated from models learned from data sampled from the Alarmmodel. As expeted, the BN models shows superior performane and onsistently domi-nates NB and PDG models in Figure 5.1(b) where likelihoods are omputed over DB . InFigure 5.1(a) where likelihoods are omputed over DA BN models dominates PDG and NBmodels only up to a ertain e�etive size. The SL urves for BN models raises quikly to thelevel of auray of the generating model and then does not improve auray for models ofinreased omplexity. NB models show a muh more smooth inrease in auray for inreas-ingly omplex models. For PDG models we have a large interval of e�etive size where nomodels where learned, whih is probably due to poor tuning of the parameters in the learningproedure. When tuning the parameters, we were trying arefully to avoid suh gabs in theSL-urves. The reason they still appear an have (at least) two explanations. Either theresimply do not exist models in the range where we do not observe models, or we are unableto learn these models. Assuming there exists models, we might have hosen a set of signi�-ane levels that produe forest strutures that do not support these models, and hene weare not able to learn them. Thus, poor tuning of the parameters ould result in the observedSL-urves.However, SL oordinates for the learned PDG models that are learned are lose to NBmodels, and we therefore do not expet major di�erenes in the performane of the PDGlanguage ompared to the NB language even for model sizes we have not observed.Observations similar to these were made from the experiment on data sampled from theHail�nder model, the only di�erene being that NB models does not as learly over�t theHail�nder data as it is the ase for the Alarm data. SL-urves for the experiments using datasampled from the Hail�nder model an be found in Appendix A (Figure A.1).
5.2.2 Learning from NB Generated Data
We have used 2 randomly generated NB models (NB10 and NB20) over 15 disrete randomvariables with ranging from binary valued to 5 state variables. The NB10 model has 10 latentomponents and NB20 has 20 latent omponents. Datasets DA of size 10000 and DB of size5000 were sampled. Table 5.2 ontains harateristis of the models.113
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(b)Figure 5.1. SL-urves for models learned from the Alarm data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL oordinates for the generative model is marked with asquare. The Log-Likelihood is per data-instane, that is, divided by the data size (|DA| and |DB |,respetively). Log likelihoods are per data instane.
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(b)Figure 5.2. SL-urves for models learned from the NB10 data, for likelihood values over training data
DA (a) and test data DB (b). The SL oordinates for the generative model is marked with a square.Log likelihoods are per data instane.
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Name |X| Rmin Rmax Rmean sizeeff L(DA|P

M ) L(DB |P
M )Logi1 10 2 2 2 46 -4.000 -4.000Logi2 5 2 2 2 18 -4.000 -4.000Logi3 8 2 2 2 40 -7.000 -7.000Rnd15 15 2 3 2.6 182 -14.852 -14.833Rnd20 20 2 3 2.4 233 -18.082 -18.081Table 5.3. Charateristis of PDG models used for generating syntheti PDG data. Columns

L(DA|P
M ) and L(DB |P

M ) lists log-likelihood values (averaged over the number instanes in trainingdata) for datasets generated from the respetive models.
Results on NB Generated DataFigure 5.2 shows SL-urves from learning from NB10 sampled data. We �rst observe thatfor models of small e�etive size, NB models outperform both BN and PDG models as ex-peted. However, no single language onsistently dominates the other languages in neitherFigures 5.2(a) nor 5.2(b). In Figure 5.2(a) BN models are onsistently dominated, while inFigure 5.2(b) no language is onsistently dominated. In Figure 5.2(b) we observe a remarkablestability in auray of the BN models that is not observed for neither PDG nor NB models.PDG models in partiular seems to su�er from over�tting DA.The results of experiments on NB20 sampled data leads to similar observations and doesnot lead to new onlusions. Figure A.2 in Appendix A ontains SL-urves from learning fromNB20 sampled data.
5.2.3 Learning from PDG Generated DataThree datasets were sampled from the manually onstruted Logi1-3 PDG models (see Fig-ure 4.15). The datasets are the same as the ones used for initial benhmarking of the learningproedure for PDG models, as disussed in Setion 4.5.2.Two datasets were sampled from randomly generated PDG models, the Rnd15 and Rnd20models (see Figure 4.16). These datasets were also used in the initial benhmarking of thePDG learning algorithm, as disussed in Setion 4.5.2.
Results on PDG Generated Data Figure 5.3 shows SL-urves from learning from Logi2sampled data. Reall that the Logi2 model enodes the parity distribution over 5 binaryvariables. We observe the expeted superiority of PDG models over both BN and NB mod-els. BN models are apable of approximating the distribution as aurately as PDG models,however, BN models an only represent the parity distribution exatly with an e�etive sizethat is exponential in the number of parameters (as previously disussed, see Setion 3.3.3).In the ase of Logi2 with n = 5 we get 25 = 32, whih is exatly the e�etive size of the BNmodel that attains maximum likelihood value in Figure 5.3. The NB models fail to providean e�ient approximation for this dataset. As previously disussed (Setion 3.3.3), the NBmodel will need an e�etive size of 5 ∗ 25 + (25 − 1) = 191 to represent the parity distributionover 5 binary variables exatly. In our experiments we were not able to reover this model.116
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(b)Figure 5.3. SL-urves for models learned from the Logi2 data, for likelihood values over training data
DA (a) and test data DB (b). The SL oordinates for the generative model is marked with a square.Log likelihoods are per data instane.
The smallest e�etive size of a model with maximum likelihood was only learned when theardinality of the latent variable was inreased to 40, yielding e�etive size of 239. This is notpartiularly surprising as it is well known that the EM algorithm is prone to get trapped inloal optima. In representing the parity distribution, the NB model needs to represent everyjoint on�guration over the variables using a single omponent. More than one omponent of117
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(b)Figure 5.4. SL-urves for models learned from the Rnd15 data, for likelihood values over training data
DA (a) and test data DB (b). The SL oordinates for the generative model is marked with a square.Log likelihoods are per data instane.
the latent variable may represent the same on�guration, that is, the omponent onditional
P (Xi|C = cl) = P (Xi|C = ck) for some pair of omponents cl 6= ck and for all Xi ∈ X.This is atually quite likely given that our NB learning algorithm uses instanes drawn atrandom from DA to instantiate new omponents, after the ardinality has been inremented(see Setion 4.4). Therefore, we need more than the theoretial optimal 32 omponents to118



5.2 Learning from Syntheti Data
represent the distribution exatly. This problem ould be mitigated by merging equivalentomponents after termination of EM. The potential bene�t from inluding an operator formerging of omponents in learning NB models is well studied, a detailed disussion is pro-vided in (Kar£iauskas, 2005). Our reason for not inluding suh an operator was mainly toredue the learning time. Also, we are aiming at produing a range of NB models of di�erentsize, and the merging operator is spei�ally aimed at �nding the model with optimal latentardinality.The SL-urves for learning from Rnd15 sampled data an be seen in Figure 5.4. Thereare only small di�erenes in the harateristis of the urves for likelihood values over DA inFig. 5.4(a). In Figure 5.4(b) however, BN models show very stable performane and onsis-tently dominates BN and PDG models. For both PDGs and NBs, over�tting DA is very lear,while BN models again are very stable in auray.SL-urves for the experiments of learning from data sampled from the Hail�nder, Logi1,Logi3 and Rnd20 models an be found in Appendix A.1.
5.2.4 Disussion of ResultsOne general onlusion that an be drawn from learning from the syntheti datasets is thatgenerally, the language of the model from whih the data was sampled, is often the superiorlanguage for aurate and e�ient approximations of the empirial distribution. Exeptionsto this observations are the experiments of learning from the Logi1 and Rnd20 sampled datawhere BN models outperform the generative language of PDGs.Table 5.4 ontains SL oordinates for the models of maximal likelihood over DB , the BICoptimal models and the AIC optimal models. The SL oordinates of the generative modelsan be found in Tables 5.1, 5.2, and 5.3.From the numbers in Table 5.4 we see that both BIC and AIC sores selet models withan auray relatively lose to the auray of the Mmax(L(DB )) models, while (of-ourse)AIC punishes less for omplexity when ompared to BIC. The expeted e�et of reduingthe punishment for inreased size would be to over�t to DA, and indeed we observe thise�et. When omparing the SL-oordinates of the learned models to the SL-oordinates of thegenerative models (see Tables 5.1, 5.2, and 5.3) we do not see any learned models dominatingthe generative model for any of the datasets.The main onlusion we draw from the results of these experiments is �rst of all that nosingle PGM language proves to onsistently outperform the others and no single language isonsistently outperformed by the others. Also, when onsidering the Mmax(L(DB )) seletedmodels, NBs and BNs seem to have trouble approximating a distribution represented by theopposite model. That is, NB models perform poorly both onerning auray and e�ienyon Alarm and Hail�nder sampled data while BN models have exhibits a blowup in e�etivesize in order to approximate the NB10 and NB20 sampled data. The PDG models provideinaurate approximations only for the Alarm and Hail�nder sampled data. For the Rnd15and Rnd20 randomly generated PDG models we are somewhat surprised to observed BNmodels as providing the more aurate approximation than ompared to PDG models at onlya slightly larger e�etive size. Comparing the obtained BN models to the SL-oordinates of119



5 Comparative Analysis
Mmax

(
L

(
D

B
))

MBIC

MAIC
#models Time

s
iz

e
e
ff

L
(D

A
)

L
(D

B
)

s
iz

e
e
ff

L
(D

A
)

L
(D

B
)

s
iz

e
e
ff

L
(D

A
)

L
(D

B
)learned(seonds)

Alarm
BN
624-13.666-13.868496-13.678-13.8796372-13.649-13.876
2067845.31

PDG
954-16.462-16.438889-16.496-16.47945-16.459-16.445
1357635.79

NB7797-14.886-15.7571380-16.595-16.71614490-14.171-17.952
29283008.18

Hail�nderBN8472-70.804-70.9762884-70.917-71.0338871-70.8-70.983
16121282.84

PDG1486-84.227-84.4561246-84.345-84.46757780-73.108-101.16
10658497.00

NB 80808-79.511-89.222672-92.06-92.12673080-80.056-89.344
50134632.92

NB10
BN5220-20.687-21.051780-21.104-21.2076264-20.627-21.053
1519014.18

PDG
659-20.731-20.985659-20.731-20.98524247-17.264-24.098
1646652.85

NB
396-20.431-20.546231-20.482-20.56311352-19.308-21.257
4271852.11

NB20
BN4320-19.819-19.991275-20.065-20.095952-19.758-20.004
1519211.51

PDG
422-19.927-20.070312-20.000-20.07812162-17.252-23.899
1633386.83

NB
450-19.619-19.670360-19.659-19.7168310-18.776-20.244
68173017.08

Logi1
BN
60-4.003-4.003
44-4.003-4.003
84-4.002-4.003
117184.12

PDG
78-3.999-4.000
76-4.000-4.000
76-4.000-4.000
225199.08

NB
78-3.999-4.000440-3.999-4.001440-3.999-4.001
5023343.29

Logi2
BN
32-4.002-4.002
32-4.002-4.002
32-4.002-4.002
134041.13

PDG
20-4.000-4.000
18-4.000-4.000
18-4.000-4.000
101964.86

NB
360-3.999-4.000360-3.999-4.000360-3.999-4.000
5112840.00

Logi3
BN
256-6.997-7.015144-7.051-7.057256-6.998-7.016
1810059.47

PDG
68-6.998-7.001
68-6.998-7.001
86-6.996-7.004
212195.05

NB
702-6.991-7.008162-7.030-7.076360-6.999-7.053
5019359.38

Rnd15
BN1080-14.837-14.903375-14.901-14.9251080-14.837-14.903
1841633.18

PDG
323-14.959-15.037213-14.996-15.0383500-14.511-15.652
1717932.61

NB
975-14.92-15.092475-15.028-15.1412525-14.715-15.21
3138460.00

Rnd20
BN
674-18.079-18.129674-18.079-18.1294332-18.047-18.136
16125469.22

PDG
449-18.684-18.714245-18.735-18.7346811-17.935-19.789
2243711.43

NB2117-18.402-18.765580-18.990-19.0525539-17.933-19.057
2933900.00

Table5.4.SL-oordinatesforthemodelofmaximallikelihoodover
D

B (M
m

a
x
(L

(D
B
)) ),theBICoptimalmodel(M

B
I
C )andAICoptimalmodel

(M
A

I
C ).Columnslabelled

size
e
ff listse�etivesize,andolumnslabelled

L
(D

A
)and

L
(D

B
)listslog-likelihoodvaluesomputedover

D
A and

D
B

respetivelyandaveragedoverthenumberofinstanesinthedataset.

120



5.3 Learning from Real Data
Name |X| |DA| |DB | Rmin Rmax |R(X)| H(D) − log2(

1
|D| )Page-bloks 11 4482 574 5 5 107 10.669 12.304Letter Reognition 17 18012 1988 4 26 1012 13.828 14.288Landsat 37 4435 2000 5 6 1025 12.349 12.652Adult 15 30162 15060 2 41 1011 13.561 15.465King,Rook vs. King 7 25188 2868 4 18 106 14.776 14.776Abalone 8 3758 419 3 5 106 9.193 12.028Poisonous Mushroom 23 7337 787 2 11 1014 12.988 12.988Table 5.5. Summaries of the real datasets used in the analysis. D refers to the full dataset, DA isthe part of D used for training, DB is the part of D used for testing, Rmax and Rmin refers to themaximunm and minimum range of the variables X observed in the data. H(D) is the entropy of thedata.

the Rnd15 and Rnd20 models, we see that there indeed exists PDG models with the same levelof auray. And realling the suessful results of learning from this data using the orrettree struture as a starting point (see Setion 4.5.2) we see that one explanation of BNs beingmore aurate than PDGs on these datasets ould be the indution of inorret underlyingvariable forests.
5.3 Learning from Real Data

In this setion we report on the results of learning PGMs from real datasets. The datasetswe have used are available online at the UCI ML repository (Newman et al., 1998) in theiroriginal form. Table 5.5 ontains a short summary of the datasets used. If a standard train-ing/test partitioning of the original dataset were available we used it, otherwise instaneswhere randomly assigned to either DA (90%) or DB (10%).We inlude a short desription of the datasets below.
Page-bloks This dataset ontains instanes of bloks of the page layout of a text doument.A doument has been pre-proessed by a segmentation proess, partitioning eah page intodisjoint bloks where eah blok has been labelled as either �text�, �horizontal line�, �piture�,�vertial line� or �graphi�. For eah blok, 10 di�erent features (height, length, number ofblak pixels, et.) of the blok are reorded, and the label together with the value of these 10features then makes up an instane in the dataset. This dataset has previously been used forevaluation of deision tree learning, e.g., Esposito et al. (1997).The 10 features were originally numerial values, to avoid working modelling ontinuousrandom variables, we have disretised eah of the 10 features into 5 equal frequeny bins. Weinlude the lass label as a regular variable in our dataset.
Letter Reognition Eah instane of this dataset ontains label speifying one of the 26apital letters from the English alphabet, plus 16 primitive measurements of a blak-and-whiteretangular pixel display when displaying this harater. Eah harater was displayed in 20121



5 Comparative Analysis
di�erent fonts, and eah display were randomly distorted before the 16 measurements werereorded. We inlude the lass label as a regular variable in our dataset.
Landsat This dataset ontains information extrated from digital satellite images of landsurfaes. Eah ase in the database is extrated from a 3× 3 pixel image, with values for eahpixel for 4 di�erent spetral bands, thus totals 36 features. Eah suh feature is enoded asa 8 bit word, hene the range is 0 to 255. Eah ase is then augmented with a lass label,labelling eah ase with one of 6 di�erent types of surfae. We have redued the range of the36 features to 5 approximately equal frequeny bins.
Adult This dataset was extrated from a 1994 US Census database. Eah instane ontainsvalues for 14 features (age, sex, marital status, rae, work-lass, eduation, et.) and a lasslabel indiation whether the yearly inome of the individual is above or below $USD 50.000.Past usage of this dataset has been aiming at developing lassi�ers for prediting the inome-label of an individual given the values of the features. We have disretised numerial valuedfeatures into 5 equal frequeny bins. We inlude the lass-label into our dataset as a regularvariable.
King, Rook vs. King This dataset is onstruted from hess endgames in whih only threepiees are left on the board, white king, white rook and blak king. Eah instane ontainsoordinates for eah piee and a value for the optimal depth of win for white ranging from 0to 16 moves. If white an not win within 16 moves a speial �draw� state is reorded.
Abalone This dataset is made up of measurements of features of the abalone shell�sh suhas lenght, height, weight, age et. In total 9 di�erent features are reorded for a single abalone,8 of them having numeri values. This dataset has previously been used for learning to lassifythe age of the abalone, based on the rest of the features. For our experiments, numeri valuedfeatures were disretised into 5 equal frequeny bins.
Poisonous Mushrooms This dataset is made up of features of di�erent mushrooms suh asolour, shape, size, et. In total, 22 nominal features are reorded and eah ase is augmentedwith a label lassifying the mushroom as either edible or poisonous.
5.3.1 Disussion of ResultsFigure 5.5(a)-(b) shows SL-urves from learning from the Adult database. We observe verysimilar performane of all three languages on DA, although BN models gain less in likelihoodwhen inreasing omplexity ompared to both PDG and NB models. In Figure 5.5(b), we ob-serve lear dissimilarities in performane. While BN models are still very stable and likelihoodvalues are not a�eted in either diretion by inreasing omplexity of the models, both PDGand NB models su�er from over�tting DA. In Figure 5.5(b), the BN language onsistentlydominates while the NB language is onsistently dominated. The observations of dominanein Figure 5.5(b) is learer than what we have observed for other datasets.122
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(b)Figure 5.5. SL-urves from learning from the Adult dataset. Figure (a) displays plots using likelihoodsover DA and (b) displays plots of likelihoods over DB . Log likelihoods are per data instane.
Figure 5.6(a)-(b) shows SL-urves from learning from the Abalone data, and this is amore typial set of SL-urves where no language onsistently dominates the others. For DA(Fig. 5.6(a)) the PDG and NB models are again observed to bene�t more in auray by theinrease in omplexity than does the BN models. For DB (Fig. 5.6(b)), however, models fromthe PDG language are onsistently dominated. NB and BN models o�er an approximationof almost the same maximum auray over DB , while the more e�ient approximation iso�ered by the NB model. 123
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(b)Figure 5.6. SL-urves from learning from the Abalone data. Figure (a) displays plots of likelihoodvalues over DA while plots in (b) uses likelihood values over DB . Log likelihoods are per data instane.
Tables 5.6 and 5.7 summarise the results from learning from real data.7 First, Table 5.6 listsobserved dominane. For eah dataset we observe 1) if one language onsistently dominatesthe others and 2) if one language is onsistently dominated by the others. These observationsare made for both DA and DB , and in Table 5.6 we denote by L1/L2 the observation thatlanguage L1 onsistently dominates the others and language L2 is onsistently dominated by7See Appendix A.2 for SL-urves for models learned from the Page-bloks, Letter Reognition, King Rookvs. King, Poisonous Mushroom and Landsat data. 124



5.3 Learning from Real Data
Page-bloks Letter R. Adult K.R.v.K Abalone P. Mushroom Landsat

DA -/BN -/BN -/- NB/BN -/- -/BN NB/-
DB PDG/- NB/PDG BN/NB -/NB -/PDG PDG/NB BN/PDGTable 5.6. Summary of observations of onsistent dominane. Row DA lists onsistent dominaneobserved for SL-urves of log likelihoods over DA, and DB for SL-urves of log likelihoods over DB .For eah dataset we list two observations in the format 'L1/L2', whih denotes that language L1onsistently dominates in this experiment, while L2 is onsistently dominated. Either of the two orboth might not be observed, indiated by -.
the others. If only one or none of these observations are made, this is indiated by a dash −.Table 5.7 lists SL-oordinates for three models from eah language for eah dataset: 1) themodel attaining maximal likelihood over DB , 2) the model attaining maximal BIC sore, and3) the model attaining maximal AIC sore. Also, Table 5.7 lists the number of models learnedand exeution times for learning proedures.From Table 5.6 we see that the BN language is the language most frequently dominatedon DA. As previously observed, BN models do not often gain muh in auray by an inreasein omplexity. By omplexity we here refer to the e�etive size, whih for BN models is notin linear relation to the number of free independent parameters in the model. Therefore,the observation that BN models do not apitalise on inreased omplexity, is probably fullyexplained by the fat that for any two BN models of di�erent e�etive size, the number of freeparameters (and therefore the ability to represent the empirial distribution of the data) maybe the almost the same. In Figure 5.7 we investigate the relationship between e�etive andrepresentational size of models learned from real data. For models learned from Page-bloksdata we plot representational size vs. e�etive size for BN and PDG models in Figure 5.7(a)and similar plots for models learned from the Letter Reognition data in Figure 5.7(b). Welearly see that inreased e�etive size inreases the representational ability of PDG models ata rate that is approximately linear. For BN models, the relationship is sub-linear or linear withat a very low rate. The important observation from Figure 5.7 is that inreased omplexitydoes not neessarily buy muh representational power for the BN model.The sub-linear relationship between e�etive size and representational size also explainsthe low propensity of BN models to over�t DA. This then also explains why we do not observeBN models being dominated onsistently for likelihood values over DB (see Table 5.6).From the summaries given in Table 5.7 we observe onerning maximal likelihood over DB ,a BN model is most frequently the model with highest value, whih is not surprising given theabove disussion on onsistent dominane of BN models. However, the superior auray ofthe BN models over DB when omparing to NB and PDG models, is often aompanied by ahuge e�etive size. For none of the experiments do we observe a dominating model in termsof both e�etive size and likelihood.Comparing the models seleted by maximal likelihood value over DB to the models seletedby the BIC and AIC riterions (olumns MBIC and MAIC in Table 5.7), we see that BIConsistently selets models of lower omplexity than the Mmax(L(DB )) models. AIC oftenselets models that are more omplex than the Mmax(L(DB )) models. The model seleted by125
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(b)Figure 5.7. Plots showing the sizerep vs. sizeeff of PDG models and BN models learned from thePageblok data (a) and Letter Reognition data (b).
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5 Comparative Analysis
AIC is often loser to the model attaining maximal likelihood over DB than that seleted byBIC. The fat that AIC penalises less than BIC for inreased omplexity is lear from thede�nitions of BIC and AIC (see Setion 4.1).We an sum up the observations disussed above by stating that a surprisingly similarperformane of the three PGM languages is observed, while the BN language exhibits themost stable performane with less propensity for over�tting the training data.
5.4 Empirial Analyses

For the analyses of SL-urves reported in the previous setions, the e�etive size has beenused as a theoretial measure of e�ieny. The e�etive size for PGM M is a (model) spei�parameter for whih general belief updating is omputable in linear time. This means thatonlusions drawn from omparison of e�etive size are only valid up to a linear fator. Inthis setion, we report on experiments measuring the absolute pratial omplexity inludingthe linear fator.The experimental setup is as follows:
• For belief updating in PDG models we use the opmuteIflOfl proedure of Algo-rithm 3.6 after inserting evidene. The probability of the evidene is then omputedby Equation 3.51. The omputeIflOfl proedure was implemented in the Java lan-guage using standard libraries of JDK v. 1.58 and the Weka pakage for basi datahandling routines (Witten and Frank, 2005).
• For BN and NB models we used the Hugin9 inferene engine through the Hugin JavaAPI. The Hugin inferene engine is a C implementation of a lique tree propagationalgorithm, see (Jensen et al., 1990b,a; Andersen et al., 1989). It is a highly optimisedimplementation and frequently reommended as one of the best tools for probabilistiinferene (Cowell et al., 1999; Jensen, 2001; Castillo et al., 1997).
• For omputing averages, we generated 1000 random queries from eah set of test data.We used a �xed size for the random sets of variables: |Q| = 4 and |E| = 3. Theproedure for generating queries were desribed in Setion 5.1.1.
• The experiments where all performed on a Sun Fire280R, 900MHz SPARC CPU arhi-teture with 4GB of main memory running Solaris 9.

5.4.1 Disussion of ResultsTo extrat the linear fator between e�etive size and the atual exeution time of beliefupdating, we plot measured exeution time against e�etive size. Examples an be seen inFigure 5.8(a) for models learned from Abalone data and Figure 5.8(b) for models learnedfrom the Adult data. In addition, we plot the linear expression y = α · sizeeff + β where8http://java.sun.om/9http://www.hugin.om/ 128
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y is the average exeution time and α and β are �tted through a standard least squaresMarquardt-Levenberg �tting proedure.10 This �tting proedure �ts parameters α and βsuh that the sum of squared errors over data instanes are minimised. The �tted α-valuesfor all experiments are listed in Table 5.8 together with an asymptoti standard error. Weobserve that di�erenes are quite limited, exept for the Letter and Landsat data-bases. Herethe linear fator for PDGs are muh larger than for BNs and NBs. That BNs and NBs are10We used the fit ommand in the gnuplot system (Williams and Kelley, 2004).129



5 Comparative Analysis
BN NB PDGPage-bloks 0.22 ±7.10 · 10−6 0.30 ±2.25 · 10−6 0.27 ±4.29 · 10−6Letter Reognition 0.26 ±5.65 · 10−6 0.26 ±5.92 · 10−6 0.98 ±3.59 · 10−5Adult 0.20 ±3.99 · 10−6 0.22 ±1.07 · 10−6 0.25 ±5.84 · 10−6King, Rook v. King 0.22 ±3.09 · 10−6 0.23 ±6.91 · 10−7 0.16 ±3.63 · 10−6Abalone 0.16 ±9.55 · 10−6 0.28 ±4.25 · 10−6 0.24 ±7.42 · 10−6Poisonous Mushroom 0.25 ±5.36 · 10−6 0.26 ±6.89 · 10−7 0.20 ±1.04 · 10−5Landsat 0.24 ±2.90 · 10−6 0.30 ±4.18 · 10−7 0.64 ±3.62 · 10−5Table 5.8. The slope α (times 103) of the line y = α·sizeeff +β, where y is the measured exeution timeand α, β are �tted by the standard least squares �tting proedure implemented by the fit ommandin the gnuplot system (see (Williams and Kelley, 2004)), ± asymptoti standard error of α.

always very lose is of ourse not surprising onsidering that exatly the same belief updatingproedure is used. We also observe that no single language is onsistently better or worse thanthe others. Considering the standard errors, we observe that there exists some disrepanybetween the di�erent languages. In fat, for the datasets Landsat and Poisonous Mushroomthe disrepany is on the order a fator 100 (between NBs and PDGs) and a fator 10 (betweenBNs and PDGs). We believe that this is due irremovable measurement error stemming fromdi�erent fators suh as garbage olletion in the Java Virtual Mahine.Figures 5.9(a) and 5.9(b) shows plots of the empirial auray measured as the averagedlog-likelihood of random queries. Comparing the plot of empirial auray over queries gen-erated from the Adult data in Figure 5.9(b) against e�etive size to the orresponding plotusing the full log-likelihood of Adult test data in Figure 5.5(b), we see that PDG models aremore ompetitive when measuring auray empirially. A similar observation is made forAbalone data from omparisons of empirial auray over the Abalone data (Fig. 5.9(a)) andthe orresponding plot using the full log-likelihood over test data (Fig. 5.6(b)).The values in Table 5.8 gives an estimate on the linear fator assoiated with the omplex-ity of general belief updating. While the di�erenes are relatively small, we are still interestedin the stability of onlusions drawn from the e�etive size in the light of the atually mea-sured exeution times. That is, if hanging the measure of e�ieny from e�etive size toaverage exeution time will have any impat on model seletion. Therefore, we list in Ta-ble 5.9 for eah dataset and eah language, two models. First, the models attaining maximalempirial auray are listed under Mmax(log P (Q|E)). Seond, the models attaining maximallog-likelihood value over DB are listed under Mmax(L(DB )). The seond set of seleted modelswhere previously listed in Table 5.7, and we here augment the SL-oordinates for the modelswith the average exeution time.First, we onsider the models Mmax(L(DB )), and the language that would be preferredw.r.t. e�ieny. For eah dataset, the ordering of the models seleted from the three languagew.r.t. average exeution time is the same as ordering w.r.t. e�etive size, exept for Letterdata. Here the seleted PDG model has lowest e�etive size while the seleted NB model haslowest average exeution time. It should be noted that the NB and PDG models do not di�ersigni�antly in neither e�etive size nor average exeution time, so even though the relative130
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5 Comparative Analysis

Mmax(log P (Q|E)) Mmax(L(DB ))

sizeeff logP (Q|E) time (ms) sizeeff L(DB ) time (ms)Page-bloks BN 35250 -3.134 7.961 13875 -13.362 3.434PDG 11925 -2.774 3.392 11925 -11.998 3.392NB 6490 -2.994 2.074 6490 -12.916 2.073Letter BN 141675 -4.705 44.435 141675 -23.872 44.435PDG 56485 -4.645 54.567 14138 -28.046 5.954NB 24582 -4.668 6.866 20640 -24.655 5.666Landsat BN 5451000 -3.520 3162.610 5451000 -36.000 3162.610PDG 130247 -3.953 125.973 7418 -50.465 2.868NB 7440 -3.644 2.963 5850 -42.417 1.879Adult BN 62270 -3.337 12.955 62270 -16.182 12.955PDG 17359 -3.348 4.697 4208 -16.695 1.056NB 21672 -3.635 4.956 19205 -17.677 4.955King, Rook v. BN 6912 -6.461 1.745 6912 -16.880 1.745King PDG 18930 -6.441 3.336 18930 -16.783 3.336NB 35786 -6.616 8.382 32032 -17.279 7.712Abalone BN 4575 -2.811 0.963 4575 -10.439 1.223PDG 1416 -2.899 0.509 694 -10.883 0.386NB 1720 -2.785 0.698 1365 -10.463 0.428Poisonous BN 85477 -1.909 24.226 208333 -13.883 61.458Mushroom PDG 16854 -1.883 3.776 6560 -13.95 1.792NB 35105 -1.883 9.517 28518 -14.421 8.058Table 5.9. Columns Mmax(log P (Q|E)) ontains the models of maximum loal auray, that is, averagelog probability of 1000 random queries. Columns Mmax(L(DB )) ontains models seleted maximallikelihood values over DB and assoiated e�etive size and average exeution time.
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5.5 The Hybrid Learning Approah
ordering is hanged, the models have lose to similar average exeution time.Next, onsider the models Mmax(log P (Q|E)) seleted for maximal empirial auray. Theordering of the three languages w.r.t. maximal empirial auray is the same as the orderingof languages w.r.t. maximal log-likelihood over DB for 4 of the 7 datasets. For the Letter,Abalone and Poisonous Mushroom datasets the BN language provides the most aurate modelw.r.t. log-likelihood over DB , however when doing the omparison w.r.t. empirial auraythe BN language no more provides the most aurate approximation.One last observation, for the Landsat data, we observe that the huge relative di�erenesin auray w.r.t. log-likelihood over DB does not reemerge when we measure auray bylog-likelihood over random queries.One possible explanation for why orderings w.r.t. auray hange when onsidering log-likelihood over random queries instead of log-likelihood over the full test data DB , ould bethe existene of a few unlikely data instanes in DB . Then BN models will often providea more smoothed model as they ontain fewer free parameters than NB and PDG models,as shown for two examples by the plot in Figure 5.7. The likelihood of the more smoothedmodel will then not be as sensitive to a few rare instanes in the data as the less smoothedmodels. However, when measuring auray by the log-likelihood over queries, this meansonly onsidering a marginal distribution over a subset of variables for every term in the sumof likelihoods. Therefore, the unlikely joint on�gurations may not be expressed in the subsetsof variables used in the queries, and the less smoothed models prevails over the more smoothedmodels.Lastly, the empirial measures of exeution time for PDG models is enouraging as ourprototype implementation performs ompetitively when ompared to the Hugin inferene en-gine.
5.4.2 Related WorkLowd and Domingos (2005) performs an empirial omparison muh like the one we have per-formed in this setion, though only omparing BN and NB models. The measure of e�ienyis based on omputing only the joint onditional posterior of a subset of variables given somerandom evidene. This is partiularly e�ient in NB models as every variable not partii-pating as a query variable or as evidene an immediately be removed from the omputation.In this setting, Lowd and Domingos (2005) show that NB models exhibit superior e�ienyto BN models, and that the auray of NB models is ompetitive with that o�ered by BNmodels. Our analysis shows that the omputational e�ieny of NB models does not extendto the inferene task of belief updating, and onerning auray we are unable to prolaimany language the winner.
5.5 The Hybrid Learning Approah

The hybrid learning approah disussed in Setion 4.6 ombines BN learning and PDGlearning. By using the lique tree (CT) of a BN model as the basis for a PDG struture,133



5 Comparative Analysis
we merge parameter nodes in the PDG struture with inreasing aggressiveness (see Algo-rithm 4.18). In this way, we aim at onstruting e�ient PDG models without trading o�auray, potentially improving on the e�ieny of the original BN model. In this setion, weevaluate the performane of PDG models learned using the hybrid approah. We use exatlythe BN models learned from real data as disussed in Setion 5.3.Before going into a detailed analysis of the full experiment, we will analyse a single exper-iment in some detail.Figures 5.10(a) and (b) show the result of the hybrid learning using a BN model learnedfrom the Abalone data. By the retangular point we mark the SL-oordinates of the BNmodel, and the points onneted by the dashed line orresponds to SL-oordinates of thePDG models obtained by ontinued merging of nodes. That is, the rightmost point on thedashed line orresponds to the PDG model obtained without merging and ollapsing of zero-in�ow nodes. The rest of the points in the plot then eah orresponds to the PDG modelobtained by inreasingly aggressive merge operations. The diamond marks the smallest PDGmodel that has higher or equal likelihood sore over training data DA ompared to the originalBN model. We denote this PDG model the �Best� PDG model.From Figures 5.10(a) and (b), we see that the initial translation from CT to PDG resultsin an inrease in e�etive size of the PDG model when omparing to the original e�etive sizeof the BN model indiated by the square. Also, an inrease in likelihood is observed, whih isexplained by the fat that parameters are re-estimated for the PDG model after the struturehas been onstruted from the CT of the BN model. For the CT model, parameters omediretly from the BN model and the CT therefore does not exploit the extended expressibilityof more parameters. Parameters ould have been re-estimated for the CT model, however,we use the more ommon approah of using parameters estimated in the BN model. Also, re-estimating parameters for the CT model obtained from a BN model would make our analysisless lear as learning has been performed only for the BN model and not the CT model.The most interesting observation from Figures 5.10(a) and (b), is that auray does notdeteriorate rapidly when the e�etive size is dereased by repeated merge operations. Thisshows us that the initial PDG model onstruted from the CT model ontains redundant pa-rameter nodes that are not needed in the approximation o�ered by the model. This redundantomplexity is then suessfully identi�ed and removed from the PDG by merge operations.
5.5.1 Disussion of ResultsFor eah dataset and eah BN model learned from the dataset, we summarise the importantobservations from three seleted experiments. For eah database, we have seleted experimentsusing the following BN models:1. the smallest e�etive size BN model,2. the BN model that attains the highest likelihood value over DB and3. a BN model with an e�etive size in between the two other models.134



5.5 The Hybrid Learning Approah
For eah of the 7 datasets, these 3 seleted experiments are summarised in Table 5.10. Eahexperiment is summarised in form of the SL-oordinates of the original BN model, the SL-oordinates of the �Best� PDG model, and the relative improvement of the �Best� PDG modelover the original BN model. Relative improvement for a value is alulated as:

Relative Improvement =
BN − Best PDGBN .

Please refer to Appendix A.4 for summaries of all experiments and all datasets.The results summarised in Table 5.10 generally show that the hybrid approah (with fewexeptions) suessfully onstruts PDG models that dominate the original BN models inSL-spae, both when onsidering likelihood over DA and DB .The �rst experiment seleted for eah dataset is summarised in the �rst row within eahblok of three rows in Table 5.10. These are result of applying the hybrid approah to smalleste�etive size BN model that we learned for the given dataset. In these experiments we arenot always suessful in onstruting PDG models that improve on the original BN model(Page-bloks and Letter Reognition being exeptions). This observation is not surprising,as the BN model that we try to improve is quite ompat in the �rst plae. Therefore, notmany super�uous parameter nodes exists in the PDG representation of the CT model, andthe merge operations are not able improve on the size by removal of nodes without reduingauray.For the seond row experiments we use a BN model of an e�etive size in between theoptimal BN model (w.r.t. likelihood over DB ) and the simplest (smallest e�etive size). Herewe more onsistently observe an improvement by the best PDG model over the initial BNmodel. For the Adult and Letter Reognition datasets we observe a small degradation inlikelihood (2% and 0.6% when measure over DB ). For the Landsat dataset, however, thedegradation in likelihood over DB is severe (40.2%). Figure 5.11 shows a detailed plot of thispartiular experiment, and we see that a few merges results in a major derease in likelihoodover DB (Figure 5.11(b)). This partiular dataset previously has proved di�ult for diretlearning of PDG models (Setion 5.3) and we are therefore not surprised to �nd this partiulardataset ausing problems for the hybrid approah also. PDG models seem to fail in smoothingthe representation su�iently and instead aptures the empirial distribution of DA too losely,yielding the poor generalisation power to the instanes of DB .Figure 5.11 on page 139 shows plots of the SL oordinates of all the PDG models visitedin this experiment. From this we see that the ollapsing of zero in�ow nodes redues sizedramatially, and the result is a PDG model that already sores worse on DB ompared tothe original BN model (marked by the square). With the ollapsing of zero in�ow nodes, thePDG model keeps only the parameters neessary for apturing the distribution of DA. Thehuge joint state-spae of the observable variables of the Landsat data (≈ 1025) in ombinationwith the small size of the dataset (6435), the empirial distribution is not expeted to providea good estimate of the generative distribution. However, by ollapsing zero in�ow nodes wederease the models ability to smooth over DB by removing (amongst others) parameters thatare only reahed by instanes of DB . 135



5 Comparative Analysis
If we investigate the measured exeution times, we observe some quite unexpeted timesespeially for Abalone, King Rook vs. King and Poisonous Mushroom. Here, the simplestmodels of smallest e�etive size also had the longest exeution times. When pro�ling theimplementations in detail we found that the extra time was used on tuning the smoothingfator by the tuneSmooth proedure (Alg. 4.2). Spei�ally, when the optimal (unknown)smoothing value was relatively large, the initial values used in the searh was quite poorlyhosen by an internal tuning proedure. This then yields a large number of ross validations,eah of whih inludes expensive data aess. This problem is implementation spei� issue,and as we did not experiene problems for examples of a more typial e�etive size, we willnot spend more time on this.We also applied the hybrid learning approah to BN models learned from the synthetidatasets, the results are summarised in Table 5.11. The results are di�erent from the resultssummarised in Table 5.10 in that the relative improvements in e�etive size are smaller. Oneobvious explanation is that the BN models that in this experiment set of experiments hassmaller e�etive size (that is, smaller CT models) and therefore the potential size improvementis smaller. For the larger models (espeially for Hail�nder and Rnd15), we still observe asigni�ant improvement in size and at the prize of a fairly limited degradation in log-likelihood.This is espeially pleasing to observe as these two datasets previously aused problems fordiret learning of PDG models (see Setion 5.2).When inspeting the exeution times, we again observe problems with the smaller models.This is similar to what we already observed in the summary in Table 5.10, and again originatesfrom a bad hoie of initial values for the tuneSmooth proedure.The hybrid approah to learning PDG models has proven to be a feasible approah toobtaining good PDG models. We typially observe a signi�ant redution in e�etive size whenomparing the best PDG model to the original BN model at a limited ost in auray andgeneralisation to new ases. The only experiments that fail in this respet are the ones usingBN models learned from the Landsat data. This is not entirely unexpeted, as the Landsatdata proved to be one of the harder problems for the PDG learning algorithm as previouslydisussed in Setion 5.3. The dataset on whih the hybrid approah is most suessful is thePoisonous Mushroom data. Again, this is not surprising when remembering that the PDGlearner was also observed to be most suessful on exatly this dataset (see Setion 5.3).
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31.0

8375-13.734-13.7713935-13.210-13.2860.530.0380.035
74.9

13875-13.239-13.3628045-12.502-12.5770.420.0560.059
51.1

Abalone

190-10.915-10.851270-10.904-10.837-0.4210.0010.001
66.9

2700-10.445-10.475758-10.362-10.4230.7190.0080.005
38.5

4575-10.401-10.4421003-10.346-10.4870.7810.005-0.004
59.8

Adult

950-16.388-16.473965-16.380-16.468-0.0160.0000.0001654.9

18966-16.016-16.19014316-16.011-16.2900.2450.000-0.0062038.6

62270-15.993-16.18231564-15.860-16.4400.4930.008-0.0162068.2

King,Rookvs.King
120-18.413-18.426124-18.412-18.426-0.0330.0000.0001461.8

3744-16.957-17.0922906-16.919-17.0650.2240.0020.0021035.9

6912-16.700-16.8805782-16.633-16.8350.1630.0040.0031053.3

Landsat

910-43.622-43.7051210-43.605-43.703-0.3300.0000.000
266.9

383000-36.030-36.41949583-35.532-51.0440.8710.014-0.402
463.4

760375-35.989-36.30464796-35.836-55.7760.9150.004-0.5361413.4

LetterReognition
3119-28.759-28.6092683-28.372-28.2750.1400.0130.0122049.2

74075-24.037-24.31119660-23.886-24.8090.7350.006-0.022679.5

141675-23.477-23.87262494-23.317-25.2540.5590.007-0.0582714.3

PoisinousMushroom
121-32.332-32.283123-32.332-32.283-0.0170.0000.0001737.4

114741-14.281-14.1942212-13.747-13.7720.9810.0370.030
113.5

208333-13.924-13.8832010-13.564-13.5600.9900.0260.023
141.4

Table5.10.SummaryofthehybridapproahtolearningPDGmodels.Foreahdatasetthreeexperimentshavebeenseleted(seeSetion5.5.1

fordetails).Eahrowthenorrespondstooneexperiment.Thethreeolumnswithheadline'BN'showsSLoordinatesfortheinitialBNmodel;

thethreeolumnswithheadline'PDG'showsSLoordinatesforthebestPDGmodels;andthethreeolumnswithheadline'RelativeDi�erene'

showstherelativeimprovementoverBNSLoordinatesbythebestPDGSLoordinates.Thelastolumnontainsexeutiontimeinseonds,

notinludinglearningoftheoriginalBNmodel,butinludingtheCTonstrutionandtranslationfromCTtoequivalentPDG.
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5.5 The Hybrid Learning Approah
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(b)Figure 5.11. SL oordinates for all PDG models visited in experiment 3 of the Landsat data. The SLoordinates of the BN model is marked by the square. This experiment is summarised in the seondrow of the Landsat blok in Table 5.10 on the preeding page. Log likelihoods are per data instane.
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5 Comparative Analysis
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Alarm

142-18.342-18.618171-18.500-18.431-0.204-0.0090.012916.6

335-13.847-14.047538-13.937-13.848-0.606-0.0060.0141881.8

624-13.666-13.868858-13.741-13.669-0.375-0.0050.0141688.9

Hail�nder

1628-71.678-71.7501957-71.618-71.698-0.2020.0010.001
232.5

4820-70.842-70.9894778-70.787-71.0270.0090.001-0.001
307.1

8472-70.804-70.9765691-70.761-71.1620.3280.001-0.003
335.5

NB10

300-21.222-21.306463-21.220-21.305-0.5430.0000.0001022.2

2772-20.842-21.0593550-20.758-21.092-0.2810.004-0.0021018.0

5220-20.687-21.0519074-20.564-21.166-0.7380.006-0.0051111.5

NB20

179-20.172-20.170224-20.151-20.155-0.2510.0010.0011018.0

1296-19.895-20.0131425-19.889-20.010-0.1000.0000.0001002.3

4320-19.819-19.9914193-19.810-20.0830.0290.000-0.0051050.5

Rnd15

42-16.229-16.256
46-16.229-16.256-0.0950.0000.0001671.8

657-14.872-14.913577-14.865-14.9080.1220.0000.000
947.5

1080-14.837-14.903607-14.833-14.9090.4380.0000.000
964.5

Rnd20

51-20.977-20.991
56-20.977-20.991-0.0980.0000.0002847.1

224-18.580-18.570233-18.515-18.505-0.0400.0030.0041786.3

674-18.079-18.129669-18.077-18.1340.0070.0000.0001683.1

Table5.11.SummaryofthehybridapproahtolearningPDGmodelsfromsyntheti.Themodelsusedintheexperimentsreportedherewhere

seletedinthesamewayasthosereportedforreal-data,seeTable5.10.
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Chapter 6
Conlusion

In this dissertation, we have addressed aspets of unsupervised learning of PGMs. We haveproposed algorithms for learning three di�erent PGM languages, and performed a omparativeanalysis of the tradeo�s o�ered by di�erent the di�erent models we are able to learn.The task of learning Bayesian Network models from data an be viewed as the task ofreovering the true model representing the generative distribution, the strong assumption ofdata being samples of a DAG-faithful distribution has to be satis�ed. Algorithms like theSGS algorithm (Spirtes et al., 2000) and the GES algorithm Meek (1997) exhibit asymptotioptimality when learning from suh data sampled from DAG-faithful distributions. However,in pratie the assumption of DAG faithfulness is unrealisti, and even when it is satis�ed, theavailable sample may be too small, yielding suboptimal results for the asymptotially optimalproedures. In Setion 4.3, we presented the KES proedure for learning Bayesian Networkmodels. The KES proedure generalises the greedy searh employed by the GES proedure(Meek, 1997) by o�ering a parameterised tradeo� between greediness and randomness in thesearh. KES maintains the asymptoti optimality of the GES proedure, while often avoidinglow quality suboptimal models. In Setion 4.3.4, we reported on initial experiments with theKES proedure. By multiple restarts of KES using a non-greedy setting (k < 1.0) we showed thatthe number of loal inlusion optimal models that exists for a limited data-sample of a DAG-faithful distribution an be huge. While the greedy searh of GES is inherently deterministi,the introdution of the stohasti searh in KES broadens the �eld of vision of the searh. Themodel reovered by the greedy searh an be suboptimal when the sample is too small, andintroduing a broader stohasti searh an result in better models (e.g., see Figure 4.8(b)).The importane of investigating more loal optima beomes very lear for distributions thatare not DAG-faithful. Suh data may misguide the greedy searh to a suboptimal model, seeFigure 4.6. In most realisti settings, data will be limited and, in addition, DAG-faithfulnesswill be violated. Therefore, the pratial appliability of greedy heuristis are limited andstohasti searhes are to be preferred.Jaeger (2004) introdues the language of Probabilisti Deision Graphs (PDGs) as a gen-eral representation framework for joint probability distributions. PDGs an apitalise on theexistene of CSI relations in providing a ompat and omputationally e�ient representa-tion. The omputational struture used for general inferene and belief updating is the PDG141



6 Conlusion
representation itself, and no extra ompilation step is needed. In Setion 4.5, we present aheuristi proedure for learning PDG models from data. The proedure is omposed of twooneptually disjoint phases. First, we indue a forest struture over the domain of variables.Seond, we optimise a PDG struture over this variable forest. We use loal split and mergeoperations, and for guiding the appliation of these operators we use both heuristi and exatmeasures of sore improvement. In Setion 4.5.2, we perform preliminary tests that demon-strates the ability of our proposed proedure to reover PDG models from data that o�eraurate and e�ient approximations of the generative distribution.In Setion 4.6 we proposed a proedure for learning PDG models from Clique Tree (CT)representations. By using CT representations obtained from a learned BN model, we om-bine BN learning and PDG learning in a hybrid approah. In this way, we provide a PDGrepresentation that is equivalent to the CT representation in that it an represent the sameset of joint probability distributions. In addition, by using data we optimise the e�ienyof the PDG representation by estimating parameters and then removing redundant nodes bymerging. In this way, we exploit CSI relations to ahieve a more ompat representation.In Chapter 5 we performed a omparative analysis of the performane of BN, PDG andNaïve Bayes (NB) models, when learned from data. Our main goal was to evaluate theperformane of the di�erent model languages when models are learned from data. In thisanalysis, we both used syntheti data sampled from distributions represented by PGMs andreal world data. In our omparison, we wanted to emphasise the omputational e�ienyas a main fator of omparison. We onsidered the task of probabilisti belief updating asthe main omputational task for PGMs and, therefore, identi�ed for eah modeling languageits e�etive size as a model spei� parameter in whih belief updating is omputable inlinear time. This enabled us to perform a fair ross-language omparison of (theoretial)omputational omplexity. Conerning the auray of the approximation o�ered by models,we used the log-likelihood of a separate test-dataset DB . These two measures were ombinedin SL-urves, and we used suh plots as the basis of one part of the analysis.First, we analysed SL-urves of learning from syntheti data in Setion 5.2. The analysisshowed some expeted and some unexpeted outomes. BN models and NB models bothproved superior when exposed to learning from data sampled from the given models, respetivelanguages, whih was also what we expeted to observe. For PDG models, we experienedsome problems in learning from randomly generated PDG models, where instead BN modelsproved to o�er more aurate approximations at a relatively low ost in e�etive size. Thiswas somewhat unexpeted, but it an be explained as another e�et of the �Ahilles heel�of our LearnPDGs proedure, namely the initial indution of a underlying variable forest. Inthe initial experiments of the proedure, we found that learning a good struture was not aneasy task and suboptimal forests often had a signi�ant impat on the PDG models that weatually learned (see Setion 4.5.2).Seond, we analysed SL-urves of learning from real data in Setion 5.3. One major resultof the analysis was the observation that BN models are less prone to over�tting the trainingdata than both BN and NBE models. We explained this observation by the fat that BNmodels typially have muh fewer free parameters than both NB and PDG models of similar142



e�etive size. For both PDG and NB models, there is a linear relationship between e�etiveand representational size (given a �xed variable forest for the PDG). For BN models, nosuh trivial relationship between representational and e�etive size exists, but the observedrelationship is typially sub-linear. Consequently, BN models do not gain representationalpower at the same rate as NB and PDG models when e�etive size is inreased and we,therefore, observe over�tting at a lower rate for BN models. That being said, the analysis wasunable to identify a lear winner among the three di�erent languages, and results are verymixed over the di�erent datasets.Third, in Setion 5.4 we performed an empirial analysis of omputational e�ieny bymeasuring exeution times on randomly generated queries. We used our own prototype imple-mentation of the in�ow/out�ow proedure for general belief updating in PDG models and forNB and BN models we used the Hugin1 inferene engine that implements a variation of thegeneral CT algorithm for exat inferene. In the results of these experiments, we were �rst ofall pleased to observe that our prototype implementation of PDG inferene was not ompletelyinomparable to the state-of-the-art implementation of the Hugin inferene engine. Next, wefound that the onlusions drawn from using e�etive size as a measure of e�ieny weremostly stable. That is, the ordering of language w.r.t. e�ieny did not hange by hangingthe measure of e�ieny from e�etive size to average measured exeution time. Next weonsidered the average log probability of randomly generated queries as an empirial measureof auray. Also here we found that the onlusions drawn from using the global measure oflog-likelihood of data were mostly stable. However, for one example we found that a relativelylarge di�erene in log-likelihood of data between the three models was dramatially reduedwhen hanging to the loal measure of log probability of random queries. This observationan be explained by the existene of a few rare ases in the training data, that only ontribute(negatively) to the omputations of the global measure of auray. For the loal measureusing randomly generated queries, suh extremely rare joint on�gurations are not sampled.Finally, in Setion 5.5 we analyse results of employing the hybrid approah to learning PDGmodels from CT representations ompiled from learned BN models. Mostly, the experimentsdemonstrates the ability of the hybrid approah for learning PDG models that when ompareto the original CT model o�ers a dramati redution in e�etive size without trading o�auray. In this way PDG models may o�er a more e�ient omputational struture forBN models than the more traditional CT algorithms. Compared to the related approahof ompiling Arithmeti Ciruits (ACs) from BN models by Darwihe (2002), our urrentproposal for hybrid learning neessitates an initial onstrution of a CT model from the BNmodel. Darwihe (2002) onstruts ACs diretly from the BN model and therefore avoids anypotential problems with onstruting the CT representation. On the other hand, the PDGlanguage allows subsequent re�nements in the form of merging of parameter-nodes and re-estimation of optimal parameters. The onstrution of AC representations from BN modelsby Darwihe (2002) exploits CSI relations that are identi�ed in the parameterisation of theBN model. A key di�erene between that framework and our hybrid learning is then that wedo not investigate the parameters of the CT model to exploit any CSI relations there may be.1http://www.hugin.om/ 143
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6 Conlusion
Instead we turn to data and reestimate parameters and from here we exploit CSI relationsindiretly by merging parameter-nodes. Our exploitation of CSI relations is therefore not veryexpliit, as we will onsider any pair of nodes for merging, given the assoiated parameters aresu�iently lose and without requiring that parameters math exatly. When working withreal-world data we do not always expet CSI relations to manifest themselves learly in dataas noise may blur the image. Therefore, the merging of nodes seems a reasonable approahto optimising PDGs for size, and indeed in Setion 5.5 we have shown good performane ofPDG models learned by the hybrid approah when ompared to the original CT model.
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List of Symbols

A (Y) Partition generated by set if disrete random variables Y, page 9.
adjG(X) Set of nodes adjaent to X in graph G, page 11.
pa∗

G(A) Minimal anestral set of nodes A in graph G, page 12.
BD

G Parameterised BN model with DAG struture G and ML parameters θ estimatedfrom data D, page 58.
chG(X) Set of hildren of node X in graph G, page 12.
Y⊥⊥U|Z[P ] Conditional independene of Y and U given Z under distribution P , page 8.
D Sampled data, page 11.
DA Part of data D used for training, page 52.
DB Part of data D exlusively used for evaluation purposes, page 52.
deG(X) Set of desendants of node X in graph G, page 12.
de∗

G(X) deG(X) ∪X, page 12.
sizeeff (M) E�etive size of model M , see (3.20) for BN models, (3.48) for PDG models and(3.59) for NB models, page 27.
I (B,C ) Partition generated by interseting partitions B and C , page 9.
IB(M(G)) Inlusion boundary of BN model M(G), page 22.in(ν) Edges in a PDG struture inoming to node ν., page 85.
ifl(ν) In�ow of parameter-node ν, page 37.
Gm Moral graph of graph G, page 12.
ndG(X) Set of non-desendants of node X in graph G, page 12.
ν Parameter-node in PDG struture, page 29.
ofl(ν) Out�ow of parameter-node ν, page 38.
P (X) Probability distribution of random variable X, page 6.145



List of Symbols
pν

l Element l in pν , page 29.
pν Parameter vetor for parameter-node ν, page 29.
paG(X) Set of parents of node X in graph G, page 12.
Path(ν,Y) Set of joint instantiations of Y reahing ν, page 33.
pa∗

G(X) Set of predeessors of node X in graph G, page 12.
P (X) Joint probability distribution of random variables X, page 7.
reach(i,X) Parameter-node reahed by x in Vi, page 32.
R(X) The set of mutually exlusive joint states of disrete random variables X, page 7.
R(X) The set of mutually exlusive states of disrete random variable X, page 6.
GA Subgraph of graph G indued by subset of nodes A, page 11.
succ(νi, Xj , xi,h) The suessor of parameter-node νi ∈ Vi for hild variable Xj and for outgoingedge label-led xi,h ∈ R(Xi), page 29.
Vi Set of parameter-nodes in PDG struture label-led with variable Xi, page 29.
x[Y] The projetion of joint state x ∈ R(X) onto a subset Y ⊆ X, page 7.
X,Y,Z, . . . Sets of random variables, page 7.
x,y, z, . . . Joint states or of sets of random variables, page 7.
X,Y, Z, . . . Random variables, page 6.
x, y, z, . . . States of random variables, page 6.
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Appendix A
Extended Test Results

In this appendix we omplete the results for learning from syntheti data (see Setion 5.2),learning from real data (see Setion 5.3), empirially measurements of e�ieny and auray(see Setion 5.4) and for the hybrid learning approah (see Setion 5.5). Setion A.1 ontainsresults from experiments on syntheti data in the form of SL-urves. Setion A.2 ontains SL-urves from experiments with real data. Setion A.3 ontains plots of empirial measurementsof omputational e�ieny and auray.
A.1 SL-Curves for Learning from Syntheti Data

Below we bring SL-urves to omplete the results of the experiments on data generatedfrom syntheti data. We inlude the SL-urves for experiments that was previously not expli-itly reported in the analysis in Setion 5.2, but only in the summary in table 5.4 on page 120.That is, for data sampled from the Hail�nder BN model (�gure A.1), from the NB20 NBmodel (�gure A.2) and from the Logi1, Logi3 and Rnd20 PDG models (�gures A.3, A.4 andA.5 respetively).
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A Extended Test Results
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(b)Figure A.1. SL-urves for models learned from the Hail�nder data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL oordinates for the generative model is marked with asquare.
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A.1 SL-Curves for Learning from Syntheti Data
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(b)Figure A.2. SL-urves for models learned from the NB20 data, for likelihood values over training data
DA (a) and test data DB (b). The SL oordinates for the generative model is marked with a square.
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(b)Figure A.3. SL-urves for models learned from the Logi1 data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL oordinates for the generative model is marked with asquare.
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A.1 SL-Curves for Learning from Syntheti Data
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(b)Figure A.4. SL-urves for models learned from the Logi3 data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL oordinates for the generative model is marked with asquare.
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(b)Figure A.5. SL-urves for models learned from the Rnd20 data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL oordinates for the generative model is marked with asquare.
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A.2 SL-Curves for Learning from Real Data
A.2 SL-Curves for Learning from Real Data

In this setion we bring SL-urves to omplete the results of learning PGMs from realdata. We inlude SL-urves for the experiments that was previously not expliitly inluded inthe analysis of this set of experiments in Setion 5.3, but only represented in the summariesof tables 5.6 on page 125 and 5.7 on page 127.
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(b)Figure A.6. SL-urves for models learned from the Page-bloks data.
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(b)Figure A.7. SL-urves for models learned from the Letter Reognition data.

162



A.2 SL-Curves for Learning from Real Data
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(b)Figure A.8. SL-urves for models learned from the King, Rook vs. King data.
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(b)Figure A.9. SL-urves for models learned from the Poisonous Mushroom data.
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A.2 SL-Curves for Learning from Real Data
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(b)Figure A.10. SL-urves for models learned from the Landsat data.
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A Extended Test Results
A.3 Analyses of Empirial E�ieny and Auray

In this setion we omplete the results of the empirial analysis of omputational e�ienyand auray reported in Setion 5.4. We bring plots of empirial measures of exeution timevs. e�etive size and the least squares �t to a line, whih was previously only summarisedby the slope of the �t in table 5.8 on page 130. We also bring SL-urves produed by usingempirially measured auray that was previously summarised in table 5.9 on page 132.
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A.3 Analyses of Empirial E�ieny and Auray
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A.3 Analyses of Empirial E�ieny and Auray

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0  10000  20000  30000  40000  50000

A
v
er

ag
e 

L
o
g
-l

ik
el

ih
o
o
d

Effective model size

Poisonous mushroom - emperical accuracy

BN
NB
PDG

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0  10000  20000  30000  40000  50000

A
v
er

ag
e 

ex
ec

u
ti

o
n
 t

im
e 

(m
s)

Effective model size

Poisonous mushroom - empirical efficiency

BN
BN fit

NB
NB fit

PDG
PDG fit(b)Figure A.14. Empirial average auray (a) and average exeution time (b) vs. e�etive size for thePoisonous mushroom dataset.

169



A Extended Test Results

-6

-5.5

-5

-4.5

-4

-3.5

 0  15000  30000  45000  60000  75000

A
v
er

ag
e 

L
o
g
-l

ik
el

ih
o
o
d

Effective model size

Landsat - emperical accuracy

BN
NB
PDG

(a)

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  15000  30000  45000  60000  75000

A
v
er

ag
e 

ex
ec

u
ti

o
n
 t

im
e 

(m
s)

Effective model size

Landsat - empirical efficiency

BN
BN fit

NB
NB fit

PDG
PDG fit(b)Figure A.15. Empirial average auray (a) and average exeution time (b) vs. e�etive size for theLandsat dataset.

170



A.4 Detailed Results from Hybrid Learning
A.4 Detailed Results from Hybrid Learning

In this setion, we omplete the results of applying hybrid learning on both real andsyntheti datasets. Summaries were previously given in tables 5.10 on page 138 and 5.11.Here we present results of all BN models learned from eah dataset. In the table below, eahrow orresponds to one experiment of exposing a spei� BN model for the hybrid learningapproah desribed in Setion 5.5.BN Best PDG Relative Di�erene Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)1000 -14.512 -14.607 675 -14.363 -14.482 0.325 0.01 0.009 312500 -13.758 -13.927 2600 -13.525 -13.637 -0.04 0.017 0.021 49.93000 -13.859 -14.069 2990 -13.388 -13.635 0.003 0.034 0.031 39.14000 -13.465 -13.513 3520 -13.066 -13.137 0.12 0.03 0.028 43.54000 -13.937 -14 3145 -13.389 -13.463 0.214 0.039 0.038 38.24875 -13.788 -13.924 3700 -13.265 -13.417 0.241 0.038 0.036 474875 -13.796 -14 5510 -13.365 -13.604 -0.13 0.031 0.028 37.28375 -13.734 -13.771 3935 -13.21 -13.286 0.53 0.038 0.035 74.99875 -13.808 -13.922 8885 -13.028 -13.179 0.1 0.056 0.053 43.810375 -13.794 -13.902 4780 -13.157 -13.25 0.539 0.046 0.047 61.210875 -13.774 -13.87 7575 -12.966 -13.104 0.303 0.059 0.055 52.613875 -13.239 -13.362 8045 -12.502 -12.577 0.42 0.056 0.059 51.122750 -13.26 -13.384 7850 -12.435 -12.472 0.655 0.062 0.068 48.725250 -13.529 -13.696 9045 -13.252 -13.338 0.642 0.02 0.026 69.535250 -13.228 -13.373 8390 -12.491 -12.569 0.762 0.056 0.06 56.2Table A.1. Summary of hybrid learning on Page-bloks data.

BN Best PDG Relative Di�erene Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)190 -10.915 -10.851 270 -10.904 -10.837 -0.421 0.001 0.001 66.9825 -10.572 -10.614 603 -10.499 -10.59 0.269 0.007 0.002 42.9950 -10.729 -10.762 503 -10.674 -10.69 0.471 0.005 0.007 34.41700 -10.495 -10.552 933 -10.404 -10.503 0.451 0.009 0.005 45.42700 -10.445 -10.475 758 -10.362 -10.423 0.719 0.008 0.005 38.54575 -10.401 -10.442 1003 -10.346 -10.487 0.781 0.005 -0.004 59.8Table A.2. Summary of hybrid learning on Abalone data.
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A Extended Test Results
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)950 -16.388 -16.473 965 -16.38 -16.468 -0.016 0 0 1654.92087 -16.137 -16.256 2224 -16.12 -16.252 -0.066 0.001 0 1833.32087 -16.138 -16.258 2224 -16.12 -16.252 -0.066 0.001 0 18352119 -16.136 -16.259 2287 -16.117 -16.251 -0.079 0.001 0 1802.22286 -16.249 -16.357 1384 -16.235 -16.346 0.395 0.001 0.001 1508.22491 -16.229 -16.331 1652 -16.229 -16.336 0.337 0 0 1488.62559 -16.125 -16.252 2563 -16.099 -16.241 -0.002 0.002 0.001 1667.84826 -16.12 -16.251 2881 -16.1 -16.249 0.403 0.001 0 1583.55191 -16.101 -16.235 3859 -16.065 -16.242 0.257 0.002 0 1880.46795 -16.097 -16.234 3477 -16.072 -16.248 0.488 0.002 -0.001 1849.89331 -16.072 -16.226 8300 -16.027 -16.273 0.11 0.003 -0.003 1855.913910 -16.082 -16.221 11694 -16.032 -16.34 0.159 0.003 -0.007 1923.416586 -16.036 -16.198 15152 -15.959 -16.258 0.086 0.005 -0.004 1945.518966 -16.016 -16.19 14316 -16.011 -16.29 0.245 0 -0.006 2038.662270 -15.993 -16.182 31564 -15.86 -16.44 0.493 0.008 -0.016 2068.2Table A.3. Summary of hybrid learning on Adult data.

BN Best PDG Relative Di�erene Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)120 -18.413 -18.426 124 -18.412 -18.426 -0.033 0 0 1461.8256 -18.1 -18.115 290 -18.1 -18.114 -0.133 0 0 1428.1280 -18.062 -18.08 314 -18.062 -18.078 -0.121 0 0 1253.7864 -17.834 -17.87 986 -17.696 -17.739 -0.141 0.008 0.007 1255.4864 -17.834 -17.87 986 -17.696 -17.739 -0.141 0.008 0.007 1256.91136 -17.597 -17.663 1314 -17.587 -17.654 -0.157 0.001 0.001 993.83744 -16.957 -17.092 2906 -16.919 -17.065 0.224 0.002 0.002 1035.95184 -16.982 -17.096 1958 -16.92 -17.013 0.622 0.004 0.005 1043.46912 -16.7 -16.881 5782 -16.633 -16.835 0.163 0.004 0.003 1045.16912 -16.7 -16.88 5782 -16.633 -16.835 0.163 0.004 0.003 1053.37936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1051.47936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 10597936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1060.57936 -16.852 -16.982 6232 -16.713 -16.884 0.215 0.008 0.006 1061.77936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1049.77936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1060.17936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1047.39216 -16.777 -16.93 5206 -16.709 -16.888 0.435 0.004 0.002 1041.5Table A.4. Summary of hybrid learning on KRvK data.
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A.4 Detailed Results from Hybrid Learning
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)910 -43.622 -43.705 1210 -43.605 -43.703 -0.33 0 0 266.9910 -43.622 -43.705 1210 -43.605 -43.703 -0.33 0 0 265.21900 -42.416 -42.464 1887 -42.144 -42.252 0.007 0.006 0.005 170.91925 -42.326 -42.485 1555 -42.168 -42.407 0.192 0.004 0.002 153.42275 -42.322 -42.463 1742 -42.082 -42.354 0.234 0.006 0.003 1652625 -42.356 -42.405 1925 -42.069 -42.348 0.267 0.007 0.001 138.42825 -42.053 -42.073 2061 -41.909 -41.989 0.27 0.003 0.002 180.86200 -41.055 -41.103 3167 -40.655 -40.951 0.489 0.01 0.004 171.119050 -40.122 -40.283 6170 -39.979 -40.881 0.676 0.004 -0.015 147.5157650 -41.124 -41.354 38565 -40.87 -51.047 0.755 0.006 -0.234 268.7323400 -36.55 -36.876 53070 -35.924 -52.307 0.836 0.017 -0.418 382.1335800 -38.679 -38.865 48932 -37.11 -50.91 0.854 0.041 -0.31 421383000 -36.03 -36.419 49583 -35.532 -51.044 0.871 0.014 -0.402 463.4445000 -36.035 -36.465 53415 -35.12 -53.028 0.88 0.025 -0.454 463.9678875 -36.21 -36.535 60392 -35.73 -54.43 0.911 0.013 -0.49 1351.1685500 -36.264 -36.707 58798 -35.509 -56.045 0.914 0.021 -0.527 505.8741375 -36.015 -36.425 58963 -34.995 -55.784 0.92 0.028 -0.531 1897.6743375 -36.1 -36.362 67371 -35.972 -55.812 0.909 0.004 -0.535 1363.5760375 -35.989 -36.304 64796 -35.836 -55.776 0.915 0.004 -0.536 1413.4853875 -36.261 -36.679 68605 -35.299 -56.923 0.92 0.027 -0.552 1351.9966750 -36.228 -36.589 82237 -35.318 -63.261 0.915 0.025 -0.729 2870.2988250 -36.007 -36.425 62803 -35.487 -59.231 0.936 0.014 -0.626 2467.81082375 -36.177 -36.57 62990 -35.984 -58.839 0.942 0.005 -0.609 2028.31097875 -36.078 -36.553 73346 -35.221 -60.162 0.933 0.024 -0.646 2290.41861250 -35.75 -36.321 71141 -34.78 -58.26 0.962 0.027 -0.604 3229.9Table A.5. Summary of hybrid learning on Landsat data.
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)3119 -28.759 -28.609 2683 -28.372 -28.275 0.14 0.013 0.012 2049.25303 -29.112 -28.919 2069 -28.631 -28.493 0.61 0.017 0.015 1486.210321 -25.95 -25.9 11633 -25.615 -25.625 -0.127 0.013 0.011 1763.513025 -25.923 -25.883 10022 -25.812 -25.763 0.231 0.004 0.005 1708.413479 -26.184 -26.096 6512 -26.071 -26.052 0.517 0.004 0.002 2212.427775 -25.678 -25.66 19875 -25.586 -25.748 0.284 0.004 -0.003 1673.128275 -25.523 -25.574 25282 -25.365 -25.518 0.106 0.006 0.002 1878.230895 -25.971 -25.945 21826 -25.383 -25.525 0.294 0.023 0.016 2255.174075 -24.037 -24.311 19660 -23.886 -24.809 0.735 0.006 -0.02 2679.5110559 -25.141 -25.227 24862 -24.896 -26.144 0.775 0.01 -0.036 2752.4123455 -24.621 -24.827 34627 -24.464 -25.464 0.72 0.006 -0.026 2975.6123455 -24.627 -24.805 34627 -24.464 -25.464 0.72 0.007 -0.027 2958.9131125 -24.255 -24.495 38396 -24.178 -25.311 0.707 0.003 -0.033 3157.4141675 -23.477 -23.872 62494 -23.317 -25.254 0.559 0.007 -0.058 2714.3188845 -23.842 -24.165 54991 -23.772 -25.289 0.709 0.003 -0.047 2998.4447075 -23.875 -24.2 45407 -23.869 -25.544 0.898 0 -0.056 3897.1Table A.6. Summary of hybrid learning on Letter data.
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A Extended Test Results

BN Best PDG Relative Di�erene Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)121 -32.332 -32.283 123 -32.332 -32.283 -0.017 0 0 1737.4862 -20.301 -19.911 856 -19.627 -19.265 0.007 0.033 0.032 68.11382 -18.432 -18.067 1041 -17.831 -17.527 0.247 0.033 0.03 69.11646 -18.195 -17.878 1024 -17.248 -16.981 0.378 0.052 0.05 69.51707 -18.918 -18.564 977 -18.012 -17.771 0.428 0.048 0.043 70.32493 -17.317 -17.03 1289 -16.528 -16.329 0.483 0.046 0.041 75.43227 -17.678 -17.245 1231 -16.682 -16.369 0.619 0.056 0.051 71.85037 -16.182 -15.986 1674 -15.534 -15.423 0.668 0.04 0.035 71.95531 -14.898 -14.771 1860 -14.446 -14.373 0.664 0.03 0.027 72.56401 -14.487 -14.452 1945 -14.187 -14.165 0.696 0.021 0.02 72.211369 -15.197 -15.096 1573 -14.598 -14.556 0.862 0.039 0.036 71.811411 -15.607 -15.43 1500 -14.718 -14.616 0.869 0.057 0.053 72.314339 -14.505 -14.392 2272 -13.988 -13.96 0.842 0.036 0.03 75.634359 -14.284 -14.218 2171 -13.719 -13.712 0.937 0.04 0.036 79.443341 -14.197 -14.09 2167 -13.654 -13.623 0.95 0.038 0.033 82.868377 -14.207 -14.14 2288 -13.669 -13.676 0.967 0.038 0.033 87.970731 -14.268 -14.154 2139 -13.874 -13.789 0.97 0.028 0.026 9081463 -14.451 -14.39 2363 -13.949 -13.951 0.971 0.035 0.031 87.785477 -13.937 -13.931 1878 -13.535 -13.55 0.978 0.029 0.027 98.593183 -14.503 -14.429 1771 -13.997 -13.966 0.981 0.035 0.032 120.6114741 -14.281 -14.194 2212 -13.747 -13.772 0.981 0.037 0.03 113.5208333 -13.924 -13.883 2010 -13.564 -13.56 0.99 0.026 0.023 242.3215351 -14.426 -14.378 1902 -13.771 -13.803 0.991 0.045 0.04 141.4Table A.7. Summary of hybrid learning on Mushroom data.
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A.4 Detailed Results from Hybrid Learning
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)142 -18.342 -18.618 171 -18.5 -18.431 -0.204 -0.009 0.01 2924.5312 -13.963 -14.181 480 -14.066 -13.96 -0.538 -0.007 0.016 1994.8333 -13.853 -14.051 525 -13.943 -13.856 -0.577 -0.006 0.014 1870.1335 -13.847 -14.047 538 -13.937 -13.848 -0.606 -0.006 0.014 1882.4432 -13.735 -13.936 691 -13.821 -13.741 -0.6 -0.006 0.014 1888.2448 -13.686 -13.885 762 -13.765 -13.68 -0.701 -0.006 0.015 1749.9496 -13.678 -13.879 849 -13.756 -13.68 -0.712 -0.006 0.014 1762.1504 -13.675 -13.874 857 -13.752 -13.677 -0.7 -0.006 0.014 1755.3598 -13.671 -13.875 898 -13.744 -13.678 -0.502 -0.005 0.014 1726.4624 -13.666 -13.868 858 -13.741 -13.669 -0.375 -0.005 0.014 1694.2636 -13.666 -13.869 876 -13.741 -13.669 -0.377 -0.005 0.014 1702.8636 -13.666 -13.869 876 -13.741 -13.669 -0.377 -0.005 0.014 1696.7646 -13.665 -13.869 904 -13.74 -13.669 -0.399 -0.005 0.014 1815.3811 -13.665 -13.868 1246 -13.735 -13.672 -0.536 -0.005 0.014 1729.51632 -13.661 -13.871 2760 -13.716 -13.697 -0.691 -0.004 0.013 1710.21760 -13.657 -13.87 3215 -13.712 -13.69 -0.827 -0.004 0.013 1862.22862 -13.654 -13.872 5391 -13.688 -13.717 -0.884 -0.002 0.011 1910.26330 -13.652 -13.876 13736 -13.672 -13.755 -1.17 -0.001 0.009 1815.66372 -13.649 -13.876 12482 -13.659 -13.775 -0.959 -0.001 0.007 1708.125233 -13.638 -13.896 85277 -13.6 -13.873 -2.38 0.003 0.002 1751.8Table A.8. Summary of hybrid learning on Alarm data.
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)1628 -71.678 -71.75 1957 -71.618 -71.698 -0.202 0.001 0.001 236.41933 -71.266 -71.349 2573 -71.244 -71.348 -0.331 0 0 227.72289 -71.04 -71.131 2752 -71.031 -71.151 -0.202 0 0 248.12361 -71.053 -71.144 2867 -71.044 -71.183 -0.214 0 -0.001 265.22884 -70.917 -71.03 3508 -70.855 -71.033 -0.216 0.001 0 337.64070 -70.881 -71.008 4373 -70.824 -71.028 -0.074 0.001 0 259.84253 -70.876 -71.005 4646 -70.81 -71.029 -0.092 0.001 0 290.24622 -70.862 -70.997 4060 -70.81 -71.01 0.122 0.001 0 349.74639 -70.857 -71.002 4835 -70.793 -71.023 -0.042 0.001 0 274.54820 -70.842 -70.989 4778 -70.787 -71.027 0.009 0.001 -0.001 310.15226 -70.843 -70.993 5584 -70.822 -71.073 -0.069 0 -0.001 269.76776 -70.822 -70.991 5543 -70.766 -71.105 0.182 0.001 -0.002 440.47234 -70.832 -70.988 5144 -70.786 -71.071 0.289 0.001 -0.001 354.18472 -70.804 -70.976 5691 -70.761 -71.162 0.328 0.001 -0.003 339.838871 -70.8 -70.983 18351 -70.714 -72.133 0.528 0.001 -0.016 573.559098 -70.793 -70.988 32579 -70.75 -75.619 0.449 0.001 -0.065 4618.6Table A.9. Summary of hybrid learning on Hail�nder data.
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A Extended Test Results
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)300 -21.222 -21.306 463 -21.22 -21.305 -0.543 0 0 1032.9531 -21.138 -21.231 670 -21.096 -21.196 -0.262 0.002 0.002 951.1780 -21.081 -21.19 858 -21.032 -21.161 -0.1 0.002 0.001 983.2780 -21.104 -21.207 487 -21.097 -21.21 0.376 0 0 959.9906 -20.967 -21.112 1301 -20.964 -21.111 -0.436 0 0 1018.81041 -20.973 -21.12 1163 -20.95 -21.106 -0.117 0.001 0.001 961.51296 -20.886 -21.068 1638 -20.879 -21.075 -0.264 0 0 1010.81458 -20.87 -21.074 1559 -20.856 -21.077 -0.069 0.001 0 1026.21602 -20.92 -21.1 1697 -20.873 -21.09 -0.059 0.002 0 1005.72772 -20.842 -21.059 3550 -20.758 -21.092 -0.281 0.004 -0.002 1028.53276 -20.876 -21.062 3048 -20.732 -21.077 0.07 0.007 -0.001 1040.74128 -20.806 -21.061 7473 -20.676 -21.14 -0.81 0.006 -0.004 1035.35220 -20.687 -21.051 9074 -20.564 -21.166 -0.738 0.006 -0.005 1121.16264 -20.627 -21.053 9714 -20.554 -21.12 -0.551 0.004 -0.003 1080.819116 -20.486 -21.111 14794 -20.447 -21.336 0.226 0.002 -0.011 1345.6Table A.10. Summary of hybrid learning on NB10 data.

BN Best PDG Relative Di�erene Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)179 -20.172 -20.17 224 -20.151 -20.155 -0.251 0.001 0.001 1028.3275 -20.065 -20.09 403 -20.064 -20.088 -0.465 0 0 981.8280 -20.078 -20.102 388 -20.062 -20.097 -0.386 0.001 0 944.3391 -20.045 -20.077 580 -20.033 -20.073 -0.483 0.001 0 998.3555 -20.013 -20.056 1184 -19.987 -20.048 -1.133 0.001 0 998.4661 -19.995 -20.039 1387 -19.972 -20.031 -1.098 0.001 0 1009.1661 -20.001 -20.041 1373 -19.967 -20.032 -1.077 0.002 0 990.4934 -19.958 -20.027 1045 -19.938 -20.025 -0.119 0.001 0 1016.11000 -19.903 -20.01 1402 -19.903 -20.012 -0.402 0 0 990.11018 -19.93 -20.009 1236 -19.925 -20.012 -0.214 0 0 1017.71296 -19.895 -20.013 1425 -19.889 -20.01 -0.1 0 0 1012.12868 -19.88 -20.01 4771 -19.779 -20.044 -0.664 0.005 -0.002 1071.84320 -19.819 -19.991 4193 -19.81 -20.083 0.029 0 -0.005 1062.55952 -19.758 -20.004 7655 -19.605 -20.137 -0.286 0.008 -0.007 1078.76840 -19.618 -20.038 6662 -19.597 -20.093 0.026 0.001 -0.003 1065.9Table A.11. Summary of hybrid learning on NB20 data.
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A.4 Detailed Results from Hybrid Learning
BN Best PDG Relative Di�erene Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)42 -16.229 -16.256 46 -16.229 -16.256 -0.095 0 0 1677.188 -15.345 -15.361 110 -15.33 -15.343 -0.25 0.001 0.001 681.8103 -15.263 -15.274 114 -15.256 -15.276 -0.107 0 0 1131.9130 -15.154 -15.16 123 -15.153 -15.167 0.054 0 0 1091142 -15.157 -15.158 148 -15.129 -15.135 -0.042 0.002 0.002 1059.9219 -14.991 -14.998 211 -14.991 -14.991 0.037 0 0 1056.2231 -14.97 -14.977 263 -14.969 -14.968 -0.139 0 0.001 1001.8261 -14.953 -14.968 258 -14.952 -14.961 0.011 0 0 1018.3375 -14.901 -14.925 418 -14.9 -14.921 -0.115 0 0 955.3657 -14.872 -14.913 577 -14.865 -14.908 0.122 0 0 956.51080 -14.837 -14.903 607 -14.833 -14.909 0.438 0 0 973.92958 -14.8 -14.913 1188 -14.789 -14.958 0.598 0.001 -0.003 993.916065 -14.735 -14.989 10741 -14.701 -15.348 0.331 0.002 -0.024 1169.899387 -14.518 -15.351 19509 -14.325 -16.329 0.804 0.013 -0.064 1937.9135108 -14.617 -15.252 11169 -14.272 -17.672 0.917 0.024 -0.159 2148.3205578 -14.433 -15.626 14358 -14.17 -16.664 0.93 0.018 -0.066 2127.4271188 -14.636 -16.092 9885 -14.169 -16.718 0.964 0.032 -0.039 2240.7944784 -14.485 -16.309 11956 -13.35 -20.409 0.987 0.078 -0.251 5996.7Table A.12. Summary of hybrid learning on Rnd15 data.

BN Best PDG Relative Di�erene Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (seonds)51 -20.977 -20.991 56 -20.977 -20.991 -0.098 0 0 2861.4159 -18.837 -18.813 186 -18.791 -18.771 -0.17 0.002 0.002 1878.1203 -18.646 -18.629 238 -18.565 -18.543 -0.172 0.004 0.005 1736224 -18.58 -18.57 233 -18.515 -18.505 -0.04 0.003 0.004 1799.9674 -18.079 -18.129 669 -18.077 -18.134 0.007 0 0 1691.8772 -18.076 -18.131 627 -18.076 -18.136 0.188 0 0 1579.64332 -18.047 -18.136 1968 -18.014 -18.221 0.546 0.002 -0.005 1694.925488 -18.009 -18.156 11956 -17.969 -18.622 0.531 0.002 -0.026 1935.248564 -17.94 -18.241 12302 -17.912 -18.834 0.747 0.002 -0.033 2410131328 -17.76 -18.505 20418 -17.709 -20.074 0.845 0.003 -0.085 3272.9289008 -17.607 -18.772 31620 -17.164 -22.148 0.891 0.025 -0.18 4444727056 -17.529 -19.678 26614 -16.649 -26.175 0.963 0.05 -0.33 9434.2Table A.13. Summary of hybrid learning on Rnd20 data.
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Appendix B
On Expetation when Sampling

with Replaement

Let S be a set of N distint elements. Consider the experiment of sampling from S withreplaement, and let R be the size of a sample with replaement. De�ne the random variable
X on the sample spae of the NR di�erent possible sequenes of suh samples:

X(R) : Number of distint elements in a sample of size R. (B.1)Let new(K) be true if the K'th element drawn is an objet not drawn before, and falseotherwise. We an de�ne X(R) reursively as:
X(R) = X(R−1) + 1(new(R)), (B.2)where 1(·) is the indiator funtion, here assuming value 1 when the R'th draw results insampling an element we have not sampled before, and 0 otherwise.Theorem B.1The expeted value of X(R) is:
E[X(R)] =

R
∑

i=1

(

N − 1

N

)(i−1) (B.3)
Proof: We will prove the theorem by indution in R.For R = 1 we only draw a single whih will trivially always be distint from every otherelement drawn, and E[X(R)] = 1 from (B.3).Assume (B.3) holds for R− 1. For R we an then write the expetation as:

E[X(R)] = E[X(R−1)] + E[1(new(R))]. (B.4)By the indution hypothesis E[X(R−1)] is given by eq. (B.3), so we need to show that:
E[1(new(R))] =

(

N − 1

N

)R−1

. (B.5)
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B On Expetation when Sampling with Replaement
Let distint(k, l) be true if k distint elements have been sampled in the �rst l draws and falseotherwise. We an then derive an expression for E[1(new(n))].

E[1(new(R))] = P (new(R))

=
R−1
∑

k=1

P (new(R)|distint(k,R− 1)) · P (distint(k,R− 1))

=
R−1
∑

k=1

N − k

N
· P (distint(k,R− 1))

=
R−1
∑

k=1

P (distint(k,R− 1))−
R−1
∑

k=1

k

N
P (distint(k,R− 1))

= 1−
1

N
E[X(R−1)]

= 1−
1

N

R−1
∑

i=1

(

N − 1

N

)i−1

= 1−
1

N

R−1
∑

i=1

(N − 1)i−1

NR−2
NR−i−1

= 1−
1

NR−1

R−1
∑

i=1

(N − 1)i−1NR−i−1

=
1

NR−1

(

NR−1 −
R−1
∑

i=1

(N − 1)i−1NR−i−1

)

From this it is lear that to show relation (B.5), it is su�ient to show that:
NR−1 −

R−1
∑

i=1

(N − 1)i−1NR−i−1 = (N − 1)R−1 (B.6)
We show (B.6) by indution in R. For R = 1 (B.6) is satis�ed. Assume (B.6) is satis�ed for
R− 1, for R we then get:

NR−1 −
R−1
∑

i=1

(N − 1)i−1NR−i−1 = NR−1 −NR−2 −
R−1
∑

i=2

(N − 1)i−1NR−i−1

= NR−1 −NR−2 −
R−2
∑

i=1

(N − 1)iNR−i−2

= (N − 1)

(

NR−1 −NR−2

N − 1
−

R−2
∑

i=1

(N − 1)i−1NR−i−2

)

= (N − 1)

(

NR−2(N − 1)

(N − 1)
−

R−2
∑

i=1

(N − 1)i−1NR−i−2

)

= (N − 1)R−1
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The last equation is valid by the indution hypothesis and (B.6) is therefore true for all R,whih then onludes our proof for theorem B.1.
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Appendix C
Dansk Resumé

Dette resumé er en direkte oversættelse af nærværende afhandling med den danske titel OmLærring Uden Opsyn af Probabilistiske Gra�ske Modeller.Probabilistiske gra�ske modeller (PGM'er) er et matematisk begrebsramme til repræsen-tation af fælles sandsynligheds fordelinger over en mængde tilfældige variable (Cowell et al.,1999; Jensen, 2001; Lauritzen, 1996; Pearl, 1988). PGM'er er blevet en standard tilgang tilrepræsentation og håndtering af usikkerhed i Kunstig Intelligens. Også i de relaterede områdersom Mønster Genkendelse og Maskine Læring har PGM'er modtaget megen opmærksomhedog er blevet andvendt suesfuldt i talrige domæner (Bishop, 2006; Mithell, 1997; Duda et al.,2001).Når PGM'er bliver indlært fra data (til forskel fra manuelt konstrueret), bruges der ensoringsfunktion til at vurdere kvaliteten af modeller og derved diskriminere mellem alterna-tiver. Indlærings proeduren vælger så fra de alternative modeller den model der er optimalmht. soringsfunktionen. Typiske soringsfunktioner kombinerer en gevinst for præision meden straf for kompleksitet i en vægtet sum. Generelt kalder vi sådanne soreringsfunktioner forstra�ede sandsynligheds soringsfunktioner, og de antager følgende simple form:
S(M,D) = λ · L(D|M)− (1− λ) · size(M), (C.1)for PGM M , data D, sandsyndlighed L, og en afvejnings koe�ient 0 < λ < 1. Typisk vil an-tallet af forskellige alternative modeller være alt for stort til at kunne foretage en udtømmendesøgning, og studier har vist at mange instaner af lærings opgaver for PGM'er er NP-svære(Chikering et al., 2004; Chikering, 1996). Følgelig er det passende og ofte nødvendigt ipraksis at anvende heuristiske proedure.Studiet som rapporteres i denne afhandling har været fokusret på aspekter af indlæringaf PGM'er fra data. I det følgende vil vi kort diskutere de problemer vi behandler samt deløsninger vi foreslår.

En af de mest populære typer PGM'er er den Bayesianske Netværks (BN) model (Pearl,1988; Jensen, 2001). Indlæring af BN modeller har været genstand for megen opmærksomhedog både mere og mindre opløftende resultater er fundet. Mens det er blevet bevist at problemet183



C Dansk Resumé
at lære BN modeller som optimere (C.1) er et NP-svært problem (Chikering et al., 2004), erdet samtidig blevet vist at proedure der genskaber den optimale BN model ofte er brugbarefor mange relevante domæner (for eksempel SGS algoritmen (Spirtes et al., 2000) og GESalgoritmen (Chikering and Meek, 2002; Meek, 1997)). Disse lærringsproedure støtter sigimidlertid til den stærke antagelse omkring en data genererende proes der udviser relationeraf uafhængighed mellem de observerede variable som kan indkodes i den orienterede ikkeykliske gra�ske (eng. direted ayli graph eller DAG) struktur i en BN model, mao. enproes der er DAG-troværdig. Denne antagelse er ofte urealistisk i anvendelser i den virkeligeverden (dvs. ikke syntetisk konstruerede eksempler), og kvaliteten af de lærte modeller kanvære meget afhængig af hvorvidt denne antagelse er tilfredsstillet. Derfor kan den praktiskeanvendelighed af sådanne proedure være begrænset.I denne afhandling foreslår vi en simpel generalisering af en grådig søge proedure. Ved gen-eraliseringed introdueres en parameter der muliggør en afvejning af grådighed for tilfældighedi beslutnings strategien der guider søgningen. Ved at anvende �ere genstarter sammen meden stokastisk beslutnings strategi opretholder algoritmen den teoretiske optimalitet fra dengrådige søgning, og tilmed muliggør dette en bredere afsøgning af søgerummet. Dette vil blivevigtigt når den stærke antagelse af DAG-troværdighed bliver brudt. I sådanne tilfælde kandeterministisk søgning som grådig søgning vise sig at lede til en sub-optimal model mens enmultipel genstartet stokastisk søgning vil identi�ere �ere lokalt optimale modeller.

I de �este anvendelseområder er en af hovedopgaverne for PGM'er at være en repræsenta-tion som tillader e�ektive opdatering af marginale betingede sandsynligheder (eng. belief up-dating). Ved opdatering af marginale betingede sandsynligheder forstås proessen at beregnealle marginale sandsynligheder for alle variable betinget af observationer af en delmængdeaf variable. For BN modeller er dette problem NP-svært (Cooper, 1987).Ofte er det dogmuligt at �nde BN modeller som både udviser en håndterbare beregnelighed og stadig har entilstrækkelig præis repræsentation. På den anden side kan der nemt konstrueres eksemplerhvor enhver model som er mindre kompleks en den maksimalt komplekse model ikke vil værei stand til at repræsentere fordelingen præist (Jaeger, 2004; Beygelzimer and Rish, 2003).Sådanne udfordrene eksempler konstrueres typisk ved at de�nere fordelinger som indeholderkontekst-spei�kke (u)afhængigheds (eng. ontext-spei� (in)dependene eller CSI) relationer.Eksistensen af CSI relationer som ikke er repræsenterbare af en BN model har motiveret ud-viklingen af udvidelser til den originale BN model som e�ektivt kan repræsentere sådannefordelinger. Eksempler herpå er Baysian Multinets (BM) af Geiger and Hekerman (1996),Mixtures of Bayesian Networks (MBN) af Thiesson et al. (1997) og Reursive Bayesian Multi-nets (RBM) af Peña et al. (2002). Disse er alle variationer af den fælgende fælles arkitektur:en kontekst er de�neret af en distingiveret variabel eller mængde af distingiverede variable, ogbetinget på konteksten eksistere der så en BN model over de resterende variable. I MBN'erer konteksten de�neret ved en ikke observeret latent variabel, og i RBM'er er konteksten de-�neret ved en mængde observerede variable. Algoritmer for generelt at udføre probabilistiskeslutninger (som opdatering af tro) i disse modeller kan drage fordel af CSI relationer indkodet184



af modellen , men i sidste ende eksistere det generelle problem mht. beregning i BN modellerstadig.I denne afhandling foreslår vi en proedure til læring af Probabilistike Beslutnings Graf(eng. Probabilisti Deision Graph eller PDG) modeller. PDG sproget er en tilføjelse til denvoksende mængde af PGM repræsentations sprog til diskrete fælles sandsynligheds fordelinger(Jaeger, 2004). PDG'er tilbyder både en naturlig tilgang til indkodning af en vis klasse af CSIrelationer mellem de observerede variable og tilbyder også e�ektiv beregning. En særdelesindbydende egenskab ved PDG sproget er at repræsentations strukturen også udgør en primærstuktut til e�ektiv beregning af generel opdatering af marginale betingede sandsyndligheder.Dette er vigtigt for lærringsproedure når de lærte modeller senere skal bruges til sådanneopdateringer. I et sådant senario kan vi umiddelbart adskille modeller mht. beregnelighedskompleksitet ud fra den givne repræsentation. For mange andre relevante PGM sprog er detikke trivielt at udlede et meningsfuldt mål for kompleksitet af beregnelighed - i særdelesheder dette tilfældet for BN modeller hvor bestemmelse af beregningskompleksitet involvere etNP-komplet optimerings problem (Arnborg et al., 1987).
Det er ofte nødvendigt at antage at data er komplet i den forstand at der ikke forekommerlatente (ikke observerede) variable der påvirker de observerede variable gennem ikke trivielleinteraktioner. Dette er dog ofte en meget stærk antagelse og kan være inkonsistent med dengenerelle forståelse af domænet som domæne eksperter måtte have. Eksistensen af sådannelatente variable kan give en data genererende proes som udviser en mængde relationer afuafhængighed som ikke kan repræsenteres i DAG strukturen af BN modeller. Den ekspliittegenskabelse af sådanne latente variable er en ambitiøs opgave. Ikke desto mindre har mangestudier i den seneste tid efterfulgt en løsning til problemer forbundet med læring af latentevariable både i en generel DAG struktureret BN model (Elidan, 2004) og også med fous påhierarkiske (træ) strukturer (Kar£iauskas, 2005). En træ-struktureret BN model som mod-ellere alle observerede variable som betinget uafhængige givet tilstanden af en enkelt latentvariabel (normalt benævnt en Naiv Bayes (NB) model), er blevet studeret omfattende til prob-abilistisk blød klynge-inddeling (eng. lustering) af datapunkter (Duda et al., 2001). Sådannemodeller kan dog også nemt og naturligt anvendes til generel beregning af probabilistiskeslutninger. Et forholdsvist nyt studie sammelignede BN of NB modeller og resultaterne faldtud til NB sprogets fordel mht. beregnings kompleksitet og præisionen af repræsentationen(Lowd and Domingos, 2005).I denne afhandling udfører vi en komparativ analyse af forskellige PGM sprog, deres evnetil e�ektivt og præist at repræsentere en tilnærmelse af en given sandsynlighedsfordeling ogvores evne til at lære sådanne modeller fra en endelig database. Sådanne analyser er ikkenye, og we tilføjer derfor blot vores resultater til resultater fra tilsvarende analyser foretageti tidligere studier så som den komparative analyse af empiriske målinger af e�ektivitet ogpræision af BN og NB modeller af Lowd and Domingos (2005) og det mere teoretiske studieaf udvalget af forskellige tilnærmelser som er mulige i BN modeller af Beygelzimer and Rish(2003). I vores analyse anvender vi først som analytisk værktøj SL-kurver. SL-kurver viser enkarakteristik af et sprog ved at plotte e�ektivitet og præision af modeller fra sproget. Som185



C Dansk Resumé
et mål for e�ektivitet bruger vi beregningskompleksitet hvilket er en teoretisk kvantitet, mensvi for præision bruger sandsyndligheden for den observerede database under antagelse af atden givne model genererede databasen. Dernæst udfører vi en empirisk analyse af e�ektivitetved brug af en af de bedste implementationer til beregning af probabilistiske slutninger. Viinkluderer her også en sammenligning af empiriske målinger af præsision ved et gennemsnitover tilfældigt genererede forespørgsler. Vi inkludere PDG'er i vores komparative analyse, dersom sagt er et forholdsvist nyt PGM sprog.Endelig, som et i nogen grad separat spor, foreslår vi en algoritme til konstruktion af enPDG model fra et klike træ (eng. Clique Tree eller CT) repræsentation af fordelingen. Vikombinerer BN lærring og PDG lærring ved at konstruere en CT repræsentation of fordelingenrepræsenteret af BN modellen, og oversætter så denne CT repræsentation til en ækvivalentPDG model som så bliver udsat for optimerings operationer der kan give en repræsentationsom er konkurrenedygtig med den originale BN model. Vi benævner denne tilgang �hybridlærring� af PDG modeller da den kombinere en lært BN model og dennes CT repræsentationmed lærring af en optimeret PDG repræsentation.
C.1 Oversigt over Afhandlingen

I Kapitel 2 giver vi en introduktion til relevant baggrunds materiale og notationelle kon-ventioner der bliver brugt i den resterende del af afhandlingen. Kapitel 3 introduere formeltde PGM repræsentations sprog som vi vil undersøge i den senere analyse. Vi inkludere endiskussion af beregnings kompleksitet af generelle probabilistiske forespørgsler ved for hvertsprog at præsentere proedure til udførsel af eksakt opdatering af alle marginale sandsyn-ligheder betinget på observationer. I Kapitel 4, foreslår vi proedure til lærring af modellerfra data for hvert af de tidligere præsenterede PGM sprog. Kapitel 5 indeholder en beskrivelseaf eksperimenter omkring lærring af PGM'er fra data, og vi udfører båden en teoretisk og em-pirisk komparativ analyse af PGM sprogene mht. de foreslåede lærrings proedure. Yderligereindeholder Kapitel 5 en analyse af hybrid lærring af PDG modeller. Endelig, i Kapitel 6 op-sumere vi de vigtige observationer som blev gjort gennem den komparative analyse, og vidiskutere hvilke konklusioner der kan drages på baggrund af det studie som rapporteres idenne afhandling.
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