ON UNSUPERVISED LEARNING OF
PROBABILISTIC GRAPHICAL MODELS

Jens Dalgaard Nielsen
Department of Computer Science
Aalborg University
Denmark
dalgaard@cs.aau.dk

July 2, 2007

Preface

This dissertation is the result of my Ph.D. study at the Department of Computer Science
at Aalborg University Denmark, from August 2003 to November 2006. The study has been
focused on the development of algorithms for automatic learning of probabilistic graphical
models from data. Specifically, I have focused on algorithms for learning Bayesian Network
models, Probabilistic Decision Graph models and Naive Bayes models. I report on experiments
of learning models both from real and synthetic data. I perform a comparative analysis of
the three languages and their performance w.r.t. computational efficiency and accuracy of the
approximations offered.

Acknowledgements

During my study I have received the necessary financial funding from Ph.D. stipend No.
562/06-16-23603 granted to me by the Faculty of Technology and Engineering Sciences at
Aalborg University.

This dissertation is the result of many different collaborations, and I could never have
achieved the results reported here without the support and help that I have been very fortunate
to receive.

First and foremost, I wish to thank my adviser Manfred Jaeger who always gave me very
encouraging and extremely competent advise. I have benefited greatly from his numerous
constructive and always very honest comments on my work. He made it possible for me to
get my work published, and he taught me how to present complex material in the condensed
form of a research paper. For his thorough reviews of preliminary versions of this dissertation
— which he did in his spare time — I am especially thankful.

I wish to thank Jose M. Penia and Tomés Kocka for the fruitful collaboration we had at
the Decision Support Systems group at Aalborg University. This collaboration resulted in my
first publication, a publication that would never have been possible without the insight and
ideas Jose and Tomés shared with me. They both were always willing to help me understand
many difficult issues concerning learning of Bayesian Network models, which was a new topic
for me.

I would like to thank Tomi Silander for the collaborations we have had. Even though we
only communicated through email, the collaboration resulted in two publications. I still hope
to see you face to face one day.

Finn Verner Jensen was supportive and encouraging during my study. I especially thank
him for hiring me for the position of research assistant and, thereby, providing me with a
perfect opportunity to get a taste of research before deciding on whether to apply for a PhD.
stipend.

From March to August 2005, I spend 5 month as a visiting scholar at the AutonLab,
Carnegie Mellon University in Pittsburgh (PA) USA. I wish to thank Andrew W. Moore for
our many inspiring discussions and for his very enthusiastic and encouraging attitude towards
my work and my ideas. I wish to thank all the brilliant members of the AutonLab for making

me feel as a member of your little family right away. I wish to thank all of my Pittsburgh
friends who made my stay extremely enjoyable — I never felt alone in the Steel City.

I wish to thank the very competent group of secretaries at the Department of Computer
Science at Aalborg University. They made my daily encounters with the university bureau-
cracy much less painful.

Also, I wish to thank all the people in the Machine Intelligence group at the Department of
Computer Science, Aalborg University for making my time there so enjoyable, in particular my
office-mate Sgren Holbech Nielsen with whom I had numerous weird discussions on random
current events. I especially liked our white-board-pillory, where we would hold any person
(famous or not) up to ridicule if he/she so deserved.

I thank the members of my committee Marek Druzdzel, Antonio Salmerén and Thomas D.
Nielsen for valuable review comments on the first version of this dissertation. The comments
were very useful in my preparation of this final version.

Finally, I wish to thank my friends and family for showing me sincere and loving support

at all times — and especially when I needed it most in the last stages of the writing process.

Jens Dalgaard Nielsen
Almeria, July 2, 2007

ii

CONTENTS

1 TIntroduction
1.1 Outline of The Dissertationl ...

2 Preliminaries and Notation

2.1 Probability theorsl
2.1.1 andom Variables
|2.1.2 Conditional DistributionsJ
2.1. Independencd
2.1.4 Sampled Data and likelihood

2.2 raphical ConceptsS

3__Probabilistic Graphical Modelé
3.1 Inference Taské
3.2 Bayesian Network Modelé
3.2.1 The Bayesian Network Dependency Model
3.2.2 BN Model Equivalence and Inclusion

|3.2.3 Inferencel

2.4 epresentation and Effective Sizd oL

|3.3 Probabilistic Decision GraDhsJ
3.3.1 The PDG Dependency Model
|3.3.2 Inferencel

. epresentation and Effective Sizd oL

|3.4 The Naive Bayes Mode]l
3.4.1 _The Naive Bayes dependency model
|3.4.2 Inferencel

4. epresentation and Effective Sizd oL

|3.5 Related Workl

iii

CONTENTS

|4 Learning Probabilistic Graphical Modelé 49
|4.1 Selecting Models and Comparing Lan;zua;zesj 49
|4.1.1 Accuracy and Eﬂiciencv* 49

4.1.2 SL—Curveé 52

4.1.3 Related Methodologieé 54
4.2 Parameter Estimation 55

|4.3 Learning Bayesian Network Models] 57
|4.3.1 Selecting Optimal BN Modelsl 58
|4.3.2 Greedy and k-greedy Model Selectionl 60
4.3.3 Implementation o 64
|4.3.4 Testing the BN Learning Proceduré 69
4.3.5 Related Worg 73

|4.4 Learning Naive Bayes Modelg 78
|4.4.1 Estimating Parameters from Incomplete Data: The EM—A]qorithmI ... 718
4.4.2 Learning the Cardinality of the Latent Component Variablg 79
|4.4.3 Related WorlJ 81

|4.5 Learning Probabilistic Decision Graph ModelsJ 81
|4.5.1 Structural Learning in PDGSJ 82
|4.5.2 Testing the PDG Learnell 93
4.5.3 Related Worﬁ 101

4.6 Combining BN and PDG Learning: A Hybrid Learning Approach 102

4.6.1 Related Worﬁ 108
5 Comparative Analysié 109

|5.1 Methodology and Experimental Settind_v‘ 109
|5.1.1 Empirical Accuracy and Efficiencyl 110
5.1.2 General Experimental Setud 111

|5.2 Learning from Synthetic Datal 112
|5.2.1 Learning from BN Generated Datal 112
|5.2.2 Learning from NB Generated Datal 113
|5.2.3 Learning from PDG Generated Datal 116
5.2.4 Discussion of Besulté 119

|5.3 Learning from Real Datal 121

5.3.1 Discussion of Besulté 122
5.4 Empirical Analyseé 128

|5.4.1 Discussion of Resultd 128

|5.4.2 Related WorlJ 133

|5.5 The Hybrid Learning A'o'oroachl 133
|5.5.1 Discussion of Resultd 134

|6 Conclusionl 141
| List of Symbold 145

v

CONTENTS

| Bibliographyl 147
|A Extended Test ResultsJ 155
A.1 ST.-Curves for Learning from Synthetic Datal 155

|B On Expectation when Sampling with Re’olacementJ 179

|C Dansk ResuméJ 183

C.1_Oversigt over Afhandlingen 186

CHAPTER 1

INTRODUCTION

Probabilistic graphical models (PGMs) is a mathematical framework for representing joint

probability distributions over sets of random variables (|Cowell et al.|7 |199 ; |Jensen|, |2001|;
|Lauritzen|, |1996|; |Pear]|, |198§). PGMs have become a standard approach for representation
and handling of uncertainty in the field of Artificial Intelligence. Also in the related fields of

Pattern Recognition and Machine Learning, PGMs have received a lot of attention and have

been applied with success in numerous domains lBishod, @Qd; Mitchell, M; Duda et al.,
2001).

When PGMs are learnt from data (as opposed to being manually constructed), some score

function is used to assess the quality of models and, thereby, discriminate between alternatives.
The learning procedure then selects from amongst alternative models the one that is optimal
w.r.t. the score function. A typical score-function combine in a weighted sum a reward for
accuracy (computed w.r.t. a database) and a penalty for complexity. In general, we call such
score-functions for penalised likelihood scores, and they take the following simple form:

S(M,D) = X\~ L(D|M) — (1 — \) - size(M), (1.1)

for PGM M, data D, likelihood L, and some trade-off coefficient 0 < A < 1. Typically, the
number of different alternative models is much too big to allow exhaustive search, and studies
have shown that many instances of learning tasks for PGMs are NP-hard (Chickering et al.,
m; thckeriné, M) Consequently, heuristic procedures are appropriate and often neces-

sary in practise.

The study reported in this dissertation has focused on aspects of learning PGMs from data.
In the following, we will briefly discuss the problems addressed and the solutions proposed.

One of the most popular types of PGMs is the Bayesian Network (BN) (Im, M Jensen,
). The learning of BN models has received much attention and both discouraging and
encouraging results have been found. While it has been proved that the problem of learning
BN models that optimise (I.I]) is NP-hard (Chickering et al., M), learning procedures that

recover the optimal BN models have been shown to be tractable for many relevant domains
(the SGS algorithm (Spirtes et al.|7 |200d) and the GES algorithm (Chickering and Meekl, |200j;

1

1 Introduction

,)) These learning procedures, however, rely on the strong assumption that the
data generating process that exhibits independence relations between the observed variables
that can be encoded in the directed acyclic graph (DAG) structure of the BN model, that
is, the process exhibits DAG faithfulness. This assumption is often unrealistic in real world
applications, and the quality of the models that are learnt may be very dependent on this
assumption being satisfied. Therefore, the practical applicability of such learning procedures
may be limited.

In this dissertation we propose a simple generalisation of a greedy search procedure. The
generalisation introduces a parameter for trading off greediness for randomness in the decision-
rule guiding the search. By employing multiple restarts in connection with stochastic decision
rule, the algorithm maintains the theoretical optimality of greedy search, and, in addition, it
allows a broader exploration of the search space. This is important when the strong assumption
of a DAG faithful generative distribution is violated. In this case, the deterministic search
implemented by a greedy decision rule may lead to a suboptimal model while a multiple restart

stochastic search will identify multiple local optimal models.

In most application areas, one of the main tasks for PGMs is to provide a representation
that allows for efficient belief updating. By belief updating we understand the process of com-

puting all posterior marginal probability distributions for all variables in the domain ilven
Y

).

Often, however, it is possible to obtain a computationally tractable BN model that still of-

observations of a subset of variables. For BN models this task is NP-hard M

fers a sufficiently accurate approximation. On the other hand, example distributions can be
constructed where any model less complex than the maximally complex model will be un-

able to approximate the distribution accurately (Jaegeﬂ, 2004; Beygelzimer and Rish, 2003).

Such challenging examples are constructed by defining distributions that contains context-

specific (in)dependence (CSI) relations, also sometimes called asymmetric (in)dependencies.
The existence of CSI relations not representable by the BN model has motivated the develop-
ment of extensions to the BN model that are able to efficiently represent such distributions.
Examples include the Bayesian Multinets (BM) by |Geiger and Heckerman (ILM), Mixtures
of Bayesian Networks (MBN) by) and Recursive Bayesian Multinets
(RBM) by [Pena et all (2002). These are all variations of the following common architecture:

a context is defined by a (set of) distinguished variable(s), and conditioned on the context, a
BN representation over the remaining variables is selected. For MBNs the context is defined
by a non-observed latent variable, and for RBMs the context is defined by a set of observed
variables. Inference algorithms in these models can benefit from the CSI relations encoded by
the model, but ultimately the inference complexity of BN models persists.

In this dissertation we propose a procedure for learning of Probabilistic Decision Graph
(PDG) models. The PDG language is a recent addition to the growing set of PGM represen-
tation language for discrete joint probability distributions , @) PDGs offer both
a natural encoding of a certain class of CSI relations between the observable variables and
also offers efficient belief updating in the presence of evidence. One particularly welcoming
property of the PDG language is that the representation structure is itself a primary structure

for efficient computations of general belief updating. This is important for learning procedures
when the learnt models are expected to offer efficient belief updating. In this scenario, we can
then readily discriminate between models w.r.t. computational complexity of belief updating
from the given representation. Retrieving a meaningful measure of computational complexity
is troublesome for many other relevant PGM languages — in particular for BN models, where
determining the computational complexity of a model involves an NP-complete optimisation

problem (Arnborg et all, [1987).

It is often necessary to assume data to be complete in the sense that no latent (non-
observed) variables influences the observed variables through non-trivial interactions. How-
ever, this is often a very strong assumption and may not be consistent with the understanding
provided by domain experts. The existence of such latent variables may yield a data gener-
ating process that exhibits a set of independence relations that is not representable by the
DAG structure of BN models. Recovering the existence of such latent variables explicitly is
an ambitious task. Nevertheless, many recent studies have pursued a solutlon to the -
lem of learning latent variables both in a general DAG structured BN model @
and when focusing on hierarchical (tree) structures (Karmauskaé, |J)D_5I A tree—structured

BN model that models all observed variables conditionally independent given the state of a

single latent variable (usually denoted a Naive Bayes (NB) model), is well studied for prob-
abilistic soft clustering of data instances (Duda et all, 2001). However, such models can also
just as easy and naturally be used for general computation of probabilistic inference tasks.

Recent studies have shown encouraging results favouring the NB model when comparing NB
to BN models w.r.t. computational complexity and accuracy of the approximation offered

(Lowd and Domingoé, 2005]).

In this dissertation we perform a comparative analyses of different PGM languages, their

ability to efficiently and accurately approximate distributions and our ability to learn such
approximations from a finite data sample. Such analyses are not new, and we therefore aug-
ment the analyses performed in previous studies such as the comparative analyses of empirical

measurements of efficiency and accuracy of BN and NB models by [Lowd and Domingo 12005])
and the more theoretical study of the range of different approximations offered by BN models

by Beygelzimer and Rish (IM) First, in our analysis we employ the analytical tool of SL-

curves. SL-curves show language characteristics by plotting efficiency and accuracy of models

from the language. For efficiency we use a measure of computational complexity which is,
therefore, a theoretical quantity, while for accuracy we use the likelihood of the data given the
model. Second, we perform an empirical analysis of computational efficiency using implemen-
tations of state-of-the-art algorithms for probabilistic inference. We also include a comparison
of accuracy measured empirically by averaging over randomly generated queries. Third, we
include the novel PGM language of PDGs in the comparative analyses.

Finally, as a somewhat separate issue, we propose an algorithm that constructs a PDG
model from a Clique Tree (CT) representation of a distribution. We combine BN learning and
PDG learning by constructing a CT representation of the distribution represented by the BN

1 Introduction

model, then translating this CT into an equivalent PDG model that is then exposed to opti-
misation operations that may yield a representation that is competitive with the original BN
model. We denote this approach “hybrid learning” of PDG models as it combines a learnt BN
model and its CT representation with learning a refined and optimised PDG representation.

1.1 Outline of The Dissertation

In Chapter 2l we give an introduction to relevant background concepts and basic notational
conventions used in the remainder of this dissertation. Chapter[Blintroduces formally the PGM
representation languages that we investigate in the later analysis. We include discussions on
computational complexity of general probabilistic inference by presenting for each language
procedures for performing exact belief updating. In Chapter] we propose procedures for
learning models from data for each of the PGM languages presented earlier. Chapter[5lcontains
a description of experiments on learning PGMs from data, and we perform both theoretical and
empirical comparative analyses of the PGM languages using the proposed learning procedures.
In addition, Chapter [5] contains an analysis of hybrid learning of PDG models.Finally, in
Chapter [6] we summarise important observations made from the comparative analyses and
discuss the conclusions that can be drawn from the study reported in this dissertation.

CHAPTER 2

PRELIMINARIES AND NOTATION

2.1 Probability theory

In this section we introduce probability theory as a framework for handling uncertainty. We
will limit this introduction to concepts that are of particular relevance to the study reported

in this thesis. For a complete formal introduction to the field of probability theory, the reader
may consult the books of DeCroot 1198d) and Billingsleyl 1198d). Also) and the

references found there should be mentioned as an excellent review of different interpretations

of probability theory.

Let © be an arbitrary set where each element w € € represents a possible state of nature.
An event is a subset of {2, and an event space R w.r.t. €2 is a non-empty set of events
including €2 that is closed under the operations of complement and finite union, and therefore

also closed under finite intersection as AN B = AU B. In measure theory, the pair (Q,R) is
called a measurable space. A real-valued function P on R is a probability measure on €2 when

P satisfies the basic axioms of probability (Kolmogoroyl, t%d)

Axiom 2.1 (Non-negativity)
P(E) >0, for all E € R.

Axiom 2.2 (Normalisation)
P(Q)=1.

Axiom 2.3 (Finite additivity)
For any sequence of disjoints F1, Fo, ..., E, € R

n

P(Ui E;) =) P(E). (2.1)
=1

From these axioms it follows that P(F) =1 — P(Q2\ E), P() = 0 and P(E) < 1 for all
EeR.

2 Preliminaries and Notation

The triple (Q, R, P) is called a probability space. We usually think of the probability of
event E (denoted P(FE)) as the likelihood that E will occur, where E occurs if the current
state of nature w € €2 is included in F.

€ is sometimes viewed as the set of all possible outcomes of some experiment. Some schools
of probability theory (e.g., frequentists) requires experiments to be (in principle) repeatable
in order to assign a probability measure to an event space. The probability of an event F is
then defined as the limiting relative frequency with which F occurs:

P(E) := lim Ne (2.2)

’I"L*>OO]\]'7

where NV is the number of times the experiment has been performed and Ng is the number of
times F has occurred. From this definition, a probability P(FE) is an objective measure.
Other schools of probability theory (e.g., Bayesians) do not require experiments to be
repeatable in order to talk about probabilities of events. For instance, when we talk about
the probability of our local soccer club winning the national league this year, we are not
able to establish this number by repeated experiments. Instead, we have to come up with
some number that sounds “right” to us, so this will be a subjective measure. Proponents of
subjective probabilities usually term a persons subjective probability as this persons belief.
Your belief in some event E can be determined by having you set a price of a bet of 1 € on
whether F/ occurs or not. You must set the price z while not knowing whether you will have
to sell or buy the bet. That is, if I decide to buy the bet from you for the price of z €, you will
have to pay me 1 € in the case that E occurs, and otherwise pay me nothing (and, thereby,
earn the x €). The value of x for which you are indifferent of whether to buy or sell the bet
is your belief in ££. When z is selected such that one is not expose to certain loss against
a prudent opponent with the same prior knowledge, beliefs will satisfy Axiom ¢2.712.3] see

(Bernardo and Smith, 1994; Skyrmé, 1984_11).

2.1.1 Random Variables

Given a probability space (2, R, P), a discrete random variable X is a mapping:
X :Q — R(X), (2.3)

where R(X) is a finite set of states. When X is defined w.r.t. probability space (€2, R, P), we
require for each z € R(X), {w € Q: X(w) = z} € R, and define the probability of discrete
random variable X being in state x as:

PX=2)=P{we: X(w)=ux}). (2.4)

We denote by P(X) the probability distribution or probability mass function of variable X,
which is then a function on R(X).
From the basic axioms of probability, it follows that P(X) satisfies:

1. 0< P(X =x) <1forall z € R(X), and

2.1 Probability theory

Let X = {X3,X2,...,X,} be a set of discrete random variables w.r.t. probability space
(Q, R, P). X then defines a mapping from Q to R(X), where R(X) = x x,ex R(X;):

X: Q- R(X). (2.5)

As R is closed under finite intersection, it follows that {w € Q : X(w) = x} € R for any
x € R(X). We can define the joint probability of X being in joint state x as:

PX =x):=P{w:we 2, X(w) =x}). (2.6)

We will use the notation P(X) to refer to the joint probability distribution of random variables
X which is then a function on R(X).
From the basic axioms of probability, it follows that P(X) satisfies:

1. 0 < P(X =x) <1 for all x € R(X), and

A set of random variables X is therefore equivalent to a single random variable with state

space R(X).
Let X be a set of random variables, Y C X, and x € R(X). Then we denote by x[Y] the
projection of x onto variables Y. Let X = {X1,..., X,,} be a set of discrete random variables,

and let P(X) be a distribution for X. We can derive the marginal distribution for a subset
Y C X by marginalisation, which amounts to summing over all joint states of R(X \ Y):

P(Y=y)= > PX=x) (2.7)
x:x€R(X)
and x[Y]=y

2.1.2 Conditional Distributions

Let X be a set of random variables w.r.t. probability space (€2, R, P), and let .« be a partition
of € into the k collectively exhaustive and mutually exclusive sets {Aj, As,..., Ax} where
A € R for 1 <1 < k. We can construct the joint conditional probability or joint posterior
probability of X being in joint state x given some A4; (1 <1 < k), as:

PAN{w e Q: X(w) =x})
P(4)
As R is closed under intersection it is clear that A;N{w € 2 : X(w) = x} € R, and therefore

P is defined on the intersection. However, equation (2.8) requires the denominator P(A;)

P(X = x|4) = (2.8)

to be non-zero for P(X = x|A4;) to be defined, and we will leave the conditional probability
undefined when the condition A; has zero probability'.

We denote by P(X|<) the joint conditional distribution of X given partition </ which is
a function on R(X) x 7.

While intuitively it may not make much sense to allow conditioning on the impossible event (that is, a
partitions of zero probability), it is allowed within certain formalisations of probability theory such as that of
De Finetti.

2 Preliminaries and Notation

There are several ways that one can define a partitioning of €2. Given set a of variables X,
we can define a partition & in terms of R(X). That is, a partitioning Z = {Ry,..., Ry} of
R(X) immediately defines the partitioning &7 = {Ag,..., Ag} of Q: A; = {w e Q: X(w) =
x and x € R;}. Then we get a special case of eq. (2.8)):

—PX=x) _ ifxecR
P(X = x|A;) = { Zwen PO : (2.9)
0

otherwise.

A partitioning that is often used is the one induced by a subset of variables Z C X, such that
every joint state z; € R(Z) induces 4; = {w € Q : Z(w) = z;}. Then we get yet another

special case of eq. (2.8):

P(X=x) if x[Z] =
P(X = x|A;) = { =) x|]_ 5 (2.10)
0 otherwise.

We will denote by P(X|Z) the joint conditional distribution of X given the partition of
induced by Z, which is then a function on R(X) x R(Z).
By suitable marginalisation and recursive application of (2.10) one can construct the fol-

lowing factorisation of a joint distribution P(X) over a set of variables X:

P(X) = [[P(XilXig1,. .., Xn). (2.11)
=1

2.1.3 Independence

Let X be a set of random variables defined on probability space (Q,R,P). We say that
disjoint subset of random variables WY C X are marginally independent under P iff:

Vwe RW),Vy e RY): PW=w,Y=y)=PW=w)P(Y =y), (2.12)

and we will use notation W _L Y[P] to denote this relation.
Let o7 = {Ay,..., A} be a partition of 2. We then say that W and Y are conditionally
independent given & under P iff:

Vw e R(W),Vy € R(Y),VA; € o :
P(W = w,Y = y|A4)) = P(W = w[A)P(Y = y|A). (2.13)

We will use Y L W|&/[P] to denote this relation. Marginal independence is just a special
case of conditional independence where the conditioning partition is the trivial partitioning
o = {Q}.

When the partitioning of €2 is induced by a subset of variables Z disjoint from Y and W,
we will write Y L W|Z[P] to denote that Y and W are conditionally independent given the
state of Z under joint distribution P. Equation (2.13]) can then be rewritten as:

8

2.1 Probability theory

Vw e R(W),Vy € R(Y),Vz € R(Z) :
PW=w,Y=y|Z=2)=PW=w|Z=2z)P(Y =y|Z=2). (2.14)

We allow the conditioning set Z of variables to be empty, but using the notation Y I
W/|([P] is confusing as P({)) = 0, and would not be defined. However, Z = () generates
the trivial partitioning <7 = {Q}, and instead of Y 1L W|([P] we understand Y 1L W|Z[P] as
Y L W[P] when Z = {).

If Y L WIP] (respectably Y 1 W|Z[P]) is not true, we write Y L W/|P (respectively
Y L W|Z[P)).

Definition 2.1 (Dependency Model)
A statement of conditional independence is an expression of the form Y 1L W|.o7. Let (2, R)
be measurable space, and let X be a set of random variables defined on 2. A dependency
model over X is a rule that assigns a truth value to all statements of conditional independence
of the form:

Y LW|e,

where Y and W are disjoint non-empty subsets of X and &/ is any partitioning of £} from a

certain class A of partitionings.

Example 2.1

Consider a probability space (2, R, P). Probability measure P encodes a dependency model
over any set of variables X defined on €2 as any statement Y | W|&/[P] can be verified by
inspecting relation (2.13) under P.

Example 2.2

Consider a measurable space (€2, R). One class A of partitionings all those partitionings that
partition € into measurable partitions o7 = {Ay,..., A;}, that is Ay € R for any 1 <[<.
This is the least restrictive class of partitionings. Another class of partitionings arises from
a set variables X defined on €. A class Ax of partitionings of €} is generated from all
possible partitionings % = {Ro, ..., Ry} of R(X). Here, partitioning % immediately defines
the partitioning of = {Ag,...,Ax} of Q: A; = {w € @ : X(w) = x and x € R;}. A very
common class of partitionings is the subclass of Ax that is generated by any proper subset
Z C X.

Given two partitionings % and %, we will define the partition .# (%, %) as the partition
consisting of the elements {BNC : B € B,C € ¢}.

Let Y be a set of discrete random variables w.r.t. probability space (Q2,R,P). The
partitioning <7 (Y) is then defined as:

(Y) = {{{w €Q:Y(w) =yHy € R(Y))} ifY#0, (2.15)

{Q} otherwise.

2 Preliminaries and Notation

Axiomatic Characterisations of Conditional Independence

Extensive work has been done to characterise dependency models of a joint probability dis-
tribution. In the following we will review a set of axioms provided by m).2 Let
X be a set of random variables w.r.t. probability space (2, R, P), and let U, Y and W be
arbitrary disjoint subsets of variables X. Also, let .% be some partition of the sample space
Q.3 The following axioms [2.4] 2.7] then provide a sound characterisation of the dependency
model encoded by P.4

Axiom 2.4 (Symmetry)

WLY|Y <Y LW|Z. (2.16)
Axiom 2.5 (Decomposition)
WI{YUU}Y=WLY|SANWLULY. (2.17)
Axiom 2.6 (Weak Union)
WI{YUU}Y = WLY|S (Y, #(U)). (2.18)
Axiom 2.7 (Contraction)
WLY| 7 (7, Z(U) AWLULY =W L{Y UU}.~. (2.19)

From contraction, weak union and decomposition follows the so called block independence
lemma:

WLY| s (7, (U)) AW LU|Y & W L{Y UU}.¥. (2.20)
Furthermore, if P is positive, then we also have the Intersection axiom:

Axiom 2.8 (Intersection)

WLY| (S, o(U)) AW LU|I (S, o/(Y)) = WL{UUY}.Z. (2.21)

A three-way relation that satisfies Axioms [2.4] to 2.7 are called the semi-graphoid, and if
axiom [2.8]is also satisfied, the relation is called graphoid. Conditional independence is a semi-
graphoid relation. A set of inference rules is complete iff all true statements can be inferred

_

) that the semi-graphoids does
not, provide a complete characterisation of conditional independence. Still, the set of axioms

using the set of inference rules. It was shown by

21t should be mentioned that the axiomatisation of (@ was preceded by an alternative but equiv-
alent axiomatisation of conditional independence proposed by)

8Originally, the axioms proposed by) only concerned conditional independence relations, where
the conditioning partition was generated by a subset of variables. The axioms, however, are still true when
the conditioning partition is allowed to be any general partition of Q.

4A set of inference rules forms a sound characterisation if no sequence of applications of the rules can infer

a false statement from a set of true statements, but rather only true statements can be inferred from true
statements.

10

2.2 Graphical Concepts

provides a sound characterisation, and can therefore still be used to infer more conditional
independence relations from a set of true relations.

2.1.4 Sampled Data and likelihood

Given a joint distribution P(X) over random variable X, an independent and identically
distributed (iid) sample of X of length [is a set of [random variables X, ..., X, each with
state-space R(X;) = R(X) and distribution P(X;) = P(X). A database of cases or instances
of X is a set D = {dy,...,d,} where each element d; is a realisation of variable X; in an iid
sample of X of length n. We will not emphasise the distinction between an iid sample and
a database of realisation of an iid sample, and will for simplicity say that D is an iid sample
of X of length n when in fact D is a realisation of an iid sample of X of length n. When
D = {d,...,dy,} is an iid sample of X, Y C X, and d; € D, we will denote by d;[Y] the
projection of realisation d; onto variables Y.

Let D be an iid sample of random variables X and let P(X) be an arbitrary distribution
over variables X. The likelihood of data D under P is then defined as:

(D|P) = [[P(X = d[X]). (2.22)
deD
Taking the log of (2.22]) yields the log-likelihood (L(D|P)) that decomposes into a sum of logs
of probabilities:
L(DIP) =) log P(X = d[X]). (2.23)
deD

2.2 Graphical Concepts

An undirected graph (UDG) is a pair G = (V,E), where V is a finite set of distinct nodes
and E is a finite set of edges, defined as unordered pairs of distinct nodes, E C {{X,Y} :
X eV,YeVand X # Y}. Inagraph G = (V,E), iff {X,Y} € E we say that X and
Y are adjacent in G. We denote the set of all adjacent nodes of node X in graph G by
adjq(X)={Y e V:{Y, X} € E}.

For a graph G = (V,E), a subset A C V induces the subgraph G4 = (A,E,), where
Es={{X.Y}:{X.Y}eE X e Aand Y € A}. A path 7 from node A to node B in a UDG
G = (V,E) is a sequence of n nodes X1, X2,..., X, where n > 2 and {X;, X;;,} € E for all
1<i<n,and X; = Aand X,, = B.

Let G = (V,E) be an UDG and A, B and S be disjoint subsets of V. Then A and B are
separated by S iff all paths between nodes A and B, where A € A and B € B, contains at
least one node S € S.

A path 7 from A to B in graph G = (V,E), is a cycle iff A = B.

A graph is connected iff there exists a path between any two distinct nodes. Otherwise it
is disconnected. A connected component in a graph G = (V,E) is a subgraph of G induced
by a maximal subset A C V where GG is connected.

11

2 Preliminaries and Notation

A directed graph or digraph is a pair G = (V,E) of nodes V and directed edges F, defined
as ordered pairs of distinct nodes. We will denote a pair of nodes as being ordered by enclosing
the pair in parenthesis (X;, X;), which represents an edge with orientation X; — Xj.

The skeleton of a graph G = (V,E) is the undirected graph obtained from G by dropping
the orientation of all edges. We denote the skeleton of G by G*. The skeleton of UDG G is
just G itself.

Extending paths and cycles to digraphs gives rise to both undirected and directed versions.
Let G = (V,E) be a digraph. A sequence of nodes X1, ... X, in digraph G forms an undirected
path iff it is a path in G¥, and it forms an undirected cycle iff it is a cycle in G*. Furthermore,
the sequence of nodes forms a directed path iff X; — X;;1 € E for all i € [1..n], and forms a
directed cycle iff it forms a directed path and X7 = X,,.

A directed acyclic graph (DAG) is a digraph G = (V, E) that does not contain any directed
cycles.

If G =(V,E)is a DAG and (X,Y) € E, we say (as for undirected graphs) that X and
Y are adjacent, and in addition we say that Y is a child of X and X is a parent of Y in
G. The set of all parents and children of node X in digraph G will be denoted pag(X)
respectively chg(X). If there exists a directed path from node X to node Y in DAG G, we
say that Y is a descendant of X in (G, and we denote the set of all descendants of node X
in graph G by deg(X). By deg;(X) we denote deg(X)U X. By paf(X) we denote the set
{Y eV:X edeq(Y)}. A set of nodes A is ancestral iff for any node X € A the parents of
X are also included in A. By paf,(A) we denote the smallest ancestral set in G including A,
that is paj,(A) = AU {Uxecapas(X)}.

A rooted DAG is a DAG where a single unique node (the root node) has no parents.

A tree is a rooted DAG with no cycles, which also implies that any node X only has
at-most one parent. A forest is a set of trees.

A poly-tree is a UDG that does not contain any cycles.

In directed graph G = (E, V) the set of non-descendants of node X is denote by ndg(X) =
V\ de;(X).

A chain graph is a pair G = (V,E) of nodes V and edges E, where an edge can either be
directed or undirected. The graph obtained by removing all undirected edges from G must be
a DAG (connected or disconnected). Both DAGs and UDGs are chain graphs.

The moral graph of a DAG G = (V, E) is constructed by connecting all non-adjacent pairs
nodes A and B where A and B have a common child ({chg(A) N chg(B)} # () and dropping
all directions of edges in G. We denote the moral graph of G by G™.

A graph G = (V,E) is said to be complete if all nodes in V are pairwise connected by
edges in E. A clique of graph G = (V,E), is a maximal subset of nodes C' C V, where G¢ is
complete. By Cliques(G), we denote the set of all cliques in graph G.

12

CHAPTER 3

PROBABILISTIC GRAPHICAL MODELS

In this chapter we introduce three different types of probabilistic graphical models. A proba-
bilistic graphical model is a compact representation of a joint probability distribution over a
finite domain of random variables, and it is composed of two parts:

1. a dependency model, and
2. a set of parameters.

The success of graphical models in a practical application often relies on the existence of
efficient algorithms for solving different kinds of inference tasks. Together with the general
syntax and semantics of three different probabilistic graphical model languages, we will also
introduce algorithms for efficient and exact computation of inference.

We will introduce the Bayesian Network (BN) model in Section [3.2] the Naive Bayes (NB)
model in Section [3.4] and the Probabilistic Decision Graph (PDG) model in Section [3.3]

The BN model is probably one of the most popular graphical models, and it has be-
come a standard method for handling uncertainty in many fields of research, especially in the
field of artificial intelligence (Jensen, M Castillo et all, M; IM, M) The BN model
represents a distribution over a set of variables through a factorisation of local conditional dis-
tributions. The dependency model encoded by the BN model is defined by a DAG structure
and using certain separation criteria, the dependency model can easily be enumerated from
that DAG.

The NB model represents a distribution over a set of variables X by introducing a special

unobserved or latent variable C. The dependency model encoded by the NB model renders
all pairs of disjoint subsets of X conditionally independent given C.

The PDG model is still a fairly new language for probabilistic graphical modelling, and
was first introduced by). Like the BN model, the PDG model also represents a
distribution over a set of variables X through a factorisation of local conditional distributions
for each variable. The dependency model encoded by the PDG model is different from the BN
dependency model, as it dictates variables as independent given certain partitions of R(X).

13

3 Probabilistic Graphical Models

3.1 Inference Tasks

There are many different kinds of relevant probabilistic queries that we might want to infer
answers for using PGMs. For a set of random variables X and a joint probability distribution
P(X) over X, the most common queries include:

Belief Updating: This is the task of updating probabilities in the presence of evidence, that
is observations of a subset of variables E C X. Given that variables E C X have been
observed in joint state e € R(E), compute the posterior marginal P(X;|E = e) for all

Most Probable Explanation (MPE): The task of finding the joint configuration of unob-
served variables with maximal joint posterior probability given some evidence. That is,
given E C X have been observed in joint state e € R(E), then the solution to MPE is:

y = argmaz P(Y = y'|E = e), (3.1)
y'e€R(Y)

where Y = {X \ E}.

Maximum a Posteriori Hypothesis (MAP): This is a generalisation of the MPE (3.1)),
where Y is not necessarily all remaining variables but may be a proper subset Y C

(X \ E}.

We regard belief updating as the primary task for any general purpose language for prob-
abilistic graphical modelling. We will, therefore, identify for each language the complexity
associated with solving this problem in general. In particular, for a model M from language
L, we will identify the effective size of model M, denoted size.g(M). The effective size is a
model specific parameter such that in M general belief updating is computable in linear time
in sizecg(M). This will enable easy comparison of the (theoretical) efficiency of models from
different languages.

3.2 Bayesian Network Models

A BN B = (G,0) is a pair consisting of a DAG G = (V,E) and parameters . Let
X = {X1,...,X,} be a set of n discrete random variables. A DAG over X is a DAG G =
(V,E), where nodes are defined in a 1-to-1 correspondence with variables in X. We will
not distinguish between nodes of a DAG and associated random variables, when the meaning
is clear from context. Thus, for random variable X associated with node V, we will use
the notation pas(X) to mean both the parents of V' in G, and the set of random variables
associated with parents of V in G.

A BN B = (G, 0) over X represents P(X) by the directed factorisation defined by (B8.2]),
where 6 defines local distributions for each variable X; conditional on its parents in G,

P(Xi|pag(Xi)).

14

3.2 Bayesian Network Models

Definition 3.1 (Directed Factorisation(DF))
A joint probability distribution P over variables X is said to factorise w.r.t. DAG G over X
iff:

P(X) = [[P(Xilpag(X:)). (3.2)
X,eX

3.2.1 The Bayesian Network Dependency Model

The dependency model encoded by the BN has received enormous attention dLauritzen et al.|,
|199d; |Castelo|, |2002]; |Pear]|, |1988|; |Koéka|, |2001|). It is usually termed the DAG Markov model,
and we will review the so-called Markov properties that follows from Definition [3.1l The

dependency model is important for our learning procedure for BN models and for efficient
inference in a BN model. Some of the most popular algorithms for exact inference in BN
models does not work on the DAG structure, but instead compiles the DAG into an equivalent
undirected (UDG) model on which computations are then performed. Such algorithms are
typically referred to as clique tree algorithms, junction tree algorithms, or variable clustering
algorithms. We will review the basic architecture of such algorithms in Section [3.2.3] For our
learning algorithms, it is important to establish an efficient characterisation of equivalence
classes of BN models. The study of such characterisations builds on results of UDG models.
Therefore we will briefly review important results concerning the UDG model.

Factorisation w.r.t. an undirected graph over random variables X is defined as a factori-
sation over cligue potentials of the graph in Definition [3.2]

Definition 3.2 (Undirected Factorisation (UF))

A joint probability distribution P over variables X is said to satisfy undirected factorisation
(UF) w.rt. UDG G = (V,E), iff there exists non-negative mutually independent clique-
potential functions o for which:

PX)= I va (3.3)

AcCliques(G)
where 1A is a function or potential over clique A.

Definition 3.3 (Undirected Global Markov Property (UG))

A joint probability distribution P over random variables X satisfies the Undirected Global
Markov Property (UG) w.r.t. UDG G iff for any triple of disjoint subsets A, B and S of X,
where S separates A from B in G, the following holds:

A 1 BIS[P]. (3.4)

UF and UG are connected by Proposition[B.1l It was first stated and proved by [Lauritzen et al.

(1990):

15

3 Probabilistic Graphical Models

Proposition 3.1
(Lauritzen et all, M, Proposition 1) If joint distribution P over random variables X satisfy
UF w.r.t. UDG G, then P satisfies UG w.r.t. G.

Lauritzen et al. (ILQQd) connects undirected and directed factorisations (Definitions [3.1]and
3.:2) in Lemmas [3.1] and [3:2}

Lemma 3.1
(Lauritzen et all, 19911, Lemma 1) If joint probability distribution P satisfies DF w.r.t. DAG
G, then P satisfies UF w.r.t. G™ (and therefore UG w.r.t. G™).

Lemma 3.2

(Lauritzen et all, M, Lemma 2) If joint probability distribution P over random variables X
satisfies DF' w.r.t. DAG G, and A is an ancestral set in (G, then the marginal distribution
P(A) satisfies DF w.r.t. Ga

Definition 3.4 (Directed Global Markov Property (DG))

A discrete joint probability distribution P over random variables X is said to satisfy the
directed global Markov property (DG) w.r.t. DAG G over X iff for any triple of disjoint subsets
A CX,BCX andS CX, where S separates A from B in (Gpa*c(AUBUS))m:

A LBJ|S[P]. (3.5)

From Lemmas B.1]and B.2] it follows that if P satisfies DF w.r.t. DAG G, then P satisfies
the DG w.r.t. G (Lauritzen et a1.|, |199d, Corollary 1).

Definition 3.5 (Directed Local Markov Property (DL))
A discrete joint probability distribution P over variables X satisfies the directed local Markov
property w.r.t. DAG G iff for any variable X € X:

X L ndg(X)\pag(X)|pag(X)[P). (3.6)

Lauritzen et al. (|L93ﬂ) state and prove equivalence of directed factorisation, directed global
and directed local Markov properties (Definitions 3.1} [3:4] and B.5)):

Theorem 3.1
(Lauritzen et all, M, Theorem 1) For a discrete probability distribution P over random

variables X and DAG G over X, the following statements are equivalent:

1. P satisfies DF w.r.t. G,
2. P satisfies DG w.r.t. G,
3. P satisfies DL w.r.t. G.

16

3.2 Bayesian Network Models

When distribution P factorise w.r.t. DAG G, G is called an I-map of P. Let I be a
statement of conditional independence, we then say that DAG G entails I iff I is true for all
distributions P for which G is an I-map (denoted G =p I).

A popular graphical criterion for reading independence relations entailed by a DAG is the

d-separation criterion (Pearl and Vermal, |1987), defined as:

Definition 3.6 (d-separation)

Let G = (V,E) be a DAG with nodes V and directed edges E. Two distinct nodes X,Y € V
are said to be d-separated in DAG G by Z C V iff for every path m (undirected or directed)
between X and Y there exists a node W such that either:

e W € Z and there is no head-to-head connection at W w.r.t. path mw, or

e W & Z, non of de(W) are included in Z and there is a head-to-head connection at W
w.r.t. path .

The definition extends to sets of variables by denoting U C X being d-separated from subset
W C X byZ C X in G iff any two nodes U € U and W € W are d-separated by Z in G.

We denote by G =g.5¢p X LY |Z the statement that in DAG G, X and Y are d-separated
by Z. As a rule for inferring conditional independencies entailed by DAG G, d-separation is
both sound ([G E4.sep I] = [G [=p I]) and complete ([G =p I] = [G F4.sep I]), first proved
by |Geiger and Pearl (1988).

If G is an I-map of P, and P does not contain any more independencies than those entailed
by G, then G is a perfect map of P. If some DAG G is a perfect map of distribution P, then
P is called DAG-faithful.

Lauritzen et al. 1199d) prove that d-separation is equivalent to the directed global Markov
property as a separation criterion.

Definition 3.7 (Bayesian Network Dependency Model)
The BN B with DAG structure G over variables X defines a dependency model in which the
true independencies are:

M(G)={ALB|S:G |=p A LBS}. (3.7)

So any distribution P that factorise w.r.t. DAG G will contain (at least) all the indepen-
dencies M (G). Using the terminology of Definition 2.1 we say that the class of partitionings
used in BN dependency models, is the class of all partitionings that can be induced by some
subset of variables S C X.

Given a DAG G = (V,E), and disjoint subsets A,S C V| |Geiger et al. (IM) present
an algorithm for computing the set B of all nodes that are d-separated from A given S.
We present it here as function getDSeparated (Algorithm [3.2)), which uses the subroutine
getReachable to determine a set of nodes that are reachable by a legal path (see Algorithm

[B.1). getReachable has complexity O(|E|-|V]) in general, however |Geiger et al. (ILM) show

that when the set of illegal pairs of edges is constructed as in line 4] of getDSeparated,

getReachable will run in time linear in |E|. As no operation in getDSeparated has worse
complexity than O(|E|), the overall complexity of getDSeparated is therefore O(|E|).

17

3 Probabilistic Graphical Models

Algorithm 3.1 This algorithm is needed by algorithm [3.21
Input: G : DAG over X; F: a set of illegal pairs of edges; A: a set of nodes A C X.
Output: A set of nodes R C X reachable from A via a legal path.

1. function getReachable(G, F, A)

2 X :=XUX;

3 R:={X;}UA

4 for all X € A do

5: E=EUX,—-> X

6 label X, — X with 1

7 1:=1

8 repeat

9 Let U be the set of unlabelled edges X} — X; from E s.t. there exists X; — X},
labelled ¢ and (Xj — Xk,Xk — Xz) € F.

10: for all X;, — X; € U do

11: R:=RU {Xl}

12: label X — X; with ¢ + 1.

13: 1:=1+1

14: until U =

15: return R

Algorithm 3.2 This function computes and returns the set of variables B d-separated from
a target set A given a separating set S in a DAG G.
Input: G : DAG structure over variables X; disjoint subsets A, S C X.
Output: The set of variables B d-separated from A by S.
1: function getDSeparated(B, A, S)
2: Construct the graph G’ = (V,E’) where E' := EU{X; — X;: X; — X; € E}.
true if {{X;}Udeq(X;)} NS #0

false otherwise

w

Construct the table descendant(X;) := {

4 Construct the set FC of pairs of edges (X; — X, Xi — X;) where X; # X; and either
o X; — X, Xj, — X; € E and descendant(X})) = true, or
oXj—>Xk,Xk<—Xl¢Eanka¢S.

5: B’ := getReachable(G',E'\ FC A)
return V\ {B'UA US}

2

18

3.2 Bayesian Network Models

) ® O
WA YN

Figure 3.1. 4 different DAG structures over X = {X,Y,Z}. (a) is not equivalent with any of the
other, and (b), (¢) and (d) are all equivalent.

3.2.2 BN Model Equivalence and Inclusion

In this section, we define a partial ordering of BN dependency models. By Definition [3.7], the
BN dependency model is the set of statements of independence that are entailed by the DAG
structure of the BN model. Inclusion of one dependency model in another is now defined w.r.t.
the set of distributions that can be represented by the models:

Definition 3.8
Let Gi = (X,E;) and Gy = (X, Eg) be DAGs. We say that model M (G2) distributionally
includes M (Gy) iff M(G2) € M(G1). We will denote this by M(G1) Cp M(G2).

If M(G1) Cp M(G2) then for any parametrisation 6 of BN B; = (G1,60) there exists a
parametrisation 6 of BN By = (Ga, ') such that PP1(X) = PP2(X).

Definition 3.9
Let G and H be DAGs over the same set of variables X. G and H are distributionally
equivalent iff M (G) = M(H). We will denote distributional equivalence by G ~ H.

In the reminder of this thesis, we will refer to distributional inclusion and distributional
equivalence by simply inclusion and equivalence unless otherwise stated.

Example 3.1

The empty DAG G with no edges defines dependency model M(G?) = {ALB|S: A BEe¢
X,S C X\ {A, B}}, ie., all pairs of disjoint sets of variables are marginally and conditionally
independent. The dependency model M(G@) is included in all other BN dependency models
over X. The complete DAG G* where all pairs of nodes are connected by an edge, defines the
dependency model M (G*) = (), i.e., G* entails no independencies. M (G*) obviously includes
all other BN dependency models over X.

Definition 3.10
For a DAG G we define the equivalence class £(G) as:

E(G)={H:H~G}.

19

3 Probabilistic Graphical Models

© © ©
& ® @.@ & ®
@ @ @
® B O ® ® © ®

Figure 3.2. (a) shows DAG G, (b) shows the pattern common to all members of £(G) and (c) shows
the completed pattern that identifies all compelled and reversible edges.

Example 3.2

The 4 different DAG structures G, Gy, G, and G4 over X = {X,Y, Z} in Figure[31l(a)-(d)
respectively, are related in terms of equivalence as: G, % Gy ~ G. ~ G4. Gy, G, and G4 all
entail the single statement X 1 Y'|Z, while G, entails the statement X 1 Y.

A v-structure in a DAG G = (X, E) is a triple of nodes (X, Z,Y) € X where X - Z € E
and Y - Z € E and X € adj,(Y). A classic characterisation of DAG equivalence was given

by [Verma and Pearl (1991)):

Theorem 3.2

(Verma and Pearj, |L%ﬂ|, Theorem 1) Let G and H be DAGs over the same set of nodes X.
Then G ~ H iff G and H have the same skeleton (G* = H") and contains the same set of
v-structures.

Theorem [3.2] says that not only is the skeleton invariant for equivalent DAGs, but also the
orientation of some edges, in particular those participating in v-structures. An edge in DAG
G that has the same orientation in all DAGs G’ € £(G) is said to be compelled. An edge that
is not compelled is reversible.

Verma and Pearl (1991) defines the pattern of a DAG as the partially directed acyclic
graph (PDAG) constructed by dropping the orientation of any edge not participating in a

v-structure. By theorem [3.2] the pattern of a DAG G provides canonical representation of
E(Q).

Given a DAG G, we will denote the PDAG that contains directed edges for all compelled
edges and undirected edges for all reversible edges in G, as the completed PDGA (CPDAG)
for G.

Example 3.3

For a DAG G, there may be more edges than the ones participating in a v-structure that
are compelled and, hence, the pattern and the completed PDAG does not always coincide.
Consider for example the DAG G in Fig. [3.2(a) for which 3 edges are compelled (X1 — X3,

20

3.2 Bayesian Network Models

Algorithm 3.3 Convert a DAG structure to its pattern.
Input: DAG G = (V,E)
Output: Pattern of DAG G

1: function DAGToPattern(G)

2 G’ := copy(G")

3 L:=0

4 for all X; — X, € E do

5: if X; — X ¢ L then

6 if pac(Xk) \ {adjs(X;) U X;} # 0 then

7 for all X, € {paqg(Xi)\ {adjs(X;)} do
8 direct X; — X in G’

9 L:=LU(X; — X))

10: return G’

X4 — X3 and X3 — Xj5). The pattern of G is shown in Fig. [3.2(b) and the CPDAG of G in
Fig. [3.2(c).

A simple algorithm for constructing the pattern from a DAG is given in Algorithm [3.3] Tt
visits every edge only once, and for each edge a set subtraction is performed, which can be
done in linear time in the size of the largest set. The size of the largest set is bounded by |E|,
and the complexity of the algorithm will then be bounded by O(k - |E|?). When DAGs are
sparsely connected (as is typically the case for BN models) the sets pas(X;) and adjq(X;)
are small compared to E, yielding in practise sub-polynomial complexity.

A characterisation of equivalent DAGs based on a local transformation was developed by

hickerin (iL()_%J) using the concept of covered edges in DAGs. An edge X; — X, in DAG G
is covered iff pag(X;) = pag(X;) \ Xi.

Lemma 3.3

((Zhickeriné, u&%i Lemma 1) Let G be a DAG over variables X containing the edge X; — X;.
Let H be a DAG identical to G with the single exception that H contains X; < X instead
of X; — Xj. Then G ~ H iff X; — Xj is covered in G.

§}hickeriné (ILQ%J) uses Lemma [3.3] to develop the following characterisation of £(G):

Theorem 3.3
(Chickerjné, 1995, Theorem 2) Let G and H be DAGs over the same set of variables X, let

G =~ H and let n be the number of edges that do not have the same orientation in H and G.

Then there exists a sequence of n distinct edge reversals in G where:
1. each edge when reversed is covered,
2. after each reversal G is a DAG and G = H, and

3. after all reversals G = H, that is G and H are identical.

21

3 Probabilistic Graphical Models

In the ordering of models defined by the inclusion relation, we can define the boundary of
a model, the inclusion boundary (|Koéka|, |2001|; |Koéka et al.|, |200]J) of a BN dependency model
M(G):

Definition 3.11 (Inclusion Boundary)
Let B = (G,0) be a BN model. The Inclusion Boundary of BN dependency model M(G),
denoted IB(M(G)) is defined as:

IB(M(G)) = UIB(M(G))U LIB(M(G)), (3.8)

UIB(M(G)) = {M(U) : M(G) Cp M(U), }U'[M(G) cp MU') cp MT)]}, (3.9)
LIB(M(G)) = {M(L) : M(L) Cp M(G), BL'[M(L) Cp M(L') Cp M(G)]}. (3.10)

LIB(M(G)) consists of BN dependency models that contains more statements of conditional
independence than M (G), and UIB(M(G)) consists of BN dependency models that contains
less statements of conditional independence than M (G). Both boundaries consists of the set of
BN models “closest” to M(G). A transformational characterisation of the inclusion boundary

was provided by [Castelo and Kock: (IQJ)Lﬁ)

Theorem 3.4

(Castelo and Koéké, m, Theorem 3.2) Let G be a DAG, and let G™® and G¢ be the set
of DAGSs that can be constructed from G by a single edge addition or removal, respectively.
The inclusion boundary of the BN dependency model defined by DAG structure G is:

IB(M(G)) ={M(Q"):Q € {QuUQ™™} and Q ~ G}. (3.11)

It is certainly the case that IB(M(G)) 2 {M(G') : G’ € {G~¢U G ¢}}. However, not all
models in /B(M(G)) can be generated by adding or removing an edge from DAG G, as the
following example (Example .4) shows.

Example 3.4

Consider a domain X = {X,Y, Z}. Let G be the DAG shown in Figure[3.3(a). The inclusion
boundary IB(M(QG)) is defined by the DAGs with patterns shown in Figure(3.3(b)-(f). Notice
that from DAG G we can not construct a DAG with the pattern shown in Figure 3.3(e) by
edge addition or removal. However, by reversing the covered edge X — Y, creating DAG
Q ~ G and adding Z —'Y to @) we get the single DAG of Figure[3.3(e).

22

3.2 Bayesian Network Models

O—0
@

(f)
Figure 3.3. A DAG and its inclusion boundary. Figure (a) shows DAG G over X = {X,Y, Z}, Figure

(b), (¢), (d) and (e) shows the patterns representing the 4 equivalence classes in UIB(M(G)). Figure
(f) shows the single model in LIB(M(G)), the empty DAG.

Figure 3.4. A DAG G (a) and its underlying moral graph G™ (b).

3.2.3 Inference

The general problem of belief updating in BNs is NP-hard M and this is true
even for algorithms that only compute approximate solutions ,) In
this section, we will give an overview of the nature of popular approaches to the problem of
exact belief updating and general inference in BNs.

Consider the BN B = (G, V) over variables X = {Xy, X1,..., X} with the structure G
shown in Fig. B.4(a). We have the following factorisation:

P(X) = P(Xo)P(X1]|X0)P(Xa| X1, X5)P(X3]Xo)

P(X4|X35)P(X5| X2, X¢)P(X6|X4). (3.12)

23

3 Probabilistic Graphical Models

We will first focus on calculating Pg(Y = y) for some Y C X and y € R(Y). Let
Z = {x:x € R(X) and x[Y] = y}. Then :

PP(Y =y)=> PP(X (3.13)
xEZ

However, it is not tractable to compute the full joint distribution P?(X) as that would require
storrage-space of exponential size in the number of variables. By systematic query specific
manipulations of (3.12]) we can often reduce the complexity of (3.13)).

Query specific simplification

This approach aims at simplifying the factorisation (3.12]), before an answer to a given query is
computed through repeated multiplications and summations. The simplifications are captured
graphically by the removal of variables that are irrelevant w.r.t. the specific query.
) introduces the concept of barren variables:

Definition 3.12
Let G be a DAG over variables X, Y C X and y € R(Y). A variable X € X in a BN
B = (G, 0) is barren w.r.t. a query P(Y =y) if X isaleafand X ¢ Y.

Let B be a BN model over random variables X, Y and y be like in Definition [3.12] and
let B’ be the BN obtained from B b moving all barren variables X and the associated
potentials PP (X |paq (X m (@ then shows that:

PE(Y =y) = PP (Y =y).

Removal of barren variables is equivalent to removing potentials in the factorisation that will
sum to 1. When removing a barren variable, more variables may become barren. In fact, by
repeatedly removing barren variables, we end up with a BN over X/ = {X : X € paf,(Y)} with
structure G ue,(v)- After removing from B all variables X' ¢ pag,(Y), we can further remove
variables that are d-separated from Y. These variables can be identified using Algorithm [3.2]
in linear time in the number of edges in the structure. By removing all variables that are
irrelevant w.r.t. our query in BN B we get a reduced BN B’, and we can continue calculating
P(Y =y) using the simpler structure of B’ instead of the original structure B.

The variable elimination algorithm by |Zhang and Pool(_al (ILQQA) starts by pruning variables

that are irrelevant to the specific query. After variable pruning, the remaining variables that

are not irrelevant but not included in the final result (i.e., not in Y), are eliminated through
summation as in eq. (3:13]). This summation may be done in more stages, in each stage only
performing the required multiplications. Assume that we wish to compute P(X5 = z54) in
the model with structure G shown in Figure [3.4(a). We could for instance partition the sum
in (3.13) into two sums, one over joint configurations of the variables X \ X; and one over all
z1, € R(X1), and get the equivalent sum:

PB(X5 :(L'5h Z Z X , L1 h)) (314)

T1,h€E
R(X\Xl) R(X1)

24

3.2 Bayesian Network Models

Figure 8.5. A triangulated version of the DAG shown in Fig. 3.4]a), and a join tree over the cliques
constructed from this triangulation (b).

For this operation we need to create the potential ¢ = P(X;|Xo)P(X2|X1,X3), then sum
over values R(X7) of entries in ¢ creating the new potential ¢’ over Xy, X2 and X3 which
we then work with from here on. Different sequences of such summations lead to different
sized potentials that we need to handle in the computation. Some sequences might lead
to intractably large potentials, and a good elimination sequence has to be established. An

optimal elimination sequence results in working only with potentials of minimal size.

The moral graph of the DAG structure reveals the cost of an elimination sequence in terms
of the size of the potentials one will need to perform operations on. In the moral graph, any
two variables that are contained in the same factor are adjacent. Fig. 3.4(b) shows the moral
graph of the DAG in Fig. [3.4[a). When eliminating a variable X, one creates a potential
over all neighbours of X in the moral graph. If the moral graph is triangulated,' it is possible
to find an elimination sequence that does not introduce potentials larger than the original
factors. Such a sequence can be constructed by repeatedly removing variables from the graph,
always choosing as the next variable to be removed, a variable that is only a member of one
single clique. The moral graph in Fig. B.4[b) is not triangulated, but we can triangulate it
by adding an extra fill-in edge, either Xy — X4 or X3 — Xg. In Fig. 3.5(a) the fill-in X3 — X§
has been added to triangulate the moral graph in Fig. [3.4[(b). The cliques of the triangulated
moral graph determines the size of the potentials that we need to work with in a summation.
In our example we see that cliques over at most 3 variables are necessary. Depending on the
range of the variables in the domain, the size of the potentials over the cliques can be different
for different triangulations. Finding a minimum triangulation is NP-complete ,
), but efficient heuristics are known, see ,) for an empirical comparison of

some common heuristic approaches to minimal triangulation.

! A graph is triangulated iff there are no cordless cycles. A cordless cycle is a cycle 7 of length 4 or more
where no proper subset of nodes from 7 forms a cycle.

25

3 Probabilistic Graphical Models

Clique Tree Propagation

A somewhat different approach is taken in clique tree based algorithms. These algorithms work
on a secondary clique tree structure build from the triangulated moral graph. A clique tree
for a graph is any tree structure over the cliques satisfying the running intersection property.
The running intersection property is satisfied if and only if for any two cliques C; and Cj in
the clique tree, all cliques on the path between C; and C; contain the variables C; N Cj.

Figure [3.5[b) shows a clique tree over the cliques in the triangulated moral graph of Figure
B.5(a). By attaching each potential P(X;|pas(X;)) from the original BN model to a single
clique C; containing X; U pag(X;), we construct cligue-potentials:

o _ {HAJ. P(Xilpag(X:) A;#0
Tt

M
otherwise

where A is the set of potentials attached to clique C;. The undirected factorisation of the
potentials w.r.t. the clique tree over cliques C is then:

PX)=][@ (3.15)

CjGC

Algorithms for inference in a clique tree structure have been studied extensively ,

MB; Lauritzen and Spiegelhalteﬂ, M Shafer and Shenoy', |LQ9d), and they are all vari-

ations over the common idea of absorbing evidence and passing messages. For answering a

query on the posterior distribution P(X;|E = e), evidence e is absorbed as follows: for each
variable F¥ € E find a clique C; containing F and update the potential ®; as:

Q; =P, - 1e[E'](E)7 (316)

where 14 (E) is the indicator function:

loig)(E) =
olF] 0 otherwise.

{1 if £ =e[E],

In the message passing phase, messages are send between adjacent cliques. The message ¢;_.;
send from clique C; to adjacent clique C} is constructed as:

Gimj = Z ;. (3.17)
CA\C,

A message can be sent from C; to C; when C; has received a message from all other
neighbours, which means that initially only leafs can send messages. When a message ¢;_.; is
received in clique C, the potential ®; is updated as:

gb.]*)l ’

where ¢;_; = 1 if no message has yet been sent from clique C} to clique Cj.

O = ;- (3.18)

26

3.2 Bayesian Network Models

When one message has been sent in both directions along every link in the clique tree, the
posterior P(X;, E = e) can be constructed from any clique potential ®; containing X; by:

P(X;,E=e)= Y & (3.19)
X;eC\{ X}

From (3.19) the posterior P(X;|E = e) can easily be constructed by multiplication with
PE=e)"' = (X, crx) PXi=2,E=e))"".

For the general query containing multiple query variables Q, it is clear that P(Q = q|E =
e) can be computed by first absorbing both Q = q and E = e as evidence to compute the joint
probability P(Q = q,E = e) and thereafter computing P(E = e), and finally producing the
posterior P(Q = q|E = e). If all of the variables Q are members of the same clique C’, the
computation can be done simply by absorbing E = e and performing one full propagation. The
variable propagation approach described in , , Section 6.2) is a general approach
to constructing the posterior distributions P(Q|E = e) of arbitrary sets Q.

Complexity

Clique tree propagation approaches require absorption of evidence as defined in Eq. (3.16]),
computation of messages as defined in Eq. (3.I7), propagation of messages and updating of
potentials as defined in Eq. (3.I8) and finally marginalisation as defined in Eq. (3.19). The
time complexity of these computations is linear in the total number of parameters in the clique
tree, that is, the number of entries in clique potentials. The number is bounded only by the
size of the joint state-space of all variables |R(X)| as we may (in the worst case scenario) have
a single clique containing all variables, so the overall complexity ends up being exponential in
the number of variables.

The query specific simplification of the factorisation employed in direct approaches like the
variable elimination algorithm does not mitigate this problem, as we still need to construct
a good elimination sequence, which is equivalent to finding a triangulation of the moralised
graph yielding minimal cliques. Thus the complexity is the same as clique tree propagation.

M) compares clique tree propagation and variable elimination approach in terms
of execution times. He finds that variable elimination is advantageous when the subset of the
queried variables is relatively small. The difference in performance decreases as more variables
are added to the query and, for larger queries, clique tree propagation is shown to outperform
variable elimination.

Madsen and Jensen 1199?_3]) studies combinations of the two approaches, and propose a
lazy evaluation scheme in the general clique tree architecture. In short, query specific pruning

of barren variables and simplifications from d-separation can be employed to minimise the
necessary computations of messages. See also ,)

3.2.4 Representation and Effective Size

As previously stated, we regard the problem of belief propagation as the primary task for
PGMs. Then, given a clique tree for the BN model, belief updating is solved by absorbing

27

3 Probabilistic Graphical Models

evidence and performing one full propagation. The complexity of this operation is linear in the
number of parameters in the clique tree. We define effective size of a BN model B (denoted
size(B)) as the size of the minimal clique tree constructed from B:

sizecr (M) = Y |R(var(C))], (3.20)
CceC

where C is the set of cliques in the clique tree and var(C') is the set of variables that are
members in clique C. In general there will not be only a single unique clique tree for M,
and, as mentioned above, constructing the minimal clique tree is an NP complete problem. In
our experiments we will rely on clique trees constructed through heuristics. In particular, we
use the default triangulation method implemented in the Hugin system ,), which
combines good (local) triangulations of prime components of the moral graph to get a good
global triangulation. As we shall see later, the triangulation provided by the Hugin system
usually is very satisfactory.

The representational size of a BN model M is the number of free parameters defined by
the model, and is trivially computed from its DAG structure G over variables X:

sizerep (M) =) (JR(X)| = 1) - [R(pag(X))|. (3.21)
XeX

3.3 Probabilistic Decision Graphs

The Probabilistic Decision Graph (PDG) model was first introduced by [Bozga and Maleﬂ

), and was originally proposed as an efficient representation of probabilistic transition

systems. In this study, we consider the more generalised version of PDGs introduced by
).

A PDG structure is defined w.r.t. an underlying variable forest:

Definition 3.13 (Variable Forest)

Let F be a forest of rooted and directed trees F' = {T1y,..., T} and let X = {Xo,..., X}
be a domain of n random variables. F' is a variable forest over X when nodes from F' and
variables from X are associated in a one-to-one relation.

Definition 3.14 (PDG Structure)
Let F' be a variable forest over domain X. A PDG-structure G = (V,E) for X w.r.t. F is a
set of rooted DAGs (RDAGS), such that:

1. Each node v € V is labelled with some X; € X. By V;, we will refer to the set of all
nodes in a PDG-structure label-led with the same variable X;.

2. For each node v; label-led with X;, each possible state x;; of X; and each successor
X; € chp(X;) there exists exactly one edge label-led with x; j, from v; to some node v;
label-ed with random variable X;. Let X; € chp(X;) and v; € V;. By succ(vy, X, 25 p)
we will then refer to the unique node v; € V; that is reached from v; by an edge label-led

xi’h.

28

3.8 Probabilistic Decision Graphs

Figure 3.6. A variable forest F' over binary variables X = {Xj,..., X7} is shown in (a), and a
PDG-structure over X w.r.t. variable forest F' is shown in (b).

Example 3.5

A variable forest F' over binary variables X = { Xy, ..., X7} can be seen in Figure(3.6(a), and a
PDG structure over X w.r.t. F in Figure[3.61(b). The labelling of nodes v in the PDG-structure
is indicated by the dashed boxes, e.g., the nodes label-led with X9 are visualised as the set
Vo = {v3,v4}. Dashed edges corresponds to edges labelled 0 and solid edges corresponds to
edges labelled 1, for instance succ(vg, Xg,0) = v12.

A PDG model is a special instance of a general Real Function Graph (RFG) model:

Definition 3.15 (Real Function Graph)
A Real Function Graph (RFG) model D = (G,) over discrete random variables X consists
of a PDG-structure G = (V,E) w.r.t. variable forest F' and independent parameters 6. 6

defines for each node v labelled with X; a local real function over R(X;):

p”: R(X;) — R. (3.22)

Definition 3.16 (Probabilistic Decision Graph)
Let D = (G, 0) be an RFG model over X. If for all X; € X and v € Vj, p¥ defines a probability
distribution for random variable X; we call D a Probabilistic Decision Graph (PDG) model.

29

3 Probabilistic Graphical Models

For notational convenience, we will refer to the local distribution at node v in a PDG/RFG
in the form of a parameter vector p¥ = (py, .. pZZ) € R¥i, where k; = |R(X;)| is the number
of distinct states of X;. We will by P refer to the h’th element of p” under some ordering
of R(Xl)

The remainder of this section will be focused on reviewing important aspects of the se-
mantics of the PDG model w.r.t. its dependency model and efficient methods for performing

). To make the interpretation of the
PDG model more smooth, we give the following Example .61 This is meant to help the

exact inference, previously developed by

reader build a more intuitive understanding of the PDG model.

Example 3.6

A patient arrives at the doctor with pain in the stomach. The doctor considers three possible
causes of the pain: food poisoning (p), stomach flu (f) or an ulcer (u). Under the assumption
that these three causes are mutually exclusive and collectively exhaustive, we can represent the
unknown cause of the stomach pain by a random variable H with possible states {p, f,u}. To
perform the diagnostics of the patient, the doctor is interested in the presence (p) or absence
(a) of two symptoms: diarrhoea and fever. We can represent these two symptoms by two
binary random variables D and F with possible states {p,a}. The doctors beliefs are the
following:

e If the patient is suffering from food poisoning, he/she is likely to experience diarrhoea
but not necessarily fever which is only likely in severe cases where diarrhoea is certainly
present. In terms of conditional (in)dependence, this is expressed as D F|H = p.

e If, however, the patient is suffering from stomach flu, the doctor expects the patient to
have a fever but not necessarily any diarrhoea. Again, if the flu is unusually severe,
diarrhoea may be present, and then certainly also the patient has a fever. In terms of
conditional (in)dependence this is expressed as D L F|H = f

e Lastly, if the patient suffers from an ulcer, the doctor does not imagine any connection
between the presence/absence of diarrhoea and fever. This is captured in terms of
conditional (in)dependence as D | F|H = c.

The scenario described above can be represented in the PDG model over variables H, D
and F' shown in Figure [3.7(a). Outgoing edges from vy have been labelled according to the
states of H, and edges outgoing from vy, o and v3 are solid corresponding to state p and
dashed corresponding to state a of variable F.

The parameters of the PDG shown in Figure[3.7 have the probabilistic interpretation listed
in Table[31]

Assume that the doctor has the same belief of the likelihood of observing diarrhoea given
the two following unexpected states of nature:

1. the patient suffers from food poisoning (H = p) and has fever, and

2. the patient suffers from stomach flu (H = f) and has diarrhoea.

30

3.8 Probabilistic Decision Graphs

Figure 3.7. Sub-figure (a) shows the PDG structure capturing the belief of the doctor from Example
[3.6] and (b) shows one example of refining the model by reusing parameters.

Parameter vector Local distribution Example instantiation
p>° = P(H) = {3,3,4}

p = P(F|H =u) = {.2,.8}

p” = P(F|H =p) = {73}

p"3 = P(F|H =) = {.6,.4}

p = P(D|H =u) = {.7,.3}

p¢ = P(D|H=p,F =a) = {.5,.5}

p”7 = P(D|H=f,F=p) = {.1,.9}

p”® P(D|H = f,F = a) = {3,.7}

Table 3.1. Probabilistic interpretation of the parameters defined by the PDG-structure in Figure
B.1(a).

This means that p*> = p*® in Figure[3.7(a), and such reuse of parameters are easily captured
in the graph structure by redirecting the edge v3 — vg to vs and then removing vg, see Figure

[3.7(b).

Example 3.7
A full parametrisation of the PDG structure in Fig. [3.6/(b) consists of a binary probability
distribution for each parameter-node v;, an example is shown in Table[3.2 including also the

probabilistic interpretation of the parameters.

The following two definitions introduce the concepts of a node being reached by a joint
state x € R(X) (Definition [3.I7) and the concept of a path (Definition [B.18]).

31

3 Probabilistic Graphical Models

Parameter vector Local distribution Example instantiation
P — (X — 9.1}
p — P(X1[Xo = 0) — (7.3}
p” = PXi|Xo=1) = {1,.9}
p” = P(X3|Xo=0) = {5,.5}
p” = P(X3|Xo=1) = {4,.6}
py5 - P(X3|X0 = O,Xl = 1) - {9, 1}
p” = P(X3|X1=0) = {8,2}
pY7 = P(X3Xo=1,X1=1) = {.5,.5}
p"8 = P(Xy) = {.2,.8}
p"° = P(X;5X4=1) = {.2,.8}
p’le = P(X5|X4 =) = {.7, 3}
pYt = PX¢|Xya=1,X5=1) = {.6,.4}
p — P(XG{Xi =L Xs = 0}V {X,=0}) - {1,9}
p3 = P(X7|Xy=X5) = {.5,.5}
pV14 P(X7|X4 75 X5) - {.2, .8}

Table 3.2. One possible PDG-parametrisation of the structure in Fig. [B.6(b) and the probabilistic
interpretations of the parameters.

Definition 3.17 (Reach)
Let D = (G,0) be a PDG over variables X w.r.t. forest F. A node v in G labelled with X; is
reached by x € R(X) if

e v is a root, or
o X; € chp(Xj), v €V}, V' is reached by x and v = succ(V', X;,x[X}]).

Proposition 3.2
Let G be a PDG structure over variables X, then for any joint state x € R(X) and any
variable X; € X, x reaches a single parameter-node v € V;.

Proof: Proposition B.2] can be proved by induction in the depth of G. When G has depth
1 only a single parameter-node exists and is then trivially the unique node reached by every
x € X. Assume Proposition B3.2lis true for structure G. Now, construct structure G’ by adding
a new variable X; as leaf under X; in the forest. Then, for any instance x € R(X) a single
node v is reached in V;, and by the definition of a PDG-structure (Def. [3.14)), a single node
v' € V; will be reached by x, namely the node v/ = suce(v, X;, x[X;]). []

We denote by reach(i,x) the single parameter-node v € V; reached by x.

Example 3.8
Consider the PDG-structure of Figure [3.6(b), and the full instantiation x = 01100111 (i.e.,
x[Xo] =0, x[X1] =1 etc.). reach(i,x) is then:

32

3.8 Probabilistic Decision Graphs

i o 1234|567
Teach(i,X)‘I/o‘l/l‘V5‘V3‘I/8’V10‘I/12‘1/14

Definition 3.18 (Path)
Let D = (G,0) be a PDG over variables X. Let v € V;, pat},(X;) CY C X. Then

Path(v,Y) :={y € R(Y) : v = reach(i,x) and x[Y] = y}. (3.23)

Example 3.9
Consider the PDG-structure of Figure[3.6(b). In this structure we have:

Path(vs, { X0, X1}) = {(0,0), (1,0)},

by which we see that whether vg is on the path defined by x only depends on whether x[X;]| =
0, and is independent of the value of any other variable.

We define the real valued function fg represented by RFG D = (G, 6) as follows:

Definition 3.19
Let D = (G, 6) be an RFG over variables X w.r.t. forest F', v € V; and chp(X;) = {Y1,...,Y}.
Define function ff recursively on R(X)[der(X;)] as:

l
1Y'7 i
f&(wig s m) = [£ (), (3.24)
=l

where z; , € R(X;) and z; € R(X)[chp(Y})]. The base case of (3.24) is when X; is a leaf of
F and, therefore, dep.(X;) = {X;} and we get:

fé(zin) =y, (3.25)

for v € V;. Define the function fg:

fax) = [ré). (3.26)
v:v is root
Example 3.10
Consider the PDG of Figure[3.6](b) with the parametrisation given in Table[3.2. In this model,
we calculate f7?(x) where x[X5] =1, x[X¢] = 0 and x[X7] =1 as:

&' (x) = 5" - [({03) - f5* ({1})

=p5° - pi" - ph
—08-0.6-0.5=0.24

Proposition 3.3
Let D = (G, 6) be a PDG model over variables X w.r.t. variable forest F'. Function f¢ defines
a probability distribution PP over X.

33

3 Probabilistic Graphical Models

Proof: We need to show that 1) 0 < PP(x) < 1 and 2) D xeR(X) PP(x) = 1.

1) First, note that as PP is a product over factors that are all between 0 and 1, hence P
must be between 0 and 1.

2) Next, notice that:

Y PPo= Y]I féx

x€R(X) xER(X) v root
= 1 Z fe(x),
v:root

in D R(deF(X)

where variable X; generating the set x € R(de}(X;)) is the variable represented by the single
parameter-node v, and therefore the root of a variable tree. Then, to prove erR (X) PP (x) =
1 we only need to prove that for any root variable X;:

> =1, (3.27)

x€R(dejr(X,))

where {v} = V;. This can be proved by induction in the depth of the tree. Assume that (3.27)
is true for a PDG structure G over variables X. Construct PDG structure G’ by adding a
new leaf-node X; to the variable forest underlying G, let X’ = X U X; and let |R(X;)| = k;.
The sum for ff, can be constructed as:

Z fer(x) = Z fa(x) Z i

x'€R(X’) x€R(X) z; h€R(X)
=) féx)-1
x€R(X)
=1
where 1/ = succ(reach(j,x), X;, x[X]). -

In addition to the recursive definition of P? above, M) provides the following

two alternative characterisation of the PP:

Proposition 3.4
(@ , Proposition 2.5(A)) Let D = (G, 0) be a PDG over variables X (w.r.t. forest
F'), then:

D o reach (i, x)
PP(x) = [T rxy (3.28)
X,’EX
Proof: Equation ([3.28)) follows immediately from equations (3.24]) and (3.26). (]

34

3.8 Probabilistic Decision Graphs

Proposition 3.5
, , Proposition 2.5(B)) Let D = (G, 0) be a PDG over random variables X w.r.t.
forest F'. Let G\ X; denote the PDG structure obtained from G by removing all nodes labelled

with some X; € de}:(X;). For any v € Vj, and any x € Path(v, X) then
PP(x) = fox, (x[X\ dejo(Xy)]) - fE(x[def: (X)) (3.29)
Proof: Note that x[X \ de}-(X;)] will reach exactly the same nodes for X\ de7(X;) in G\ X;

as x in G. Also, note that when x € Path(v,X) and v € V; then x[de}(X;)] reaches the same
nodes in the sub-graph of G rooted at v as those reached by x in G. Therefore:

fox,xX\dep() = T e, (3.30)
X;eX\deq(X5)
and |
felaenxo) = T o™, (3.31)
X;€del(X;)

From (3.30) and (3.31)) the following can be derived:

fonx, (X[X\ der(Xi)]) - fo(x[dep(Xi)]) =
reach(j,x) reach(j,x)
I ri I v =

Xjedet(X;) X;eX\del (X;)
h(i, D
H p:ce[(;(ci}(z . =P (X)v
X;eX
where the last equality is due to Proposition [3.4] U]

3.3.1 The PDG Dependency Model

A PDG structure encodes independence relations that are context specific. A parameter-node
v in a PDG-structure partitions R(X) into Path(v,X) and its complement.

Proposition 3.6
, , Proposition 3.2) Let D = (G,0) be a PDG over discrete random variables X
w.r.t. forest F'. Let v € V;, Y = pa}.(X;). Then for ally € Path(v,Y):

p’ = PP(X,|Y = y) = PP(X;|Path(v,Y)) (3.32)
Further, we identify the local function ff defined in (3.31)) as:

f& = PP(del(X0)|Y = y) = PP(defp(X;) | Path(v,Y)) (3.33)

Proof: We first prove eq. (3:32)) then (3:33).

35

3 Probabilistic Graphical Models

. (332): By the fundamental rule of conditional probability we construct PP (X;|Y =y) =
%. To construct the joint marginal PD(Xi =2;p Y =Yy), we sum over U = {x €

R(X) : x[X;] = x;p, and x[Y] =y }:

PP(Xi=zinY=y)=>][»& ’"e“h (3.34)
x'eU X;eX

All X" € U reaches the same parameter-node for any X; € {X; UY} as Y = pa}.(X;). Let
. 14

this parameter-node be denoted v, we can then extract the common factor HX,e{XiUY} Py

(where x'[X;] = 2;,, X' € U) from the sum in (3.34]), which can then be expressed as:

PP(X;=ainY=y)= [o> I el (3.35)
XZE{XZ'UY} x'eU Xr€
{X\{XiuY}}
-0 o (3.36)
X e{X;UY}

Through a similar derivation, we can show that:
e
PP(Y =y) = [T #jii7 (3.37)
XjGY
The division then cancels all factors except from p}".
(3:33): Notice that:
v h
e =TI »ixy™.
dep(Xi)

Therefore, the proof follows similar arguments as the proof of (3:32) above. L]

A set of nodes V; in a PDG structure over variables X generates the partitioning consisting
of the sets {x € R(X) : x € Path(v,X)}(v € V;), and we will denote this partition 7 (V;).
Using such partitions we characterise the independencies encoded by a PDG structure in
Proposition [3.71

Proposition 3.7
(@ Proposition 3.3) The probability distribution PP represented by a PDG D =
(G,0) sat1sﬁes the conditional independence relations:

PP(Xi|X\ den(X:)) = PP (Xi|pah(Xy)) = PP (Xi|/ (V7). (3.38)

A PDG structure G therefore defines the dependency model M (G) including the independence
relations:

M(G) = {X; LX;|/(V}) : X; € {X\ de}n(X:)}, X; € X} (3.39)

Proposition 3.8

Let F' be a variable forest over variables X, and let X;, X; € X be contained in different trees.
Then any PDG model with underlying variable forest F' includes the marginal independence
X LX;.

36

3.8 Probabilistic Decision Graphs

Proof: Let X}, be the root of the tree containing X;, then by (3.39) we have that X, 1L X;|.<7(V},)
and X; L X;|o7(V;). As Xy is root, 7(V}) is the trivial partition {2}, and therefore
B = (A (Vy),#B) for any other partition Z. Then, X; L X;|.7 (o (Vy), o/ (V;)) is true,
and contraction (Axiom 2.7)) then implies:

Xi L X9 (Vo) o (Vi) A Xip L X1 (Vi) = (X3, X} L X/ (Va). (3.40)

Finally, by decomposition X; 1 X;|.o7(V}) and as o/ (V}) is the trivial partition, this is a
marginal independence: X; 1L X;. L]

Proposition 3.9

Let X;, X; and X}, be members of the same tree ' in variable forest F', let T" branch at X,
and let X; and X be in separate sub-branches underneath X;. Then any PDG model w.r.t.
variable forest F' will encode the independence relation: X; I X;|.9 (o (X},), o (V})).

Proof: For x € R(X), membership according to 7 (V;) is independent of the value of X; as
X; € X\ dep(X;), and Proposition immediately follows as an instance of Eq. (3.39). L[]

For a distribution P, any PDG structure G that only encodes independence relations that
are also true in P is called an I-map of P. This is analogous to the notion of an I-map for BN
models, discussed earlier (see Section [3.2.1]). In addition, any variable forest F' that supports
a PDG structure G that is an I-map of P, is also called an I-map of P.

Similarly analogous to BN models, we use the notion of faithfulness. When PDG structure
G is an I-map of P, and P does not contain any more independence relations than those that
can be read of G, we say that P is faithful to G. We call a distribution P for PDG-faithful,
iff there exists a PDG structure G such that P is faithful to G.

3.3.2 Inference

In this section we present an algorithm for solving inference in a PDG. Central concepts are
in-flow and out-flow of a node v in a PDG. They are defined as:

Definition 3.20
Let D = (G,6) be an RFG over random variables X w.r.t. forest F. Let v € V; and G \ X
be as in Proposition The inflow of node v (denoted ifl(v)) is defined as:

ifl(v) == {Zyepath(y,x\de;(xi)) favx,(y) when X\ dep(X;) # 0, (3.41)

1 otherwise.

The special case X \ dej(X;) = 0 in eq. (341) only happens when F consists of a single
tree rooted at X;.

37

3 Probabilistic Graphical Models

Definition 3.21
Let D = (G,0) be a RFG over random variables X w.r.t. forest F', and v € V;. The outflow
of node v (denoted ofl(v)) is defined as:

ofi)i= S ful). (3.42)

zeR(X)[de (X))

Note that when D is a PDG, ofi(v) = 1 for any v.

Lemma 3.4
Let D = (G, 60) be an RFG over random variables X and let v be a node in D, then:

ifiv)ofilv) = > falx). (3.43)

x€ Path(v,X)

Proof: Equation (3.43) follows immediately from Proposition and Definitions [3.20] and
.21 [

From Lemma [3.4] it follows that when D is a PDG inflow of a node is the probability of
that node being reached by x € R(X) drawn under distribution PP.

Corollary 3.1
Let D be a PDG over variables X, then:

PP(X;=mip) = Y phifl(v), (3.44)
veV;

for any X; € X.

Lemma 3.5
, , Lemma 4.3 (a)) Let D = (G,0) be a RFG over random variables X w.r.t. forest
F, and let v € V; and k; = |R(X;)|. Then:

k;
ofl(v) = Zplﬁ H ofl(succ(v,Y,z;p)). (3.45)
h=1

=1 Yechp(X;)

Lemma 3.6
, , Lemma 4.3 (b)) Let D = (G, 0) be a RFG over random variables X w.r.t. forest

F, and v € V; where X, is a root of some tree in F'. Then:

ifivy="] oA (3.46)
v'#v and
v/ root in D

38

3.8 Probabilistic Decision Graphs

Algorithm 3.4 Compute out-flow of node v and all node in the sub-tree rooted at v in PDG
D = (G,0). Global data-structure ofl is used to store out-flows and global data-structure 7
is used to store intermediate results needed for subsequent computation of in-flow.
Input: RFG D over variables X w.r.t. forest F', and a node v € V;

1. procedure compute0fl(D,v)

2: ofil(v) :=0

3: if chp(X;) # 0 then

4: for h=1,...k do

5: w(v,h) =1

6: for all Y € chp(X;) do

7: if ofl(succ(v,Y, z;p)) has not been computed then
8: compute0f1(succ(v, Y, x;p)))

9: (v, h) :=7(v, h) - ofl(succ(v,Y, z;p))

10: ofi(v) := ofi(v) + pj, - (v, h) > Eq. (3.45)
11: else

12: for h=1...k; do

13: ofl(v) := ofl(v) + pJ,

Lemma 3.7

, , Lemma 4.3 (¢)) Let D = (G, 0) be a RFG over random variables X w.r.t. forest
F, v € V; where X; is not a root of F, and pap(X;) = {X;}. Then:

ifi(v) = > A I efi(suce(v’Y.zin))] (347)
h=1 I/IGijZ YEC}LF(XJ)\XZ
v=succ(v', X,z 1)
The out-flow of all nodes in a RFG can be computed by invoking the procedure compute0fl
in Algorithm [B.4] on all roots v of RFG structure G.
Computing outflow for root node v in a RFG by procedure compute0f1l (Algorithm [3-4])
consists of traversing the structure of D computing (3.45) for each parameter node. For
PDG/RFG structure with underlying variable forest F', the complexity is O(k) where:

k=37 IR(X)|- [Vi] - max(L,]| chp(X0))): (3.48)
X;eX

Computing the in-flow of any node and all predecessor nodes in a RFG D = (G,) can
be done efficiently if out-flow of all nodes has first been computed.
Line [14] of Algorithm implements eq. (3.47) by using the following relation:

VY, x;
1T ofi(suce(v), Y. z;) — [Ty eenp(x,) oft(succ(v/, ,xm))’ (3.49)

Yechp(X;)\X; ofl(succ(v', X, 2j,1))

where X; = pap(X;) and v € V;. Recall that we compute the numerator of (3.49) and store it
as 7(v/, h) during the computation of outflows in line @ of Algorithm [3:4] Therefore, assuming

39

3 Probabilistic Graphical Models

Algorithm 3.5 Compute in-flow of a node v in a PDG D = (G,#). Assumes that ofl and 7

data-structures are updated through invoking computeOf1 on all roots of G.

Input: RFG D = (G, 6) where structure G is over variables X w.r.t. forest F', node v € V;
1: procedure computelfl(D,v)

2: if v is root in G then

3: ifl(v) =

4: for all v/ # v and v/ is root in G do

5: ifl(v) == ifi(v)ofi(v/) > Eq. (3.46)
6: else

7: ifllv) :=

8: Xj = paF(Xi)

9: for all v/ € V; do

10: if ifl(v') has not been computed then

11: computeIfl(D,')

12: for h=1,...,k; do

13: for all v/ € V; where succ(V/, Xz,x] n) =v do

14: ifiv) = ifl(v) + il)y S > Eq. (347)

that procedure compute0f1 has been invoked on all roots and 7 (v, h) has been saved for all
edges, we can efficiently compute (3.49)).

Algorithm 3.6 Compute in-flow and out-flow of every node in a PDG.
: procedure computeIf10f1(D)

1

2 for all roots v, of D do
3: compute0f1l(D,v,)

4 for all leaves v; of D do
5 computeIfl(D, ;)

In procedure computeIf10f1 (Algorithm B.6) both in-flow and out-flow are computed for
every node in the PDG.

To compute the marginal PP (Y = y) of an arbitrary subset of variables Y C X in a PDG
D = (G,0), we first construct a special RFG Dy—y from D by inserting evidence Y =y
described by the simple operations of the insertEvidence procedure (Algorithm [3.7)).

Constructing evidence RFG Dy_y by the insertEvidence procedure of Algorithm [3.7]
has complexity O(}_ x.cy |Vil), assuming that updating parameter vectors is done in constant
time instead of the suggested loop construct in line

It is clear that when Dy_y is constructed from PDG D by insertEvidence(D, Y, y)
(Algorithm [3.7)), then for any x € R(X) we have:

foy—y(x) =

0 otherwise

{PD(X) if x[Y] =y

40

3.8 Probabilistic Decision Graphs

Algorithm 3.7 Construct evidence RFG from PDG D by inserting evidence Y =y.
1: function insertEvidence(D,Y,y)
2 Dy —y := copy(D)

3 for all X; €Y do

4: for all v € V; do

5

6

7

for all z; , € R(X;) do
if ;) # y[X;] then
set pp :=0in Dy_y

8: return Dy_,

If oft has been computed for all roots in Dy—_y, we can then get PP(Y = y) by multiplication
of root outflows, which is shown in the following derivation:

PP(Y=y)= Y foy,(®

x€R(X)

= 3 I e, Kldeh (X)), (3.50)

x€R(X) v root
in D
where the projection x[de],(X;)] is onto descendandt variables of variable X; that is repre-
sented by root parameter-node v. The equality of (3.50) holds becouse of Proporsition [3.5]
and from the definition of out-flows (Definition we then have:

PP(Y=y)= [] ofiv) (3.51)
v root
in D

The complexity of calculating PP (Y =y) therefore consists of constructing Dy_y, calcu-
lating out-flows in Dy—, and the multiplication of root outflows (8.51]). Constructing Dy—,
has complexity O(}_ . cy |Vi]) but this is dominated by the complexity for calculating outflows
(3:48). The overall complexity therefore remains O(k) where k is computed by (3.48]).

The in-flows are only necessary for calculating all posterior marginals by equation (3.44)).
Therefore, computing a specific query on the probability PP (Y = y|E = e) can be done basi-
cally by computing outflows twice, once in Dg—, to get PP (E = e) and once in Dy B)=(y,e)
to get the joint PP(Y =y,E =e).

3.3.3 Representation and Effective Size

We have established that general inference in PDG models has linear time complexity in the
quantity of (3.48]), and we therefore use this measure as the effective size of PDG model D
over variables X w.r.t. variable forest F"

sizer(D) = Y [R(X;)| - [V - max(L, |chp(X))). (3.52)
X;eX

41

3 Probabilistic Graphical Models

@ —®

Figure 3.8. The parity distributions PDG (a) and BN (b) representation. Fig. (c) shows a BN
representation with linear effective size by allowing auxiliary variables Hy,..., H, to be included in

()

the network.

We define the representational size of PDG M (sizerep(M)) as the number of free parame-
ters defined by the model. For PDG model M over variables X, this size measure is computed
by:

sizerep(D) =) (IR(X:)| = 1) |Vil. (3.53)
X;eX

Therefore, the difference between size g (D) and size e, (D) depends on the degree of branching
of the underlying variable forest F', as:

size o (D) — sizerep(D) = > (1+ |R(X))|[|chr(X:)| = 1))|Vil. (3.54)
X, eX

Expressibility of PDGs

The development of the PDG language was initially an attempt to extend the language

of binary decision diagrams to represent probabilistic transition systems (IBozz-za and Maletl,
and later generalised to represent discrete probability distribution over sets of variables
,) The following Example[3.11]illustrate the expressibility and potential efficiency
of the PDG language, using the distribution defined by the logical “parity”’-function.

Example 3.11
(Parity) Let X = {Xo,..., X, } be a set of binary random variables, and let P be the joint
distribution over X defining uniform marginals for every X; € X. Let P(X = x) = 2-(»~1)

42

3.8 Probabilistic Decision Graphs

for any joint configuration x with even parity (that is, the sum)y x x[X;] is even), and
P(X = x) = 0 otherwise. This restriction yields the conditional distributions:

P(X;=1X\{X;})=(> Xi| mod2.
X;eX

The parity distribution is efficiently represented by the PDG-structure over a linear order
of the variables depicted in Figure[3.8(a). Two parameter-nodes for each variable summarises
the parity of all variables preceding it in the linear ordering. The bottom variable X,, is now
determined exactly depending on parity of the rest of the variables.

When representing the parity distribution by a BN model, we need a structure like the
one in Figure B.8(b) to capture the parity of every instance x € R(X). While the PDG
representation has an effective size that is linear in the number of variables (4(n — 1) + 2),
the BN will need exponentially many parameters (2") assuming a full tabular representation
of the conditional probability distributions. From a modelling perspective, we can produce
a more efficient BN model by introducing auxiliary variables, denoted by H; (1 < i < n) in
Figure [3.8(c). These variables are binary, and collects intermediate parity of the variables,
which makes it possible to model the distribution exactly with only 8(n—1)+4 parameters. In
general, there always exists such an efficient transformation from a PDG into a BN representing

the same distribution over X, by the introduction of latent auxiliary variables.

Theorem 3.5
, , Theorem 5.3) Let D be a PDG model over variables X = { Xy, ..., X,}. Then
there exists a BN model B such that:

1. B is defined over variables X U {Hy, ..., H,},
2. PB(X) = PP(X), where PB is the joint distribution defined by B, and
3. there exists a junction tree of size O(|D|?), where |D| is the size of D.

From this theorem we can conclude that in theory BNs and PDGs provide representations
that have similar efficiency. However, when learning models from data rather than constructing
a BN model from a given PDG model, the problem of learning the latent auxiliary variables
emerges. In the general setting, not constraining the structure of the BN nor assuming prior
knowledge on the existence and cardinality of latent variables, this problem is still widely
regarded as open. For solutions to special instances of the problem using more or less restrictive
prior knowledge, see [Karciauskas et al. @M), Zhang (IZ)M), Elidan and Friedman dﬂﬁ)

Theorem establishes the ability of BNs to efficiently represent distributions encoded
by PDGs.) further proves that for any BN model, there exists an efficient
transformation into a PDG model representing the same distribution:

Theorem 3.6
, , Theorem 5.1) Let B be a BN model over variables X. Then there exists a PDG
D over variables X that represents the same distribution as B, and size.g(D) = O(size.g(B)).

43

3 Probabilistic Graphical Models

The proof of Theorem [3.6]provided by), contains an algorithm that transforms
a clique tree constructed from B into an equivalent PDG. This algorithm will be presented in
Section [4.6]

3.4 The Naive Bayes Model

The Naive Bayes (NB) model represents a joint probability distribution P(X) over random
variables X by introducing a latent variable C' that models a set of components R(C'). The
NB model associates to each variable X; € X a conditional distribution P(X;|C) and to latent
variable C' a prior distribution P(C). The NB model then represents P(C,X) through the
factorisation:

P(C,X)=PC) [] P(xilC). (3.55)
X;eX

NB models have traditionally been used mostly for classification and clustering problems.
When used for classification, the latent variable C' models class membership and C has a fixed
number of states, one for each possible class. Each variable X; € X models an attribute (or
feature) and has a discrete state-space. The classification problem is the problem of assigning
the correct class-label to an instance E = (E, e), where E C X, and e € R(E). This problem
is solved using a NB model by assigning to F the most likely class label ¢ given E, that is
¢ = argmaz P(C =d|E =e).

¢/ER(C)

In classification, C' is not a latent variable outside our domain, but rather C' is included
in our domain by associating a known (and observed) class label with each component in a
one-to-one mapping.

Unsupervised clustering is closely related to classification, but no class-labels exists. The
latent C' variable then models cluster membership, but the number of clusters (components) is
typically unknown. The problem is to find the “best” number of clusters (the “best” cardinality
of C'), and a prior for P(C'). What is meant by “best” is usually problem specific, but preference
is typically given to models of small cardinality that define few dense clusters.

Many studies have demonstrated the competitiveness of the NB model over more sophisti-
cated and complex models for classification and unsupervised clustering (Cheeseman and Stutﬂ,

199d; Langley et all, 1992; Domingos and Pazzani, |1997|; |Vilalta and Rishl, |2003|).

The NB model has recently received some attention in the area of probabilistic inference

(Lowd and Domingoé, 2005]). Applying the NB model for general probabilistic inference and
general belief updating is quite different from the two traditional (and successful) applications

of the NB model discussed above. In the setting of general probabilistic inference, the learning
task is then to construct an NB model with latent cluster variable, that approximates some
probability distribution over the set X of observable variables. Moreover, we are interested in
answering arbitrary probabilistic queries over X, and not in the specific clustering provided by
the model. Given a specific NB model, we would, therefore, not be interested in the cardinality
of C to the extent that inference is still tractable. Nor would we be interested in the priors
P(C), rather we would always query the model for a joint marginal or conditional distribution

44

3.4 The Naive Bayes Model

Figure 8.9. The DAG structure capturing the Naive Bayes dependency model.

that never includes the latent variable C'. We will discuss the learning problem in Chapter [l

3.4.1 The Naive Bayes dependency model

Definition 3.22
Let N be a NB model over variables X with latent variable C'. The dependency model defined
by N is then:

M(N)={ALB|C}, (3.56)

where A, B C X.

Interaction between variables are only possible indirectly through C'. The cardinality of C'
dictates how many parameters are to be defined. With |R(X)| components (|R(X)| = |R(C)|),
there will be enough parameters to independently represent each distinct joint state of R(X).

3.4.2 Inference

From the dependency model defined by the NB model (Def. 3.:22), it is clear that the depen-
dencies can be captured graphically by a DAG structure where C' is the single parent of all
X € X, see Figure Then, we see that in computing the posterior P(Q|E = e) for disjoint
subsets Q and E of X, all variables B = X\ {QUE} are barren (by Definition [3.12]) and can
safely be removed. This then yields the efficient computation of posterior probabilities:

P(Q=gqE=e)=
6> P(C=o] PQ=aQlC=0) [[P(E=e[E|C=c), (357)

ceR(C) QeQ E€E

where (3 is the normalisation constant P(E = e)~!. The problem of belief updating in NB
model M given evidence E = e then consists of computing (for every X; € X):

P(X;E=e)= Y P(C=c)P(Xj|C=c)][] P(E=elE]|C=c). (3.58)
ceR(C) EcE

The complexity of (358) is O(|R(C)| - |E|). Constructing all entries R(X;) in P(X;/E = e)
requires |R(X;)| — 1 such computations. Then, the overall complexity of performing belief
updating in NB models is O(|R(C)| - [E[- k) where k = "y crx\gy (|R(X)[— 1). However,
the product P(C,E = e) = P(C) - [[peg P(E = e[E]|C = ¢) can be recycled as this same

45

3 Probabilistic Graphical Models

product is required in all computations of posteriors, and then only adds to the complexity
once. We get O(|R(C)|- (k+ |E|)), and (k + |E|) is maximal when E = {) as all variables then
contribute to k.

3.4.3 Representation and Effective Size

From the above discussion, we define the effective size of NB model M over discrete variables
X with latent component variable C' as:

sizey (M) = [R(C)] - 3 (IR(X)| - 1). (3.59)
X;eX

The number of free parameters that needs to be specified for NB model M, that is the
representational size of M (sizeye,(M)), is:

sizerep(M) = |R(C)| = L+|R(C)| D (IR(X)| = 1). (3.60)
X;eX

So for NB models, effective size (8.59) and representational size (3.60) is related as:

Sizerep(M) = |R(C)| — 1 + sizeg(M). (3.61)

Expressibility of the NB model

Recall the parity distribution introduced in Example[3.11] To represent the parity distribution
over n variables, the NB model will need the latent variable C' to have cardinality 2". In this
way, C' can be seen as representing the joint state of the n variables in X and the prior P(C)
can be configured to be 0 when the given configuration has odd parity. Thus, for each variable
X; we will need 2" independent parameters, which yields a total effective size of the NB model
of n-2" + (2" —1).

The NB model can represent any discrete distribution over variables X by fixing the
cardinality of the latent variable to |R(X)|. However, in general a latent variable of this size
would yield intractable inference in the NB model.

3.5 Related Work

In this chapter we have introduced three different probabilistic graphical model languages.
We have introduced the independence model encoded by each language and derived complex-
ity of performing belief updating in the models. We introduced the PDG language capable of
capturing certain contezt-specific (in)dependencies that are not expressible by the DAG struc-
ture of a BN model. Many studies have previously focused on incorporating such asymmetric
(in)dependencies as an extension to the popular BN language, we will review a few important
contributions below.

Boutilier et al. (ILM) propose to use a decision tree representation of local distributions
in a BN model instead of the more usual full tabular representation. By using such tree

46

3.5 Related Work

structures context specific independencies are explicitly represented. From such local tree

representations, |Boutilier et a1.| (|1996|) proposes a deterministic decomposition of parents by

introducing suitable so-called multiplezer-nodes, which effectively reduces the sizes of families
in the network. By reducing the size of families, [Boutilier et al. (IM) shows that the impact
on complexity of inference using clique tree approaches can be significant.

Cano et al. (IM) propose to use tree representations of clique potentials in general clique
tree probagation. Here, the aim is not so much to represent context specific independencies

that can be identified in local clique potentials, but rather to approximate the potentials by
a tree representation. This approach offers a natural tradeoff between accuracy and efficiency
of the inference computation: with larger trees, the approximation is more accurate while
efficiency is degraded, while smaller trees provides a (potentially) less accurate approximation
but faster inference.

Many extensions to the global structure of BN models to represent certain asymmetric
independencies has been proposed, e.g., Bayesian Multinets (Geiger and Heckerman, IM),
Mixtures of Bayesian Networks (Thiesson et al., M) and Recursive Bayesian Multinets
(Pena et _al., M) Each of these languages defines a decision tree structure that contains at

its leaves different BN structures. Each leaf corresponds to a different, and the difference in

the above languages reduces to whether the context is decided by one of more variable and
whether a latent context-defining variable is allowed. In the Bayesian Multinets proposed by

Geiger and Heckerman (1996]) a single hypothesis variable defines the context. The Recursive

Bayesian Multinets proposed by |Pef1a et a1.| (|200ﬂ) defines the context using a set of variables.

The framework of Mixtures of Bayesian Networks proposed by |Thiesson et a1.| (11997|) uses a

latent variable to define the context, and then basically computes an average over a small set
of different Bayesian Networks.

47

CHAPTER 4

LEARNING PROBABILISTIC GRAPHICAL
MODELS

The problem addressed in this chapter is the following:

Let X be a set of discrete random wvariables w.r.t. a probability space
(2, R, P). Given a database D of iid samples of P(X), construct a PGM
M over X such that PM provides an accurate and efficient approzimation

of P(X).

To assess whether M provides an accurate approximation of P we use a distance mea-
sure for probability distributions, and the relative distance from P to PM is then used as a
measure of accuracy. By the efficiency of the approximation provided by M we understand
the complexity of belief updating, that is, computing all posterior marginal distributions from
PM_ Both measures are important when selecting models from a single language and also for
comparison of different languages for probabilistic graphical modelling.

4.1 Selecting Models and Comparing Languages

Given a specific language of probabilistic graphical models £ and a probability distribution
P (or a finite sample D of P), we are interested in extracting a characteristic of £ that tell
us which alternative approximations to P L has to offer. Such characteristics is also relevant
both for comparing different languages and when selecting among alternative models from the
same language.

4.1.1 Accuracy and Efficiency

Let M be a probabilistic graphical model and let P be a target distribution, where P and
M are defined over the same set of discrete variables X. Let P be the distribution defined
by M. One standard measure for comparing probability distributions is the Kullback-Leibler

49

4 Learning Probabilistic Graphical Models

distance (KL-distance) (Cover and Thomaé, |1991|; Kullbach and LeibleIL |1951|).1 KL-distance
is an information theoretic measure that assigns a distance from a “true” distribution P to an
approximation (). For discrete distributions, it is defined as:

DiPIQ) = Y Peolos . (4.1)
xeR(X)

where we adopt the convention (following [Cover and Thomas (1991)) that Ologg = 0 for

0<¢g<1and plog%7 = oo for p # 0, which makes (41]) well defined for any pair of discrete
2

distributions (not necessarily positive) over the same domain.

Lemma 4.1
Let X be a set of discrete random variables. Let P be a fixed distribution over X. Then,
Dk (Pl]-) is a function:

DKL(P”) Ipx—> [0,00], (4.2)

where Px is the set all distributions over X. Dy (P||) is a continuous function on {Q € Px :
Q(x) =0= P(x) =0}.

Proof: Under the convention that 0 - logg = 0 for 0 < ¢ < 1, continuity of Dk (P||Q) at
any {Q : Q(x) = 0= P(x) = 0} is immediate. (]

Dk (P||Q) is always non-negative, 0 only when P = @, and asymmetrical (hence, (4.1
is not a metric). When logarithms are base 2, the information theoretical interpretation of
Dk 1 (P]|Q) is the expected extra bits that will be communicated when a coding scheme that
is optimal under the distribution of messages () is used, in a setting where P is the true
distribution of messages. From our point of view, we will interpret Dgr(P||P™) as a measure
of in-accuracy of model M. When using M for inference, we can express the in-accuracy of
the inferred posterior joint distribution PM(Q|E = e) as D (P(Q|E = e)||PM(Q|E = e)).
Then the expected inaccuracy of inferring the joint posterior of variables Q given that variables
E are observed is:

Y P(E=e)Dki(P(QE =e)||[PY(QIE = e)). (4.3)
ecR(E)

D (P||PM) is an upper bound for (&3] (Cover and Thomaé, 1991, Theorem 2.5.3), and can

therefore be used as a conservative estimate for such expected inaccuracy. The entropy of

discrete distribution P is defined as:

H(P)=- Y P(x)logP(x), (4.4)
x€R(X)

!Kullback-Leibler distance is also sometimes referred to as information divergence, information gain or
relative entropy.

2The convention of replacing Ologg with 0 makes sense as lim,_.o plog = 0, and replacing plog & with
oo when p # 0 makes sense because limg—.q plog g = for p > 0. However, there exists alternative measures
for comparing discrete probability distributions, that does not require paying special attention to zeros, e.g.,
the Hellinger’s distance: Dy (P||Q) = Exex(P(x)% - Q(x)%)2.

50

4.1 Selecting Models and Comparing Languages

and Dxr(P||PM) can then be expressed as:
Dgr(P||PM) = —H(P) = Y P(x)log PM(x). (4.5)
x€R(X)
We usually do not have the “true” distribution P at our disposal, but only a finite sample D

of P.3 We then use the empirical distribution PP deﬁned b maximum likelihood estimates
under the assumption of multinomial sampling D)

NX
@,
where Ny is the count of x in D, that is, the number of instances d € D where d = x.
Substituting PP for P in equation (4.5), we then get:

PP(x) = (4.6)

Dgn(PP||PM) = -H(PP) -) %"' log PM (x)
x€R(X)
= —H(PP) - WJL(DyPM), (4.7)
where L(D|PM) is the log-likelihood of D under PM, defined by Eq. (2.23). As the right-
hand side of ([@.7) only depends on M through L(D|PM), we can use L(D|PM) as a meaningfull
measure of accuracy of a model M learned from data D. Furthermore, as 0 < Dy (PP||PM)
we see that —H (PP) provides an upper bound on W L(D|PM).

In Chapter 3] we identified parameters for each of the model language introduced, in which
general belief updating will be computable in linear time, making it possible to discriminate
between models from different languages based on theoretical efficiency. Popular metrics for
assessing the quality of a single model given a database, combines likelihood and a measure
of size in a weighted sum. We refer to such metrics as penalised likelihood scores, and they
have the general form:

S\(D, M) := (1 — \)L(D|PM) — X - size(M), (4.8)

where size(M) is some measure of complexity (not always directly related to complexity of
inference) and 0 < A < 1. Popular penalised likelihood scores for BN models use the repre-
sentational size (number of free parameters) of the BN model as the measure of complexity.
For instance, substituting size,,(M) for size(M) in (4.8), the Bayesian Information Crite-
rion (BIC) IL_Q_’% is proportlonal to (48) with A =1 — %, and the Akaike
Information Criterion (AIC) , is proportional to (48] for A = %

Penalised likelihood metrics are often used to select among alternative models in a learning
procedure. It may, however, not be lucrative to settle for a model that optimise the one
specific (maybe arbitrarily chosen) A tradeoff between accuracy and efficiency dictated by
the score metric. Depending on the specific application domain, we might want to penalise
overly complex models differently. Also, if we are to compare models from different languages,
settling for one specific tradeoff may (unintentionally) give favour to models from one language
over models from another language.

3KL-distance has been and often still is used as a criterion in developing procedures for learning PGM from

data, see (Chow and Liu dl%é) or [Beygelzimer and Rish 12003).

51

4 Learning Probabilistic Graphical Models

Ideal SL-curves

Log-likelihood

raining —
est =mees
onstant tradeoff (Training) -

Effective model size

Figure 4.1. Ideal SL-curves. 'Training’ plots SL coordinates for non-dominated models where log-
likelihood is measured over D4, and ’Test’ plots SL coordinates for the same models where log-
likelihood is measured over Dp. The straight lines titled ’constant tradeoff (training)’ displays lines
constructed by linear extrapolation of SL coordinates that score equally under that specific tradeoff.

4.1.2 SL-Curves

To evaluate our ability to learn a model M from data D that efficiently and accurately ap-
proximates the empirical distribution PP, we will use plots of effective size vs. log-likelihood
(L(D|PM)) of a range models. The range of models will ideally each yield optimal Sy score
for som A. Figure [4.1] shows idealised plots of effective model size vs. model likelihood for
a range of models optimising S (see Eq. [4.8)) for different settings of \. We call such plots
SL-curves.

First, in Figure 4.1} the curve titled “Training” plots the likelihood over the data set used
for learning (henceforth referred to as Dy) vs. effective size. The curve titled “Test” plots
the likelihood of the same models but now computed over a separate test dataset not used in
the learning phase (henceforth referred to as D). Each of the straight lines titled “Constant
tradeoff (Training)” is constructed by extrapolation of a set of models that scores equally
under some constant tradeoff. Therefore, when selecting models according to a constant A,
the optimal model can be identified in SL space as the model with SL-coordinates on curve
“Training” at which the tangent has slope ﬁ

SL-curves over likelihood obtained from D, will show the ability of the specific model
language to capture the empirical distribution PP4. The interpretation of likelihood values
obtained over D4 is non-trivial. While a relatively high value is preferable, any model M that
successfully enumerates D, (and thereby represents the empirical distribution PP4 exactly),
will receive a maximal likelihood value over Dy of L(D4|PM) = —|D|H(PP4). Any model
language that has the ability to represent any distribution over the observed variables is, of

course, expected to approach this value asymptotically as the number of free parameters is

52

4.1 Selecting Models and Comparing Languages

increased. Such models are not interesting unless we are confident that the empirical distri-
bution PP4 and the data generating distribution P are close to indistinguishable. Whether
the assumption of PP4 being close to P is reasonable, depends on the size of Dy, the less
data we have the less reasonable the assumption is. As data will always be limited in any
practical application, models that enumerate D4 by capturing PP4 perfectly, typically suffer
from overfitting as any idiosyncrasies of D4 are captured and as a result does not generalise
well to new samples from P. We define the concept of an overfitting model in Definition A11*

Definition 4.1
Given a model language L, a dataset D and partition into training data D, and test data Dp.
A model M € L overfit D4 if there exists a model M’ € L such that:

L(D4|PM) > L(D4|PM"), and (4.9)
L(Dp|PM) < L(Dp|PM"). (4.10)

Likelihood values obtained over dataset Dp, can be used to provide some stability to
our conclusions and guide selection of models. L(Dg|PM) is then typically used to detect
overfitting D 4.

When comparing multiple languages using SL-curves we have 2 curves for each language,
one for likelihoods over D4 and one for likelihoods over Dp. For each language £, the model
M = argmaz L(Dp|P™') can be identified, and will automatically be the model amongst all

M'el
models from £ that maximise L(D|PM) without overfitting D4 (according to Definition E.T)).
We can then compare such optimal models from the different languages w.r.t. dominance and
select the dominating model if one exists or select one of the alternatives based on requirements
on accuracy or efficiency.

Consider the constructed SL curves in Figure [4.2] for languages PGM1 and PGM2. The
upper curves shows log likelihood over D4 while the lower shows log likelihood over Dg. We
use Dp for guiding the selection amongst alternative models. The models that maximise log
likelihood over Dp is indicated by M1 and M2 for PGM1 and PGM2 respectively. These are the
models that would be selected (from the respective language) by a model selecting procedure
that uses Dp to detect overfitting. As M1 and M2 have similar log-likelihood values over Dp,
and M1 has higher log-likelihood value over D4 than M2, then, comparing M1 and M2 we see
that M2 has higher likelihood over the entire dataset. This observations should not be hastily
interpreted as an indication that M1 provides the more accurate approximation of the data
generating distribution. Instead, we can only conclude that M1 and M2 provide an equally
accurate approximation, while M2 provides the more efficient approximation. On the level of
language comparison, we can make the observation that PGM1 consistently dominates PGM2
in approximating D4, however, PGM1 suffers accordingly from overfitting D4 and accuracy
on Dp degrades quickly. When selecting a single model in a specific scenario, this observation
is less interesting. However, for a more general comparison of model language performance
in a scenario where models are learned from real data, such observations are clearly relevant.

4Definition @ 1]is a slightly modified version of a more traditional definition (see (Mitchel ,, p. 67)),
where log-likelihood over D4 and Dp has been substituted for prediction error over D4 and the entire dataset.

53

4 Learning Probabilistic Graphical Models

Example SL-curves

Log-likelihood

M2 Effective model size Ml

Figure 4.2. Example of SL-curves used to select models from two different languages PGM1 and
PGM2. The upper curves are log-likelihood values over D4 while the lower curves are over Dp.

When comparing the languages PGM1 and PGM2 rather than the models M1 and M2 using

Figure [4.2] we would make the observation that PGM1 has less propensity to overfitting than
PGM2.

4.1.3 Related Methodologies

Beygelzimer and Rish 12003]) use tradeoff curves that display the tradeoff between tree-width
and likelihood of BN models. The tree-width of a BN model is a measure of the size of

the smallest junction tree representation, and is therefore equivalent to our notion of effec-

tive size of BN models. The curves used by [Beygelzimer and Ris (Iﬂ)ﬁj) are equivalent to

our SL-curves, but the motivation for the analysis is somewhat different from our analysis.
Beygelzimer and Rish (IZ(XH) aims at identifying the so-called approximabillity of probability
distributions by BN models. That is, a measure of how effective a BN approximation of a
given distribution can be. In the present study, we aim at a comparison of different languages
of probabilistic graphical models using SL-curves with likelihoods for both D4 and Dg. When
only considering a single language, our SL-curves (for D4) tell exactly the same story as the
tradeoff-curves of [Beygelzimer and Rishl (2003).

SL-curves are closely related to curves showing prediction error against complezity, which

are commonly used in machine learning for the assessment of generalisation performance in

both unsupervised and supervised model selection (Hastie et al.,[2001; Mitchel!,m&’d). A stan-

dard learning procedure then increases the complexity by adding parameters to the model,

and eventually selects the model that minimises the prediction error on Dp. It is natural to
view log-likelihood over Dp as a bound on the expected accuracy in predicting new instances
sampled from the generative distribution, and the model yielding maximal log-likelihood over
Dp is then the same model that has minimal prediction error on Dpg. A slight difference, how-

54

4.2 Parameter Estimation

ever, is that we explicitly use effective size that is proportional to computational complexity
of general inference in the model, instead of the more common representational complexity
typically used for such analyses.

4.2 Parameter Estimation

In this section we discuss the problem of estimating parameters of a model given a dataset
of observations. Assume that for model structure M over discrete variables X, we need to find
a good parametrisation for M. Let D be a dataset of iid samples of joint distribution P(X).
Assume that after observing data D we can construct the posterior density P(O|D), effectively
assigning a conditional probability to any parametrisation 6 given the observed samples D. A
Bayesian approach to estimation would then select the mean of P(O|D), that is:

H:ﬂmm:[ymwmw. (4.11)

Another Bayesian approach is the mazimum a posterior (or MAP) estimation, where the
parametrisation attaining the maximum posterior probability is selected:

0" = argmaz P(|D). (4.12)
0

The posterior P(0|D) = P(D|0)P(0)/P(D) can be simplified by assuming that any sequence
of observations is equally likely a priori, corresponding to a uniform prior P(D) which can
then be disregarded when comparing posteriors. Further, if we assume a uniform prior on
parameters, the posterior P(6|D) becomes proportional to the likelihood of data P(D|6).
Then (4.12) becomes the popular mazimum likelihood estimator:

0" = argmaz P(DI0). (4.13)
[%

If we assume multinomial sampling, the ML estimate for the conditional probability P(Y =
y|U = u) from data D is given by the fraction:

P(Y=y[U=u)=-2% (4.14)

where Ny, is the number of data instances d € D for which d[Y,U] = (y,u), and N, =
ZyER(Y) Ny u. Therefore, when data D is complete (i.e., fully observed), ML estimates can
be computed in closed form by simple proportions of counts. When data is incomplete, we
can not compute this estimate directly and must rely on methods such as the EM algorithm,
that produces an ML estimate using expected counts. For NB models, we face the problem
even for complete data. The difficulty arises from estimating parameters in the presence of
the latent variable C' for which no observations exit. We will discuss the solution provided
by the EM algorithm in dealing with the problem of incomplete data and latent variables in
Section [4.4.1]1 For now, we will focus on the simpler task of ML estimation in BN and PDG
models from complete data.

95

4 Learning Probabilistic Graphical Models

Algorithm 4.1 The procedure scores a smoothing parameter « by a cross-validation method.

Input: Model M, smoothing value «, fully observed data D.

Output: A score for smoothing value a.
1. function CVScore(M,«,D)
2 Randomly divide D into n equal size disjoint folds Dy, Ds..., D,
3 5:=0.0

4 for all folds D; do

5 Let 0; be a-smoothed ML-parameters for M estimated from D \ D;.

6 s:= s+ L(D;|6;)

7

return s/n

Smoothing

Pure ML estimation of parameters are often not desired, as a count of zero will yield a zero
probability configuration in the model. As data is always limited, considering any event which
is not observed in the data as an impossible event is never justifiable (in theory) as either the
event (or the data-sample) may just be particularly unlikely in nature.

A standard method to avoiding such zero counts is to use smoothed ML-parameters, which
amounts to adding a smoothing factor (or pseudo count) a to the count when calculating the
estimate of P(Y = y|U = u):

Nyu+a

P == = N TR

(4.15)

We will denote parameters calculated from eq. (@.15) a-smoothed ML-parameters.?

The larger the «, the more aggressive the smoothing and parameters will approach unifor-
mity and the counts from data will vanish. Choosing « too small may not provide sufficient
smoothing to cancel out the unlikely events observed in the data. A good value for « is there-
fore very dependent on the nature of data. By “a good value” we understand a value for which
a-smoothed parameters yields a closer and more accurate approximation of the generating
distribution than pure un-smoothed ML parameters.

For a given parameterised model M representing distribution P, the likelihood of sepa-
rate test dataset Dp may be used as valid measure of accuracy of the approximation provided
by PM. Alternatively, instead of leaving out a subset of the dataset for validation purposes
only, we can use a cross-validation approach to estimate the accuracy of an approximation.
We will employ a cross-validation approach in assessing the quality of a smoothing value a.
Function CVScore of Algorithm [4.1] assesses the quality of a a-value by cross-validation.

We will assume that CVScore(M, a, D) defines a unimodal function in the o argument.
Empirical observations has shown that this is not an unreasonable assumption. Figure [4.3]
shows CVScore(M,a,Dy) and L(Dg|M) for a PDG model M over the variables observed in
a real dataset. Not only does this plot support our assumption of unimodal CVScore in «,

"Equation (@15) corresponds to MAP estimation of parameters with prior P(f) following a Dirichlet dis-

tribution with parameter « for each dimension, see)

56

4.8 Learning Bayesian Network Models

Abalone
-11.36
—
-11.37 : ———
% / \\\
§ -11.38
@]
T 1139
=
g
£ -11.4
T |
= -11.41 B e
o0 728 N s S
3 ST —
e / CVScore p—
[Test log likelihood ~~ -==-----
-11.43 T s : .]

0 01 02 03 04 05 06 07 08 09 1

smoothing value

Figure 4.3. The plot shows CVScore(M, Dy, «) for fixed model M and fixed data D4 depicted by the
solid line. The dashed line plots the value of L(Dyes¢|M) for a separate data-sample Dy.q: and for M
with a-smoothed ML parametrisation. The dataset used is the Abalone dataset with |D4| = 3758 and
|Dp| = 419.

but also we see that L(Dpg|M) and CVScore attains their maximum value in the same region
of smoothing values a.

Accepting the assumption of unimodality, we will use a simple search procedure to estimate
a that yields maximal CVScore. The procedure tuneSmooth (Algorithm [4.2]) optimises an «
using a simple narrowing search. The result of tuneSmooth is plotted in Figure[4.3]as a vertical
dashed line.

The vertical line in the plot in Figure 4.3] shows the « value resulting from our implemen-
tation of the tuneSmooth procedure (Algorithm [4.2]).

4.3 Learning Bayesian Network Models

This section is concerned with the problem of learning BN models from data. The recent

book by [Neapolita (Il)ﬂd) serves both as an excellent introduction to the topic and a com-
prehensive reference containing many important results that have emerged over the past 10-15
years of intensive research in this specific field of automated learning.

In this section we propose an algorithm for learning BN models from data. In short, the
procedure performs a stochastic search in the space of equivalence classes of BN models. Major
parts of the material presented in this section is based on the ideas previously published in
(Nielsen et a1.|, |2003|).

Our proposed procedure, the k-greedy Equivalence Search (or KES) procedure, is a gen-
h

eralisation of the Greedy Equivalence Search (or GES) procedure, first proposed by

o7

4 Learning Probabilistic Graphical Models

Algorithm 4.2 Given a dataset and a model M this algorithm optimises a smoothing factor

by using the cross-validation score, CVScore.
Input: Dataset D and model M
Output: Optimal smoothing parameter «.

1: function tuneSmooth(D, M)

2 l:=0

3 U 1= Qmag

4: repeat

5: if CVScore(M,l + €,D) > CVScore(M,[,D) then
6 l:=1+4c¢

7 if CVScore(M,u + €, D) > CVScore(M,u, D) then
8 U:=1UuU—¢€

9: until neither v nor [changed, or u — [is small enough.
10: if CVScore(M,u,D) > CVScore(M,1,D) then

11: return u

12 else

13: return /

(1997).

4.3.1 Selecting Optimal BN Models

We say that a distribution P is representable by BN dependency model M (G) iff G is an I-map
of P, which then implies that for some parametrisation 6, BN model B = (#, G) represents
distribution PP = P. We will by Bg denote the BN model with DAG structure G and ML

parameters 6 estimated from data D.

Definition 4.2 (Local (Inclusion) Optimality)

A BN dependency model M (QG) is inclusion optimal w.r.t. distribution P iff P is representable
by M(G) and no model M(G') strictly (distributionally) included in M (G) exists for which
P is representable.

Definition 4.3 (Global (Parameter) Optimality)
A model M(Q) is said to be parameter optimal w.r.t. distribution P iff P is representable by
M (G) and no other model with fewer free parameters is P representable.

Proposition 4.1
Let P be a distribution faithful to DAG G, then the model M (G) is the unique global optimal
model w.r.t. P.

Proof: As P is faithful to G, for any other model M(H) # M(G) that can represent P
it must be the case that M(G) Cp M(H). For any such model M(H), DAG H can be
constructed from DAG G by a series of covered edge reversals and single edge additions (by

o8

4.8 Learning Bayesian Network Models

Definition [3.11] and Theorem [3.4]). Tt can easily be shown that reversing a covered edie can

not change the number of free parameters in the model defined by the DAG, see (Chickering],
). However, edge additions always will increase the number of free parameters. Therefore
M (H) must necessarily contain more free parameters than M (G), which proves unique global
parameter optimality of M(G). (]

For learning procedures that traverse the space of equivalence classes representing each
equivalence class by a DAG, it is desirable that the score function does not discriminate
between equivalent DAGs, and instead assign the same score to equivalent models. We call
such score functions score equivalent.

Definition 4.4 (Score Equivalence)
Score function S is score equivalent iff for any pair of DAGs G and H where G ~ H it is the
case that S(D, BE) = S(D, BY).

Generic score functions like Sy (equation (4.8))) discussed in Section [4.1] are typically used
to assess the quality of BN models. For recovering a model that represents the data generating
distribution, consistency of the score function is important.

Definition 4.5 (Consistent Score Functions)

Let D be a dataset of iid samples of a positive discrete probability distribution P(X). A score
function for BN models S is then consistent if, asymptotically as |D| — oo, the following
holds:

1. If DAG G is an I-map of P while H is not, then S(D, BE) > S(D, BE).

2. Ifboth G and H are I-maps of P but size,ep(M(G)) < sizeye,(M(H)), then S(D, BE) >
S(D, BY).

For learning procedures, that traverse the space of DAGs by local transformations such as
single edge addition and removal operations, the requirement of local consistency is important.

Definition 4.6 (Locally Consistent Score Functions)
Let D be a dataset of iid samples of a positive discrete probability distribution P(X). Let G
be a DAG over X and let G’ be the DAG constructed from G by adding the edge X; — X;.

A score function for BN models S is then locally consistent if, asymptotically as |D| — oo,

(4.16) and (4.17) below hold:
X, £ X,lpag(X;)[P) = S(D, BB) > S(D, B) (4.16)
Xi L X;|pag(X,)[P) = S(D, BB) < S(D, BB) (17)

Assuming DAG-faithfulness of the generative distribution, the inclusion boundary neigh-
bourhood ensures asymptotic optimality, as shown by |Castelo and Kocka 1200;3]).

Theorem 4.1

(Castelo and Koéké, m, Theorem 4) Let D be a fully observed dataset of iid samples from
a discrete joint probability distribution P. Let P be faithful to DAG structure G and let S be

99

4 Learning Probabilistic Graphical Models

Algorithm 4.3 The k-greedy Equivalence Search procedure (KES). S is any locally consistent
score criterion and IB7(-) is the set defined in (4.18).
Input: Data D; 0 < k <1
Output: DAG structure of local optimal BN model.
procedure KES(D, k)

1:

2 G := empty DAG model over observed variables in D
3 B := IB*(G,D)

4: while B # () do

5 C := random subset of B of size max(1, k|B|)

6 G:= argmaz S(D,BE)

G':M(G")eC
7: B = IB+(G,D)
8: return G

a locally consistent score function. Then, as |D| — oo, for any DAG H # G with probability
1 there is a model M(H') € IB(M(H)) s.t. S(D,BE) < S(D, BY,)).

4.3.2 Greedy and k-greedy Model Selection

The GES algorithm for selecting optimal BN models was proposed by (M), and the
optimality was later proved by |Chickerin9J (IQOOj). A generalisation of the GES algorithm was
proposed by |Nielsen et al.| (|2003|), the k-greedy Equivalence Search (KES). Algorithm [4.3]gives
a simple high-level formulation of the KES procedure. With k£ = 1, KES effectively reduces to
GES.

We define the set IBT(G) as:

IBH(G,D) := {M(G') € IB(M(Q)) s.t. S(D,BS) > S(D, B)}. (4.18)

where S is a locally consistent and score equivalent score function.
We will by GES refer to KES with £ = 1.

Theorem 4.2

(fNie]sen et aIJ, |200j, Theorem 3) Let D be a dataset of fully observed iid samples of discrete
joint probability distribution P, let P be faithful to DAG G and let 0 < k < 1. Then,
asymptotically for |D| — oo, with probability 1, KES(D, k) returns DAG H ~ G.

Proof: Theorem [4.2] follows almost immediately from Theorem (4.1l As the KES procedure
of Algorithm [4.3] at each iteration moves to a model in the inclusion boundary of the current
model, that has higher score than the current model, by Theorem [4.1]KES will only terminate
when the global optimal model G is reached. As the number of dependency models for any
finite set of variables is finite, KES will eventually terminate and return G. L]

The original formulation of the GES algorithm by (@) implemented a two-phased
search. In the first phase only the upper inclusion boundary UIB(G) was used in the generation

60

4.8 Learning Bayesian Network Models

Zo Z1 €2 x3 Yo U1
P(X,Y) o |022]003]022]003]| PY,Z) 2 |035]0.15
y1 | 0.03 | 0.22 | 0.03 | 0.22 z1 | 0.15 | 0.35

i) X1 X9 I3 uQ Uul
P(X,U) up|022]022]003]|003| PWUZ) 2 |035]0.15
up | 0.03 | 0.03 | 0.22 | 0.22 z1 | 0.15 | 0.35

Table 4.1. Marginal joint distributions for the undirected selection-four-cycle distribution.

of IBT(G, D) (eq. [@I])), and in the second phase only the lower inclusion boundary LIB(G)
was used. The original formulation could lead to superfluous addition of edges in the first
(forward) phase that would then be removed in the second phase. Our formulation uses the
full inclusion boundary in each step and, thereby, may avoid some superfluous additions, while
leading to the same theoretical results.

The assumption of DAG faithfulness in Theorem [4.2] is a strong assumption to make on
a joint probability distribution. We will give an example of a distribution for which DAG
faithfulness is not satisfied and which exhibits multiple local maxima.

Example 4.1

(Nielsen et aIJ, |2003, Example 1) Let X = {X,Y,U, Z} be a set of discrete random variables
where X has 4 states and Y, U and Z are all binary. Let P be a probability distribution
over X that satisfies the conditional independencies X | Z|{Y,U}[P] and Y L U|{X, Z}|P],
and with marginal joint probability distributions given in Table[4.1l The (in)dependencies of
this distribution are perfectly captured by the undirected graph in Fig.[4.4(a). This UDG is
not decomposable (that is, not triangulated) and therefore no equivalent DAG model exists
(Andersson et aIJ, M, Corollary 4.1). Two distinct BN dependency models are inclusion
optimal w.r.t. P, the DAG structures in Fig. [44(b) and (c) represents these models. The
model in Fig.[4.4(b) contains 19 independent parameters while the model in Fig.[4.4|(c) requires

23 independent parameters, therefore the global optimal model is the model in Fig.[4.4\(b).
As one last note, the model in Figure [4.4(d) is a directed model that captures the distri-
bution by including the latent selection variable S. Variable S is a special variable that will
always be in one unique state for all observations, but is never included in the observations
itself. It can be seen as a variable that selects the observations that are observed.
We will denote this distribution the undirected selection-four-cycle distribution.

Random parametrisation of the selection-four-cycle distribution of Example [4.1] was used

for experiments by |Chickering and Meek| 12002) in experimenting on GES performance in the

presence of multiple inclusion optimal models. The specific parametrisation we bring here was
manually designed to guide a greedy search to a suboptimal model.
(@) investigates some aspects of the assumption of DAG faithfulness and first

proves existence of faithful (discrete) distributions for any DAG structure. Furthermore,

if parameters are selected at random over a uniform distribution of legal parameters, with

probability 1, parameters will yield a probability distribution faithful to G ,)

61

4 Learning Probabilistic Graphical Models

(O—)
DN e

Figure 4.4. Four models that can represent the undirected select-four-cycle distribution.

However, these theoretical results are of little importance to the practical problem of learning
BN models from data. It is not hard to imagine situations where this assumption is invalidated.
The existence of a relationship like the one described by the DAG in Figure [4.4] (where S is
the hidden selection variable), clearly invalidates the assumption of DAG faithfulness. This

observation prompted |Chickering and Meeg dM) to propose its replacement by the weaker
assumption of satisfaction of the composition property assumption.
The composition property (or composition axiom of independence ,)) is defined

as:

Definition 4.7 (Composition property)
A discrete joint probability distribution P over variables X, satisfies the composition property
iff for any X € X and any nonempty disjoint subsets U, W of X and subset Z of X:

X LU|Z[P] A X LWI|Z[P] = X L {UUW}Z[P). (4.19)

Sometimes the contra-positive of (4.19)) is easier to apply when working with a specific example:
X L{UUW}Z[P]= X LU|Z[P]v X L W|Z[P]. (4.20)

The distribution of Example[4.1]satisfies the composition property. The composition prop-
erty is a less restrictive assumption than the assumption of DAG-faithfulness, as distributions
that are DAG-faithful automatically satisfies the composition property ,) The
converse is not true, which the distribution in Example [4.1] exemplifies. That the model
in Example satisfies the composition property can be seen by the fact that no pairs of
conditional independence relations from the model fits the left-hand side of equation (4.19).
Therefore, the composition property is trivially fulfilled.

Still, the class of distributions that satisfies the composition property may be too restric-
tive. For instance, one relevant distribution that does not satisfy the composition property is
the parity distribution (see Example3.11]). To realise this, let P be the parity distribution over
binary variables X and let Y = {X;, X;, X;} C X. We then have that X; £ {X;, X;}|X\Y[P]
but neither X; £ X;|X\ Y[P] nor X; L X;|X\ Y[P], and the implication of (£.20]) is then not
satisfied.

62

4.8 Learning Bayesian Network Models

Substituting the assumption of satisfying the composition property for the assumption of
DAG faithfulness, |Chickering and Meekl (|200j) prove inclusion optimality of GES. This result
extends to KES which we formally state in Theorem [4.3] The proof of Theorem [4.3] proceeds in
the same manner as the proof for GES inclusion optimality provided by [Chickering and Meek|

(2002).

Theorem 4.3

(Nielsen et aIJ, M, Theorem 4) Let D be a dataset of fully observed iid samples from a joint
probability distribution P that satisfies the composition property, and let M (H) be inclusion
optimal w.r.t. P. Then, for any 0 < k <1 and |D| — oo, with probability 1 KES(D,k) return
DAG G~ H.

Proof: We will prove Theorem [4.3] by contradiction. Assume KES(D, k) returns DAG G
that is not inclusion optimal w.r.t. P. That KES returns GG implies that there is no DAG
G' : M(G') € IB(M(G)) s.t. S(D,BE) < S(D,BE,). That G is not inclusion optimal
w.r.t. P implies that M(G) does not include P, and G is therefore not an I-map of P.
Then, for some X; in G it must be true that X; L {ndq(X;) \ paq(Xi)} pag(X;)[P]. By
repeated application of (4.20]), a singleton X; € {ndg(X;) \ pag(X;)} can be identified for
which X; L X|pag(X;)[P]. Adding the edge X; — X; to G will produce graph H, and as
X; € ndg(X;), H will remain a DAG. By the definition of locally consistent score functions
(Definition 4.6 we get S(D, BY) < S(D, BE). By Theorem 3.4 M(H) € IB(M(G)), which
contradicts the assumption that KES could return G. U]

Theorem [4.3] establishes inclusion optimality of KES. For a distribution satisfying the com-
position property, the number of inclusion optimal models may be exponential in the number
of variables, while only a single (or a some small subset) of these models may be global pa-
rameter optimal. The distribution presented in Example [4.1] is an example of this. We can
construct a distribution by including n copies of the undirected selection-four-cycle of Fig-
ure [4.4](a). For each such copy, 2 distinct inclusion optimal models exists, only one of which
is global parameter optimal. Therefore, the distribution over all 4n variables would exhibit
2" distinct local inclusion optimal models while still only one unique model is the global
parameter optimal model.

The greedy traversal of the neighbourhood implemented by GES is not guaranteed to
recover the global parameter optimal model. However, by relaxing greediness and choosing
k < 1 we introduce some randomness into the search and thereby may explore a larger area
of the search space. Configuring KES for maximal randomness (by setting k = 0) we are able
to recover any inclusion optimal model.

Theorem 4.4
(Nielsen et aIJ, M, Theorem 5) Let D be a dataset of fully observed iid samples from a
discrete joint probability distribution P that satisfies the composition property. Let G be a

DAG representing a BN model M (G) that is inclusion optimal w.r.t. P. Then, as |D| — oo,
with non-zero probability, KES(D, 0) will return G.

63

4 Learning Probabilistic Graphical Models

Proof: Let M(G) be any inclusion optimal model w.r.t. P. We can then prove Theorem [£.4]
by constructing a sequence of models M(Gp),..., M(G.), where Gy is the empty DAG and
M(G.) = M(Q), and each model M (G;) € IBT(G;_1,D) for 1 <i<e.

Consider the sequence of DAGs Gy, ..., Ge, where Gy is the empty DAG, each DAG is
constructed from the immediately preceding DAG by a single edge addition, and G, = G.
For all 0 < ¢ < e it is clear that M(G;;1) € UIB(G;), hence we only need to show that
S(D, Ba) < S(D, Bgi_H) to prove M(Gy41) € IBT(G;, D). As every model in the sequence is
in the upper inclusion boundary of the immediately preceding model, M (G;) Cp M(G}) for all
0 <i < j <e,in particular M(G;) Cp M(G) for any 0 < i < e. As M(G) is inclusion optimal
w.r.t. P, no model strictly included in M(G) (and therefore no model in our sequence) can
represent P. For any model M (G;) where i < e, G; is therefore not an I-map of P, and then,
for some variable X:

X L {nde,(X)\ pag,(X)}pag, (X)[P]. (4.21)
However, as G is an I-map of P, for the same X we have:

X L {nda(X)\ pag(X)}|pag(X)[P]. (4.22)

As G is a subgraph of G, it is clear that {ndq(X) \ pag(X)} C {ndg,(X) \ pag, (X)}. It
therefore follows from (4.2T)) and (4.22)) (by the block independence lemma (2.20))), that:
X L {pag(X)\ pag,(X)}pag, (X)[P]. (4.23)

We can then (using (4.20))) identify a singleton Y € {pag(X) \ pag,(X)} for which X f
Y|pag,(X)[P]. Adding the edge Y — X to G; producing G 1 will (asymptotically for D] —
o0) yield a score improvement for any locally consistent score function, hence M(G;y1) €

IBT(M(G;)) for all 0 <i < e. []

4.3.3 Implementation

In this section we discuss some important issues relating to the implementation of KES (Alg.[4.3).
In particular we will prove consistency od the general penalised likelihood score function and
discuss our approach to generating IB™ (G, D) (4.I]).

The \-score for BN models

For BN models, we will use Sy as a score function with size,, as penalty. Let B be the
parametrised BN model, then we define the score:

SPN(D, B) = (1 — A\)L(D|P?) — \size,ep(B). (4.24)

Lemma 4.2
SfN is score equivalent for BN models for 0 < \ < 1.

64

4.8 Learning Bayesian Network Models

Proof: (Chickering (1995) proves that for equivalent DAGs G and H, L(D|BE) = L(D|BD)
and size e, (M (G)) = sizerep(M(H)). As SPYN is the sum of two quantities that are equivalent
for equivalent models, SP¥ is itself equivalent. L]

A score function for BN models is decomposable if it can be expressed as a sum over
terms, each of which is only a function of one variable and its parents in the DAG structure
of the BN model. As both terms of SEN decompose into such terms, we see that SEN is itself

decomposable for BN models.

Lemma 4.3
SfN is a consistent score for BN models when 0 < \ < 1.

Proof: Let D be iid samples from the discrete distribution P(X). Then, with probability 1,
PP — P when |D| — co. We prove each of the requirements of Definition [5]in the following:

1. Consider two DAGs G and H, and let G be an I-map of the generative distribution P
while H is not. We then need to prove that as |D| — oo:

SBN(p, BE) — s8N (D, BE) > 0. (4.25)

Combining (4.24)) and (4.25]) we get:
SEN(D, M(G)) — SEN(D, M(H)) =(1 — N)[L(D|PP¢) — L(D|PPD)]
— /\[sizemp(Bg) — sizerep(B}DI)]

>0.

Then, by (A7) we get:
(1= N)(~|D| - [Dkr(P||PPE) — Dgr(P||[PPR))) > ¢, (4.26)

where ¢ = sizeep (M (G)) — sizepep(M(H)). For |D| — oo, with probability 1 PBE . p
(and, therefore, Dycp,(P||PB&) — 0). [@286) is then asymptotically satisfied if:

(1 — \)|D|Dg(P||PPH) > ¢, (4.27)

for some ¢ > 0. Consider the set H of probability distributions representable by M (H).
Now, construct the non-empty set H,, = {Q € H : Dk (P||Q) < r} for some r < c0.5 By

continuity of Dk (P||-) (Lemma [4.1]), H, is a compact set. Then, a well known result
(ﬂ,

from topology , Theorem 4.25) guarantees that there exists a minimal
element Q' = argmin Dk, (P||Q). Recall that H is not an I-map of P. Then Dy (P||Q’)
QeH,

is positive (non-zero) and (4.27)) is then satisfied for |D| — oo and A < 1.

6That H, will be non-empty for some 7 < oo is easily realised by the fact that any DAG can represent a
uniform distribution, and for uniform distribution Q, Dk (P||Q) < oo for any P.

65

4 Learning Probabilistic Graphical Models

2. The second requirement for consistency can be proved to be satisfied by somewhat
similar arguments. When both G and H are I-maps of P, for |D| — oo with probability
1 PBE — P and PBE — P, and the difference in likelihood L(D|PB&) — L(D|PBH) will
approach 0. Then, as 0 < A, we have:

sizeep(M(G)) < sizerey(M(H)) = SEN(D, BE) > S2V (D, BE). (4.28)
[]

From Lemma [4.3] Corollary 4.1limmediately follows:

Corollary 4.1
Let D be a dataset of iid samples from joint probability distribution P, and let P be faithful
to DAG G. Then, asymptotically for D — oo and any H % G:

SEN(D,G) > SPN(D, H). (4.29)
Lemma[4.3] then establishes global consistency for selecting BN models according to SfN .

Lemma 4.4
SfN for BN models is a locally consistent score function.

The proof for Lemma [4.4] follows similar arguments as the proof for local consistency of
the Bayesian score (IChickerinEl, |2002|7 Lemma 7).

Proof: As SPV is decomposable, the difference SPY (D, BE) — SPN(D, BE)) is invariant for
all pairs of DAGs that only differs in the single adjacency X; — X;. We are, therefore, free to
choose the structure common to G and G’. Let G’ be a fully connected DAG. Then, M (G’) = ()
and M(G) = {X; L X;|pag(X;)}. As M(G') can represent any distribution, M (G’)is trivially
an I-map for P. If X; I X;|pag(X;)[P], then M(G) is not an I-map of P and by consistency
of SBN the implication of (£16) is true. If X; L X;|pac(X;)[P], then both M(G') and M(G)
are I-maps of P and size,ep (M (G)) < sizeye,(M(G')), and by consistency of STV, implication

(4.17) is true. (]

On the Choice of Size Measure

It may seem more natural (or even more fair) to use the effective size as the penalty term in
the lambda score of (4.24]) instead of the representational size. Especially when considering
that in Chapter [5] we are going to base our comparative analysis on effective sizes. How-
ever, our reasons for not doing so are mainly the complications connected with computing
the increase/reduction of the effective size locally given a local modification like addition or
removal of an edge. Having a decomposable score is preferable from a practical point of view,
as it yields a straightforward way of reusing computations by caching locally computed scores.
Also, the theoretical results of Section d.3.T]and Section 4.3.2] very much depends on the score
being decomposable and locally consistent.

66

4.8 Learning Bayesian Network Models

Algorithm 4.4 Given a DAG G, this algorithm produces a representative DAG for a random
member of IB(G)

Input: DAG G

Output: Random member of I B(G)

1. function sampleIB(G)

2 H:=G

3 r := random integer between 0 and |E|

4 for r times do

5: reverse a random covered arc in H

6 (X,Y) := random pair of nodes in H

7 if Y € adjz(X) then

8 Remove the adjacency (X,Y) from H.

9 else

10: Introduce the adjacency (X,Y) with random orientation into H without introduc-
ing a cycle.

11: return H

Obviously, rebuilding a full clique tree representation whenever computing the change in
score implied by a modification is not a local operation. Instead, we could consider building
the clique tree incrementally during the BN learning procedure. Incremental construction and
maintenance of a clique tree representation was studied by |[Flores et al. (IQJ)Lﬁ) Given a clique
tree model and a structural modification of the original BN model (add/remove a link), the
procedure of [Flores et al) (|2003|) identifies small sub-graphs (Maximal Prime Sub-graphs) of
the clique tree that needs re-triangulation. In practise, this can be much simpler than re-

building the full clique tree representation, but in the worst case it still may turn out to be
equivalent to a full global re-triangulation.

We are not aware of any reliable locally (and efficiently) computable estimates for the
increase in effective size resulting from a local modification to the BN model structure. For
these reasons, we choose to use the representational size as the penalty in our score function
for BN models.

Generating the Inclusion Boundary

Theorems [3.3] and [3.4] suggest a simple way of sampling a random member of the inclusion
boundary of any DAG G. By reversing covered edges and adding or removing a single edge
we will generate a DAG G’ that represents a model in IB(G). The function sampleIB (Algo-
rithm [£.4]) gives a high-level formulation of this procedure.

The sampleIB function of Algorithm [4.4]is able to sample any member of IB(G). First,
by Theorem [3.3] the sequence of r random covered edge reversals (line [B]) can generate any
member G’ € £(G). Next, by Theorem B.4] the random addition/removal (lines [8 and [I0)
can generate any member of IB(G). However, the sampling of DAG models equivalent to G

in line [B] is not uniform, as “close” DAGs requiring only a few covered arc reversals are more

67

4 Learning Probabilistic Graphical Models

likely to be sampled than “distant” DAGs requiring more covered arc reversals. The intuition
behind this observation is that only a few of the edges that needs to be reversed to get from
DAG G to distant (equivalent) DAG H may be covered in G. After reversing covered edge e
in G producing G’, the set of covered edges will then typically have changed between G and
G’, but one edge remains covered in both, namely e. Therefore, there is a chance that in G’,
e is reversed again, effectively producing G again from G’.

The implementation of IB* (G, D) is based on the sampleIB function, which means that
instead of exhaustively enumeration of IB(G), we sample from IB(G) sufficiently many times.
The sampleIB procedure performs sampling with replacement from the set IB(G). Let X (R)
be the number of distinct models in a random sample of size R. That is, assuming that we
draw (with replacement) R models from IB(G), X" then is the number of distinct models

drawn. Assuming uniform sampling, the expectation of X is:

R-1 (i-1)
Bx®) = 3 (%) 1 , (4.30)

i=1

where N is the size of IB(G) (see Appendix [Blfor the proof). The mean percentage of IB(G)

X ()

that will be represented in a sample of size R is then ET Therefore, if we want to generate

a random sample of average size k- N from IB(G), we can simply draw R samples, where
E[XT(R)] = k. We can not solve (4.30]) directly, instead we expand the sum one term at a time
and check if we are within some small error € of k. Allowing for an error of € is necessary for
any computer implementation as otherwise we would expand the sum with infinitely many

terms for £ = 1.0. Figure [4.5] shows E[XT(R)] for N = 100 against R. In the plot of Figure [4.5]

we have indicated corresponding k (that is E[XT(R)]) and R values for € = 0.001. For example,

we see that for k = 0.8 we will sample R = 162 times, and for k = 0.9 we will sample R = 231.

In KES, however, we need to sample IB"(G) rather than IB(G). For simplicity, we first
sample IB(G) by the method outlined above, and then select from this sample the model with
highest score. If no such model was found in the first sample, a new sample is drawn, and so
forth. Eventually, we terminate the search when the full /B(G) has been sampled.

This reversal of operations only has an impact on the implementation of KES, none of the
theoretical properties of KES is affected by this.

The above proposed method still lacks efficient computation of N = |IB(G)|. This value is
difficult to obtain without exhaustive enumeration. In our implementation, we approximate N
by the number of edges that can be added to the empty graph over variables X, i.e., |X|?—|X|.7
This approximation is justified by the fact that any model in the inclusion boundary of DAG
model G has one more or one less edge than G. On one hand this is an underestimate as
more than one unique equivalence class may exist for which the same connection has been
added /removed from G. On the other hand it is an overestimate as not all node connections
are possible as some connections may result in cycles. In practise we have found this estimate
to be adequate.

Chickeriné 12002) proposed this estimate.

68

4.8 Learning Bayesian Network Models

Sampling with replacement, N = 100.

R 1

0.6 f 3

g
EI N
S04 b

0 100 200 300 400 500 600 700
R

Figure 4.5. The expected fraction of distinct models sampled from a set of 100 elements, when sampling

EPI(V(R)] for N = 100 as a function of R.

R elements with replacement. That is,

4.3.4 Testing the BN Learning Procedure

One motivation for developing a procedure that allows trading off greediness for random-
ness was the identification of distributions with multiple local inclusion optimal models.
An example of such a distribution was the selection-four-cycle distribution used by both

Chickering and Meek (M) and [Nielsen et al. (M) and repeated here in Example

To investigate the performance of both greedy and stochastic heuristics in search spaces

containing numerous local optima, we first construct a distribution exhibiting numerous local
inclusion optimal DAG models. We can construct a model representing a distribution exhibit-
ing 2™ local inclusion optimal DAG models, by constructing the UDG model consisting of n
copy’s of the selection-four-cycle of Example 4.1l In this experiment, we use a model con-
structed in this way with n = 10 which then is a model over 40 random variables that exhibits
1023 local inclusion optimal DAG models and a single global optimal DAG model. We then
sample 20000 instances from this model and invoked the KES procedure (Algorithm [A.3)) using
this data. We use 11 different settings of k € {0.0,0.1,...,1.0}, and for each setting of k, the
KES procedure was restarted 1000 times, and we used the BIC score in all experiments. Results
are displayed in the plots of Figure[4.6{a) and (b). First, Fig.[4.6]a) show the lowest settings of
k yielding the more stochastic search. We have also included the deterministic and maximally

greedy version with k = 1.0 (corresponding to the GES procedure of (Chickering and Meek
) for comparison. We observe that all models learnt for £ € {0.0,0.1} and most models
for k € {0.2,0.3,0.4} attain higher BIC score than the single model obtained by GES. For
k € {0.4,0.5,...,0.9} (Fig. 4.6lb)), we again observe that for k£ < 1.0 we are able to recover
models that attain higher BIC score than GES.

The results reported above shows that GES may gets trapped in a low quality local in-

69

4 Learning Probabilistic Graphical Models

Selection-four-cycle - stochastic

-4.6484

-4.6486

-4.6488

-4.649

-4.6492

-4.6494

BIC score / data size

46496 [+

-4.6498 7

-4.65
Models ordered by BIC score

(a)

Selection-four-cycle - greedy

-4.6491

-4.6492

4.6493 [k=0§ --m-)

-4.6494

-4.6495

-4.6496

BIC score / data size

-4.6497

-4.6498 & P ISPEESTT

-4.6499
Models ordered by BIC score

(b)

Figure 4.6. Result of 1000 restarts of KES learning from data sampled from the selection-four-cycle
distribution (see Example [A.1]). Models are sorted in ascending order of BIC score.

clusion optimal model. This is not surprising, as the distribution from which the data was
sampled is a manually constructed distribution specifically designed to trap GES. The inclu-
sion optimal model recovered by GES is (asymptotically) the lowest scoring inclusion optimal

model over the 1024 different inclusion optimal models.

To investigate the effect of learning from data sampled from a DAG faithful distribution,

70

4.8 Learning Bayesian Network Models

we use data sampled from 2 different standard BN models:®

e The Alarm model represents medical knowledge of relationships between findings and
diagnoses in the domain of patient care in an operating room (Beinlich et all, h%_d) It
contains 37 discrete variables and 46 arcs, and the structure of the model is displayed

in Figure [4.10] and the table contains descriptive names for the node indexes.

e The Hailfinder model was developed by |Abramson et al. M) as a weather forecasting
system. It combines meteorological data and expert knowledge in forecasting of severe
weather conditions in Northeaster Colorado. The model contains 56 discrete random
variables and 66 arcs, the structure is displayed in Figure [4.111

For each of the two above models, we generated databases by sampling 20000 instances.
The results of the 1000 restarts of the KES procedure is plotted in Figure [4.7] and [4.8]

Figure [4.7(a)-(b) shows the results of learning from Alarm-sampled data. As expected,
we observe that the model recovered by GES (KES for & = 1.0) is the highest scoring model,
and the greedier the KES procedure, the better models are recovered on average over the 1000
restarts. In addition, from the plots corresponding to k& < 1.0 we can observe that a lot of local
inclusion optimal models still exists in the data. Recall that we use a score-equivalent score-
function, and therefore any two models attaining different score are not equivalent. Therefore,
for every different score-value in the plots of Figure[4.7] there exists a distinct inclusion optimal
model. From Theorem [4.1] we see that only a single inclusion optimal model exists in the limit
of large data, therefore this observation is explained by the fact that our data-sample is of
limited size.

Figure [4.8[a)-(b) shows the results of learning from Hailfinder-sampled data. From Fig-
ure [4.8(b) we observe that the model recovered by the GES procedure is not the highest
scoring model over all the different settings of k. This is explained by the fact that optimality
of GES is an asymptotic property, and for any finite dataset we then are not guaranteed to

optimality. In fact, as reported b |Nielsen et al.| (|2003| in any practical application of KES
|Y Yy) p y) y p PP

using real world datasets, we often recover better models by k£ < 1. In addition, this exper-
iment shows us that even in the cases where DAG faithfulness is a safe assumption, limited
data may yield suboptimal result of GES.

Lastly, Figure [4.9] shows the average learning times for KES with different settings of k.
It is notable that the learning time increases dramatically from an almost constant level at
approximately 2.2 seconds for £ = 0.0,0.1,...,0.9 to approximately 4.9 seconds for £ = 1.0.
The reason is found in the way we sample the inclusion boundary and the exponential nature
of (430)), see Figure 4.5l For & = 0.0 up to k = 0.9 there are only moderate increases in
the actual number of models sampled, while for £k = 1.0 we need to increase the number of
models sampled much more than for any other increase in k. This also explains why we do
not see a clear increase in execution time for £ = 0.0 to £ = 0.9, as these execution times are
all dominated by the final steps of the algorithm. In any final step we need to sample the full

inclusion boundary to guarantee there are no models in the boundary of better score.

8Both models are obtainable from many on-line repositories, see for example
http://genie.sis.pitt.edu/networks.html,

71

http://genie.sis.pitt.edu/networks.html

4 Learning Probabilistic Graphical Models

Alarm - stochastic

-1.69
-1.695
-1.7
& -1705 F
3 e
> -L715 ; pusaire?
g o U ’
2 -1.72 ™
Q :
D 1725 e k=1.0 ——
& T k=0.0
-1.73 k=0.1
k=0.2
-1.735 k=0.3
: k=0.4 -----
-1.74
Models ordered by BIC score
(a)
Alarm - greedy
-1.692
-1.694
8]
7= -1.696
8
<
<
> -1.698
g
2 .
% 1.7 :_;“ =10 —
/ k=0.5 -
k=0.6 g
-1.702 k=0.7
k=0.8 ----
k=0.9 -----
-1.704
Models ordered by BIC score
(b)

Figure 4.7. Result of 1000 restarts of KES learning from data sampled from the Alarm BN model.
Results are sorted in ascending order of BIC score.

As an initial test, these experiments show us that our implementation of KES and, in
particular, the sampling of the inclusion boundary (as discussed in the previous subsection),

performs as expected on synthetic datasets.

72

4.8 Learning Bayesian Network Models

Hailfinder - stochastic

-8.7
8 -8.9 ; e
s _
3 T
E -
R I s
U ‘ —3 ——
A 92 i;(l)g
o
9.3 i k=02
: k=0.3
9.4 k=04 -----
. Models ordered by BIC score
(a)
Hailfinder - greedy
-8.765
877 RO ,]
-8.775 e
QN) .
‘@ -8.78
8
S 8785
S
s 879
2
2 8795 _—
k=0.5
e k=0.6
k=0.7 -
-8.805 k=07
k=09 ----
-8.81
Models ordered by BIC score

(b)

Figure 4.8. Result of 1000 restarts of KES learning from data sampled from the Hailfinder BN model.
Results are sorted by ascending order of BIC score.

4.3.5 Related Work

One of the earliest works on learning BN models include the work by |Chow and Liu (ﬁ%ﬁ)
on learning tree structured BN models. Restricting the search to only include tree structures
reduces the size of the search space dramatically from exponential in the number of variables
(the case for unrestricted DAG structures) to quadratic. |Chow and Liu (ILM) proposes a
procedure that produces a tree structured BN model that has maximal weight, where the

73

4 Learning Probabilistic Graphical Models

KES execution times.

5
=
"U -
:4
o
o
(5]
®z
w0
(5] -
s 3
£
=
e
g
= 2t
[
"
()
()
@
s Ir
<

0 01 02 03 04 05 06 07 08 09 1
k

Figure 4.9. Average learning times of the KES algorithm applied to data sampled from the Alarm
model for 11 different settings of k.

74

4.8 Learning Bayesian Network Models

1 central venous pressure 20 insufficient anesthesia or analgesia
2 pulmonary capillary wedge pressure 21 pulmonary embolus
3 history of left ventricular failure 22 intubation status
4 total peripheral resistance 23 kinked ventilation tube
5 blood pressure 24 disconnected ventilation tube
6 cardiac output 25 left-ventricular end-diastolic volume
7 heart rate obtained from blood pressure monitor 26 stroke volume
8 heart rate obtained from electrocardiogram 27 catecholamine level
9 heart rate obtained from oximeter 28 error in heart rate reading due to low cardiac output
10 pulmonary artery pressure 29 true heart rate
11 arterial-blood oxygen saturation 30 error in heart rate reading due to electrocautery de-
12 fraction of oxygen in inspired gas vice
13 ventilation pressure 31 shunt
14 carbon-dioxide content of expired gas 32 pulmonary-artery oxygen saturation
15 minute volume, measured 33 arterial carbon-dioxide content
16 minute volume, calculated 34 alveolar ventilation
17 hypovolemia 35 pulmonary ventilation
18 left-ventricular failure 36 ventilation measured at endotracheal tube
19 anaphylaxis 37 minute ventilation measured at the ventilator

Figure 4.10. The DAG structure of the Alarm BN model and the table of labels for each node. The
effective size of the Alarm model is 771.

75

4 Learning Probabilistic Graphical Models

> D
& G
\
&S
® > D @D
==

@5

Fz'gure 4.11. The Hailfinder network for severe weather forecasting, developed by

). The effective size of the Hailfinder BN model is 9406.

76

4.8 Learning Bayesian Network Models

weight of the tree is the accumulated mutual information between child-parent variable pairs
in the tree, which corresponds to minimising KL-distance (4.1]).

Later works, where the restriction on structure is relaxed to include general DAG struc-
tures, include the SGS algorithm (see [Spirtes et al. (Iﬂ)mj)) This algorithm performs statis-

tical tests of conditional independence, and incrementally builds a DAG structure entailing

d-separation properties corresponding to the conditional (in)dependencies that are verified
from data. One problem with this approach is that it assumes a reliable way of testing con-
ditional independence. Using a statistical hypothesis tests we are always running the risk of
the test failing by chance while the hypothesis is in fact true. This problem becomes increas-
ingly important when multiple such tests are needed, which is typically the case for the SGS
algorithm. However, it can be proved that the SGS algorithm returns the optimal model if
given a reliable test of conditional (in)dependence. Approaches following the general recipe of
explicitly inducing a structure that entails correct (in)dependence relations is usually referred
to as constraint based search approaches.

Apart from the already mentioned GES algorithm another important early
work on learning general BN models is the work by). Here,
the K2 procedure is proposed for recovering a BN structure by a heuristic search for finding
the most probable structure. The K2 procedure requires an ordering of the variables as
input and in addition an upper bound on the number of parents that a node may have.
Cooper and Herskovit i199%i shows promising results by learning from datasets sampled from
the Alarm network ,) The K2 procedure employs a greedy search for the

best parents for each node, choosing the parent that increases a local score (based on likelihood

of the model) the most without violating the ordering or the threshold for number of parents.
Approaches to learning BN models that aims at optimising some score function are usually
called score based search approaches.

The result of multiple restarts of KES was used by |Peﬁa et al.| (|2004|) in assisting the user in
the interpretation of a BN model learnt from data. Specifically, after a sequence of restarts of
KES, a special graph can be constructed over the variables where each edge is annotated with
a relative frequency of existence of the edge in the set of inclusion optimal models recovered
in the sequence of restarts of KES.

It was shown by (M) that constrain based search and score based search are
identical approaches when learning BN models under the assumptions that: 1) an ordering of
the variables is given; 2) data is complete; 3) the statistical test is based on cross entropy, and;
4) the score metric is based on maximising log-likelihood (possibly with some penalty). Under
these assumptions, score based and constraint based approaches will have identical preference
between models and should therefore only be viewed as different interpretations of the same
approach.

The justification for using restarts of the KES algorithm was based on the fact that there
may be exponentially many local optima and in such settings, restarts of the stochastic search
procedure enables KES to investigate a larger area of the search space. |Gomes and Selman

) investigates cost profiles of search procedures in a more general combinatorial problem.

They show that when the cost profile is characterised by a heavy tailed distribution, the average

7

4 Learning Probabilistic Graphical Models

performance of a sequence of search procedures can be improved dramatically by introducing
random restarts of the search. We can view the event that KES recovers a local optimal model
and not the global optima as a heavy tail of the cost profile of KES, and therefore, the restarts
can be seen as a similar way of exploiting the heavy-tailed behaviour as the random restarts

used by |Gomes and Selma).

4.4 Learning Naive Bayes Models

The problem of leaning a NB model from data reduces to the problem of learning the
cardinality of the latent component variable C', a prior distribution over latent components
P(C') and marginal conditional distributions P(X;|C) for all variables X; observed in data.

4.4.1 Estimating Parameters from Incomplete Data: The EM-Algorithm

As the latent component variable of the NB model is never observed in data, maximum
likelihood estimation from Equation ([4.14)) is not possible, as we lack the possibility to count
observations of C' in D. The standard approach to estimating parameters in the presence
of incomplete data and latent variables is the Expectation-Maximisation (EM) algorithm

(Dempster et all, [1977; McLachlan and Krishnan), M Lauritzenl, M) The EM algorithm

alternates between two steps, the E-step and the M-step. The E-step amounts to computing

expected counts for the missing observations, while the M-step uses these expected counts
as if they were observed in the efficient computation of maximum likelihood parameters. By
iterating over these two steps, the EM algorithm converges to a parameterisation that is
defines a local maximum of the likelihood function. Assuming some initial (typically random)
parameterisation fy of NB model M, EM is then implemented by the two steps:

E-step: augment each instance d € D by a vector of fractional counts for C of PM(C|X = d),
where M is the current NB model with parameters 6,,. In this way, we can construct

the expected counts:

Ny =Y PM(C=cX=d), (4.31)
deD
Negn = Nayy - PM(C = ¢, Xy =). (4.32)

M-step: construct parameters 6,11 by ML estimation using expected counts as if they were
actual observed counts. This amounts to updating conditional distributions P (X;|C)
for every X; € X and prior PM(C) as:

N*
PY(C =c) ==& 4.33
(€= =" (4.33)

Ny,
PM(Xi = 2ip|C = ¢) = —* (4.34)

4.4 Learning Naive Bayes Models

Algorithm 4.5 Simple algorithm for learning a range of NB models from data.
Input: Fully observed data D.
Output: Range of NB models of increasing effective size.

1: procedure LearnNB(D)

2 initialise NB model M with k,,;, latent components
3 repeat

4 estimate parameters of M by EM

5: output M

6 prune low weight components of M

7 split large components of M

8 add k£ new components to M

9 until stopping criteria is met

The EM algorithm iterates between these two steps until a termination criterion is met.
Common termination criteria include convergence in parameters, and setting a threshold on
the number of iterations allowed.

The EM algorithm is only guaranteed to converge to a local maximum, and there may be
many such local maxima where only a small fraction are close to the global maximum. The
common strategy used to mitigate the problem of poor EM estimates is to perform multiple
restarts of EM with different random starting points.

4.4.2 Learning the Cardinality of the Latent Component Variable

We aim at learning NB models for approximation of a probability distribution and for per-
forming belief updating inference task using the model. This aim is somewhat different from
most previous applications of the NB model, as mentioned in Section[3.4] Typically, the learn-
ing of a NB model with latent component variable is aimed at discovering hidden structure
among the variables or to attain a soft clustering of instances. In both cases, it is preferable to
keep the cardinality of the latent variable from growing unbounded, as too many clusters can
make it hard for users to use the clustering for understanding latent structure in the domain.
However, for general probabilistic inference, bounding the cardinality of the latent variable is
only relevant from the point of view of bounding the loss of efficiency.

Lowd and Domingoé 12005]) proposes the NBE algorithm for learning NB models for gen-
eral probabilistic inference. In the NBE algorithm, the cardinality of the latent component

variable is optimised by basically repeating the three steps: 1) increase the current cardinality,
2) estimate parameters by EM, and 3) prune low weight components.” Low weight compo-
nents are components with relatively low prior probability. As a termination criterion, the
NBE algorithm uses a separate hold-out dataset and measures likelihood over this dataset. The
failure to improve likelihood then makes the algorithm terminate returning the model of max

likelihood over the hold-out dataset. We adopt the NBE algorithm of [Lowd and Domingoé

°In our application of the EM algorithm we do not employ any heuristic in order to escape local optima,
such as random restarts.

79

4 Learning Probabilistic Graphical Models

) with minor modifications. To obtain a range of NB models of different efficiency and
accuracy rather than a single model, we do not need a holdout dataset to decide on termi-
nation. Instead we will continue to increase the cardinality to get more and more complex
models. Algorithm [4.5] gives a high-level description of our LearnNB procedure.

In LearnNB, when the cardinality has been increased from m to k, we initialise the prior of
each of the K — m new components to % While we have no theoretical justification to choose
exactly % as the initial prior of new components instead of any other initialisation, it seems
at least reasonable to choose a uniform prior for all new components. Also, subsequently, the
EM procedure will be applied to estimate better parameters. To ensure that P(C) remains
normalised, the m old priors are scaled by 7+. For all variables X, probabilities P (Xi|C = cnew)
is initialised by a randomly drawn instance d € D as follows:

140.1-P'(z;) -
— 1 if i = d[X],

P(Xi =z p|C = cpew) = {o.l.p%é,h) v (4.35)
—T1 otherwise,

where P'(z;p) =]\T;f This way of initialising new components is intuitive if we view the
learning of an NB model as the process of discovering unlabelled natural groups within the
dataset, i.e., latent clusters. By initialising a new component by a randomly selected data
instance d, we then initialise a new latent cluster with centre at d.

The pruning of low weight components (line [6] of Algorithm [4.5]) imposes an implicit upper
bound on the cardinality of the latent component variable, and thereby on the complexity
of the NB model, in the following way: all components ¢’ with a prior P(C = /) < % are
removed from the model, for some integer w. This automatically yields a maximum cardinality
|R(C)| of w, and in our implementation we use w = 1000.

All aspects of the LearnNB procedure introduced so far are adopted directly from the

NBE algorithm of [Lowd and Domingoé (2005]). One new addition to the proposal of Lowd

and Domingos is the introduction of component splitting. If we view the learning of an NB

model as the process of discovering clusters within the data, the splitting of components
(or clusters) is the substitution of one existing cluster for two new clusters. This makes
sense when a single component captures two (or more) clusters. To select components that
captures more than one component, it would be natural to select components ¢ € R(C') for
which the joint conditional distribution P(X|C = ¢) is inhomogeneous, that is, low entropy.
xER(X) P(X =x|C =
¢)log P(X = x|C = c¢) requires a sum of |R(X)| terms. A more efficient approach would

The exact computations of the conditional entropy H(X|C = ¢) =)

be to approximate the distribution P(X|C = ¢) by simulation or sampling techniques (see

(Neal, 199;3]) or (Castillo et all, [1997, Section 9.3)). However, we use a much more simple

heuristic for choosing components for splitting which simply chooses a component c if the

prior P(C' = ¢) has captured the majority of the total probability mass. The reasoning

behind choosing components of high prior is that splitting such components has the largest

potential for increasing the overall accuracy. In our implementation, we will split component ¢

when P(C = ¢) > 0.9. The splitting of components (line [7] of Algorithm [4.5]) is performed for

large component ¢; by replacing ¢; with 2 new components ¢ and ¢}/, each with prior P(C =
1

¢) = 5P(C = ¢), where P(C = ¢) is the prior of the component ¢; before splitting. Each

80

4.5 Learning Probabilistic Decision Graph Models

conditional P(X;|C = ¢}) and P(X;|C = ¢) is initialised as a copy of the old P(X;|C = ¢)
exposed to a random perturbation.

4.4.3 Related Work

Learning the cardinality of the latent component variable of a NB model is a problem that
has received considerable attention. One direct approach would be to perform an exhaustive
search over a range of possible cardinalities, choosing the one that results in a NB model

that attains maximal score (Cheeseman and Stutﬂ, |l&9ﬂ) However, to score each model,

parameters needs to be estimated by EM which may be too time consuming considering also

that multiple restarts of EM for each cardinality may be required.
Elidan and Friedman (2001) proposes an approach to learning the cardinality of hidden

variables in BN models that avoids expensive EM algorithm in the search for a good cardinality.

They work with hard assignments of instances in the data to each latent state of the hidden
variable, that is, each instance in the data is at any point in time associated with a single latent
state of the hidden variable. Initially, the hidden variable has a relatively large cardinality and
in each iteration, states are merged to reduce the cardinality and the model is scored using the
current hard assignment of instances. FEventually, the cardinality can not be reduced further
and the best cardinality encountered during the search is returned.

The operation of splitting components in learning the cardinality of C' in a NB model has
previously been proposed (see eg. [Kar¢iauskas (2005) or [Elidan (iJM . The heuristic for
choosing components for splitting used by (@ is an exhaustive search over all
possible splits, choosing the one that yields the model of maximal score.

4.5 Learning Probabilistic Decision Graph Models

In this section we will address the problem of learning PDG models that optimise score
function S (see Eq.[4.8]) for some \. Major parts of the material presented in this section is
based on ideas previously published in (Jaeger et al), M) It was established in Section [4.2]
that the problem of estimating ML parameters from complete data with no latent variables is
computable by taking fractions of counts. By (3:28)), the likelihood function for PDG model
M over variables X is :

h(i,d)
o) =TT 1T #ii (4.36)

deD X;eX

Then, the log likelihood of data D given PDG model M over variables X is:

LOM)=>" 3" log ;ﬁ;’]”d

d=D X;eX

ki
=YY > Nyilogpy, (4.37)

X;€X h=0v;€V;

81

4 Learning Probabilistic Graphical Models

where N, is the number of instances d € D reaching v; € V; for which d[X;] = x;, and
k; = |R(X;)|. For a given PDG structure G, the ML estimate p** for parameters attached to
parameter node v; € Vj is:

L Ny
Py = N—’; (4.38)

where NVi = Zii:o N;". We can then express ([£.37) as:
ki Nl/i
L(DIM)= > > > Nylog N—’; (4.39)
X, eX h=0v;eV;

Then the general penalised log-likelihood score Sy for PDG model M become:

S\(D, M) = (1 = A\)L(D|M) — Asize 5 (M)

k;
=(1=X) > > > Nlog

Ny
h
Nui A > (max(1,|cha(Xi)]) - [Vil - ki)

X;eX h=0vy;€V; X;eX
ki NV,’
=2 [@=0>0>° NMtlog e = A(max(L [cha(Xo)|) - [Vil - ki) | (4.40)
X;eX h=0uv;€V;

For the rest of this section, we will focus on the search for a structure G that optimises
(440). For a given domain X = {X;, Xo,..., X,,} there exists n! distinct orderings of the
elements, so n! is a (conservative) lower bound on the number of distinct forest structures.
For each forest structure, the number of distrinct PDG structures is at least exponential in
the number of variables contained in the tree of maximal depth in the forest. The cardinality
of the search space therefore makes exhaustive structure search intractable, and we will resort

to heuristic procedures for learning structures.

4.5.1 Structural Learning in PDGs

We will divide the search for good PDG structures into two conceptually disjoint tasks:
1. learning a good forest structure over the variables, and
2. learning a PDG structure w.r.t. that forest.

This decomposition is motivated by the following points:

e Conceptually, this decomposition is natural, while in practice they are not completely
independent components of the learning task.

e Considering efficiency of the learning procedure, fixing a variable forest structure F
effectively reduces the space of possible PDG structures to be considered by the learning
procedure.

82

4.5 Learning Probabilistic Decision Graph Models

Algorithm 4.6 The procedure LearnPDGs that learns a set of PDG models from a fully ob-
served dataset D. The two conceptually distinct phases are implemented by the LearnForest
procedure of Algorithm and the LearnPDG of Algorithm [4.7
Input: D : fully observed dataset; A : list of values from [0, 1]; T : list of values from |0, 1].
A€EA.
function LearnPDGs(D,A,T)

1:

2 F:=0 > Population of forest structures
3 G:=0(> Population of PDGs
4 for all £ € T do > Phase |
5: F := F U {LearnForest (D, t) }

6 for A from M\az .. Amin in A do > Phase II
7 for all F € F do

8 G := G U {LearnPDG(F, \, D)}

9 output argmaz S\(D, Q)

GeG
10: prune low forests yielding low scoring PDGs from F

11: G:=0

For the reasons mentioned above, we decompose our structural learning algorithm into
two phases. In Phase I, a variable forest is induced from data. By performing suitable
statistical tests of conditional independence relations, we build a tree structure that only
entails independencies that were verified through the test. In the second phase (Phase II)
we then optimise a PDG structure w.r.t. the variable forest from the Phase I, for the score
function of (4.40).

Algorithm [4.6] contains a pseudo-code description of the top-level learning procedure
LearnPDGs. The two phases are implemented in lines [45] and [BHIT] respectively. We in-
corporate a population based search for good forest structures. That is, a population F of
variable forests is constructed in Phase 1. Next, this population is pruned by removing forest
structures for which we fail to build high-scoring PDG structures in Phase II.

We will postpone the detailed description of Phase I, and in the following assume that a
PDG forest have already been constructed.

Optimising the PDG-structure: Phase 11

Algorithm [4.7] describes the LearnPDG procedure. The LearnPDG procedure optimises a
PDG structure w.r.t. variable forest F' for (4.40]).

Initially a minimal PDG structure is build, and this structure is then repeatedly exposed
to a sequence of local score optimising structural transformations, until the score converges.

In the following, we describe the procedures splitNodes, mergeNodes and redirectEdges,
that implements local operations for score optimisation.

Splitting nodes The splitNodes procedure introduces new parameters by replacing exist-
ing parameter nodes with a set of new parameter nodes. The structural transformation of

83

4 Learning Probabilistic Graphical Models

Algorithm 4.7 This procedure searches for a optimal (w.r.t. (440)) PDG structure w.r.t.
a variable forest F'. The local procedures splitNodes (Alg. [4.8)]), mergeNodes (Alg. [A9]) and
redirectEdges (Alg. [4.10]) are used to optimise the score function.
1: procedure LearnPDG(F,)\, D)
2: G := minimal PDG for F
repeat
for all trees T" of F' do
X, :=root of T’
splitNodes (V;, A, D)
mergeNodes (V,, \, D)
redirectEdges(V,., \, D)
until S)(D,) did not improve
10: return G

Figure 4.12. The structural modification performed when splitting node v4 by the split operation is
shown. (a) shows the local structure before the split, and (b) shows the resulting structure. Only the
relevant section of the PDG shown.

splitting a parameter-node by the split operation can be seen in Figure

When splitting a parameter-node v; having an in-degree of n, we replace v; with n new
parameter-nodes, one for each incoming edge. The set of children of v; are copied to each of
the n new parameter-nodes. Parameters for new nodes needs to be re-estimated, while counts
for no other nodes in the PDG will change as a result of the split operation. Denote by
new(vj,l,v;) the node that would be created for edge v; LN v; when splitting v;, and let inc(v)
be the set of edges incoming to v. We can then express the score gain associated with splitting

84

4.5 Learning Probabilistic Decision Graph Models

v; € V; in PDG structure G as:

S\(D, M) — S\(D, M) =(1 — X\)[L(D|Maz) — L(D|M)] — A[sizeg(Ma) — sizeqg (M)

ki ki

Vj N vl v Vi

=(1-M\) g (g Ny logpzew(!)> — E N, log p;
h=0

' i
cinc(v;)
— M(lpag(wi)| = 1) - max(1, [cha(Xi)]) - kil (4.41)

where M is the PDG model before splitting v; and Ms is the model after the split. ﬁ”ew(”ﬁl’”")
in (@41) is the ML estimates for p™e®®i.bvi).
new(vdw) _ N

et = S (1.42)
l

where N}/ is the number of instances d € D reaching v; for which d[X;] = x;; and d[X;] = z; .

If we assume ML parameters, we can recover the counts for data instances reaching node
v; by N¥» =|D| - ifl(v;). Then counts N} can also easily be recovered from ML parameter pj
by (4.38). However, N}’ is not easily reconstructed without accessing the data.

To avoid data access needed to extract count lehj in (442) necessary for computing the
exact score gain through (4.41]), we will instead focus on a heuristic score for selection of nodes.

Let v; € V; and pap(X;) = X;. The potential for positive contribution to the score by
splitting v; very much depends on the number of data instances reaching v;. Denote by ~(e)
the probability mass flowing into v; via edge e, that is:

(v hy vi) = ifl(v)) -piylj. (4.43)

The relative distribution of contributions to the inflow over incoming edges is also important
to the potential of splitting a node. Even for a relatively high ifl(1;), if most of the probability
mass flows into v; via a single edge, the possible accuracy gain will be low, as a split would
basically produce one node identical to ; and a number of “low income” nodes that, therefore,
can not impact the total accuracy significantly. For this reason, we prefer nodes for which the
distribution of incoming probability mass {y(e) : e € inc(v;)} is less peaked and, hence, has
high entropy.
From the above discussion, we arrive at the heuristic score given in equation ([4.44):
H({7 : e € inc(v;)})
log([inc(us)

splitPotential(v;) = ifl(v;) -

: (4.44)

where H(-) is the entropy function, and log(|inc(r;)|)~! then normalise H(-).

Algorithm [4.8] describes the splitNodes procedure that selects nodes for splitting using
the splitPotential measure of (4.44]). The splitNodes procedure may cause the PDG to
be fully expanded by splitting all nodes top down. To avoid this, in our implementation we
simply disallow the splitting of nodes that have one or more parents that was split in the
current traversal of the structure.

85

4 Learning Probabilistic Graphical Models

Algorithm 4.8 This procedure randomly selects node for splitting by the split operation,
biasing the selection towards nodes with relatively high splitPotential. The aggressiveness
of the selection is controlled by the A value, the larger the A\, the more aggressive the selection
will be. The split operation of line [6] performs the structural modification of the split (see
Fig. [4.12]).
1. procedure splitNodes(V,\)
if pap(X;) # 0 then
for all v € V; do
rnd := random number from [0, 1)
if (1 —\)-splitPotential(v) > rnd then > See (4.44).
split(v)
for all X; € chp(X;) do > The top-down traversal
splitNodes (V},\)

»

Figure 4.13. The structural modification performed when merging nodes v4 and v5 by the merge
operation is shown. (a) shows the local structure before the merge, and (b) shows the resulting
structure. Only the relevant section of the PDG shown.

Merging Nodes Redundant parameters that do not contribute significantly to the accuracy
of the model but only contributes to the size-penalty should be removed from the model.
The merge procedure obtains this by merging parameter-nodes. Figure [4.13(a)-(b) shows the
structural modification of merging nodes v4 and v5. In Figure [d.13(a), v4 and v5 have identical
children, and this removes the problem of deciding which child to keep, had the children not
been identical succ(vy, Xi, h) # succ(vs, Xk, h). We will require of two nodes being considered
for merging that they have identical children. Then the score gain of merging two nodes
Vi, , Vi, € V; can be computed as:

S\(D, My) — S\(D, M) =
(A — 1)[L(D|My) — L(D|M;)] — A[sizeoq (Ma) — sizeos(My)], (4.45)

86

4.5 Learning Probabilistic Decision Graph Models

where M is the PDG model before the merge and M is the model after the merge. It is
clear that the effective size is reduced by maz(1, |par(X;)|) - |R(X;)| when merging two nodes
Vi, , Vi, € V;. For computing the possible loss in accuracy, we need to compute the ML estimate
p”i1+2 for the node v;,_, created by merging v;, and v;,. This estimate is:

I/il Vi2
Vigy, Nh + Nh
h -]\fl/l'1 + NViQ

_ ﬁZZl) iﬂ(Vil) +ﬁ}l/:2 : iﬂ(ViQ) (4 46)

Svniercn byt il (wi) + 5y - ifl(viy)

Please note that only existing values of ifl and ML estimates of the parameters p for the nodes

v;, and v;, are used to compute (4.46]), and no data access is necessary. The loss in accuracy
can be expressed as:

L(D|My) — L(D|My) =) ((N,’fl logp," + N, logp,?) — (N,"* + N,,*)log pZ”“)

i h€ER(X;)

_ N”ﬁ 1 Viq 1 Vil N”i2 1 Vig 1 AVig 4o

= > p (logp,* —logp, ™)+ N, (logp,* —logp, ™)
Ii,hER(Xi)

= Y N"Dgr(p”|[p"1+), (4.47)

ve{viy iy}

where Equality [£.47] assumes ML parameters p** and p”2. By (4.46]) these are obtainable
without accessing data. As N” = ifi(v) - N, for comparing (4.47)) for different pairs of nodes,
we can use the inflows of the nodes involved. We then arrive at the general score mergeScore

of (4.48):

mergeScore(vy,viy) = 3. ifiv) - Dir(p’|p"+2). (4.48)

ve{viy iy }

It is clear that (4.48) is computable without accessing data. Algorithm [£.9]shows the bottom-
up merging of nodes. Nodes are selected for merge based on a A-weighted sum of the

mergeScore and number of parameters that will be removed from the model.

Redirecting Edges The local structural transformation of redirection of edge v; — v;
assigns a new head v/ for the edge. We will need the following notation: For data D and PDG
model M over variables observed in D, we will denote by D"i (where v; € V) the subset of
data instances {d € D : reach(i,d) = v;}, i.e., the part of D that reaches v;. Maintaining D"
for all nodes is possible for limited sized D. Each parameter-node v; can efficiently represent
D by a list of pointers to instances in a static version of D. For each variable X; € X every
instance d € D reaches a unique node, so in total we will need to store |D||X| pointers in
addition to the static data D. The number of pointers is then invariant to the structure of
the PDG model, and the storage requirement is therefore static for a given database D. In
addition, we will by D}" denote the set {d € D)" : d[X;] = z; ,}.

Returning to the redirection of edges, let v; € V}, v; € V; and pap(X;) = X;. Recall that
every parameter-node defines a marginal distribution over descendant variables in the variable

87

4 Learning Probabilistic Graphical Models

Algorithm 4.9 The mergeNodes procedure merges parameter-nodes by the merge operation
(see Fig.[4.13)) in a top down traversal of a PDG structure.
Input: V; : set of parameter-nodes representing X; in a PDG structure G w.r.t. variable
forest F'; A : value from [0, 1]
Output: Valid PDG structure
1. procedure mergeNodes(V;, \)
2: for all j such that X; € chg(X;) do

3: mergeNodes (V;, A)

4 for all {v;,,v;,} € Vi sit. v, # v, do

5: if v;, and v;, have the same children then

6 if then(l — \)-mergescore(v;,,vi,) < A- ki - max(1, [pap(X;)|)
7 merge (v, , V4,)

Algorithm 4.10 The redirectEdges procedure performs fine grained optimisation on a PDG
structure, by redirecting edges in optimising (4.41]).

Input: V; : set of nodes; A : value from [0, 1].
1: procedure redirectEdges(V, \)
2: for all X; € chq(X;) do
3: redirectEdges(Vj, \)
4 for all v; € V; do
5: for all z; , € R(X;) do
6: for all X; € chg(X;) do
7: vj = succ(vs, Xj, T p)
8

]/;(= argmax(L(DZ|fé))

veVi\v;
0. if L(DY|f) > LL(DY|fY) then
10: redirect y; L vj to new head node 1/;-k
11: Remove any orphan nodes

forest defined by the recursive function f7 (see Def.[3.19). Therefore, when selecting a new
head node v, € V; for edge v; L v;, we prefer a node v, € V; for which data DZj is more likely

under fgl{ than under f/.
The log-likelihood of D}’ under f/i is:

LD|fg) =) log Jg (d[deg;(X2))- (4.49)
deDyi

Algorithm shows the redirectEdges procedure which performs redirections bottom-
up in a PDG-structure, maximising (£.49).

The structural transformation of the redirection operator can result in some nodes being
orphaned. As a result, a set of parameter-nodes (potentially more nodes than the orphan
nodes) may become unreachable by any directed path from the root parameter-node. After

88

4.5 Learning Probabilistic Decision Graph Models

all redirections have been performed, we remove such nodes from the PDG-structure.

Complexity Let M be a PDG model of structure G w.r.t. variable forest F' over variables
X. The splitNodes procedure (Alg. [4.8) computes splitPotential by eq. (4.44]) for every
parameter-node in M with more than one parent. The complexity of computing (4.44]) for
node v is linear in the number of incoming edges O(|inc(v)|). In general, |inc(v)| can be
exponential in the |X| — 1 when F' contains a single linear tree and the sets of parameter-
nodes are maximal for all but the leaf variable that contains a single node. As explained
earlier, we do not consider node v for splitting if a parent of v has already been split in the
same traversal. Also, in-between consecutive invocations of the splitNodes procedure, we
merge nodes through the mergeNodes procedure (Alg. [4.9), which further reduces the risk
of experiencing exponential blowup. The complexity in practice is therefore expected to be
sub-exponential, and indeed the splitNodes procedure exhibits tractable execution times in
practise.

In the mergeNodes procedure (Alg.[4.9]), we compute the mergeScore (eq. (4.48)) for every
pair of parameter nodes {v;,,v;,} in each node set V;. Therefore, the complexity is quadratic
in the largest set V; of parameter-nodes O(|V;|?). This size can again in theory be exponential
in the number of variables, given suitable sequences of splits. However, as explained above, the
aggressiveness of the splitNodes procedure is efficiently suppressed, making the procedure
tractable in practice.

For the redirectEdges procedure (Alg. [4.10Q)), for every edge v; LA v; where v; € V; and
v; € V;, the marginal likelihoods are computed through (£.49) for every node v; € v; \ {v;}.
In general, this yields quadratic complexity in the largest set V;, i.e., O(|V;]?). By arguments
similar to those above, we expect that even though |V;| can be exponential in the number of
variables, in practice the size of |V}| is sub-exponential. Computing ([4.49)), however, is not free.
Rather, it is an expensive procedure, as it includes accessing the data D¥i. For this reason,
in our implementation of the LearnPDG procedure (Alg. [4.7), we invoke the redirectEdges
procedure less often than the splitNodes and mergeNodes procedures.

Inducing the variable forest: Phase I

The type of conditional independence relation that are encoded in a PDG model D w.r.t. a

variable forest F', are based on partitions of the state-space defined by sets of parameter-nodes
Vi:

PP(Xi|X\ dejr(Xi)) = PP (X;|palp(Xy)) = PP (Xl (Vi)

= X; L pat(X;) | (Vi) [P9] (4.50)

On the variable level, the partition .7(V;) is defined by the value of pap(X;), and the

only conditional independence that are identifiable from the variable forest without inspecting

the PDG structure are X; L X \ {pa}.(X;) U der(X;)}|pa’,(X;). Variables that are members

of different trees in the variable forest F' will be marginally independent in any distribution

represented by a PDG model w.r.t. forest F'. Therefore, when learning the variable-forest, we
wish to organise variables as follows:

89

4 Learning Probabilistic Graphical Models

1. Marginally independent variables are assigned to different trees, and marginally depen-
dent variables to the same tree.

2. Within trees, the structure will branch at variable X}, such that for all pairs {X;, X} C
chp(X}) it is the case that X; I X;[{pa}(Xy) U Xj}.

On Testing for Conditional Independence To decide on marginal and conditional inde-

pendence relations amongst the variables we use a y?-test of independence ,)

We will construct the X2 (or Pearson) statistic for the test. The X? statistics is:

ki kj

) NE — E[NB))?
X2 — ZZZ(hlE[N}%]hl]) , (4‘51)

Be# h=1 =1

where 4 is the conditioning partitioning, Nﬁ is the observed count of instances d € D where
d[X;, X;] = (i, 2j;) and d € B, and E[NJ] is the ezpected count N/} under the assumption
that X; 1L X;|% is true. This expectation is then computed as:

B B
Nh+'N+z

BING] = 1P| 5

(4.52)

where NP, = Z;Zl N}} and N5 = 221:1 NE and DP = {d € D : d € B}. For marginal
independence tests, the conditioning partitioning will be trivial partition 4 = {Q}.

When the tested independence holds true, then statistic X2 will be x? distributed with
|A| - (ki — 1) - (kj — 1) degrees of freedom. The degrees of freedom is the number of free
parameters that needs to be estimated, see
the y?-test and degrees of freedom. We will reduce the degrees of freedom by one for each cell
count of zero, which is a common approach (Spirtes et all, IM)

As mentioned above, we wish to build a variable tree such that the tree branches at variable
X and X; L X;|{pa}.(Xy) U Xy} for all pairs of children {Xj;, X;} of Xj. The cardinality of
the conditioning set {paj.(Xy) U X} is exponential in the size of the set. Therefore, it is

0) (pages 174-175) for a discussion of

very likely that data is too limited for us to perform reliable tests. However, the actual
conditional independence relation encoded by the PDG structure is typically not based on
the full o/ ({pa}(X;) U Xi}) as conditioning partition, but rather a more coarse grained
partition. That is, direct children of X will be independent in a PDG structure conditional
on Z (o (Vy,), o (R(X}))), which is typically not as fine grained as 7 ({pa}.(Xy) U Xj}). We
therefore, in addition to building the underlying variable trees, also induce a simple PDG
structure. As will become apparent soon, we can do this by interleaving incremental building
of variable trees through tests of independence, by an induction of a partial PDG structure
over the variables currently included in the trees. We will then only need to estimate atmost
as many parameters as the full partition generated by all predecessor variables, and in practise
the number of parameters will be much smaller.

We need to have a strategy for handling situations where the amount of data is too limited
to provide reliable estimates for the X2 statistics of (£.51)). For simplicity, we will only perform
the test when we have more than 5 data instances (on average) per parameter for estimation

90

4.5 Learning Probabilistic Decision Graph Models

Algorithm 4.11 The Grow procedure grows a partially build PDG structure by increasing the
depth by one more level. The depGraph function builds a dependency graph over variables by
performing pairwise tests of conditional independence, using a x? test and significance level t.

Input: T : partially build PDG structure; ¢ : significance level from [0, 1].
1. procedure Grow(T,t)
2. for all leaves V; of T where below(X;) # 0 do
B = 5 (e (V) (X))
H := depGraph(below(X;), A,t)
for all connected components C in H do
X := random variable from C
Vi =A{vj}
ChF() = ChF() UX]'
below(X;) = C\ X;

in computing the X? statistic. This is a commonly used rule-of-thumb (see eg.
) (pages 94-95)). When the cardinality of the conditioning partition becomes less than
5 instances we will assume the independence relation to be true without performing the test.
Statistically, of course, this is an unjustified assumption, however, we will still use this heuristic
to promote simpler models with fewer parameters and thereby the ability to obtain more

reliable estimates for the parameters.'0:11

Growing Variable Trees Algorithm[4.1T]describes the Grow procedure, which is the central
procedure in learning the variable forest. The Grow procedure extends the underlying variable
tree of a partially build PDG-structure by adding another level of variables to the leafs of the
tree. Each leaf X; has an associated (possibly empty) set below (X)) of variables that are to be
included in the subtree rooted at X;. The depGraph(Y, %,t) function returns a dependency
graph over variables Y where X;, X; € Y are connected if X; £ X;|% tests positive by a
statistical test for conditional independence, using significance level ¢.

Figure [4.14] depicts an example of the structural transformations performed by the Grow
procedure. Figure [4.14[a) depicts the initial situation. The partially build PDG structure
already contains the variables Xg, X2 and X4, and variables below(X4) = {X1, X3, X7, X5}
will the members of the subtree rooted at X4. The next step, depicted in Figure [4.14|b), then
builds a dependency graph over variables below(X4). The third and last step, depicted in
Figure [4.14](c), then initialises a separate branch rooted at X, for each connected component
in the dependency graph over variables below(X4). A branch is initialised by choosing a
variable X; at random as the root of the branch, and then placing the remaining variables from

10 An alternative approach could be to use a score function instead of a statistical test to evaluate conditional
independence when data is llmlted Such approaches was investigated by |Abellan et al. 1200d).
"1t should be mentioned that [F E pages 439-440) considers the necessary amount of data for the
isz 9

80) mentions the work of Vessereau 1953 Vessereau 11953)

shows that when the expected frequencies are constant, one only needs a single data instance per parameter

x? test to give reliable results, and |Fisz

in (451). However, in our case, the expected frequencies are not necessarily constant as the partitions does
not necessarily partition the data uniformly.

91

4 Learning Probabilistic Graphical Models

:* ‘: :' l : :~ ': :' I :

0000 OO0

(¢) (d)

Figure 4.14. Snapshots of the procedure for growing variable forests. In this example, a tree is being
build over 7 variables X; to X7. The sets below(-) is indicated by the solid box attached underneath
leafs.

the connected component {C\ X;} in the set below(X;). Figure 414 d) depicts the partially
build PDG after having been exposed to local structural transformations implemented in the
LearnPDG procedure of Algorithm [4.71

Building Variable Forests Algorithm [.12] describes the procedure LearnForest. This
procedure builds a full variable forest over variables X by first building a dependency graph
over X, using the trivial partitioning as conditioning partitioning, that is, marginal indepen-
dence tests (line []). Then, for each connected component in this dependency graph, we grow
a tree using the Grow procedure described above (see Alg. [4.11]).

In line [I1] of Algorithm [4.12] trees are grown by alternating between the Grow procedure
and the LearnPDG procedure that optimises the partially build PDG structure returned from
Grow. A tree is fully grown when no leaf V; has a non-empty below(X;) set.

92

4.5 Learning Probabilistic Decision Graph Models

Algorithm 4.12 The LearnForest procedure builds a variable forest by growing each tree

through alternating between the Grow procedure and the LearnPDG procedure.

1: function LearnForest(D,t, A\pmax)

2: X := variables from D

3: F = @

4: H :=depGraph(X, {Q},1)

5: for all connected components C in H do

6: X, :=rndVar(C)

7 Vi = {Vz}

8: below(X;) := C\ X;

9: T; := tree w. V; as root

10: F:=FU{T;}

11: repeat

12: Grow(7;,t)

13: LearnPDG(F, \paz)

14: until 7; is full-grown
return F

4.5.2 Testing the PDG Learner

To perform initial quality checks of the PDG learning procedure of Algorithm [4.6] we experi-
mented with several different databases consisting of iid samples from distributions represented
by a PDG models. We performed two distinct experiments:

1. learning PDG structures with the correct variable forest given as a starting point, and
2. learning the PDG structure including the induction of a variable forest.

Clearly, the latter is both the harder and the more relevant test, the former was mainly
performed as an initial sanity check of the LearnPDG procedure.

PDG sampled data

The merits of the PDG model is most clearly visible when representing logical relations as
demonstrated by the parity distribution in Example It is therefore natural to include
manually constructed models that represents certain logical relationships.

We used 5 different PDG models, 3 of which were manually constructed (shown in Fig-
ure [415) and 2 randomly generated (shown in Figure [A16]). We sampled full instances from
each model to get a fully observed dataset. This dataset was then partitioned into D4 and
Dp, where |D4| = 10000 and |Dg| = 5000.

The 3 manually constructed PDG models (Logicl, Logic2 and Logic3) and the procedures
for generating the 2 random PDG models (Rnd15 and Rnd20) are described below.

93

4 Learning Probabilistic Graphical Models

6 =
o)

Bigd

o

D200

AT

o

(B
e

B
e
AT

e

EPIOTEEF

151 84 155 01

(a)

~ /]
@ e é‘ :

Br

&4

Figure 4.15. PDG structures: Logicl (a) encodes a distribution containing the logical relationships
listed in Table 4.2} Logic2 (b) encodes the parity distribution over 10 binary variables (see Exam-
ple3.11)); Logic3 (c) encodes a relation where one variable assumes the value defined by the disjunction
of pairwise conjunctions of the remaining variables (see Eq. (£.53)).

Variable C D F G I J
AV B ANB Do FE -C —-(FVH) —(FAH)

Truth-value

Table 4.2. Logical functions encoded in model Logicl. Variables A, B, F and H models input bits

with a uniform (4, 1) prior.

94

4.5 Learning Probabilistic Decision Graph Models

Logicl This PDG model (depicted in Fig. [A15(a)) represents a distribution over 9 binary

11

random variables, 4 of which models input bits with a uniform (3, 5) prior, while the others

are determined by the logical relations listed in Table [4.2

Logic2 This PDG model (depicted in Fig.[4.15(b)) encodes the parity distribution described
in Example B.11] over 5 binary variables Xj,..., X4.

Logic3 The last manually constructed PDG model (depicted in Fig. [£15[c)) represents

a distribution over the binary variables. Each variable, except a special variable H, has a
11
202
rest of the variables, expressed as:

uniform (3, 5) prior, while H is determined by a disjunction of pairwise conjunctions of the

=0

For the concrete Logic3 model we included 8 binary variable in total.

Random PDG Models In the last two experiments, we used randomly generated PDG
models. Parameters were randomly generated, following the method proposed in ,
). The structures were forced to be single tree forests as underlying variable forests and
the cardinality of variables were randomly selected to be either 2 or 3 for simplicity.

Figure [4.16](a) shows the Rnd15 model over 15 discrete random variables and with an
effective size 182. Figure [4.16[b) shows the Rnd20 model over 20 discrete random variables
and with an effective size 233.

Results

The results of applying the PDG learning algorithm on the PDG-sampled data are sum-
marised in Table 4.3 Also in Table [4.3] we list the initial size of the population of forest
structures (#F') and the number of A-values for which a model was optimised (#\). For each
dataset we report the SL-coordinates (effective size and accuracy on D4 and Dpg) of the model
selected for optimal accuracy over test data, that is M = argmaz L(Dg|M’). Figure [A.17|(a)

M

shows the learning times for both experiments measured in seconds. Figure [A.17(b) shows the
effective sizes relative to the effective sizes of the true models.

Recovering Logical Models From results of Experiment 1 we observe that the true mod-
els are matched in SL-space by the learned models for Logicl-3. From the more relevant
Experiment 2 where induction of the variable forest is included in the learning task, we are
still successful in recovering an approximation as accurate as the true model for Logicl-3,
however, only for Logic2 are we able to recover the approximation at the same effective size
as the true model.

95

4 Learning Probabilistic Graphical Models

> G

G G

X /M
Eac f:.: _.;_c%ccﬁ Vv

= o g e &S b e el /0 ==
D GRS G G G @

o G i) G i) i) ﬁﬁﬁﬁ

[Cenrion) Gomebos)
G o e

X
L 40
10.040.95]
50
10,58 0.090.31)

(a)

ety

=t
H BEoham

t! %t Qf#)ﬂf@

G G G @

& & @ @

Q&@QQKKOGVV‘V‘JQQQQQ

(b)

Figure 4.16. Random PDG models used in experiments. (a) shows model Rnd15 which is a randomly generated PDG model over 15 discrete
random variables. The Rnd15 model has effective size 182. (b) shows model Rnd20 which is generated over 20 discrete random variables and has

effective size 233.

96

4.5 Learning Probabilistic Decision Graph Models

Learning times (seconds) Relative Effective Size
5000 45000 2
4 40000
4000 r 435000
— 1 30000
g 3000 ¢ 1 25000 g
g 1 20000 8
22000 3
= 1 15000 =
1000 F 4 10000
al I8 177
0 [0
Logicl Logic2 Logic3 Rndl5 Rnd20 Logicl Logic2 Logic3 Rnd15 Rnd20
[Experiment 1 — Experiment 2 —| [Experiment 1 — Experiment 2 —|
(a) (b)

Figure 4.17. Plots showing characteristics from applying the LearnPDG procedure (Algorithm [4.6]) to
data sampled from artificial PDG models. (a) shows learning times (in seconds) of experiment 1 on the
left y-axis and of experiment 2 on the right y-axis. (b) shows the effective size of the model selected
in each of the experiments, relative to the effective size of the true PDG model.

Experiment 1 Experiment 2 True model
#F #X\ sizeeqg L(Da) L(Dp) sizecy L(Da) L(Dp) sizeey L(Da) L(Dg)
Logicl 30 22 46 -4.000 -4.000 76 -4.000 -4.000 46 -4.000 -4.000
Logic2 30 10 18 -4.000 -4.000 18 -4.000 -4.000 18 -4.000 -4.000
Logic3 30 21 40 -6.998 -7.001 68 -6.998 -7.001 40 -7.000 -7.000
Rndl5 30 16 143 -14.860 -14.859 323 -14.959 -15.037 182 -14.852 -14.833
Rnd20 30 21 211 -18.088 -18.102 449 -18.684 -18.714 233 -18.082 -18.081

Table 4.3. Summary of our experiments on PDG sampled data. Column ’'#F’ contains the size of the
initial population of variable forests, which is only relevant for Experiment 2. Column '#)’ contains
the number of lambda values for which a model was optimised. Experiment 1 and Experiment 2 refers
to experiments using the correct variable forest as a starting point, and experiments where the forest is
automatically induced, respectively. Columns L(D4) and L(Dp) lists log-likelihood values for training
and test data respectively (per data instance).

97

4 Learning Probabilistic Graphical Models

Gép
el m‘»
S5 S th &
o

(b) Logicl, Exp. 2

T

LI
0j01

D
B30
e

EHEREL
O IEFIEHEL

EREN
Al

0

6

Ao
Beder
By

!
/

(c) Logic3, Exp. 1 (d) Logic3, Exp. 2

Figure 4.18. Models learned from data sampled from Logicl ((a) and (b)) and Logic3 ((c¢) and (d))
models. (a) and (c) shows the model selected from Experiment using the correct variable forest
structure as a starting point. (b) and (d) shows the model selected from the second experiment where

no variable forest is given as a starting point.

98

4.5 Learning Probabilistic Decision Graph Models

Figure [418(a) and (b) shows the models selected from Experiment 1 and 2 respectively,
using the Logicl sampled data, while Figure [£.18|c) and (d) shows the models selected from
experiments using the Logic3 sampled data. We observe that the recovered models in Fig-
ure [4.18|a) and (c) only differs from the corresponding true models (Figure [4.15(a) and (c))
by a few local transformations that are of no significance to the representation. Both models
successfully represents the correct logical relations by assigning probability 0 to all and only
the joint configurations that are false. For the models in Figure AI8(b) and (d), the correct
logical formula was not represented as some false joint configurations were assigned a non-zero
probability. For the Logic2 sampled data, the correct model representing the correct logical

formula was recovered in both experiments.

Recovering Random Models The results of using data sampled from the Rnd15 and
Rnd20 models are quite similar, and we will discuss them in the following. For the first
experiment we are not able to obtain an approximation of the same accuracy as the true
models, but the selected models have smaller effective size than the true models, and they are
then not dominated by the true models. For the second experiment the selected models are
both less accurate and has larger effective size than the true models.

Figure [£.19((a)-(b) shows SL-curves for the four distinct experiments involving Rnd15 and
Rnd20 sampled data respectively. First, from the SL-curve Figure [£19(a) we observe that
for the first experiment, the attainable level of likelihood seems to be close to the level of
the true model. That is, using the correct variable forest as a starting point we do not gain
much from increasing the size beyond the size of the true model. For the second experiment,
where the learning procedure was not restricted to the correct variable forest, models of better
accuracy over Dy are recovered. However, as we have already observed, these models offer a
poor accuracy over Dp.

Similar observations were made from the experiments using Rnd20 sampled data. In the
corresponding SL-curves shown in Figure [4.19(b), discrepancies between the two experiments
are more clear than for Rnd15 sampled data.

Discussion

From the observations made from the results of these preliminary experiments, we conclude
that the induction of a good variable forest as a basis for the PDG learner is the harder task.
It is of great importance to the quality and efficiency of the final PDG model, as we clearly
observed for Rnd15 and Rnd20 sampled data. It is not surprising that the underlying variable
forest can have a huge impact on the learning procedure. Any independence encoded in a
variable forest is also imposed on any PDG model with that forest as underlying structure.
However, if the forest fails to capture important independence relations, these must then be
encoded either numerically in the parameters or in the PDG structure. Our experiments show
that without the correct forest, we may need much larger structure than the correct structure
to compensate for the suboptimal underlying variable forest.

On the positive side, when a good variable forest is given, our PDG learning procedure is
very successful in finding good models by the local transformations. Even though relying on

99

4 Learning Probabilistic Graphical Models

3500

-14.5
-15
e}
g
S -155 |+
= é
~ "
a
o0 -16
Q
—
-165 | Expeﬁment 1, train —
[Experiment 1, test i
[Experiment 2, train ke
- . . E)Icperimenlt 2, test . .
0 500 1000 1500 2000 2500 3000
Effective model size
(a)
Rnd20
-18 T T T T T T
8.5 b4
-19 +
_c o e,
g -195¢
=
£ 20 f
i
g 205t
.4
20 r [Experiment 1, train ——
[Experiment 1, test i
215 ik [Experiment 2, train s
99 . . . Experimept 2, test :

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 4.19. SL-curves for both experiments using Rnd15 and Rnd20 sampled data. In both plots the
SL-coordinates of the true model is marked with a circle (for D4 likelihood) and a triangle (for Dp
likelihood). Log likelihoods are per data-instance, that is, divided by the size of the dataset.

Effective model size

(b)

heuristics for traversing the space of PDG models, the merge, split and redirect operations

successfully recover high scoring models.

100

4.5 Learning Probabilistic Decision Graph Models

4.5.3 Related Work

A recent framework that is closely related to PDGs is the that of case-factor diagrams (CFDs)
of IMcAllester et al. (IM) The CFD language is (like the PDG language) inspired by binary
decision diagrams, and also supports computation of belief updating in time linear in the size

of the representation. The structural constraints of CFD models differ from the structural
constraints of PDG language in two key points: 1) CFD models do not allow undirected
cycles, which means that reuse of parameters in a similar natural way as in the PDG language
is not possible; and, 2) in two different paths through the CFD model, variables may occur
in different orderings, which is not possible in PDG models. [McAllester et al! (2004) does not
propose learning procedures for CFDs, and, to our knowledge, no study on learning CFDs has
been published.

A framework that is very closely related to PDGs (and CFDs) is the Independency Tree

(IT) model, investigated by [Flores et al. (I_(Hﬁ Flores et al. (I_(Hﬁ) proposes a procedure for

learning ITs from data, and reports initial and promising results when using the IT model in

for clustering.

Probability estimation trees (PETs) represent a conditional probability distribution for a

target variable given a set of conditioning variables, see e.g. (Provost and Domingoé Im

Liang et al. IM Learning of PETs usually follow a traditional procedure for learning
Decision Trees (eg. the popular ID3 algorithm (Q (m m with few modifications. The
PET is then used to give a ranking in form of probabilities of class membership conditional on

attribute variables, and CSI relations can easily be represented in a compact way. The PET
framework, however, is not able to efficiently represent a joint probability distribution over a
domain of variables, and therefore does not offer a natural and efficient way to perform belief
updating in a domain.

Many studies have focused on using local CSI relations to improve learning of BN mod-

els. |Boutilier et al.| (|1996|) propose to use a PET representation for each local conditional

distribution in a BN model. These local PETs are then used to guide a decomposition of the
BN model in which auxiliary multiplexer variables are introduced to reduce the size of clique
potentials in the associated Clique Tree representation. Finally, this then yields faster clique
tree inference in the decomposed BN model. Thus, the local PET representation is only used
as a preprocessing step to obtain a simpler BN model.

Chickering et al. (|L9_9_’j) use a Decision Graph (DG) representation of the local conditional

distributions in a BN model, and propose an algorithm for obtaining both the BN model and

local DG representations simultaneously. The learning procedures of the local DG represen-

tations proposed by Chickering et all (11997|) contains splitting and merging operators that

resemble the operators presented here for PDG learning. However, the heuristics for choosing
nodes for splitting and merging employed by [Chickering et al. (1997) is purely random, and

not guided by the gain in score as is the case for our application. Also, |Chickering et al) (1997)

only consider leaf nodes and not internal nodes for splitting and merging. Using the local DG

structure, |Chickering et al. (ILQ9j) show how to further simplify the global structure of the
BN model.
The Recursive Bayesian Multinets (RBM) of [Peiia et all (|200j) capture CSI relations by a

101

4 Learning Probabilistic Graphical Models

decision tree over a set of distinguished variables. Each leaf ot the decision tree then contains
a BN model over the variables that was not included on the path from the root to the leaf.
Concerning computational complexity, RBMs aims at representing a complex domain in with
many CSI relations, by a few simpler models, one for each relevant context. In the study of
Penia et al. (Iﬂ)jﬁ), the leaf BN models are constrained to certain classes of NB models.

4.6 Combining BN and PDG Learning: A Hybrid Learning
Approach

In the previous section, we observed that the variable forest induction is often the “Achilles
heel” of our PDG learning procedure. Motivated by this observation, we will introduce an
alternative way to handle the construction of variable forest. The material presented in this

section is based on ideas previously published in (|J aeger et a1.|, |2006|).

As previously stated in Theorem [3.6] there exists an efficient translation from a clique tree
model into an equivalent PDG model. Given that a clique tree model for some domain exists,
we can then convert this model into an equivalent PDG model, and thereby evading the direct
induction of a variable forest. This PDG model can then be exposed to the score optimising
local transformations of the LearnPDG procedure (Alg. [47)), and we will denote this approach

as the hybrid approach.
(m) proposes an algorithm for performing such a conversion, and we will review
this algorithm in the following. We need the following definition:

Definition 4.8 (Fully Expanded PDG)
A PDG D over variables X w.r.t. forest I is said to be fully expanded iff any parameter node
v has only a single parent.

From Definition [4.8] it follows that |V;| = |R(pa}.(X;))| for any set of parameter nodes V;
in a fully expanded PDG D over variable forest F'.

Lemma 4.5
Let X be a set of discrete random variables. A fully expanded PDG structure D w.r.t. any
linear ordering of X can represent any probability distribution over X.

Proof: Let D be a fully expanded PDG w.r.t. a linear order X, X1,..., X, of variable X,
that is, for the underlying variable forest F' the relation paj,(X;) = {Xo,..., X;—1} holds for
any X; € X. Furthermore, as D is fully expanded, Path(v, pa},(X;)) contains a single element
from R(pa},(X;)) for any v € V;. Denote this element y. Then by Propositions [3.4] and [3.6]
p” = PP (X;|pa;(X;) =y), and PP factorises as:

PP(X)= [] PP(XilXis1,..., Xn). (4.54)
X;eX

By the chain-rule of conditional distributions (2.I1]), any multivariate distribution factorise
according to (£54)), and therefore D can represent any multivariate distribution over X. []

102

4.6 Combining BN and PDG Learning: A Hybrid Learning Approach

Algorithm 4.13 Transforms a directed clique tree into an equivalent PDG. The underlying
variable tree is build by the buildVariableTree procedure of Algorithm

Input: J: clique tree.

Output: D: PDG model equivalent to J.

1: procedure cliqueTreeToPDG(.J)

2 Let C; be the root of J

3 T :=buildVariableTree(C,, J)

4: Let D be an empty PDG-structure w.r.t. variable tree T’
5 buildPDGFromCliques(C,, J, D)

6 return D

Algorithm 4.14 A variable tree is build from a directed clique tree J at from clique-node C'
and all clique-nodes below C'.
Input: C: clique of clique tree J

Output: T variable tree representing variables of clique C' and all cliques below C in J
1. function buildVariableTree(C')

2 Let T be a linear tree over variables new(C')
3 Let X; be the leaf of T'

4: for all C, € ch;(C) do

5 T. :=buildVariableTree(C., J)

6 Attach T, to T as a branch, rooted at X
7

return T

Lemma [4.5] states a key property of PDGs, and it is central to constructing a PDG model
from a clique tree model.

Procedure cliqueTreeToPDG (Algorithm [4.13)) implements the top-level transformation
from a clique tree to an equivalent PDG. Invoking this procedure for each tree in a directed
clique forest, a general clique forest is transformed to an equivalent PDG structure.

Procedure buildVariableTree (Algorithm [4.14]) builds a variable tree from a clique tree
J. The produced variable tree essentially has the same structure as J, but with each clique
C exchanged for a linear order branch over certain new variables new(C). new(C') contains
variables that appears in clique C' and that have not appeared in any clique above C' in the
clique tree structure, that is:

new(C) = var(C) \ {Uclepa?}(c)var(C")}, (4.55)

where var(C') is the set of variables associated with clique C. Any clique potential ¢¢ over
clique node C' is fully specified by |R(var(C))| — 1 parameters. The effective size of a fully
expanded PDG w.r.t. variable forest I over var(C') is }_ x,cyur(c) [(paZ(X;) U X;)|, which
is bounded by 2|R(X)|.

Example 4.2
Consider the clique tree of Figure [4.20(a). We have chosen the clique containing variables
{X1, X1, X3} as the root clique C,, and invoke the buildVariableTree procedure on C,. As

103

4 Learning Probabilistic Graphical Models

(a) (b)

Figure 4.20. A clique tree (a) and the variable tree constructed by procedure buildVariableTree
invoked on clique {X7, X5, X3}.

Algorithm 4.15 Procedure for recursively building a PDG from a directed clique tree. Cliques
are expanded into suitable sets of parameter-nodes by the expandClique procedure of Algo-

rithm [4.16]
Input: C: root clique; J: clique tree; D: empty PDG structure build from clique tree J.

1. procedure buildPDGFromCliques(C, J, D)
2: expandClique(C, J, D)

3. for all C' € ch;(C) do

4: buildPDGFromCliques(C’, J, D)

new(Cy) = var(C,), we first build a linear tree X; — X9 — X3. For the two remaining
cliques {X1, X4} and {X3, X5, X¢} the tree fragments X4 and X5 — Xg are constructed, and
this finally yields the tree in Figure [4.20(b).

Procedure buildPDGFromCliques (Algorithm [£.15)) recursively expands an empty PDG D
by creating sets of parameter-nodes for all variables in the underlying variable forest. Nodes
are connected such that PDG D can represent the distribution encoded by clique tree J.
This task is accomplished by always matching a free parameter in the clique tree model by a
corresponding free parameter in the PDG model.

The expandClique procedure (Algorithm [4.16]) essentially ensures this, by expanding vari-
ables new(C') of clique C' into sets of parameter-nodes. First, variables var(C) \ new(C) have
already been included in the PDG, and we ensure that new(C) L var(C) \ new(C) in PDG
D.

The createParameterNodes procedure creates parameter nodes for variable X;, and con-
nects these nodes in PDG D such that any free parameter in the JT will be matched by a free

parameter in D.

Example 4.3
Consider the variable-tree from Example[4.2 depicted in Figure[4.20(b), and assume all vari-
ables are binary. Invoking procedure buildPDGFromCliques(C, J, D) (Alg.[4.15)), where clique

104

4.6 Combining BN and PDG Learning: A Hybrid Learning Approach

Algorithm 4.16 Expand a clique node C from clique tree J into sets of parameter nodes in

a PDG D.
Input: C: clique node; J clique tree (containing C); D: PDG structure not containing

parameter-nodes for variables new(C).
1: procedure expandClique(C, J, D)
2 Let F' be the variable forest underlying D
3 Y := var(C) \ new(C)
4: for all X; € new(C) do
5 createParameterNodes(X;, Y, D)
6 Y =YU{X;}

105

4 Learning Probabilistic Graphical Models

Algorithm 4.17 Given a variable X; in variable forest ' and a subset of variables Y C
pai,(X;) on which X; depends, procedure createParameterNodes creates the necessary pa-
rameter nodes needed to represent this dependence in PDG D over variable forest F'.

Input: X;: random variable; Y: set of dependent variables; D partially build PDG structure.
1: procedure createParameterNodes(X;, Y, D)
2: let F' be the underlying variable forest of D

3: let X; = pap(X;)

4: V= 0

5: U := paj.(Xi)

6: for all y € R(Y) do

7 add new parameter node vy to V;

8: for all v € V; do

9: for all u € Path(v,u) : u[Y] =y do
10: set succ(v, X;, u[X;]) to be vy

(a) (b) (¢)

Figure 4.21. The result of applying the buildPDGFromCliques procedure to the clique-tree and vari-
able forest from Example [4.2] (Figure [4.20(a) and (b)). The three steps corresponding to the three
cliques of the clique-tree are depicted in sub-figures (a),(b) and (c).

C' is the root of the clique tree J in Fig.[420(a) and D is the empty PDG structure of the
variable tree in Figure [420(b). Figure [4.21] shows snapshots of the process of building a
PDG by this procedure. First, Figure[4.21] shows the result of expanding the root clique by
the expandCligue procedure. The clique contains variables {X1, X2, X3}, and gives rise to a
clique table with 23 = 8 entries. To match every entry, the sub-tree over X1, Xo and X3 is
fully expanded. In Figure[4.21|(b), the result of expanding the clique containing X, and X4
can be seen. This clique gives rise to a table with 2° = 4 entries over joint configurations of
X1 and X4. Consequently, instead of expanding this subtree fully, we just create a new node
v € Vy for each value of X;. Figure[42]|(c) then shows the final result after expansion of the
last clique.

106

4.6 Combining BN and PDG Learning: A Hybrid Learning Approach

Figure 4.22. Example of collapsing non-reached nodes. Light-gray nodes in (a) are not reached by
any data instance and are thus removed, creating the dark-gray garbage-nodes of (b).

Collapsing Non-reached Nodes We aim at refining the newly constructed PDG model
using data. This means that we are ultimately less interested in actually capturing the distri-
bution represented by the clique tree model, but rather we wish to construct a good approx-
imation to the unknown generative distribution from which data was sampled. To this end,
we perform an initial sweep through the newly constructed PDG model, removing nodes that
are not reached by any data instances. A new “garbage’-node is created for each node-set, and
any edge incoming to a node that is removed is directed into the garbage-node. For a newly
created garbage-node, we can assign the garbage-node(s) of the succeeding variable(s) in the
underlying variable forest as children. Such garbage-nodes v are assigned a parameter vector
p” of uniform values.

Example 4.4
Consider the PDG model shown in Figure[4.22(a), and assume that the light-gray parameter-
nodes are not reached by any instances d € Dy. Removal of non-reached nodes and creation
of suitable garbage-nodes then results in the structure of Figure[4.22(b), where garbage-nodes
are dark-gray.

In this toy example, the effective size of the PDG is reduced from 38 to 36, assuming all
variables as binary.

Instead of keeping the garbage nodes that results from merging the non-reached nodes
in the model, these garbage nodes could be removed completely. One would then need to
redirect each edge incoming to a garbage-node to another existing parameter-node. This
redirection could be to any other node without affecting the likelihood of training data, as
no data-instances is associated with the edge. Rather, the removal would yield a sure score-
improvement from the reduction in size. However, we choose to keep the garbage nodes in the
model for two reasons:

1. In practise, the reduction in size resulting from completely removing garbage nodes,
proved to be insignificant compared to the dramatic reduction from the initial merging
of non-reached nodes.

107

4 Learning Probabilistic Graphical Models

Algorithm 4.18 The hybridLearn procedure learns a sequence of PDG models from an
initial construction of a PDG model from a clique tree J. This initial PDG structure is then
iteratively refined by a sequence of merge operations. The merge operations use increasing A
values, thus the merging of nodes will be more and more aggressive.

1. procedure hybridLearn(J, A)
D := cliqueTreeToPDG(J)
Collapse non-reached nodes in D
for \,n up to Apee in A do
mergeNodes(D, \)
output D

AN

2. The garbage nodes may still be useful, even when no instance d € Dy justify their
existence. They provide uniform parameters for instances d € Dpg that still may reach
them, and hence may improve the accuracy of the model.

The hybridLearn procedure of Algorithm combines the approach to learning PDG
models described in this section with a subsequent optimisation of the structure. We first
translate a clique tree model into an equivalent PDG model. Then we perform a series of
merges by the mergeNodes procedure (see Algorithm [4.9). The sequence of merges are in-
creasingly aggressive, and in this way we expect to produce a series of models decreasing in
size and accuracy.

4.6.1 Related Work

Darwiche (|200j) propose to use Arithmetic Circuit (AC) representations for probabilistic in-

ference. AC is a general representation framework for multi-linear functions, and are not
dedicated to representing joint probability distributions. Unlike PDGs, no simple syntactic
criterion characterise the set of ACs that do represent probability distributions. It would,
therefore, seem difficult to learn ACs directly from data directly. Instead, Darwichgl (IM)

proposes a procedure for compiling a BN model into an equivalent AC representation, which

easily capture and exploit CSI relations yielding a more computationally efficient represen-

tation. Compared to our hybrid learning of PDGs, [Darwich M) does not propose any
optimisations of the AC after the compilation from a BN model. ACs do not naturally lend
themselves to parameter re-estimation as is the case for PDGs, and re-estimation of param-

eters is especially important in such post-compilation optimisations to ensure that the loss

in accuracy is minimised. However, the empirical results reported by |Darwiche| (IQOOj) often

shows a significant improvement in computational complexity of the compiled AC compared
to the Clique Tree representation, even without such post-compilation optimisations.

108

CHAPTER 5

COMPARATIVE ANALYSIS

In this chapter we perform a comparative analyses of the PGM languages presented in Chap-
ter Bl and the methods for learning presented in Chapter 4l The overall goal of this chapter
is to evaluate the ability of model languages to efficiently and accurately approximate a dis-
tribution, and to evaluate our learning methods ability to recover such efficient and accurate
models. Major parts of the material presented in this chapter is based on ideas previously
published in (Nielsen and Jaegetl, 200).

5.1 Methodology and Experimental Setting

We have applied our learning algorithms for BN, NB and PDG models to several datasets
both real and synthetic, and produced SL-curves for each model language and each dataset.
Each dataset was split up in two separate sets, one set for training (henceforth denoted D4)
and one set of testing (henceforth denoted Dp), and SL-curves over likelihood values obtained
from both D4 and Dpg was then produced. SL-curves were introduced in Section [4.1.2] as an
analytical tool for cross-language comparisons.

As mentioned above, we will use both real and synthetic datasets in the comparative study.
The use of synthetic data has the advantage that the generating distribution P is known. This
approach is therefore popular for initial benchmarking of algorithms for the obvious reason
that it avoids the difficulty of having to approximate the true generating distribution P by the
empirical distribution PP of a small sample D from P. Using data D sampled from known
distributions P for the learning of model M will then enable us to evaluate the quality of the
approximation provided by PM directly by computation of DKL(PHPM). However, in our
analysis the obvious reasons for not only taking this approach are the following:

1. We wish to compare multiple PGM languages, and depending on the chosen distribution
P we may give unfair treatment to some languages and favour others. It would be fair
to assume that if data D has been sampled from a distribution P that is represented by
a (non-trivial) model from PGM language £, then P contains independence relations
that are efficiently expressible in language £ while these independence relations are less
efficiently expressible in language Lo, if expressible at all. Results reported in Section [5.2]

109

& Comparative Analysis

support this assumption to some extent.

2. Successful learning from real data is typically the ultimate end goal of a learning algo-
rithm. Any experiments on synthetic data is then only of interest in preliminary studies
and benchmarking. In the final application of the learning algorithm, the data generating
distribution will not be available, and all we have is a finite data-set of observations.

By optimising ([4.8)) we attempt to learn models that yield optimal effective-size/likelihood
trade-offs (SL-optimal), i.e., models that are non-dominated in SL-space.! If the SL-curve for
one model language £ consistently dominates the SL-curve for another language Lo, there
can be (at least) two explanations for this:

1. for any SL-optimal £2 model M there exists a £1 model M’ that dominates M (for this
specific real-world distribution), or

2. we are unable to learn SL-optimal models for L5 by our learning procedures.

In our experiments we use real-world data, and are unable to guarantee that the SL-curve we
construct consists of the SL.-coordinates for SL-optimal models. We are therefore never able to
conclude that explanation 1 above true. Again, as our learning procedures have no guarantees
of learning SL-optimal models, explanation 2 can never be dismissed as false. Moreover,
the existence of efficient and accurate SL-optimal models is of little practical value if we are
unable to recover these models from data. The “practical” efficiency and accuracy of a model
language will then be the efficiency and accuracy of the models we are able to learn, and these
“practical” properties are then the basis for our comparative analysis.

As discussed previously (Section [4.1.2)) when using SL-curves for selecting a single model,
the model that attains maximal likelihood value over the testing data would typically be the
canonical choice. For every experiment we will compare such models from each language.
Instead of avoiding overfitting by using the test dataset Dp (or cross-validation when data is
limited), a model optimising some fixed tradeoff between efficiency and accuracy (such as BIC
or AIC scores) may be selected. We therefore also investigates the models optimising BIC and
AIC scores for each dataset.

5.1.1 Empirical Accuracy and Efficiency

The analysis discussed thus far concerns the use of SL-curves that plots the tradeoffs between
effective size and likelihood, offered by a model language. The effective size was previously
introduced as a parameter of the model, such that general belief updating is computable in
time linear in that parameter (see Section [A.1.2]). The use of effective size allows conclusions
about the differences in efficiency (of belief updating) only up to a linear factor. The linear
factor depends on the specific implementation, and only then will it be measurable. We are

1A model M; is dominated by another model M, if Ms has SL-coordinates that are to the left and above the
other model’s SL-coordinates, that is, M2 has both smaller effective size and better likelihood score compared
to M. Model M; is non-dominated if there does not exist a model M; from the same language that dominates
M.

110

5.1 Methodology and Ezxperimental Setting

interested in this factor as conclusions may be sensitive to changing the efficiency measure
from the theoretical measure of effective size to an empirically measured execution time.

We then measure the efficiency of exact inference empirically by the execution times for
updating beliefs given random evidence. That is, we compute all marginal posteriors given a
joint observation of a random set of evidence variables E, and measure the average execution
time of such random queries.

In addition to measuring the empirical efficiency, we also measure the empirical accuracy.
Following the methodology of [Lowd and Domingoé (lMI), a random query is generated as
follows: draw an instance d at random from test data Dp and generate two random disjoint
subsets of variables Q and E from X. The random query is then P(Q = d[Q]|E = d[E]).
The empirical accuracy of model M on this query, is then the log posterior probability:
log PM(Q = d[Q]|E = d[E]). Compared to the global accuracy measure of log-likelihood of

test data L(Dpg|M), the empirical accuracy can be seen as a measure for “local” accuracy, i.e.,

restricted to specific marginal conditional distributions of PM.

Setup of Experiments for Performing Empirical Measures

In practice, we generate n random queries, i.e., pairs of disjoint sets of variables (Q, E) and
corresponding observations (q = d[Q],e = d[E]) extracted from randomly drawn instances
d from a set of test-data (as explained above). Then, belief updating is performed in each
model M both for evidence E = e and evidence (Q,E) = (q,e). After a belief update,
we store the joint probabilities (PM(E = e) and PM(Q = q,E = e) respectively) and the
measured execution time. From the joint posteriors, we compute the empirical accuracy
log P(Q = q|E = e). In this way, we measure both the empirical efficiency of belief updating
and the empirical accuracy of joint posteriors given random evidence.

5.1.2 General Experimental Setup

For learning BN models, the KES procedure (Algorithm [43]) with the SPY score (see (4:24)
was used. BN models were optimised for a range of different A values, and for each value of A
we used 11 different & values k € {0.0,0.1,...,1.0}. For each pair of k and A, 100 restarts of
KES was performed, and for each specific A value the highest scoring BN model was selected.

For learning PDG models, we used the LearnPDGs procedure of Algorithm The initial
population size was manually tuned for each dataset, as was the specific significance levels used
in the conditional independence tests in building the initial variable forests for each dataset.?

Finally, for learning NB models, the NB learning algorithm described in Section [4.4] was
used. Recall that learning NB models with increasing effective size is especially simple as the

2The manual tuning of the initial population size and the significance levels was aimed at learning a range
of different models. For some initial settings we experienced that the learning procedure was only able to
recover a small set of different models. More specifically, we would typically start with a small population
size and subsequently increase the size if the variance in learned models turned out to be too small. Also, the
significance level used in the independence test would sometimes yield forest structures so simple that only a
very small set of different PDG structures were possible. In such cases we would restart the procedure with
less strict significance levels.

111

& Comparative Analysis

Name IX| |E| Rmaz Rmin Rmean sizeeg L(Da|PM) L(Dp|PM)
Alarm 37 42 2 4 2.8 771 -13.720 -13.839
Hailfinder 56 66 2 11 4.0 9406 -70.812 -70.785

Table 5.1. Characteristics of the BN models used for sampling synthetic data. columns R4, Rmin
and R,eqn lists maximum, minimum and mean range of the random variables, size.g lists the effective
size of the model, while L(D4|P™) and L(Dg|PM) lists log-likelihood values of the models averaged
over instances in the respective datasets.

structure is given and the only parameter that affects the efficiency is the number of latent
components. The termination criterion for the EM algorithm (that is, maximum iterations
and minimum change in parameters) was tuned manually for each dataset.?

Implementations The KES procedure (Alg. [4.3]) was implemented in the C language, using
efficient state-of-the-art Machine Learning libraries.? Both the LearnPDGs (Alg. 4.7) and the
LeandNB (Alg. [4.5)) procedures were implemented in the Java language using standard libraries
of JDK v. 1.5 and the Weka package for basic data handling routines.’> 6 All the learning
experiments was performed on a Sun Fire X4100, 2.4 GHz CPU architecture with 4096 MB
RAM running the RedHat-Enterprise Linux4 64bit operating system.

5.2 Learning from Synthetic Data

We will learn models from a collection of synthetic databases. Each database was generated
by drawing random samples under a distribution represented by a known model. For producing
SL-curves, we will use log-likelihood values averaged over the size of the data, and we will
include in the plots a horizontal line representing the (negative) entropy of the data —H (D),
as this is the maximal attainable log-likelihood value for any model.

5.2.1 Learning from BN Generated Data

In this section, we report on experiments using data sampled from manually constructed BN
models. We use two widely studied models, the Alarm network (Beinlich et all, M) and
the Hailfinder network (Abramson et all, |ﬁ9d) We used data sampled from these models,
in Section [4.3.4] Data sampled from these models was previously used in testing the KES

procedure in Section [4.3.4l Characteristics of these networks can be seen in Table [5.11

3The tuning was mainly necessary in order to ensure acceptable run times. For the larger datasets it was
necessary to terminate EM after fewer iterations than for smaller datasets. The run time of EM is of cause
directly dependent on the cardinality of the latent components.

“These libraries were initially developed at the AutonLab, Carnegie Mellon University, and most kindly
made available to us by Dr. Andrew W. Moore.

®For information on the Java language, see http://java.sun.com/

6Weka is a library of tools and algorithms for Machine Learning and Data Mining tasks implemented in
Java. The libraries can be obtained online at http://www.cs.waikato.ac.nz/“ml/weka/, and for futher detail
on the Weka-toolbox, see (Witten and F‘rankl, |2005i).

112

http://java.sun.com/
http://www.cs.waikato.ac.nz/~ml/weka/

5.2 Learning from Synthetic Data

Name 1X| |R(C)| Rmin Rumas Rmean sizeeg L(Da|PM) L(Dp|PM)
NB10 15 10 2 4 3.13 470 -20.468 -20.512
NB20 15 20 2 4 2.9 880 -19.641 -19.614

Table 5.2. Characteristics of NB models used for generating synthetic NB data. Columns L(D4|P™)
and L(Dp|PM) lists likelihood values (averaged over instances in the training data) for datasets
generated from the respective models.

Results on BN Generated Data

Figure 5.1l shows SL-curves generated from models learned from data sampled from the Alarm
model. As expected, the BN models shows superior performance and consistently domi-
nates NB and PDG models in Figure 5.1[(b) where likelihoods are computed over Dg. In
Figure [5.1l(a) where likelihoods are computed over D4 BN models dominates PDG and NB
models only up to a certain effective size. The SL curves for BN models raises quickly to the
level of accuracy of the generating model and then does not improve accuracy for models of
increased complexity. NB models show a much more smooth increase in accuracy for increas-
ingly complex models. For PDG models we have a large interval of effective size where no
models where learned, which is probably due to poor tuning of the parameters in the learning
procedure. When tuning the parameters, we were trying carefully to avoid such gabs in the
SL-curves. The reason they still appear can have (at least) two explanations. Either there
simply do not exist models in the range where we do not observe models, or we are unable
to learn these models. Assuming there exists models, we might have chosen a set of signifi-
cance levels that produce forest structures that do not support these models, and hence we
are not able to learn them. Thus, poor tuning of the parameters could result in the observed
SL-curves.

However, SL coordinates for the learned PDG models that are learned are close to NB
models, and we therefore do not expect major differences in the performance of the PDG
language compared to the NB language even for model sizes we have not observed.

Observations similar to these were made from the experiment on data sampled from the
Hailfinder model, the only difference being that NB models does not as clearly overfit the
Hailfinder data as it is the case for the Alarm data. SL-curves for the experiments using data
sampled from the Hailfinder model can be found in Appendix [A] (Figure [A.T]).

5.2.2 Learning from NB Generated Data

We have used 2 randomly generated NB models (NB10 and NB20) over 15 discrete random
variables with ranging from binary valued to 5 state variables. The NB10 model has 10 latent
components and NB20 has 20 latent components. Datasets D4 of size 10000 and Dp of size
5000 were sampled. Table [5.2] contains characteristics of the models.

113

& Comparative Analysis

Alarm - Train

-10
-11
-12
-13
14 g e R
-15
-16
-17
-18

o Kw K

Log-Likelihood
%

@%%

-19 INB .
220 PDG —*—
FH(D) e
21 L
0 10000 20000 30000 40000 50000
Effective model size

(a)

Alarm - Test
-13

-14

-15

X

-16 AT

-17

Log-Likelihood

T X

‘\‘ _____ S T A XX x/f;;%-*-—f o MK K
-18 Yoz x® 3 S

-19 N —

-20 :
0 10000 20000 30000 40000 50000

Effective model size

(b)

Figure 5.1. SL-curves for models learned from the Alarm data, for likelihood values over training
data D4 (a) and test data Dp (b). The SL coordinates for the generative model is marked with a
square. The Log-Likelihood is per data-instance, that is, divided by the data size (|D4| and |Dg],
respectively). Log likelihoods are per data instance.

114

5.2 Learning from Synthetic Data

Nb10 - Train
-13
-14
-15
- -l6
g
£ -17
£ 18
—
g0 -19
3 SR HNU S e R
-20 R S S X
21 e BN — 1
W INB IV
22 K PDG —x-
23 tH(D)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size
(a)
NB10 - Test
-20.5
21 fok
D2
2 . e s S ———
.—.% -21.5 *:
o) ; "
=
—
50 -22 "
15) .
= *.
-22.5 BN
NB —=—
Koo PDG -
_23 I I

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size

(b)

Figure 5.2. SL-curves for models learned from the NB10 data, for likelihood values over training data

Da (a) and test data Dp (b). The SL coordinates for the generative model is marked with a square.
Log likelihoods are per data instance.

115

& Comparative Analysis

Name 1X| Rumin Rmas Rmean sizeeg L(Da|PM) L(Dp|PM)
Logicl 0 2 2 2 46 -4.000 -4.000
Logic2 5 2 2 2 18 -4.000 -4.000
Logic3 2 2 2 40 -7.000 -7.000
Rnd15 15 2 3 2.6 182 -14.852 -14.833
Rnd20 20 2 3 2.4 233 -18.082 -18.081

Table 5.3. Characteristics of PDG models used for generating synthetic PDG data. Columns
L(DA|PM) and L(Dp|PM) lists log-likelihood values (averaged over the number instances in training
data) for datasets generated from the respective models.

Results on NB Generated Data

Figure shows SL-curves from learning from NB10 sampled data. We first observe that
for models of small effective size, NB models outperform both BN and PDG models as ex-
pected. However, no single language consistently dominates the other languages in neither
Figures [5.2[(a) nor [.2b). In Figure 5.2(a) BN models are consistently dominated, while in
Figure 5.2l b) no language is consistently dominated. In Figure[5.2[b) we observe a remarkable
stability in accuracy of the BN models that is not observed for neither PDG nor NB models.
PDG models in particular seems to suffer from overfitting D 4.

The results of experiments on NB20 sampled data leads to similar observations and does
not lead to new conclusions. Figure[A.2in Appendix[A]contains SL-curves from learning from
NB20 sampled data.

5.2.3 Learning from PDG Generated Data

Three datasets were sampled from the manually constructed Logicl-3 PDG models (see Fig-
ure [4.15]). The datasets are the same as the ones used for initial benchmarking of the learning
procedure for PDG models, as discussed in Section

Two datasets were sampled from randomly generated PDG models, the Rnd15 and Rnd20
models (see Figure [4.16]). These datasets were also used in the initial benchmarking of the
PDG learning algorithm, as discussed in Section [4.5.2]

Results on PDG Generated Data Figure[5.3]shows SL-curves from learning from Logic2
sampled data. Recall that the Logic2 model encodes the parity distribution over 5 binary
variables. We observe the expected superiority of PDG models over both BN and NB mod-
els. BN models are capable of approximating the distribution as accurately as PDG models,
however, BN models can only represent the parity distribution exactly with an effective size
that is exponential in the number of parameters (as previously discussed, see Section [3.3.3]).
In the case of Logic2 with n = 5 we get 2° = 32, which is exactly the effective size of the BN
model that attains maximum likelihood value in Figure 5.3 The NB models fail to provide
an efficient approximation for this dataset. As previously discussed (Section 3.3.3]), the NB
model will need an effective size of 5% 2° + (2° — 1) = 191 to represent the parity distribution
over 5 binary variables exactly. In our experiments we were not able to recover this model.

116

5.2 Learning from Synthetic Data

Logic2 - Train

-3.8
4 o /
B 42 / DR ——
] :
!E :
L 44 p—
3 /)
o0 <
S 46 S
-7
; X’X/ BN N
-4.8 o INB
o PDG - x-
A LH(D)
-5 Loehs T

0 20 40 60 80 100 120 140 160 180 200

Effective model size

(a)

Logic2 - Test

B
[B
T

Log-Likelihood
A
S
\

0 20 40 60 80 100 120 140 160 180 200

Effective model size

(b)

Figure 5.3. SL-curves for models learned from the Logic2 data, for likelihood values over training data
Da (a) and test data Dp (b). The SL coordinates for the generative model is marked with a square.
Log likelihoods are per data instance.

The smallest effective size of a model with maximum likelihood was only learned when the
cardinality of the latent variable was increased to 40, yielding effective size of 239. This is not
particularly surprising as it is well known that the EM algorithm is prone to get trapped in
local optima. In representing the parity distribution, the NB model needs to represent every

joint configuration over the variables using a single component. More than one component of

117

& Comparative Analysis

Rnd15 - Train

-12.5
-13

-13.5

-14

-14.5 e

P e iy O e Al
éxx
-15.5 IBN
f NB =
-16 K

-16.5

Log-Likelihood

0 500 1000 1500 2000 2500 3000 3500 4000

Effective model size

(a)

Rnd15 - Test

-14.8

-15

-15.2

-15.4

*X‘K"X\“]
4
X
X
X

-15.6

-15.8

Log-Likelihood

-16.2 NB —x

-16.4 :
0 500 1000 1500 2000 2500 3000 3500 4000

Effective model size

(b)

Figure 5.4. SL-curves for models learned from the Rnd15 data, for likelihood values over training data
Da (a) and test data Dp (b). The SL coordinates for the generative model is marked with a square.
Log likelihoods are per data instance.

the latent variable may represent the same configuration, that is, the component conditional
P(X;|C = ¢) = P(X;|C = ¢) for some pair of components ¢; # ¢ and for all X; € X.
This is actually quite likely given that our NB learning algorithm uses instances drawn at
random from D4 to instantiate new components, after the cardinality has been incremented
(see Section [4.4]). Therefore, we need more than the theoretical optimal 32 components to

118

5.2 Learning from Synthetic Data

represent the distribution exactly. This problem could be mitigated by merging equivalent
components after termination of EM. The potential benefit from including an operator for
merging of components in learning NB models is well studied, a detailed discussion is pro-
vided in (Karéiauskaé, IMI) Our reason for not including such an operator was mainly to

reduce the learning time. Also, we are aiming at producing a range of NB models of different

size, and the merging operator is specifically aimed at finding the model with optimal latent
cardinality.

The SL-curves for learning from Rnd15 sampled data can be seen in Figure 5.4 There
are only small differences in the characteristics of the curves for likelihood values over D4 in
Fig. [5.4[a). In Figure [5.4(b) however, BN models show very stable performance and consis-
tently dominates BN and PDG models. For both PDGs and NBs, overfitting D4 is very clear,
while BN models again are very stable in accuracy.

SL-curves for the experiments of learning from data sampled from the Hailfinder, Logicl,
Logic3 and Rnd20 models can be found in Appendix

5.2.4 Discussion of Results

One general conclusion that can be drawn from learning from the synthetic datasets is that
generally, the language of the model from which the data was sampled, is often the superior
language for accurate and efficient approximations of the empirical distribution. Exceptions
to this observations are the experiments of learning from the Logicl and Rnd20 sampled data
where BN models outperform the generative language of PDGs.

Table [5.4] contains SL coordinates for the models of maximal likelihood over Dg, the BIC
optimal models and the AIC optimal models. The SL coordinates of the generative models
can be found in Tables [5.1] [5.2] and [5.3]

From the numbers in Table [5.4] we see that both BIC and AIC scores select models with
an accuracy relatively close to the accuracy of the M., (r(py)) models, while (of-course)
ATC punishes less for complexity when compared to BIC. The expected effect of reducing
the punishment for increased size would be to overfit to D4, and indeed we observe this
effect. When comparing the SL-coordinates of the learned models to the SL.-coordinates of the
generative models (see Tables[5.1] [5.2] and [5.3) we do not see any learned models dominating
the generative model for any of the datasets.

The main conclusion we draw from the results of these experiments is first of all that no
single PGM language proves to consistently outperform the others and no single language is
consistently outperformed by the others. Also, when considering the M,,q.(1(py)) selected
models, NBs and BNs seem to have trouble approximating a distribution represented by the
opposite model. That is, NB models perform poorly both concerning accuracy and efficiency
on Alarm and Hailfinder sampled data while BN models have exhibits a blowup in effective
size in order to approximate the NB10 and NB20 sampled data. The PDG models provide
inaccurate approximations only for the Alarm and Hailfinder sampled data. For the Rnd15
and Rnd20 randomly generated PDG models we are somewhat surprised to observed BN
models as providing the more accurate approximation than compared to PDG models at only
a slightly larger effective size. Comparing the obtained BN models to the SL-coordinates of

119

& Comparative Analysis

»\Sq:nihﬁ@wvv iw:\‘ E\:Q %anm—m Time

sizeeg L(Da) L(Dp) sizeey L(Da) L(Dp) sizeeg L(Da) L(Dp) learned — (seconds)

Alarm BN 624 -13.666 -13.868 496 -13.678 -13.879 6372 -13.649 -13.876 20 67845.31
PDG 954 -16.462 -16.438 889 -16.496 -16.47 945 -16.459 -16.445 13 57635.79

NB 7797 -14.886 -15.757 1380 -16.595 -16.716 14490 -14.171 -17.952 29 283008.18

Hailfinder BN 8472 -70.804 -70.976 2884 -70.917 -71.03 38871 -70.8 -70.983 16 121282.84
PDG 1486 -84.227 -84.456 1246 -84.345 -84.467 57780 -73.108 -101.16 10 658497.00

NB 80808 -79.511 -89.222 672 -92.06 -92.126 73080 -80.056 -89.344 50 134632.92

NB10 BN 5220 -20.687 -21.051 780 -21.104 -21.207 6264 -20.627 -21.053 15 19014.18
PDG 659 -20.731 -20.985 659 -20.731 -20.985 24247 -17.264 -24.098 16~ 46652.85

NB 396 -20.431 -20.546 231 -20.482 -20.563 11352 -19.308 -21.257 42 71852.11

NB20 BN 4320 -19.819 -19.991 275 -20.065 -20.09 5952 -19.758 -20.004 15 19211.51
PDG 422 -19.927 -20.070 312 -20.000 -20.078 12162 -17.252 -23.899 16 33386.83

NB 450 -19.619 -19.670 360 -19.659 -19.716 8310 -18.776 -20.244 68 173017.08

Logicl BN 60 -4.003 -4.003 44 -4.003 -4.003 84 -4.002 -4.003 11 7184.12
PDG 78 -3.999 -4.000 76 -4.000 -4.000 76 -4.000 -4.000 22 5199.08

NB 78 -3.999 -4.000 440 -3.999 -4.001 440 -3.999 -4.001 50 23343.29

Logic2 BN 32 -4.002 -4.002 32 -4.002 -4.002 32 -4.002 -4.002 13 4041.13
PDG 20 -4.000 -4.000 18 -4.000 -4.000 18 -4.000 -4.000 10 1964.86

NB 360 -3.999 -4.000 360 -3.999 -4.000 360 -3.999 -4.000 51 12840.00

Logic3 BN 256 -6.997 -7.015 144 -7.051 -7.057 256 -6.998 -7.016 18 10059.47
PDG 68 -6.998 -7.001 68 -6.998 -7.001 86 -6.996 -7.004 21 2195.05

NB 702 -6.991 -7.008 162 -7.030 -7.076 360 -6.999 -7.053 50 19359.38

Rnd15 BN 1080 -14.837 -14.903 375 -14.901 -14.925 1080 -14.837 -14.903 18 41633.18
PDG 323 -14.959 -15.037 213 -14.996 -15.038 3500 -14.511 -15.652 17 17932.61

NB 975 -14.92 -15.092 475 -15.028 -15.141 2525 -14.715 -15.21 31 38460.00

Rnd20 BN 674 -18.079 -18.129 674 -18.079 -18.129 4332 -18.047 -18.136 16 125469.22
PDG 449 -18.684 -18.714 245 -18.735 -18.734 6811 -17.935 -19.789 22 43711.43

NB 2117 -18.402 -18.765 580 -18.990 -19.052 5639 -17.933 -19.057 29 33900.00

Table 5.4. SL-coordinates for the model of maximal likelihood over Dp (M,40(L(py))), the BIC optimal model (Mp;c) and AIC optimal model
(Marc)- Columns labelled size.p lists effective size, and columns labelled L(D4) and L(Dp) lists log-likelihood values computed over D4 and Dp

respectively and averaged over the number of instances in the dataset.

120

5.8 Learning from Real Data

Name |X| "DA| |DB| Rmin Rmaz ‘R(X” H(D) - log2(\T%|)
Page-blocks 11 4482 574 5 5 107 10.669 12.304
Letter Recognition 17 18012 1988 4 26 1012 13.828 14.288
Landsat 37 4435 2000 5 6 10%° 12.349 12.652
Adult 15 30162 15060 2 41 101! 13.561 15.465
King,Rook vs. King 7 25188 2868 4 18 106 14.776 14.776
Abalone 8 3758 419 3 5 108 9.193 12.028
Poisonous Mushroom 23 7337 787 2 11 1014 12.988 12.988

Table 5.5. Summaries of the real datasets used in the analysis. D refers to the full dataset, D4 is
the part of D used for training, Dp is the part of D used for testing, R4 and R, refers to the
maximunm and minimum range of the variables X observed in the data. H(D) is the entropy of the
data.

the Rnd15 and Rnd20 models, we see that there indeed exists PDG models with the same level
of accuracy. And recalling the successful results of learning from this data using the correct
tree structure as a starting point (see Section [£.5.2)) we see that one explanation of BNs being
more accurate than PDGs on these datasets could be the induction of incorrect underlying
variable forests.

5.3 Learning from Real Data

In this section we report on the results of learning PGMs from real datasets. The datasets
we have used are available online at the UCI ML repository (Newman et all, M) in their
original form. Table [5.5] contains a short summary of the datasets used. If a standard train-

ing/test partitioning of the original dataset were available we used it, otherwise instances
where randomly assigned to either D4 (90%) or Dp (10%).
We include a short description of the datasets below.

Page-blocks This dataset contains instances of blocks of the page layout of a text document.
A document has been pre-processed by a segmentation process, partitioning each page into
disjoint blocks where each block has been labelled as either “text”, “horizontal line”, “picture”,
“vertical line” or “graphic”. For each block, 10 different features (height, length, number of
black pixels, etc.) of the block are recorded, and the label together with the value of these 10
features then makes up an instance in the dataset. This dataset has previously been used for

evaluation of decision tree learning, e.g., [Esposito et al. (ILM)

The 10 features were originally numerical values, to avoid working modelling continuous

random variables, we have discretised each of the 10 features into 5 equal frequency bins. We
include the class label as a regular variable in our dataset.

Letter Recognition Fach instance of this dataset contains label specifying one of the 26
capital letters from the English alphabet, plus 16 primitive measurements of a black-and-white
rectangular pixel display when displaying this character. Each character was displayed in 20

121

& Comparative Analysis

different fonts, and each display were randomly distorted before the 16 measurements were
recorded. We include the class label as a regular variable in our dataset.

Landsat This dataset contains information extracted from digital satellite images of land
surfaces. Each case in the database is extracted from a 3 x 3 pixel image, with values for each
pixel for 4 different spectral bands, thus totals 36 features. Each such feature is encoded as
a 8 bit word, hence the range is 0 to 255. Each case is then augmented with a class label,
labelling each case with one of 6 different types of surface. We have reduced the range of the
36 features to 5 approximately equal frequency bins.

Adult This dataset was extracted from a 1994 US Census database. Each instance contains
values for 14 features (age, sex, marital status, race, work-class, education, etc.) and a class
label indication whether the yearly income of the individual is above or below $USD 50.000.
Past usage of this dataset has been aiming at developing classifiers for predicting the income-
label of an individual given the values of the features. We have discretised numerical valued
features into 5 equal frequency bins. We include the class-label into our dataset as a regular
variable.

King, Rook vs. King This dataset is constructed from chess endgames in which only three
pieces are left on the board, white king, white rook and black king. Each instance contains
coordinates for each piece and a value for the optimal depth of win for white ranging from 0
to 16 moves. If white can not win within 16 moves a special “draw” state is recorded.

Abalone This dataset is made up of measurements of features of the abalone shellfish such
as lenght, height, weight, age etc. In total 9 different features are recorded for a single abalone,
8 of them having numeric values. This dataset has previously been used for learning to classify
the age of the abalone, based on the rest of the features. For our experiments, numeric valued

features were discretised into 5 equal frequency bins.

Poisonous Mushrooms This dataset is made up of features of different mushrooms such as
colour, shape, size, etc. In total, 22 nominal features are recorded and each case is augmented
with a label classifying the mushroom as either edible or poisonous.

5.3.1 Discussion of Results

Figure [5.5(a)-(b) shows SL-curves from learning from the Adult database. We observe very
similar performance of all three languages on D4, although BN models gain less in likelihood
when increasing complexity compared to both PDG and NB models. In Figure [5.5(b), we ob-
serve clear dissimilarities in performance. While BN models are still very stable and likelihood
values are not affected in either direction by increasing complexity of the models, both PDG
and NB models suffer from overfitting D4. In Figure [5.5(b), the BN language consistently
dominates while the NB language is consistently dominated. The observations of dominance
in Figure E.B(b) is clearer than what we have observed for other datasets.

122

5.8 Learning from Real Data

Adult - Train

-13.5
-14
-14.5
-15
10 WW

165 P

-17 *g

Log-Likelihood
X
*
X

-17.5 INB e
-18 PDG —x—

-18.5

0 15000 30000 45000 60000 75000

Effective model size

(a)

Adult - Test
-16

-16.5 W

-17.5

-18

Log-Likelihood

-18.5

-19

-19.5 :
0 15000 30000 45000 60000 75000

Effective model size

(b)

Figure 5.5. SL-curves from learning from the Adult dataset. Figure (a) displays plots using likelihoods
over D4 and (b) displays plots of likelihoods over Dp. Log likelihoods are per data instance.

Figure [5.6[(a)-(b) shows SL-curves from learning from the Abalone data, and this is a
more typical set of SL-curves where no language consistently dominates the others. For D4
(Fig.[5.6(a)) the PDG and NB models are again observed to benefit more in accuracy by the
increase in complexity than does the BN models. For Dp (Fig. [5.6(b)), however, models from
the PDG language are consistently dominated. NB and BN models offer an approximation

of almost the same maximum accuracy over Dp, while the more efficient approximation is
offered by the NB model.

123

& Comparative Analysis

Abalone - Train

-9
9.5 g
*,%% * R > o
woob K ¥ el
R IV e
—8 -10 P -
] e
= #
2 105 f
— -
4
= S11 e
:: BN _—
-11.5 | INB
% PDG —x*—
" tH(D)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size
(a)
Abalone - Test
-10.4 T /ﬁ/’#
(0.6 P A g e
-10.8 ¥ S
k] X X L
g L[S T —
= P 5
= ¥
A)
= o Iy L,
& -11.4 P R A o -
i BN ——
-11.8 +5 INB =
IPDG -
_12 T T

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Effective model size

(b)

Figure 5.6. SL-curves from learning from the Abalone data. Figure (a) displays plots of likelihood
values over D4 while plots in (b) uses likelihood values over Dp. Log likelihoods are per data instance.

Tables[5.6land [5.7lsummarise the results from learning from real data.” First, Table[5.6]lists
observed dominance. For each dataset we observe 1) if one language consistently dominates
the others and 2) if one language is consistently dominated by the others. These observations
are made for both D4 and Dpg, and in Table we denote by L£1/Ly the observation that
language £ consistently dominates the others and language Lo is consistently dominated by

"See Appendix for SL-curves for models learned from the Page-blocks, Letter Recognition, King Rook
vs. King, Poisonous Mushroom and Landsat data.

124

5.8 Learning from Real Data

Page-blocks Letter R. Adult K.R.v.K Abalone P. Mushroom Landsat
Da -/BN /BN -/~ NB/BN /- /BN NB/-
Dy PDG/- NB/PDG BN/NB -/NB -/PDG PDG/NB BN/PDG

Table 5.6. Summary of observations of consistent dominance. Row D4 lists consistent dominance
observed for SL-curves of log likelihoods over D4, and Dp for SL-curves of log likelihoods over Dg.
For each dataset we list two observations in the format '£;/Ls’, which denotes that language £;
consistently dominates in this experiment, while L5 is consistently dominated. Either of the two or
both might not be observed, indicated by -.

the others. If only one or none of these observations are made, this is indicated by a dash —.
Table [5.7] lists SL-coordinates for three models from each language for each dataset: 1) the
model attaining maximal likelihood over Dp, 2) the model attaining maximal BIC score, and
3) the model attaining maximal AIC score. Also, Table [5.7lists the number of models learned
and execution times for learning procedures.

From Table [5.6] we see that the BN language is the language most frequently dominated
on D 4. As previously observed, BN models do not often gain much in accuracy by an increase
in complexity. By complexity we here refer to the effective size, which for BN models is not
in linear relation to the number of free independent parameters in the model. Therefore,
the observation that BN models do not capitalise on increased complexity, is probably fully
explained by the fact that for any two BN models of different effective size, the number of free
parameters (and therefore the ability to represent the empirical distribution of the data) may
be the almost the same. In Figure [5.7] we investigate the relationship between effective and
representational size of models learned from real data. For models learned from Page-blocks
data we plot representational size vs. effective size for BN and PDG models in Figure [5.7](a)
and similar plots for models learned from the Letter Recognition data in Figure (5.7(b). We
clearly see that increased effective size increases the representational ability of PDG models at
a rate that is approximately linear. For BN models, the relationship is sub-linear or linear with
at a very low rate. The important observation from Figure [5.7]is that increased complexity
does not necessarily buy much representational power for the BN model.

The sub-linear relationship between effective size and representational size also explains
the low propensity of BN models to overfit D 4. This then also explains why we do not observe
BN models being dominated consistently for likelihood values over Dp (see Table [5.6)).

From the summaries given in Table[5.7] we observe concerning maximal likelihood over Dp,
a BN model is most frequently the model with highest value, which is not surprising given the
above discussion on consistent dominance of BN models. However, the superior accuracy of
the BN models over Dp when comparing to NB and PDG models, is often accompanied by a
huge effective size. For none of the experiments do we observe a dominating model in terms
of both effective size and likelihood.

Comparing the models selected by maximal likelihood value over Dy to the models selected
by the BIC and AIC criterions (columns Mpgjc and M e in Table (7)), we see that BIC
consistently selects models of lower complexity than the M. (r(p,)) models. AIC often
selects models that are more complex than the My, (1(p,)) models. The model selected by

125

& Comparative Analysis

Page-blocks Letter Recognition
25000 > : 45000 > :
BN —— < BN ——
X [PDG ---»--- 40000 7" PDG ---»---
20000 MR 35000 LA B
5 * £ 30000 2
b1 15000 Wt b1
£ £ 25000
g p g
§ 10000 2 20000
3 X]
[T = 15000 g 4
5000 10000 b <
A 5000 b
—
0 0
0 5000 10000 15000 20000 25000 30000 35000 40000 0 20000 40000 60000 80000 100000 120000
Effective Size Effective Size

(a) (b)

Figure 5.7. Plots showing the size,, vs. size.y of PDG models and BN models learned from the
Pageblock data (a) and Letter Recognition data (b).

126

5.8 Learning from Real Data

oanpoesolrd Surures|

[O®O 10§ SOUII) UOIINOOXS SISI[UWIN[OD JSB[Y} pue ‘OFendue] yoes 10§ POUILRS| S[POW JO IOQUINU Y3 SISI| POUIRS| S[OPOWIF, UWN[0d oy [, "oSendue|
yoed 10§ pagsi dae (OIVpy uwnjoo) 21098 HIy [Bwixew pue (214 uwnjod) 9109s HIg [Pwixew Sururejye ppouw oyy ((“@)T*0up ywnjoo) &g
I9A0 ON[BA POOYI[ONI] [RWIXEW SUTUIR})e [9POW 9y} I0] SOYRUIPIO0-T§ ‘ofengue| Yors WOIJ S[OPOW Juetiodt MoJ € I0] SO)CUIPIO0D-TS 4 ¢ 9V

97°98908¢ ¢¥ LYL°6T- LOT'ET- 09LL 6€8°0C- 999¥I- 0961 T¢V'¥1- GS6°CT- 8IGRT daN

09°L9C¢ i 86071~ 996°€1- TIS8C 860'FT- 996°¢1- TI8T S6°C1- 89.°¢T- 0999 oad

QL LV8YE 144 T66°6T- LE6°CT- LLPSS TLLPT- 868FI- T1€9G €88°¢T- ¥C6'ET- €8¢80C Ng wWoolIysnpy snouosioq
G6°999¢9¢ 99 LTG0T- L6C°01- 00 €6L°0T- 169°01- GI¢ g97°0T- 6ET°0T- G9¢T dN

G8°1ev1 LT 06T'TT- LL0°0T- 9TI¥I €88°0T- L9%°01- ¥69 €88°0T- L9%'0T- 769 0ad

C$'9C89 qT 97701~ 00%7'0T- GLG¥ 198°0T- 9T16°0T- 06T 6¢%°0T- 007 0T- GLSG¥ Nd QuUORqy
69°GC66LC 6€ ¥9°LT- 76L°GT- 88CTST T190°6T- T186°9T- 080T 6LC°LT- 0Lg'9T- GE0TE aN

0G°7CSeT i I78°9T- L89°GT- OTOLI CIT'LT- LV6°'9T- 04¥1 €8L°9T- T169°GT- 0E68T 0ad

0L°¥6002 8T I88°9T- 00L9T- <CI69 960°LT- C86'91- V8IS 088°9T- 00L91- ¢CI69 Nd Sury] 'sa jooy ‘Sury]
L0°L966L¢ 6C €0L°LT- P8LGT- 0LSET 98¢'8T- 1¢L91- 0191 LL9°LT- 9L9°G1- GOT6I daN

L2 T1EE0¢ 11 TL8°91- L96°GT- T.LOL 96L°9T- 8L991- 606 G69°9T- 6LT°91- 80T¥% oad

90°€869¥% ST 86T°9T- 980°9T- 98491 LS€°9T- 6%C°9T- 98CC ¢8T'9T- €66°GT- 0.2t9 Nd HOPY
9.°06908¢ 0¢ 80L° 87~ TT8VE- 09GLT 990 ¥¥- G89'CHF- 000§ LIV'CY- €v9°07- 098G dN

8G'GTCST ¢l 9¢6°CG- G6G°LE- 860%C 88916~ P0S'Ly- 16G19 Q9¥7°0S- ¥CSvy- 8Iv. 0ad

TL LOLTS LT 000'9¢- 609°9¢- 000TSPS 9€9°9¢- 0TC'9¢- GL88L9 0009¢- 609°9¢- 000TSTS Nd jespuer]
TT°L€4C9 1¢ 996'7¢c- V0T 0699¢ 092°92- 90092~ 9116 969°'vc- 998°¢2- 0%90¢C aN

29°09¢8¥ ¢ 966°'8¢- 668°0C- 88887 €V9°8C- PEV'LT- 964G 9v0'8¢- L09°'%C- 8EIVI add

QT LVE8E 91 CL8'C€C- LLV'EC- GLITVI 9¥6'GC- 1L6°GC- 9680¢ CLB'€C- LLV'ET- GLITVI Nd uonIuS0dY 19999]
0L'8¥CI8L 8¢ GLG9°€l- ¥¥6'Cl- GGEE 9¢Lv1- 108'v1- GC8 916'¢cl- 1€€¢l- 0679 dN

68°T02¢C 6 ¢8G9°Cl- G6E°CI- 099% C8LVI- 989°F%I- GV.L 866 TT- 908 TT- GCOIT oad

LL°G706 ST §LE° 61~ 8CC'eT- 06TS¢e ¥C6°6T- 88L'CT- GLSY C9¢°€T- 68T EI- GLRST Nd s3oo[q-a8eq
(spuooes) poures| (faq)T (va)1 Hoozis (fa)T Ya)1 Hoaz1s fa)T1 (Ya)T Hoazis

QuiLT, s[epow# OIV ord pr QmQVQVHaEEN

127

& Comparative Analysis

AIC is often closer to the model attaining maximal likelihood over Dp than that selected by
BIC. The fact that AIC penalises less than BIC for increased complexity is clear from the
definitions of BIC and AIC (see Section [4.1]).

We can sum up the observations discussed above by stating that a surprisingly similar
performance of the three PGM languages is observed, while the BN language exhibits the

most stable performance with less propensity for overfitting the training data.

5.4 Empirical Analyses

For the analyses of SL-curves reported in the previous sections, the effective size has been
used as a theoretical measure of efficiency. The effective size for PGM M is a (model) specific
parameter for which general belief updating is computable in linear time. This means that
conclusions drawn from comparison of effective size are only valid up to a linear factor. In
this section, we report on experiments measuring the absolute practical complexity including
the linear factor.

The experimental setup is as follows:

e For belief updating in PDG models we use the copmuteIfl10fl procedure of Algo-
rithm [3.6] after inserting evidence. The probability of the evidence is then computed
by Equation 3.51] The computeIf10f1l procedure was implemented in the Java lan-
guage using standard libraries of JDK v. 1.5% and the Weka package for basic data

handling routines (Witten and FrankL 2005]).

e For BN and NB models we used the Hugin” inference engine through the Hugin Java

API. The Hugin inference engine is a C implementation of a clique tree propagation

algorithm, see (Jensen et al., 19905@; Andersen et all, 198d). It is a highly optimised

implementation and frequently recommended as one of the best tools for probabilistic

inference (Cowell et all, M; Jensen, 2001); |Castillo et al., M)

e For computing averages, we generated 1000 random queries from each set of test data.
We used a fixed size for the random sets of variables: |Q| = 4 and |E| = 3. The

procedure for generating queries were described in Section [5.1.11

e The experiments where all performed on a Sun Fire280R, 900MHz SPARC CPU archi-

tecture with 4GB of main memory running Solaris 9.

5.4.1 Discussion of Results

To extract the linear factor between effective size and the actual execution time of belief
updating, we plot measured execution time against effective size. Examples can be seen in
Figure [5.8a) for models learned from Abalone data and Figure 5.8(b) for models learned
from the Adult data. In addition, we plot the linear expression y = « - size,y + 3 where

8http://java.sun.com/
%http://www.hugin.com/

128

http://java.sun.com/
http://www.hugin.com/

5.4 Empirical Analyses

Abalone - empirical efficiency

3
£ 25 %
g
g=] 2
= =
g e _—
8 1.5 R _—
1) P
5 1 PR /’;//
15) et s
%ﬁ f&/
g 05 s
Z M
O 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Effective model size

EN + NB x PDG *
N fit

Adult - empirical efficiency

20
= 18
E 16
E 1
=} ',,x‘;/
'5 12 T =
g o
8 -
[}
éc;" 6
o) 4
>
< 2
0
0 15000 30000 45000 60000 75000
Effective model size
N + NB x PDG *
N fit NBfit PDG fit -
(b)

Figure 5.8. Average execution time of performing belief updating vs. effective size for models learned
(a) the Abalone dataset and (b) the Adult dataset.

y is the average execution time and « and 3 are fitted through a standard least squares
Marquardt-Levenberg fitting procedure.'® This fitting procedure fits parameters o and /3
such that the sum of squared errors over data instances are minimised. The fitted a-values
for all experiments are listed in Table [5.8] together with an asymptotic standard error. We
observe that differences are quite limited, except for the Letter and Landsat data-bases. Here
the linear factor for PDGs are much larger than for BNs and NBs. That BNs and NBs are

10We used the fit command in the gnuplot system (Williams and Kelleyl, 2004_11).

129

& Comparative Analysis

BN NB PDG
Page-blocks 0.22 +7.10-107% 0.30 +2.25-107% 0.27 +4.29-10°°
Letter Recognition 0.26 +5.65-107% 026 +5.92-107% 0.98 +3.59.107°
Adult 0.20 +399-107% 022 +1.07-107% 025 +5.84-10°
King, Rook v. King 0.22 +3.09-107% 0.23 46.91-10~" 0.16 =+3.63-10"6
Abalone 0.16 +9.55-107% 028 +4.25-107% 024 +7.42-10°6
Poisonous Mushroom 0.25 +536-107% 026 +6.89-10"7 0.20 +1.04-10°
Landsat 0.24 +290-107% 0.30 +4.18-1077 0.64 +3.62-10°

Table 5.8. The slope « (times 10?) of the line y = a- size . + 3, where y is the measured execution time
and «, § are fitted by the standard least squares fitting procedure implemented by the fit command

in the gnuplot system (see (Williams and Kelley, 2004)), + asymptotic standard error of a.

always very close is of course not surprising considering that exactly the same belief updating
procedure is used. We also observe that no single language is consistently better or worse than
the others. Considering the standard errors, we observe that there exists some discrepancy
between the different languages. In fact, for the datasets Landsat and Poisonous Mushroom
the discrepancy is on the order a factor 100 (between NBs and PDGs) and a factor 10 (between
BNs and PDGs). We believe that this is due irremovable measurement error stemming from
different factors such as garbage collection in the Java Virtual Machine.

Figures [5.9(a) and [5.9]b) shows plots of the empirical accuracy measured as the averaged
log-likelihood of random queries. Comparing the plot of empirical accuracy over queries gen-
erated from the Adult data in Figure [5.9(b) against effective size to the corresponding plot
using the full log-likelihood of Adult test data in Figure [5.5(b), we see that PDG models are
more competitive when measuring accuracy empirically. A similar observation is made for
Abalone data from comparisons of empirical accuracy over the Abalone data (Fig.[5.9(a)) and
the corresponding plot using the full log-likelihood over test data (Fig. B.6(b)).

The values in Table 5.8 gives an estimate on the linear factor associated with the complex-
ity of general belief updating. While the differences are relatively small, we are still interested
in the stability of conclusions drawn from the effective size in the light of the actually mea-
sured execution times. That is, if changing the measure of efficiency from effective size to
average execution time will have any impact on model selection. Therefore, we list in Ta-
ble for each dataset and each language, two models. First, the models attaining maximal
empirical accuracy are listed under M, 4,10 P(QUE))- Second, the models attaining maximal
log-likelihood value over Dp are listed under M,,,,(.(p;;))- The second set of selected models
where previously listed in Table 5.7} and we here augment the SL.-coordinates for the models
with the average execution time.

First, we consider the models M., (1(py)), and the language that would be preferred
w.r.t. efficiency. For each dataset, the ordering of the models selected from the three language
w.r.t. average execution time is the same as ordering w.r.t. effective size, except for Letter
data. Here the selected PDG model has lowest effective size while the selected NB model has
lowest average execution time. It should be noted that the NB and PDG models do not differ
significantly in neither effective size nor average execution time, so even though the relative

130

5.4 Empirical Analyses

Abalone - empirical accuracy

%)

O
Sex
*

- ;

2 ;

s r XK* Hemmmfmm

é -3 ﬁ:‘

o0 T

3 L

5 30

1)) i

= F
) : N ——
3.3 NB -~

H PDG -

3.4 : '

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Effective model size

(a)

Adult - emperical accuracy

S *
= 35°
[5) :
@ 36k
?D K . o R X o VIS SO SO Xemme SR RV S
X 34
< i
38 [BN
k INB -
IPDG -
-39 I
0 15000 30000 45000 60000 75000
Effective model size
(b)

Figure 5.9. Empirical average accuracy vs. effective size for (a) models learned from Abalone data
and (b) models learned from Adult data. Log likelihoods are per query instance.

131

& Comparative Analysis

Mmaz(10g P(QIE)) Mmae(L(Dp))

sizeey log P(Q|E) time (ms) sizecg L(Dp) time (ms)

Page-blocks BN 35250 -3.134 7.961 13875 -13.362 3.434
PDG 11925 -2.774 3.392 11925 -11.998 3.392

NB 6490 -2.994 2.074 6490 -12.916 2.073

Letter BN 141675 -4.705 44.435 141675 -23.872 44.435
PDG 56485 -4.645 54.567 14138 -28.046 5.954

NB 24582 -4.668 6.866 20640 -24.655 5.666

Landsat BN 5451000 -3.520 3162.610 5451000 -36.000 3162.610
PDG = 130247 -3.953 125.973 7418 -50.465 2.868

NB 7440 -3.644 2.963 5850 -42.417 1.879

Adult BN 62270 -3.337 12.955 62270 -16.182 12.955
PDG 17359 -3.348 4.697 4208 -16.695 1.056

NB 21672 -3.635 4.956 19205 -17.677 4.955

King, Rook v. BN 6912 -6.461 1.745 6912 -16.880 1.745
King PDG 18930 -6.441 3.336 18930 -16.783 3.336
NB 35786 -6.616 8.382 32032 -17.279 7.712

Abalone BN 4575 -2.811 0.963 4575 -10.439 1.223
PDG 1416 -2.899 0.509 694 -10.883 0.386

NB 1720 -2.785 0.698 1365 -10.463 0.428

Poisonous BN 85477 -1.909 24.226 208333 -13.883 61.458
Mushroom PDG 16854 -1.883 3.776 6560 -13.95 1.792
NB 35105 -1.883 9.517 28518 -14.421 8.058

Table 5.9. Columns M, 42105 P(Q|E)) cOntains the models of maximum local accuracy, that is, average
log probability of 1000 random queries. Columns M, ., (1(p;)) contains models selected maximal
likelihood values over Dy and associated effective size and average execution time.

132

5.5 The Hybrid Learning Approach

ordering is changed, the models have close to similar average execution time.

Next, consider the models M,,,,(10¢ P(Q[E)) Selected for maximal empirical accuracy. The
ordering of the three languages w.r.t. maximal empirical accuracy is the same as the ordering
of languages w.r.t. maximal log-likelihood over Dp for 4 of the 7 datasets. For the Letter,
Abalone and Poisonous Mushroom datasets the BN language provides the most accurate model
w.r.t. log-likelihood over Dp, however when doing the comparison w.r.t. empirical accuracy
the BN language no more provides the most accurate approximation.

One last observation, for the Landsat data, we observe that the huge relative differences
in accuracy w.r.t. log-likelihood over Dp does not reemerge when we measure accuracy by
log-likelihood over random queries.

One possible explanation for why orderings w.r.t. accuracy change when considering log-
likelihood over random queries instead of log-likelihood over the full test data Dp, could be
the existence of a few unlikely data instances in Dg. Then BN models will often provide
a more smoothed model as they contain fewer free parameters than NB and PDG models,
as shown for two examples by the plot in Figure (.71 The likelihood of the more smoothed
model will then not be as sensitive to a few rare instances in the data as the less smoothed
models. However, when measuring accuracy by the log-likelihood over queries, this means
only considering a marginal distribution over a subset of variables for every term in the sum
of likelihoods. Therefore, the unlikely joint configurations may not be expressed in the subsets
of variables used in the queries, and the less smoothed models prevails over the more smoothed
models.

Lastly, the empirical measures of execution time for PDG models is encouraging as our
prototype implementation performs competitively when compared to the Hugin inference en-
gine.

5.4.2 Related Work

Lowd and Domingoé (Iﬁ)&d) performs an empirical comparison much like the one we have per-

formed in this section, though only comparing BN and NB models. The measure of efficiency

is based on computing only the joint conditional posterior of a subset of variables given some
random evidence. This is particularly efficient in NB models as every variable not partici-
pating as a query variable or as evidence can immediately be removed from the computation.
In this setting, [Lowd and Domingoé (lMI) show that NB models exhibit superior efficiency
to BN models, and that the accuracy of NB models is competitive with that offered by BN

models. Our analysis shows that the computational efficiency of NB models does not extend

to the inference task of belief updating, and concerning accuracy we are unable to proclaim
any language the winner.

5.5 The Hybrid Learning Approach

The hybrid learning approach discussed in Section combines BN learning and PDG
learning. By using the clique tree (CT) of a BN model as the basis for a PDG structure,

133

& Comparative Analysis

we merge parameter nodes in the PDG structure with increasing aggressiveness (see Algo-
rithm [£.18]). In this way, we aim at constructing efficient PDG models without trading off
accuracy, potentially improving on the efficiency of the original BN model. In this section, we
evaluate the performance of PDG models learned using the hybrid approach. We use exactly
the BN models learned from real data as discussed in Section [5.3]

Before going into a detailed analysis of the full experiment, we will analyse a single exper-
iment in some detail.

Figures [5.10(a) and (b) show the result of the hybrid learning using a BN model learned
from the Abalone data. By the rectangular point we mark the SL-coordinates of the BN
model, and the points connected by the dashed line corresponds to SL-coordinates of the
PDG models obtained by continued merging of nodes. That is, the rightmost point on the
dashed line corresponds to the PDG model obtained without merging and collapsing of zero-
inflow nodes. The rest of the points in the plot then each corresponds to the PDG model
obtained by increasingly aggressive merge operations. The diamond marks the smallest PDG
model that has higher or equal likelihood score over training data D4 compared to the original
BN model. We denote this PDG model the “Best” PDG model.

From Figures[5.10(a) and (b), we see that the initial translation from CT to PDG results
in an increase in effective size of the PDG model when comparing to the original effective size
of the BN model indicated by the square. Also, an increase in likelihood is observed, which is
explained by the fact that parameters are re-estimated for the PDG model after the structure
has been constructed from the CT of the BN model. For the CT model, parameters come
directly from the BN model and the CT therefore does not exploit the extended expressibility
of more parameters. Parameters could have been re-estimated for the CT model, however,
we use the more common approach of using parameters estimated in the BN model. Also, re-
estimating parameters for the CT model obtained from a BN model would make our analysis
less clear as learning has been performed only for the BN model and not the CT model.

The most interesting observation from Figures [5.10(a) and (b), is that accuracy does not
deteriorate rapidly when the effective size is decreased by repeated merge operations. This
shows us that the initial PDG model constructed from the CT model contains redundant pa-
rameter nodes that are not needed in the approximation offered by the model. This redundant
complexity is then successfully identified and removed from the PDG by merge operations.

5.5.1 Discussion of Results

For each dataset and each BN model learned from the dataset, we summarise the important
observations from three selected experiments. For each database, we have selected experiments
using the following BN models:

1. the smallest effective size BN model,
2. the BN model that attains the highest likelihood value over Dy and
3. a BN model with an effective size in between the two other models.

134

5.5 The Hybrid Learning Approach

For each of the 7 datasets, these 3 selected experiments are summarised in Table [5.10l Each
experiment is summarised in form of the SL-coordinates of the original BN model, the SL-
coordinates of the “Best” PDG model, and the relative improvement of the “Best” PDG model
over the original BN model. Relative improvement for a value is calculated as:

BN — Best PDG
BN '

Relative Improvement =

Please refer to Appendix for summaries of all experiments and all datasets.

The results summarised in Table [5.10] generally show that the hybrid approach (with few
exceptions) successfully constructs PDG models that dominate the original BN models in
SL-space, both when considering likelihood over D4 and Dp.

The first experiment selected for each dataset is summarised in the first row within each
block of three rows in Table[5.10l These are result of applying the hybrid approach to smallest
effective size BN model that we learned for the given dataset. In these experiments we are
not always successful in constructing PDG models that improve on the original BN model
(Page-blocks and Letter Recognition being exceptions). This observation is not surprising,
as the BN model that we try to improve is quite compact in the first place. Therefore, not
many superfluous parameter nodes exists in the PDG representation of the CT model, and
the merge operations are not able improve on the size by removal of nodes without reducing
accuracy.

For the second row experiments we use a BN model of an effective size in between the
optimal BN model (w.r.t. likelihood over D) and the simplest (smallest effective size). Here
we more consistently observe an improvement by the best PDG model over the initial BN
model. For the Adult and Letter Recognition datasets we observe a small degradation in
likelihood (2% and 0.6% when measure over Dp). For the Landsat dataset, however, the
degradation in likelihood over Dy is severe (40.2%). Figure [5.11] shows a detailed plot of this
particular experiment, and we see that a few merges results in a major decrease in likelihood
over Dp (Figure [5.11I(b)). This particular dataset previously has proved difficult for direct
learning of PDG models (Section [5.3)) and we are therefore not surprised to find this particular
dataset causing problems for the hybrid approach also. PDG models seem to fail in smoothing
the representation sufficiently and instead captures the empirical distribution of D4 too closely,
yielding the poor generalisation power to the instances of Dp.

Figure [5.11] on page [139 shows plots of the SL coordinates of all the PDG models visited
in this experiment. From this we see that the collapsing of zero inflow nodes reduces size
dramatically, and the result is a PDG model that already scores worse on Dp compared to
the original BN model (marked by the square). With the collapsing of zero inflow nodes, the
PDG model keeps only the parameters necessary for capturing the distribution of D 4. The
huge joint state-space of the observable variables of the Landsat data (=~ 10?®) in combination
with the small size of the dataset (6435), the empirical distribution is not expected to provide
a good estimate of the generative distribution. However, by collapsing zero inflow nodes we
decrease the models ability to smooth over Dp by removing (amongst others) parameters that
are only reached by instances of Dp.

135

& Comparative Analysis

If we investigate the measured execution times, we observe some quite unexpected times
especially for Abalone, King Rook vs. King and Poisonous Mushroom. Here, the simplest
models of smallest effective size also had the longest execution times. When profiling the
implementations in detail we found that the extra time was used on tuning the smoothing
factor by the tuneSmooth procedure (Alg. [4.2]). Specifically, when the optimal (unknown)
smoothing value was relatively large, the initial values used in the search was quite poorly
chosen by an internal tuning procedure. This then yields a large number of cross validations,
each of which includes expensive data access. This problem is implementation specific issue,
and as we did not experience problems for examples of a more typical effective size, we will
not, spend more time on this.

We also applied the hybrid learning approach to BN models learned from the synthetic
datasets, the results are summarised in Table [5.11l The results are different from the results
summarised in Table[5.10lin that the relative improvements in effective size are smaller. One
obvious explanation is that the BN models that in this experiment set of experiments has
smaller effective size (that is, smaller CT models) and therefore the potential size improvement
is smaller. For the larger models (especially for Hailfinder and Rnd15), we still observe a
significant improvement in size and at the prize of a fairly limited degradation in log-likelihood.
This is especially pleasing to observe as these two datasets previously caused problems for
direct learning of PDG models (see Section [5.2)).

When inspecting the execution times, we again observe problems with the smaller models.
This is similar to what we already observed in the summary in Table[5.10] and again originates
from a bad choice of initial values for the tuneSmooth procedure.

The hybrid approach to learning PDG models has proven to be a feasible approach to
obtaining good PDG models. We typically observe a significant reduction in effective size when
comparing the best PDG model to the original BN model at a limited cost in accuracy and
generalisation to new cases. The only experiments that fail in this respect are the ones using
BN models learned from the Landsat data. This is not entirely unexpected, as the Landsat
data proved to be one of the harder problems for the PDG learning algorithm as previously
discussed in Section 5.3l The dataset on which the hybrid approach is most successful is the
Poisonous Mushroom data. Again, this is not surprising when remembering that the PDG
learner was also observed to be most successful on exactly this dataset (see Section [5.3)).

136

5.5 The Hybrid Learning Approach

Abalone - Training
-10.6

e S e -

/<’*>Be‘ t PDG]

-10.8

-11

-11.2

Log-Likelihood

-11.4

-11.6

-11.8

200 400 600 800 1000 1200 1400
Effective model size

(a)

Abalone - Test
-10.6
-107 ¥ Best PDG L
-10.8
-10.9
-11
-11.1
-11.2
-11.3
-11.4
L5 oo
L6 Fod
-11.7

Log-Likelihood

200 400 600 800 1000 1200 1400
Effective model size

(b)

Figure 5.10. PDGs learned from JTs obtained from BNs learned from Abalone data. The square marks
the SL coordinates of the BN model, and the rightmost point in the plot marks the PDG constructed
from the JT of the BN. Points connected by the dashed line corresponds to SL coordinates obtained
for the PDG model after increasingly aggressive merging of nodes. The square point marks the SL
coordinates of the BN model and the diamond marks the best PDG model obtained in the experiment.
Log likelihoods are per data instance.

137

& Comparative Analysis

BN Best PDG Relative Difference Time
sizeer L(Da) L(Dp) sizeey L(Da) L(Dp) sizeeg L(Da) L(Dp) (seconds)

Page-blocks 1000 -14.512 -14.607 675 -14.363 -14.482 0.325 0.010 0.009 31.0
8375 -13.734 -13.771 3935 -13.210 -13.286 0.53 0.038 0.035 74.9
13875 -13.239 -13.362 8045 -12.502 -12.577 0.42 0.056 0.059 51.1
Abalone 190 -10.915 -10.851 270 -10.904 -10.837 -0.421 0.001 0.001 66.9
2700 -10.445 -10.475 758 -10.362 -10.423 0.719 0.008 0.005 38.5
4575 -10.401 -10.442 1003 -10.346 -10.487 0.781 0.005 -0.004 99.8
Adult 950 -16.388 -16.473 965 -16.380 -16.468 -0.016 0.000 0.000 1654.9

18966 -16.016 -16.190 14316 -16.011 -16.290 0.245 0.000 -0.006 2038.6

62270 -15.993 -16.182 31564 -15.860 -16.440 0.493 0.008 -0.016 2068.2

King, Rook vs. King 120 -18.413 -18.426 124 -18.412 -18.426 -0.033 0.000 0.000 1461.8
3744 -16.957 -17.092 2906 -16.919 -17.065 0.224 0.002 0.002 1035.9

6912 -16.700 -16.880 5782 -16.633 -16.835 0.163 0.004 0.003 1053.3

Landsat 910 -43.622 -43.705 1210 -43.605 -43.703 -0.330 0.000 0.000 266.9
383000 -36.030 -36.419 49583 -35.532 -51.044 0.871 0.014 -0.402 463.4
760375 -35.989 -36.304 64796 -35.836 -55.776 0.915 0.004 -0.536 1413.4
Letter Recognition 3119 -28.759 -28.609 2683 -28.372 -28.275 0.140 0.013 0.012 2049.2

74075 -24.037 -24.311 19660 -23.886 -24.809 0.735 0.006 -0.02 2679.5
141675 -23.477 -23.872 62494 -23.317 -25.254 0.559 0.007 -0.058 2714.3

Poisinous Mushroom 121 -32.332 -32.283 123 -32.332 -32.283 -0.017 0.000 0.000 1737.4
114741 -14.281 -14.194 2212 -13.747 -13.772 0.981 0.037 0.030 113.5
208333 -13.924 -13.883 2010 -13.564 -13.560 0.990 0.026 0.023 141.4

Table 5.10. Summary of the hybrid approach to learning PDG models. For each dataset three experiments have been selected (see Section [5.5.1]
for details). Each row then corresponds to one experiment. The three columns with headline 'BN’ shows SL coordinates for the initial BN model;
the three columns with headline 'PDG’ shows SL coordinates for the best PDG models; and the three columns with headline ’Relative Difference’
shows the relative improvement over BN SL coordinates by the best PDG SL coordinates. The last column contains execution time in seconds,
not including learning of the original BN model, but including the CT construction and translation from CT to equivalent PDG.

138

5.5 The Hybrid Learning Approach

Landsat - Training
-32

.

34

e

-36

]

-38

Log-Likelihood

0 200000 400000 600000 800000
Effective model size

(a)

Landsat - Test

-36]
-38

Log-Likelihood
A
N

et
AL S S

S
P

n
o
N

0 200000 400000 600000 800000

Effective model size

(b)

Figure 5.11. SL coordinates for all PDG models visited in experiment 3 of the Landsat data. The SL
coordinates of the BN model is marked by the square. This experiment is summarised in the second
row of the Landsat block in Table [5.10] on the preceding page. Log likelihoods are per data instance.

139

& Comparative Analysis

BN Best PDG Relative Difference Time
sizeer L(Da) L(Dp) sizecy L(Da) L(Dp) sizeey L(Da) L(Dp) (seconds)
Alarm 142 -18.342 -18.618 171 -18.500 -18.431 -0.204 -0.009 0.01 2916.6
335 -13.847 -14.047 538 -13.937 -13.848 -0.606 -0.006 0.014 1881.8
624 -13.666 -13.868 858 -13.741 -13.669 -0.375 -0.005 0.014 1688.9
Hailfinder 1628 -71.678 -71.750 1957 -71.618 -71.698 -0.202 0.001 0.001 232.5
4820 -70.842 -70.989 4778 -70.787 -71.027 0.009 0.001 -0.001 307.1
8472 -70.804 -70.976 5691 -70.761 -71.162 0.328 0.001 -0.003 335.5
NB10 300 -21.222 -21.306 463 -21.220 -21.305 -0.543 0.000 0.000 1022.2
2772 -20.842 -21.059 3550 -20.758 -21.092 -0.281 0.004 -0.002 1018.0
5220 -20.687 -21.051 9074 -20.564 -21.166 -0.738 0.006 -0.005 1111.5
NB20 179 -20.172 -20.170 224 -20.151 -20.155 -0.251 0.001 0.001 1018.0
1296 -19.895 -20.013 1425 -19.889 -20.010 -0.100 0.000 0.000 1002.3
4320 -19.819 -19.991 4193 -19.810 -20.083 0.029 0.000 -0.005 1050.5
Rnd15 42 -16.229 -16.256 46 -16.229 -16.256 -0.095 0.000 0.000 1671.8
657 -14.872 -14.913 577 -14.865 -14.908 0.122 0.000 0.000 947.5
1080 -14.837 -14.903 607 -14.833 -14.909 0.438 0.000 0.000 964.5
Rnd20 51 -20.977 -20.991 56 -20.977 -20.991 -0.098 0.000 0.000 2847.1
224 -18.580 -18.570 233 -18.515 -18.505 -0.040 0.003 0.004 1786.3
674 -18.079 -18.129 669 -18.077 -18.134 0.007 0.000 0.000 1683.1

Table 5.11. Summary of the hybrid approach to learning PDG models from synthetic. The models used in the experiments reported here where

selected in the same way as those reported for real-data, see Table [5.10]

140

CHAPTER 6

CONCLUSION

In this dissertation, we have addressed aspects of unsupervised learning of PGMs. We have
proposed algorithms for learning three different PGM languages, and performed a comparative

analysis of the tradeoffs offered by different the different models we are able to learn.

The task of learning Bayesian Network models from data can be viewed as the task of
recovering the true model representing the generative distribution, the strong assumption of
data being samples of a DAG-faithful distribution has to be satisfied. Algorithms like the

SGS algorithm (Spirtes et all, 200d) and the GES algorithm) exhibit asymptotic

optimality when learning from such data sampled from DAG-faithful distributions. However,

in practice the assumption of DAG faithfulness is unrealistic, and even when it is satisfied, the
available sample may be too small, yielding suboptimal results for the asymptotically optimal
procedures. In Section [4.3] we presented the KES procedure for learning Bayesian Network
models. The KES procedure generalises the greedy search employed by the GES procedure
,) by offering a parameterised tradeoff between greediness and randomness in the
search. KES maintains the asymptotic optimality of the GES procedure, while often avoiding
low quality suboptimal models. In Section [4.3.4] we reported on initial experiments with the
KES procedure. By multiple restarts of KES using a non-greedy setting (k < 1.0) we showed that
the number of local inclusion optimal models that exists for a limited data-sample of a DAG-
faithful distribution can be huge. While the greedy search of GES is inherently deterministic,
the introduction of the stochastic search in KES broadens the field of vision of the search. The
model recovered by the greedy search can be suboptimal when the sample is too small, and
introducing a broader stochastic search can result in better models (e.g., see Figure [4.8b)).
The importance of investigating more local optima becomes very clear for distributions that
are not DAG-faithful. Such data may misguide the greedy search to a suboptimal model, see
Figure 4.6l In most realistic settings, data will be limited and, in addition, DAG-faithfulness
will be violated. Therefore, the practical applicability of greedy heuristics are limited and
stochastic searches are to be preferred.

(IM) introduces the language of Probabilistic Decision Graphs (PDGs) as a gen-
eral representation framework for joint probability distributions. PDGs can capitalise on the
existence of CSI relations in providing a compact and computationally efficient representa-
tion. The computational structure used for general inference and belief updating is the PDG

141

6 Conclusion

representation itself, and no extra compilation step is needed. In Section [4.5] we present a
heuristic procedure for learning PDG models from data. The procedure is composed of two
conceptually disjoint phases. First, we induce a forest structure over the domain of variables.
Second, we optimise a PDG structure over this variable forest. We use local split and merge
operations, and for guiding the application of these operators we use both heuristic and exact
measures of score improvement. In Section [4.5.2] we perform preliminary tests that demon-
strates the ability of our proposed procedure to recover PDG models from data that offer
accurate and efficient approximations of the generative distribution.

In Section [4.6] we proposed a procedure for learning PDG models from Clique Tree (CT)
representations. By using CT representations obtained from a learned BN model, we com-
bine BN learning and PDG learning in a hybrid approach. In this way, we provide a PDG
representation that is equivalent to the CT representation in that it can represent the same
set of joint probability distributions. In addition, by using data we optimise the efficiency
of the PDG representation by estimating parameters and then removing redundant nodes by
merging. In this way, we exploit CSI relations to achieve a more compact representation.

In Chapter [5] we performed a comparative analysis of the performance of BN, PDG and
Naive Bayes (NB) models, when learned from data. Our main goal was to evaluate the
performance of the different model languages when models are learned from data. In this
analysis, we both used synthetic data sampled from distributions represented by PGMs and
real world data. In our comparison, we wanted to emphasise the computational efficiency
as a main factor of comparison. We considered the task of probabilistic belief updating as
the main computational task for PGMs and, therefore, identified for each modeling language
its effective size as a model specific parameter in which belief updating is computable in
linear time. This enabled us to perform a fair cross-language comparison of (theoretical)
computational complexity. Concerning the accuracy of the approximation offered by models,
we used the log-likelihood of a separate test-dataset Dp. These two measures were combined
in SL-curves, and we used such plots as the basis of one part of the analysis.

First, we analysed SL-curves of learning from synthetic data in Section 5.2l The analysis
showed some expected and some unexpected outcomes. BN models and NB models both
proved superior when exposed to learning from data sampled from the given models, respective
languages, which was also what we expected to observe. For PDG models, we experienced
some problems in learning from randomly generated PDG models, where instead BN models
proved to offer more accurate approximations at a relatively low cost in effective size. This
was somewhat unexpected, but it can be explained as another effect of the “Achilles heel”
of our LearnPDGs procedure, namely the initial induction of a underlying variable forest. In
the initial experiments of the procedure, we found that learning a good structure was not an
easy task and suboptimal forests often had a significant impact on the PDG models that we
actually learned (see Section [4.5.2)).

Second, we analysed SL-curves of learning from real data in Section [5.3] One major result
of the analysis was the observation that BN models are less prone to overfitting the training
data than both BN and NBE models. We explained this observation by the fact that BN
models typically have much fewer free parameters than both NB and PDG models of similar

142

effective size. For both PDG and NB models, there is a linear relationship between effective
and representational size (given a fixed variable forest for the PDG). For BN models, no
such trivial relationship between representational and effective size exists, but the observed
relationship is typically sub-linear. Consequently, BN models do not gain representational
power at the same rate as NB and PDG models when effective size is increased and we,
therefore, observe overfitting at a lower rate for BN models. That being said, the analysis was
unable to identify a clear winner among the three different languages, and results are very
mixed over the different datasets.

Third, in Section [5.4] we performed an empirical analysis of computational efficiency by
measuring execution times on randomly generated queries. We used our own prototype imple-
mentation of the inflow/outflow procedure for general belief updating in PDG models and for
NB and BN models we used the Hugin! inference engine that implements a variation of the
general CT algorithm for exact inference. In the results of these experiments, we were first of
all pleased to observe that our prototype implementation of PDG inference was not completely
incomparable to the state-of-the-art implementation of the Hugin inference engine. Next, we
found that the conclusions drawn from using effective size as a measure of efficiency were
mostly stable. That is, the ordering of language w.r.t. efficiency did not change by changing
the measure of efficiency from effective size to average measured execution time. Next we
considered the average log probability of randomly generated queries as an empirical measure
of accuracy. Also here we found that the conclusions drawn from using the global measure of
log-likelihood of data were mostly stable. However, for one example we found that a relatively
large difference in log-likelihood of data between the three models was dramatically reduced
when changing to the local measure of log probability of random queries. This observation
can be explained by the existence of a few rare cases in the training data, that only contribute
(negatively) to the computations of the global measure of accuracy. For the local measure
using randomly generated queries, such extremely rare joint configurations are not sampled.

Finally, in Section[5.5lwe analyse results of employing the hybrid approach to learning PDG
models from CT representations compiled from learned BN models. Mostly, the experiments
demonstrates the ability of the hybrid approach for learning PDG models that when compare
to the original CT model offers a dramatic reduction in effective size without trading off
accuracy. In this way PDG models may offer a more efficient computational structure for
BN models than the more traditional CT algorithms. Compared to the related approach
of compiling Arithmetic Circuits (ACs) from BN models by Darwiche dﬂ)ﬂj), our current

proposal for hybrid learning necessitates an initial construction of a CT model from the BN

model. [Darwich (Iﬂ)ﬁj) constructs ACs directly from the BN model and therefore avoids any
potential problems with constructing the CT representation. On the other hand, the PDG
language allows subsequent refinements in the form of merging of parameter-nodes and re-
estimation of optimal parameters. The construction of AC representations from BN models
by |DarwicheJ (12002|) exploits CSI relations that are identified in the parameterisation of the
BN model. A key difference between that framework and our hybrid learning is then that we

do not investigate the parameters of the CT model to exploit any CSI relations there may be.

"http://www.hugin. com/

143

http://www.hugin.com/

6 Conclusion

Instead we turn to data and reestimate parameters and from here we exploit CSI relations
indirectly by merging parameter-nodes. Our exploitation of CSI relations is therefore not very
explicit, as we will consider any pair of nodes for merging, given the associated parameters are
sufficiently close and without requiring that parameters match exactly. When working with
real-world data we do not always expect CSI relations to manifest themselves clearly in data
as noise may blur the image. Therefore, the merging of nodes seems a reasonable approach
to optimising PDGs for size, and indeed in Section we have shown good performance of
PDG models learned by the hybrid approach when compared to the original CT model.

144

LIST OF SYMBOLS

(Y) Partition generated by set if discrete random variables Y, page 9.

adj o (X) Set of nodes adjacent to X in graph G, page 11.

pag(A) Minimal ancestral set of nodes A in graph G, page 12.

Bg Parameterised BN model with DAG structure G and ML parameters 6 estimated
from data D, page 58.

cha(X) Set of children of node X in graph G, page 12.

Y L U|Z[P] Conditional independence of Y and U given Z under distribution P, page 8.

D Sampled data, page 11.

Da Part of data D used for training, page 52.

Dg Part of data D exclusively used for evaluation purposes, page 52.

deg(X) Set of descendants of node X in graph G, page 12.

deg:(X) dec(X)U X, page 12.

size o (M) Effective size of model M, see (3:20) for BN models, (3:48) for PDG models and
([359) for NB models, page 27.

I (B, E) Partition generated by intersecting partitions % and %, page 9.

IB(M(G)) Inclusion boundary of BN model M(G), page 22.

inc(v) Edges in a PDG structure incoming to node v., page 85.

ifl(v) Inflow of parameter-node v, page 37.

G™ Moral graph of graph GG, page 12.

ndg(X) Set of non-descendants of node X in graph G, page 12.

v Parameter-node in PDG structure, page 29.

ofl(v) Outflow of parameter-node v, page 38.

P(X) Probability distribution of random variable X, page 6.

145

List of Symbols

Py
-
pag(X)
Path(v,Y)
pag(X)
P(X)

reach (i, X)

X, Y., Z

N GO/
X,Y,Z,...

X,Y,Z,...

TyYy 2y

Element [in p”, page 29.

Parameter vector for parameter-node v, page 29.

Set of parents of node X in graph G, page 12.

Set of joint instantiations of Y reaching v, page 33.

Set of predecessors of node X in graph G, page 12.

Joint probability distribution of random variables X, page 7.

Parameter-node reached by x in V;, page 32.

The set of mutually exclusive joint states of discrete random variables X, page 7.
The set of mutually exclusive states of discrete random variable X, page 6.
Subgraph of graph G induced by subset of nodes A, page 11.

The successor of parameter-node v; € V; for child variable X; and for outgoing
edge label-led z; , € R(X;), page 29.

Set of parameter-nodes in PDG structure label-led with variable X;, page 29.
The projection of joint state x € R(X) onto a subset Y C X, page 7.

Sets of random variables, page 7.

Joint states or of sets of random variables, page 7.

Random variables, page 6.

States of random variables, page 6.

146

BIBLIOGRAPHY

Abellan, J., Gomez-Olmedo, M., and Moral, S. (2006). Some Variations on the PC Algorithm.
In Proceedings of the Third European Workshop on Probabilistic Graphical Models, pages 1—
8.

Abramson, B., Brown, J., Edwards, W., Murphy, A., and Winkler, R. (1996). Hailfinder:
A Bayesian System for Forecasting Severe Weather. International Journal of Forecasting,
12:57-T71.

Agresti, A. (1990). Categorical Data Analysis. John Wiley & Sons, Inc.

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions
on Automatic Control, 19(6):716-723.

Andersen, S. K., Olesen, K. G., Jensen, F. V., and Jensen, F. (1989). HUGIN - a Shell for
Building Bayesian Belief Universes for Expert Systems. In Proceedings of the 11th joint
Conference on Artificial Intelligence, pages 1080-1085.

Andersson, S., Madigan, D., and Perlman, M. (1997). On the Markov Equivalence of Chain
Graphs, Undirected Graphs, and Acyclic Digraphs. Scandinavian Journal of Statistics,
24(1):81-102.

Apostol, T. (1974). Mathematical Analysis. Addison-Wesley, second edition.

Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Complexity of Finding Embeddings
in a k-tree. STAM Journal on Algebraic and Discrete Methods, 8(2):277-284.

Beinlich, I., Suermondt, G., Chavez, R., and Cooper, G. F. (1989). The ALARM Monitoring
System. In Proceedings of the Second FEuropean Conference on Artificial Intelligence and
Medicine, pages 247-256. Springer.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Wiley & Sons.

Beygelzimer, A. and Rish, I. (2003). Approximability of Probability Distributions. In Advances
in Neural Information Processing Systems 16. The MIT Press.

147

BIBLIOGRAPHY

Billingsley, P. (1986). Probability and Measure. Wiley & Sons.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-Specific Inde-
pendence in Bayesian Networks. In Proceedings of the Twelfth Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann Publishers.

Bozga, M. and Maler, O. (1999). On the Representation of Probabilities over Structured Do-
mains. In Proceedings of the 11th International Conference on Computer Aided Verification,
pages 261-273. Springer.

Cano, A., Moral, S., and Salmerén, A. (2000). Penniless Propagation in Join Trees. Interna-
tional Journal of Intelligent Systems, 15(11):1027-1059.

Caprile, B. (2001). Uniformly Generating Distribution Functions for Discrete Random Vari-
ables. Technical report, ITC-irst - Centro per la Ricerca Scientifica e Tecnologica, Italy.

Castelo, R. (2002). The Discrete Acyclic Digraph Markov Model in Data Mining. PhD thesis,
University of Utrecht, The Netherlands.

Castelo, R. and Koc¢ka, T. (2003). On Inclusion-driven Learning of Bayesian Networks. Journal
of Machine Learning Research, 4:527-574.

Castillo, E., Gutiérrez, J. M., and Hadi, A. S. (1997). Ezpert Systems and Probabilistic Network
Models. Springer-Verlag.

Cheeseman, P. and Stutz, J. (1996). Bayesian Classification (AutoClass): Theory and Results.
In Advances in Knowledge Discovery and Data Mining, pages 153-180. AAAT Press.

Chickering, D. M. (1995). A Transformational Characterization of Equivalent Bayesian Net-
work Structures. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intel-
ligence, Montreal, QU, pages 87-98. Morgan Kaufmann.

Chickering, D. M. (1996). Learning Bayesian Networks is NP-Complete. In Fisher, D. and
Lenz, H., editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121—
130. Springer-Verlag.

Chickering, D. M. (2002). Optimal Structure Identification with Greedy Search. Journal of
Machine Learning Research, 3:507-554.

Chickering, D. M., Heckerman, D., and Meek, C. (1997). A Bayesian Approach to Learning
Bayesian Networks with Local Structure. In Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence, pages 80-89. Morgan Kaufmann Publishers.

Chickering, D. M., Heckerman, D., and Meek, C. (2004). Large-Sample Learning of Bayesian
Networks is NP-Hard. The Journal of Machine Learning Research, 5:1287-1330.

148

BIBLIOGRAPHY

Chickering, D. M. and Meek, C. (2002). Finding Optimal Bayesian Networks. In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 94-102. Morgan
Kaufmann Publishers.

Chow, C. K. and Liu, C. N. (1968). Approximating Discrete Probability Distributions with
Dependence Trees. IEE Transactions on Information Theory, 14(3):462-467.

Cooper, G. F. (1987). Probabilistic Inference Using Belief Networks is NP-Hard. Technical
report, Knowledge Systems Laboratory, Stanford University.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian Method for the Induction of Probabilistic
Networks from Data. Machine Learning, 9(4):309-347.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. John Wiley &
Sons, Inc.

Cowell, R. G. (2001). Conditions Under Which Conditional Independence and Scoring Meth-
ods Lead to Identical Selection of Bayesian Network Models. In Proceedings of the Seven-
teenth Conference on Uncertainty in Artificial Intelligence, pages 91-97. Morgan Kaufmann
Publishers.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999). Probabilistic
Networks and Ezrpert Systems. Springer.

Dagum, P. and Luby, M. (1993). Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence, 60:141-153.

Darwiche, A. (2002). A logical approach to factoring belief networks. In Proceedings of the
8th International Conference on Principles of Knowledge Representation and Reasoning.

Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal
Statistical Society, Series B, 41(1):1-31.

DeGroot, M. H. (1986). Probability and Statistics. Addison-Wesley, 2nd edition.

Dempster, A. P., Laird, N. M., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38.

Domingos, P. and Pazzani, M. J. (1997). On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning, 29(2-3):103-130.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley & Sons.

Elidan, G. (2004). Learning Hidden Variables in Probabilistic Graphical Models. PhD thesis,
Hebrew University, Jerusalem, Israel.

Elidan, G. and Friedman, N. (2001). Learning the Dimensionality of Hidden Variables. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages
144-151.

149

BIBLIOGRAPHY

Elidan, G. and Friedman, N. (2005). Learning hidden variable networks: The information
bottleneck approach. Journal of Machine Learning Research, 6:81-127.

Esposito, F., Malerba, D., and Semeraro, G. (1997). A comparative analysis of methods for
pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):476-491.

Fisz, M. (1980). Probability Theory and Mathematical Statistics. John Wiley & Sons, Inc, 3rd
edition.

Flores, M. J., Games, J. A., and Moral, S. (2006). The independency tree model: a new
approach for clustering and factorisation. In Proceedings of the Third European Workshop
on Probabilistic Graphical Models, pages 83-90.

Flores, M. J., Gamez, J. A., and Olesen, K. G. (2003). Incremental compilation of Bayesian
networks. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelli-
gence, pages 233-240. Morgan Kaufmann Publishers.

Geiger, D. and Heckerman, D. (1996). Knowledge representation and inference in similarity
networks and Bayesian multinets. Artificial Intelligence, 82:45-74.

Geiger, D. and Pearl, J. (1988). On the logic of influence diagrams. In Proceedings of the jth
workshop on Uncertainty in Artificial Intelligence, pages 136-147.

Geiger, D., Verma, T., and Pearl, J. (1990). Identifying Independence in Bayesian Networks.
Networks, 20(5):507-534.

Gomes, C. and Selman, B. (1997). Algorithm Portfolio Design: Theory vs. Practice. In
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pages
190-198. Morgan Kaufmann Publishers.

Hajek, A. (Summer 2003). Interpretations of probability. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer.

Heckerman, D. (1995). A tutorial on learning with bayesian networks. Technical report,
Microsoft Research.

Jaeger, M. (2004). Probabilistic Decision Graphs - Combining Verification and AT Techniques
for Probabilistic Inference. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 12:19-42.

Jaeger, M., Nielsen, J. D., and Silander, T. (2004). Learning Probabilistic Decision Graphs. In
Proceedings of 2nd Furopean Workshop on Probabilistic Graphical Models, pages 113-120.

Jaeger, M., Nielsen, J. D., and Silander, T. (2006). Learning Probabilistic Decision Graphs.
International Journal of Approzimate Reasoning, 42(1-2):84-100.

150

BIBLIOGRAPHY

Jensen, F. (2006). HUGIN API Reference Manual. Hugin Expert A/S,
http://www.hugin.com/. Version 6.5.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. Springer.

Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990a). Bayesian Updating in Causal
Probabilistic Netwroks by Local Computation. Computational Statistics Quarterly, 4:269—
282.

Jensen, F. V.| Olesen, K. G., and Andersen, S. K. (1990b). An Algebra of Bayesian Belief
Universes for Knowledge-Based Systems. Networks, 20(5):637-659.

Karciauskas, G., Koc¢ka, T., Jensen, F. V., Larranaga, P., and Lozano, J. A. (2004). Learning
of Latent Class Models by Splitting and Merging Components. In Proceedings of the Second
FEuropean Workshop on Probabilistic Graphical Models, pages 137—-144.

Karciauskas, G. (2005). Learning with Hidden Variables: A Parameter Reusing Approach
for Tree-Structured Bayesian Networks. PhD thesis, Facutly of Engineering and Science,
Aalborg University, Aalborg, Denmark.

Kjeerulff, U. (1990). Triangulation of graphs - algorithms giving small total state space. Tech-
nical report, Institute for Electronic Systems, Department of Mathematics and Computer
Science, Aalborg University.

Kolmogorov, A. N. (1950). Foundations of the Theory of Probability. Chelsea Publishing
Company, New York.

Kocka, T. (2001). Graphical Models: learning and applications. PhD thesis, Faculty of Infor-

matics and Statistics, Prague University of Economis, Prague, Czech Republic.

Kocka, T., Bouckaert, R., and Studeny, M. (2001). On characterizing inclusion of Bayesian
networks. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intel-
ligence, pages 261-268. Morgan Kaufmann Publishers.

Kullbach, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79-86.

Langley, P., Iba, W., and Thompson, K. (1992). An Analysis of Bayesian Classifiers. In
National Conference on Artificial Intelligence, pages 223-228.

Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data.
Computational Statistics and Data Analysis, 19:191-201.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H. G. (1990). Independence
properties of directed markov fields. Networks, 20:491-505.

151

http://www.hugin.com/

BIBLIOGRAPHY

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal Statistical
Society, Series B, 50(2):157-224.

Liang, H., Zhang, H., and Yan, Y. (2006). Decision Trees for Probability Estimation: An
Empirical Study. In Proceedings of the 18th International Conference on Tools with Artificial

Intelligence.

Lowd, D. and Domingos, P. (2005). Naive Bayes Models for Probability Estimation. In
Proceedings of the Twentysecond International Conference on Machine Learning, pages 529—

536.

Madsen, A. L. (1999). All Good Things Come to Those Who Are Lazy - Efficient Inference
in Bayesian Networks and Influence Diagrams Based on Lazy Evaluation. PhD thesis,
Department of Computer Science, Faculty of Engineering and Science, Aalborg University,
Denmark.

Madsen, A. L. and Jensen, F. V. (1998). Lazy Propagation in Junction Trees. Technical report,
Aalborg University, Institute for Electronic Systems, Department of Computer Science.

McAllester, D., Collins, M., and Pereira, F. (2004). Case-factor diagrams for structured prob-
abilistic modeling. In Proceedings of the Twentieth Conference on Uncertainty in Artificial
Intelligence, pages 382-391. AUAI Press.

McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Eztensions. Wiley & Sons.

Meek, C. (1995). Strong completeness and faithfulness in Bayesian networks. In Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 411-418. Morgan
Kaufmann Publishers.

Meek, C. (1997). Graphical models: selecting causal and statistical models. PhD thesis,
Carnegie Mellon University, Pittsburgh (PA), U.S.A.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Neal, R. M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods. Tech-
nical report, Department of Computer Science, University of Toronto.

Neapolitan, R. E. (2003). Learning Bayesian Networks. Prentice Hall.

Newman, D., Hettich, S., Blake, C., and Merz, C. (1998). UCI repository of machine learning
databases: http://www.ics.uci.edu/"mlearn/MLRepository.html|

Nielsen, J. D. and Jaeger, M. (2006). An Empirical Study of Efficiency and Accuracy of Prob-
abilistic Graphical Models. In Proceedings of the Third European Workshop on Probabilistic
Graphical Models, pages 215-222.

152

http://www.ics.uci.edu/~mlearn/MLRepository.html

BIBLIOGRAPHY

Nielsen, J. D., Kocka, T., and Pena, J. M. (2003). On Local Optima in Learning Bayesian Net-
works. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence,
pages 435-442. Morgan Kaufmann Publishers.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers.

Pearl, J. and Verma, T. (1987). The logic of representing dependencies by directed graphs. In
Proceedings of the Conference of the American Association of Artificial Intelligence, pages

374-379.

Pena, J. M., Koc¢ka, T., and Nielsen, J. D. (2004). Featuring Multiple Local Optima to
Assist the User in the Interpretation of Induced Bayesian Network Models. In Proceedings
of the Fifteenth International Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems.

Pena, J. M., Lozano, J. A., and Larraniaga, P. (2002). Learning recursive Bayesian multinets
for data clustering by means of constructive induction. Machine Learning, 47(1):63-89.

Provost, F. and Domingos, P. (2003). Tree Induction for Probability-Based Ranking. Machine
Learning, 52:199-215.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81-106.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461-464.

Shachter, R. D. (1988). Probabilistic Inference And Influence Diagrams. Operational Research,
36(4).

Shafer, G. and Shenoy, P. P. (1990). Probability propagation. Annals of Mathematics and
Artificial Intelligence, 2:327-352.

Skyrms, B. (1984). Pragmatics and empiricism. Yale University Press, New Haven and

London.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. The
MIT Press, 2nd edition.

Studeny, M. (1989). Multiinformation and the Problem of Characterization of Conditional
Independence Relations. Problems of Control and Information Theory, 18(1):3-16.

Thiesson, B., Meek, C., Chickering, D. M., and Heckerman, D. (1997). Learning Mixtures of
DAG Models. Technical report, Microsoft Research.

Verma, T. and Pearl, J. (1991). Equivalence and synthesis of causal models. In UAI ’90:
Proceedings of the Sizth Annual Conference on Uncertainty in Artificial Intelligence, pages
255—270. Elsevier Science Inc.

153

BIBLIOGRAPHY

Vessereau, A. (1958). Sur les conditions d’application de criterion x? de Pearson. Rewv. Stat.
Appl., 6(2).

Vilalta, R. and Rish, I. (2003). A decomposition of classes via clustering to explain and
improve naive bayes. In Proceedings of 14/th Furopean Conference on Machine Learning.

Williams, T. and Kelley, C. (2004). gnuplot : An Interactive Plotting Program.
http://www.gnuplot.info/. Manual, version 4.0.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2nd edition.

Zhang, N. L. (1998). Computational properties of two exact algorithms for Bayesian networks.
Applied Intelligence, 9:173-183.

Zhang, N. L. (2004). Hierarchical Latent Class Models for Cluster Analysis. Journal of
Machine Learning Research, pages 697-723.

Zhang, N. L. and Poole, D. (1994). A simple approach to Bayesian network computations. In
Proceedings of the Tenth Canadian Conference on Artificial Intelligence.

154

http://www.gnuplot.info/

APPENDIX A

EXTENDED TEST RESULTS

In this appendix we complete the results for learning from synthetic data (see Section [5.2)),
learning from real data (see Section [5.3)), empirically measurements of efficiency and accuracy
(see Section [5.4]) and for the hybrid learning approach (see Section [5.5]). Section contains
results from experiments on synthetic data in the form of SL-curves. Section contains SL-
curves from experiments with real data. Section[A.3] contains plots of empirical measurements

of computational efficiency and accuracy.

A.1 SL-Curves for Learning from Synthetic Data

Below we bring SL-curves to complete the results of the experiments on data generated
from synthetic data. We include the SL-curves for experiments that was previously not explic-
itly reported in the analysis in Section [5.2] but only in the summary in table 5.4l on page 1201
That is, for data sampled from the Hailfinder BN model (figure [A.1)), from the NB20 NB
model (figure and from the Logicl, Logic3 and Rnd20 PDG models (figures and
respectively).

155

A Extended Test Results

Hailfinder - Train

-10
-20
-30
- -40
g
= -50
£ w60
’J' 1
B0 fef e —
=80 e
P T BN
-90 [PROREE O S - INB [V
-100 PDG —x-
-H(D
-110 & !
0 20000 40000 60000 80000 100000
Effective model size
(a)
Hailfinder - Test
70 0 ‘ BN
7 INB -
3 IPDG -
-80
kS
,4% -85 i‘ L
g2 o0f e X
s N I
@ 95 A
— x
-100 g
-105
-110 —
0 20000 40000 60000 80000 100000
Effective model size
(b)

Figure A.1. SL-curves for models learned from the Hailfinder data, for likelihood values over training
data D4 (a) and test data Dp (b). The SL coordinates for the generative model is marked with a
square.

156

A.1 SL-Curves for Learning from Synthetic Data

NB20 - Train
-13
-14
-15
el
g -16
=
L .17
o
g -18
K [VR B
-19 I T v SR S TY
220 R O
21
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size
(a)
NB20 - Test
-19.5
A \X/"X\ P I
-20 X/ i et — >L E—
%” - * o - VLIRSS S x|
-
-20.5 *
el .
o
o)
= 221
= 215 :
o0
Q
-
222
-22.5 -
-23

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size

(b)

Figure A.2. SL-curves for models learned from the NB20 data, for likelihood values over training data
D4 (a) and test data Dp (b). The SL coordinates for the generative model is marked with a square.

157

A Extended Test Results

Logicl - Train

-3
-4 /E
-8 -5 * PV et o T
1S e
£ :
o)
ﬁ X
<7 .
o0
Q X7
- 8
BN —
0 PDG ke
tH(D
10 (D)

0 20 40 60 80 100 120 140 160 180 200
Effective model size

(a)

Logicl - Test

I
i

Log-Likelihood

-9 4 N ——

-10 : ;
0 20 40 60 80 100 120 140 160 180 200

Effective model size

(b)

Figure A.3. SL-curves for models learned from the Logicl data, for likelihood values over training

data D4 (a) and test data Dp (b). The SL coordinates for the generative model is marked with a
square.

158

A.1 SL-Curves for Learning from Synthetic Data

Logic3 - Train
-6.9

o
-71.3 / /

T4 po
a5 1 /

-7.6 /
|

Log-Likelihood

STT e S
'7.8 1/ NB .

-1.9

0 100 200 300 400 500 600

Effective model size

(a)

Logic3 - Test

7.1 -

-1.3 / \\,X’
i1
T4 b /

i
-7.7 /
|

Log-Likelihood

7.8+ NB

-71.9 ;
0 100 200 300 400 500 600

Effective model size

(b)

Figure A.j. SL-curves for models learned from the Logic3 data, for likelihood values over training
data D4 (a) and test data Dp (b). The SL coordinates for the generative model is marked with a
square.

159

A Extended Test Results

Rnd20 - Train

-13
-14
-15
2 -16
£
= -17
[}
= e PRTTa A *-
T ® e S e = i
?I)D %h*X;;,_%/,ci)fi’j),(f:i’.),(i’,.,,.,,.,.,,.”
= -19
220 -
INB s
2 PDG -—-*-
22 [H(D)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size
(a)
Rnd20 - Test
-18 =
-18.5
o ’ 7 . o o X
= - S
g -195
= o !
£ 20
'_.] ;
2 205 &
—
-21
BN ——
-21.5 O
PDG
-22 I |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Effective model size

(b)

Figure A.5. SL-curves for models learned from the Rnd20 data, for likelihood values over training

data D4 (a) and test data Dp (b). The SL coordinates for the generative model is marked with a
square.

160

A.2 SL-Curves for Learning from Real Data

A.2 SL-Curves for Learning from Real Data

In this section we bring SL-curves to complete the results of learning PGMs from real
data. We include SL-curves for the experiments that was previously not explicitly included in
the analysis of this set of experiments in Section [5.3] but only represented in the summaries

of tables on page and [5.7] on page [127]

Page-blocks - Train

-10
o K Koo
—12 *%*4}:;3& =X
Pl .
el 14 ?/L*#H/ .
O = P
g f
LS 16
3
&
= -18
BN —t
-20 INB
PDG -
”» tH(D)
0 5000 10000 15000 20000 25000 30000 35000 40000
Effective model size
(a)
Page-blocks - Test
-11
-12 LR *
-13 %x o R S
- -4 oo At
2 s
% -15 F ;
CRRTR.
3 i b
so -17 k
3
-18
-19 BN
-20 INB
IPDG -
-21 L

0 5000 10000 15000 20000 25000 30000 35000 40000

Effective model size

(b)

Figure A.6. SL-curves for models learned from the Page-blocks data.

161

A Extended Test Results

Letter - Train

-10

-15

-20

Log-Likelihood
)
9]
*
? %
X\

-30%?
: BN —
35k INB
PDG -
FH(D)

0 20000 40000 60000 80000 100000 120000

Effective model size

(a)
Letter - Test
-24
-
/X/ \\\ ™ \\//
_ PV N
26],4/
2 08 b e
o) ¥
2 30 t]
- X
& ¢
S 3§
= R
34 B
: NB =
IPDG -
-36

0 20000 40000 60000 80000 100000 120000

Effective model size

(b)

Figure A.7. SL-curves for models learned from the Letter Recognition data.

162

A.2 SL-Curves for Learning from Real Data

King, Rook v. King - Train

-14.5
-15
e B e
-15.5 o
X
k=) X
g -16 o
!E xS
o)
ﬁ -16.5 xigj*w
g 17 b
17.5 |
o BN —t
INB mmeee
-18 PDG -
rH(D
-18.5 & (D),
0 10000 20000 30000 40000 50000 60000
Effective model size
(a)
King, Rook v. King - Test
-16.5
17 :
i A Kol
"§ -17.5 /X_,_X«.»/ K /x/ N
< e - 1% X AV %
£ asyo 7
= !
é‘) “
= -185 F
-19 bt B
y NB =
IPDG -
-19.5 L

0 10000 20000 30000 40000 50000 60000

Effective model size

(b)

Figure A.8. SL-curves for models learned from the King, Rook vs. King data.

163

A Extended Test Results

Poisonous Mushroom - Train

=
o)
o)
=
©
=
3
50
Q
=
IBN —
INB e
PDG -
FH(D)
0 10000 20000 30000 40000 50000
Effective model size
(a)
Poisonous Mushroom - Test
-12
-14 WK /jk\\x/'*v
-16 //
-18
'8 20 I%‘"w P .
= -
5 22
v]
;jl' 24 ¢
g 26
-28
-30 N ——
32 INB
34 I?DG —
0 10000 20000 30000 40000 50000
Effective model size

(b)

Figure A.9. SL-curves for models learned from the Poisonous Mushroom data.

164

A.2 SL-Curves for Learning from Real Data

Landsat - Train

Log-Likelihood
X
*

n
O
Z,
o]
%

0 20000 40000 60000 80000 100000 120000 140000

Effective model size

(a)
Landsat - Test
-40
x
45
¥
-)“(l‘.‘ U e S
8 i | XX_X/»~
S 0 [
o) PR
g0 -55 F
15) i
— :
%
>}k *
-60 ¢ BN ——
NB —=—
65 ORI

0 20000 40000 60000 80000 100000 120000 140000
Effective model size

(b)

Figure A.10. SL-curves for models learned from the Landsat data.

165

A Extended Test Results

A.3 Analyses of Empirical Efficiency and Accuracy

In this section we complete the results of the empirical analysis of computational efficiency
and accuracy reported in Section 5.4l We bring plots of empirical measures of execution time
vs. effective size and the least squares fit to a line, which was previously only summarised
by the slope of the fit in table [5.8] on page We also bring SL-curves produced by using
empirically measured accuracy that was previously summarised in table [5.9] on page [132l

King, Rook vs. King - empirical accuracy

-6.4 =
2 T f g e
£ T2 f T
@ 744
% 76 "
o - {
I
;g 7.8 *
-8 g BN ——
8.2 IN
8.4 e
) 10000 20000 30000 40000 50000 60000

Effective model size

(a)

King, Rook vs. King - empirical efficiency

14 X
X
2 L
£ 12 e
g 10 e
£ 3 g
= Py
Q
% 6
S 4
< o X
: M |
0

0 10000 20000 30000 40000 50000 60000

Effective model size

N . NB x PDG - ‘
N fit NBfit PDG fit
(b)

Figure A.11. Empirical average accuracy (a) and average execution time (b) vs. effective size for the
King, rook vs. King dataset.

166

A.8 Analyses of Empirical Efficiency and Accuracy

Letter - empirical accuracy
-4.6 p

X KT

438 — /%X/XX//

-5.2 Qy

5.4 %
so
X

-5.8

Average Log-likelihood

0.2 BN
-6.4 INB

o6 PDG -
© 0 10000 20000 30000 40000 50000 60000 70000 80000

Effective model size

(a)

Letter - empirical efficiency
80
70
60
50 e
40 e
30
20 NI

Average execution time (ms)

-10

0 10000 20000 30000 40000 50000 60000 70000 80000

Effective model size

N v NB < PDG .
N fit NB fit - PDGfit -
(b)

Figure A.12. Empirical average accuracy (a) and average execution time (b) vs. effective size for the
Letter Recognition dataset.

167

A Extended Test Results

Page-blocks - emperical accuracy

-2.5
2% \ +

TP v R s
o b,
] 3.5 L \
<= , \
= ¥ \
= -4 * B s R
50
3
> 45
1))
s
g 5
<

- N ——

5.5 NB o~

6 PDG = x
0 5000 10000 15000 20000 25000 30000 35000 40000
Effective model size
(a)
Page-blocks - empirical efficiency

12
£ 10
2 .
g=! 8
= .
5 -
5 6 : i
5] X 1
x i
E’)o 4 MQ/
< L
g 2 M -

0
0 5000 10000 15000 20000 25000 30000 35000 40000

Effective model size

N v NB < PDG .
N fit NB fit - PDGfit -

Figure A.13. Empirical average accuracy (a) and average execution time (b) vs. effective size for the
Page-blocks dataset.

168

A.8 Analyses of Empirical Efficiency and Accuracy

Poisonous mushroom - emperical accuracy

-1.5
B X
! \$/
k=)
o)
o)
=
o)
é S A K-mmmmmmo X Koo >e-m--o
o0
15
—
5]
on
g 35
4
<
-4 B
NB —=—
IPDG -
-4.5 L
0 10000 20000 30000 40000 50000
Effective model size
(a)
Poisonous mushroom - empirical efficiency
14
Z 12 o
g 8 g
8
o -
on 4 e
z 2 =
M(
0
0 10000 20000 30000 40000 50000
Effective model size
N + NB x PDG *
N fit NBfit = - PDG fit -

Figure A.14. Empirical average accuracy (a) and average execution time (b) vs. effective size for the
Poisonous mushroom dataset.

169

A Extended Test Results

Landsat - emperical accuracy

-3.5
P —
- ' T SO e e
- .
é ! 3 kY [V ORI B e Xmofmmmmm o X-mmmmmm-]
245 et
=] X .,
o0 ¥
15
— X
& S
< !
o) %
- ;
5.5 BN
* NB —=—
6 PDG - x
0 15000 30000 45000 60000 75000
Effective model size
(a)
Landsat - empirical efficiency
50
o 45
E 40
g 35
= 30
% 25 .
g 20 o %
> .
v 15 I T B .
& 10 et s s
5 5 PO .
E 0 ’Fa")/
-5
0 15000 30000 45000 60000 75000
Effective model size
N + NB x PDG *
N fit NBfit PDG fit -

Figure A.15. Empirical average accuracy (a) and average execution time (b) vs. effective size for the
Landsat dataset.

170

A.4 Detailed Results from Hybrid Learning

A .4 Detailed Results from Hybrid Learning

In this section, we complete the results of applying hybrid learning on both real and
synthetic datasets. Summaries were previously given in tables on page and
Here we present results of all BN models learned from each dataset. In the table below, each
row corresponds to one experiment of exposing a specific BN model for the hybrid learning
approach described in Section

BN Best PDG Relative Difference Time
sizeey L(Da) L(Dg) ES L(Da) L(Dp) sizeey L(Da) L(Dp) (seconds)
1000 -14.512 -14.607 675 -14.363 -14.482 0.325 0.01 0.009 31
2500 -13.758 -13.927 2600 -13.525 -13.637 -0.04 0.017 0.021 49.9
3000 -13.859 -14.069 2990 -13.388 -13.635 0.003 0.034 0.031 39.1
4000 -13.465 -13.513 3520 -13.066 -13.137 0.12 0.03 0.028 43.5
4000 -13.937 -14 3145 -13.389 -13.463 0.214 0.039 0.038 38.2
4875 -13.788 -13.924 3700 -13.265 -13.417 0.241 0.038 0.036 47
4875 -13.796 -14 5510 -13.365 -13.604 -0.13 0.031 0.028 37.2
8375 -13.734 -13.771 3935 -13.21 -13.286 0.53 0.038 0.035 74.9
9875 -13.808 -13.922 8885 -13.028 -13.179 0.1 0.056 0.053 43.8
10375 -13.794 -13.902 4780 -13.157 -13.25 0.539 0.046 0.047 61.2
10875 -13.774 -13.87 7575 -12.966 -13.104 0.303 0.059 0.055 52.6
13875 -13.239 -13.362 8045 -12.502 -12.577 0.42 0.056 0.059 51.1
22750 -13.26 -13.384 7850 -12.435 -12.472 0.655 0.062 0.068 48.7
25250 -13.529 -13.696 9045 -13.252 -13.338 0.642 0.02 0.026 69.5
35250 -13.228 -13.373 8390 -12.491 -12.569 0.762 0.056 0.06 56.2

Table A.1. Summary of hybrid learning on Page-blocks data.

BN Best PDG Relative Difference Time

sizeeg L(Da) L(Dp) ES L(Da) L(Dp) sizeeg L(Da) L(Dp) (seconds)
190 -10.915 -10.851 270 -10.904 -10.837 -0.421 0.001 0.001 66.9
825 -10.572 -10.614 603 -10.499 -10.59 0.269 0.007 0.002 42.9
950 -10.729 -10.762 503 -10.674 -10.69 0.471 0.005 0.007 34.4
1700 -10.495 -10.552 933 -10.404 -10.503 0.451 0.009 0.005 45.4
2700 -10.445 -10.475 758 -10.362 -10.423 0.719 0.008 0.005 38.5
4575 -10.401 -10.442 1003 -10.346 -10.487 0.781 0.005 -0.004 59.8

Table A.2. Summary of hybrid learning on Abalone data.

171

A Extended Test Results

BN Best PDG Relative Difference Time
sizeeg L(Da) L(Dg) ES L(Da) L(Dp) sizeey L(Da) L(Dp) (seconds)
950 -16.388 -16.473 965 -16.38 -16.468 -0.016 0 0 1654.9
2087 -16.137 -16.256 2224 -16.12 -16.252 -0.066 0.001 0 1833.3
2087 -16.138 -16.258 2224 -16.12 -16.252 -0.066 0.001 0 1835
2119 -16.136 -16.259 2287 -16.117 -16.251 -0.079 0.001 0 1802.2
2286 -16.249 -16.357 1384 -16.235 -16.346 0.395 0.001 0.001 1508.2
2491 -16.229 -16.331 1652 -16.229 -16.336 0.337 0 0 1488.6
2559 -16.125 -16.252 2563 -16.099 -16.241 -0.002 0.002 0.001 1667.8
4826 -16.12 -16.251 2881 -16.1 -16.249 0.403 0.001 0 1583.5
5191 -16.101 -16.235 3859 -16.065 -16.242 0.257 0.002 0 1880.4
6795 -16.097 -16.234 3477 -16.072 -16.248 0.488 0.002 -0.001 1849.8
9331 -16.072 -16.226 8300 -16.027 -16.273 0.11 0.003 -0.003 1855.9
13910 -16.082 -16.221 11694 -16.032 -16.34 0.159 0.003 -0.007 1923.4
16586 -16.036 -16.198 15152 -15.959 -16.258 0.086 0.005 -0.004 1945.5
18966 -16.016 -16.19 14316 -16.011 -16.29 0.245 0 -0.006 2038.6
62270 -15.993 -16.182 31564 -15.86 -16.44 0.493 0.008 -0.016 2068.2
Table A.3. Summary of hybrid learning on Adult data.
BN Best PDG Relative Difference Time

sizeeg L(Da) L(Dp) ES L(Da) L(Dp) sizeeg L(Da) L(Dp) (seconds)
120 -18.413 -18.426 124 -18.412 -18.426 -0.033 0 0 1461.8
256 -18.1 -18.115 290 -18.1 -18.114 -0.133 0 0 1428.1
280 -18.062 -18.08 314 -18.062 -18.078 -0.121 0 0 1253.7
864 -17.834 -17.87 986 -17.696 -17.739 -0.141 0.008 0.007 1255.4
864 -17.834 -17.87 986 -17.696 -17.739 -0.141 0.008 0.007 1256.9
1136 -17.597 -17.663 1314 -17.587 -17.654 -0.157 0.001 0.001 993.8
3744 -16.957 -17.092 2906 -16.919 -17.065 0.224 0.002 0.002 1035.9
5184 -16.982 -17.096 1958 -16.92 -17.013 0.622 0.004 0.005 1043.4
6912 -16.7 -16.881 5782 -16.633 -16.835 0.163 0.004 0.003 1045.1
6912 -16.7 -16.88 5782 -16.633 -16.835 0.163 0.004 0.003 1053.3
7936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1051.4
7936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1059
7936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1060.5
7936 -16.852 -16.982 6232 -16.713 -16.884 0.215 0.008 0.006 1061.7
7936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1049.7
7936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1060.1
7936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1047.3
9216 -16.777 -16.93 5206 -16.709 -16.888 0.435 0.004 0.002 1041.5

Table A.j. Summary of hybrid learning on KRvK data.

172

A.4 Detailed Results from Hybrid Learning

BN Best PDG Relative Difference Time
sizeey L(Da) L(Ds) ES L(Da) L(Dp) sizeeyg L(Da) L(Dp) (seconds)
910 -43.622 -43.705 1210 -43.605 -43.703 -0.33 0 0 266.9
910 -43.622 -43.705 1210 -43.605 -43.703 -0.33 0 0 265.2
1900 -42.416 -42.464 1887 -42.144 -42.252 0.007 0.006 0.005 170.9
1925 -42.326 -42.485 1555 -42.168 -42.407 0.192 0.004 0.002 153.4
2275 -42.322 -42.463 1742 -42.082 -42.354 0.234 0.006 0.003 165
2625 -42.356 -42.405 1925 -42.069 -42.348 0.267 0.007 0.001 138.4
2825 -42.053 -42.073 2061 -41.909 -41.989 0.27 0.003 0.002 180.8
6200 -41.055 -41.103 3167 -40.655 -40.951 0.489 0.01 0.004 171.1
19050 -40.122 -40.283 6170 -39.979 -40.881 0.676 0.004 -0.015 147.5
157650 -41.124 -41.354 38565 -40.87 -51.047 0.755 0.006 -0.234 268.7
323400 -36.55 -36.876 53070 -35.924 -52.307 0.836 0.017 -0.418 382.1
335800 -38.679 -38.865 48932 -37.11 -50.91 0.854 0.041 -0.31 421
383000 -36.03 -36.419 49583 -35.532 -51.044 0.871 0.014 -0.402 463.4
445000 -36.035 -36.465 53415 -35.12 -53.028 0.88 0.025 -0.454 463.9
678875 -36.21 -36.535 60392 -35.73 -54.43 0.911 0.013 -0.49 1351.1
685500 -36.264 -36.707 58798 -35.509 -56.045 0.914 0.021 -0.527 505.8
741375 -36.015 -36.425 58963 -34.995 -55.784 0.92 0.028 -0.531 1897.6
743375 -36.1 -36.362 67371 -35.972 -55.812 0.909 0.004 -0.535 1363.5
760375 -35.989 -36.304 64796 -35.836 -55.776 0.915 0.004 -0.536 1413.4
853875 -36.261 -36.679 68605 -35.299 -56.923 0.92 0.027 -0.552 1351.9

966750 -36.228 -36.589 82237 -35.318 -63.261 0.915 0.025 -0.729 2870.2
988250 -36.007 -36.425 62803 -35.487 -59.231 0.936 0.014 -0.626 2467.8
1082375 -36.177 -36.57 62990 -35.984 -58.839 0.942 0.006 -0.609 2028.3
1097875 -36.078 -36.553 73346 -35.221 -60.162 0.933 0.024 -0.646 2290.4
1861250 -35.75 -36.321 71141 -34.78 -58.26 0.962 0.027 -0.604 3229.9

Table A.5. Summary of hybrid learning on Landsat data.

BN Best PDG Relative Difference Time
sizeey L(Da) L(Dp) ES L(Da) L(Dp) sizeey L(Da) L(Dp) (seconds)
3119 -28.759 -28.609 2683 -28.372 -28.275 0.14 0.013 0.012 2049.2
5303 -29.112 -28.919 2069 -28.631 -28.493 0.61 0.017 0.015 1486.2
10321 -25.95 -25.9 11633 -25.615 -25.625 -0.127 0.013 0.011 1763.5
13025 -25.923 -25.883 10022 -25.812 -25.763 0.231 0.004 0.005 1708.4
13479 -26.184 -26.096 6512 -26.071 -26.052 0.517 0.004 0.002 2212.4
27775 -25.678 -25.66 19875 -25.586 -25.748 0.284 0.004 -0.003 1673.1
28275 -25.523 -25.574 25282 -25.365 -25.518 0.106 0.006 0.002 1878.2

30895 -25.971 -25.945 21826 -25.383 -25.525 0.294 0.023 0.016 2255.1

74075 -24.037 -24.311 19660 -23.886 -24.809 0.735 0.006 -0.02 2679.5
110559 -25.141 -25.227 24862 -24.896 -26.144 0.775 0.01 -0.036 2752.4
123455 -24.621 -24.827 34627 -24.464 -25.464 0.72 0.006 -0.026 2975.6
123455 -24.627 -24.805 34627 -24.464 -25.464 0.72 0.007 -0.027 2958.9
131125 -24.255 -24.495 38396 -24.178 -25.311 0.707 0.003 -0.033 3157.4
141675 -23.477 -23.872 62494 -23.317 -25.254 0.559 0.007 -0.058 2714.3
188845 -23.842 -24.165 54991 -23.772 -25.289 0.709 0.003 -0.047 2998.4
447075 -23.875 -24.2 45407 -23.869 -25.544 0.898 0 -0.056 3897.1

Table A.6. Summary of hybrid learning on Letter data.

173

A Extended Test Results

BN Best PDG Relative Difference Time
sizeeg L(Da) L(DOp) ES L(Da) L(Dp) sizeeyg L(Da) L(Dp) (seconds)
121 -32.332 -32.283 123 -32.332 -32.283 -0.017 0 0 1737.4
862 -20.301 -19.911 856 -19.627 -19.265 0.007 0.033 0.032 68.1
1382 -18.432 -18.067 1041 -17.831 -17.527 0.247 0.033 0.03 69.1
1646 -18.195 -17.878 1024 -17.248 -16.981 0.378 0.052 0.05 69.5
1707 -18.918 -18.564 977 -18.012 -17.771 0.428 0.048 0.043 70.3
2493 -17.317 -17.03 1289 -16.528 -16.329 0.483 0.046 0.041 75.4
3227 -17.678 -17.245 1231 -16.682 -16.369 0.619 0.056 0.051 71.8
5037 -16.182 -15.986 1674 -15.534 -15.423 0.668 0.04 0.035 71.9
5531 -14.898 -14.771 1860 -14.446 -14.373 0.664 0.03 0.027 72.5
6401 -14.487 -14.452 1945 -14.187 -14.165 0.696 0.021 0.02 72.2
11369 -15.197 -15.096 1573 -14.598 -14.556 0.862 0.039 0.036 71.8
11411 -15.607 -15.43 1500 -14.718 -14.616 0.869 0.057 0.053 72.3
14339 -14.505 -14.392 2272 -13.988 -13.96 0.842 0.036 0.03 75.6
34359 -14.284 -14.218 2171 -13.719 -13.712 0.937 0.04 0.036 79.4
43341 -14.197 -14.09 2167 -13.654 -13.623 0.95 0.038 0.033 82.8
68377 -14.207 -14.14 2288 -13.669 -13.676 0.967 0.038 0.033 87.9
70731 -14.268 -14.154 2139 -13.874 -13.789 0.97 0.028 0.026 90
81463 -14.451 -14.39 2363 -13.949 -13.951 0.971 0.035 0.031 87.7
85477 -13.937 -13.931 1878 -13.535 -13.55 0.978 0.029 0.027 98.5
93183 -14.503 -14.429 1771 -13.997 -13.966 0.981 0.035 0.032 120.6
114741 -14.281 -14.194 2212 -13.747 -13.772 0.981 0.037 0.03 113.5
208333 -13.924 -13.883 2010 -13.564 -13.56 0.99 0.026 0.023 242.3
215351 -14.426 -14.378 1902 -13.771 -13.803 0.991 0.045 0.04 141.4

Table A.7. Summary of hybrid learning on Mushroom data.

174

A.4 Detailed Results from Hybrid Learning

BN Best PDG Relative Difference Time
sizeey L(Da) L(Dp) ES L(Da) L(Dp) sizeey L(Da) L(Dp) (seconds)
142 -18.342 -18.618 171 -18.5 -18.431 -0.204 -0.009 0.01 2924.5
312 -13.963 -14.181 480 -14.066 -13.96 -0.538 -0.007 0.016 1994.8
333 -13.853 -14.051 525 -13.943 -13.856 -0.577 -0.006 0.014 1870.1
335 -13.847 -14.047 538 -13.937 -13.848 -0.606 -0.006 0.014 1882.4
432 -13.735 -13.936 691 -13.821 -13.741 -0.6 -0.006 0.014 1888.2
448 -13.686 -13.885 762 -13.765 -13.68 -0.701 -0.006 0.015 1749.9
496 -13.678 -13.879 849 -13.756 -13.68 -0.712 -0.006 0.014 1762.1
504 -13.675 -13.874 857 -13.752 -13.677 -0.7 -0.006 0.014 1755.3

598 -13.671 -13.875 898 -13.744 -13.678 -0.502 -0.005 0.014 1726.4
624 -13.666 -13.868 8568 -13.741 -13.669 -0.375 -0.005 0.014 1694.2
636 -13.666 -13.869 876 -13.741 -13.669 -0.377 -0.005 0.014 1702.8
636 -13.666 -13.869 876 -13.741 -13.669 -0.377 -0.005 0.014 1696.7
646 -13.665 -13.869 904 -13.74 -13.669 -0.399 -0.005 0.014 1815.3
811 -13.665 -13.868 1246 -13.735 -13.672 -0.536 -0.005 0.014 1729.5

1632 -13.661 -13.871 2760 -13.716 -13.697 -0.691 -0.004 0.013 1710.2
1760 -13.657 -13.87 3215 -13.712 -13.69 -0.827 -0.004 0.013 1862.2
2862 -13.6564 -13.872 5391 -13.688 -13.717 -0.884 -0.002 0.011 1910.2
6330 -13.652 -13.876 13736 -13.672 -13.755 -1.17 -0.001 0.009 1815.6
6372 -13.649 -13.876 12482 -13.659 -13.775 -0.959 -0.001 0.007 1708.1
25233 -13.638 -13.896 85277 -13.6 -13.873 -2.38 0.003 0.002 1751.8

Table A.8. Summary of hybrid learning on Alarm data.

BN Best PDG Relative Difference Time
sizeeg L(Da) L(Dp) ES L(Da) L(Dp) sizeeg L(Da) L(Dp) (seconds)
1628 -71.678 -71.75 1957 -71.618 -71.698 -0.202 0.001 0.001 236.4
1933 -71.266 -71.349 2573 -71.244 -71.348 -0.331 0 0 227.7
2289 -71.04 -71.131 2752 -71.031 -71.151 -0.202 0 0 248.1
2361 -71.0563 -71.144 2867 -71.044 -71.183 -0.214 0 -0.001 265.2
2884 -70.917 -71.03 3508 -70.855 -71.033 -0.216 0.001 0 337.6
4070 -70.881 -71.008 4373 -70.824 -71.028 -0.074 0.001 0 259.8
4253 -70.876 -71.005 4646 -70.81 -71.029 -0.092 0.001 0 290.2
4622 -70.862 -70.997 = 4060 -70.81 -71.01 0.122 0.001 0 349.7
4639 -70.857 -71.002 4835 -70.793 -71.023 -0.042 0.001 0 274.5
4820 -70.842 -70.989 4778 -70.787 -71.027 0.009 0.001 -0.001 310.1
5226 -70.843 -70.993 5584 -70.822 -71.073 -0.069 0 -0.001 269.7
6776 -70.822 -70.991 5543 -70.766 -71.105 0.182 0.001 -0.002 440.4
7234 -70.832 -70.988 5144 -70.786 -71.071 0.289 0.001 -0.001 354.1
8472 -70.804 -70.976 5691 -70.761 -71.162 0.328 0.001 -0.003 339.8
38871 -70.8 -70.983 18351 -70.714 -72.133 0.528 0.001 -0.016 573.5

59098 -70.793 -70.988 32579 -70.75 -75.619 0.449 0.001 -0.065 4618.6

Table A.9. Summary of hybrid learning on Hailfinder data.

175

A Extended Test Results

BN Best PDG Relative Difference Time

sizeeg L(Da) L(Dp) ES L(Da) L(Dp) sizeeg L(Da) L(Dp) (seconds)
300 -21.222 -21.306 463 -21.22 -21.305 -0.543 0 0 1032.9
531 -21.138 -21.231 670 -21.096 -21.196 -0.262 0.002 0.002 951.1
780 -21.081 -21.19 858 -21.032 -21.161 -0.1 0.002 0.001 983.2
780 -21.104 -21.207 487 -21.097 -21.21 0.376 0 0 959.9
906 -20.967 -21.112 1301 -20.964 -21.111 -0.436 0 0 1018.8
1041 -20.973 -21.12 1163 -20.95 -21.106 -0.117 0.001 0.001 961.5
1296 -20.886 -21.068 1638 -20.879 -21.075 -0.264 0 0 1010.8
1458 -20.87 -21.074 1559 -20.856 -21.077 -0.069 0.001 0 1026.2
1602 -20.92 -21.1 1697 -20.873 -21.09 -0.059 0.002 0 1005.7
2772 -20.842 -21.059 3550 -20.758 -21.092 -0.281 0.004 -0.002 1028.5
3276 -20.876 -21.062 3048 -20.732 -21.077 0.07 0.007 -0.001 1040.7
4128 -20.806 -21.061 7473 -20.676 -21.14 -0.81 0.006 -0.004 1035.3
5220 -20.687 -21.051 9074 -20.564 -21.166 -0.738 0.006 -0.005 1121.1
6264 -20.627 -21.053 9714 -20.554 -21.12 -0.551 0.004 -0.003 1080.8
19116 -20.486 -21.111 14794 -20.447 -21.336 0.226 0.002 -0.011 1345.6

Table A.10. Summary of hybrid learning on NB10 data.

BN Best PDG Relative Difference Time

sizeeg L(Da) L(Dp) ES L(Da) L(Dp) sizeeg L(Da) L(Dp) (seconds)
179 -20.172 -20.17 224 -20.151 -20.155 -0.251 0.001 0.001 1028.3
275 -20.065 -20.09 403 -20.064 -20.088 -0.465 0 0 981.8
280 -20.078 -20.102 388 -20.062 -20.097 -0.386 0.001 0 944.3
391 -20.045 -20.077 580 -20.033 -20.073 -0.483 0.001 0 998.3
555 -20.013 -20.056 1184 -19.987 -20.048 -1.133 0.001 0 998.4
661 -19.995 -20.039 1387 -19.972 -20.031 -1.098 0.001 0 1009.1
661 -20.001 -20.041 1373 -19.967 -20.032 -1.077 0.002 0 990.4
934 -19.958 -20.027 1045 -19.938 -20.025 -0.119 0.001 0 1016.1
1000 -19.903 -20.01 1402 -19.903 -20.012 -0.402 0 0 990.1
1018 -19.93 -20.009 1236 -19.925 -20.012 -0.214 0 0 1017.7
1296 -19.895 -20.013 1425 -19.889 -20.01 -0.1 0 0 1012.1
2868 -19.88 -20.01 4771 -19.779 -20.044 -0.664 0.005 -0.002 1071.8
4320 -19.819 -19.991 4193 -19.81 -20.083 0.029 0 -0.005 1062.5
5952 -19.758 -20.004 7655 -19.605 -20.137 -0.286 0.008 -0.007 1078.7
6840 -19.618 -20.038 6662 -19.597 -20.093 0.026 0.001 -0.003 1065.9

Table A.11. Summary of hybrid learning on NB20 data.

176

A.4 Detailed Results from Hybrid Learning

BN Best PDG Relative Difference Time
sizeeg L(Da) L(Dp) ES L(Das) L(Dp) sizeeg L(Da) L(Dp) (seconds)
42 -16.229 -16.256 46 -16.229 -16.256 -0.095 0 0 1677.1
88 -15.345 -15.361 110 -15.33 -15.343 -0.25 0.001 0.001 681.8
103 -15.263 -15.274 114 -15.256 -15.276 -0.107 0 0 1131.9
130 -15.154 -15.16 123 -15.153 -15.167 0.054 0 0 1091
142 -15.157 -15.158 148 -15.129 -15.135 -0.042 0.002 0.002 1059.9
219 -14.991 -14.998 211 -14.991 -14.991 0.037 0 0 1056.2
231 -14.97 -14.977 263 -14.969 -14.968 -0.139 0 0.001 1001.8
261 -14.953 -14.968 258 -14.952 -14.961 0.011 0 0 1018.3
375 -14.901 -14.925 418 -14.9 -14.921 -0.115 0 0 955.3
657 -14.872 -14.913 577 -14.865 -14.908 0.122 0 0 956.5
1080 -14.837 -14.903 607 -14.833 -14.909 0.438 0 0 973.9
2958 -14.8 -14.913 1188 -14.789 -14.958 0.598 0.001 -0.003 993.9
16065 -14.735 -14.989 10741 -14.701 -15.348 0.331 0.002 -0.024 1169.8
99387 -14.518 -15.351 19509 -14.325 -16.329 0.804 0.013 -0.064 1937.9
135108 -14.617 -15.252 11169 -14.272 -17.672 0.917 0.024 -0.159 2148.3

205578 -14.433 -15.626 14358 -14.17 -16.664 0.93 0.018 -0.066 2127.4
271188 -14.636 -16.092 9885 -14.169 -16.718 0.964 0.032 -0.039 2240.7
944784 -14.485 -16.309 11956 -13.35 -20.409 0.987 0.078 -0.251 5996.7

Table A.12. Summary of hybrid learning on Rnd15 data.

BN Best PDG Relative Difference Time
sizeey L(Da) L(Dp) ES L(Da) L(Dp) sizeey L(Da) L(Dp) (seconds)
51 -20.977 -20.991 56 -20.977 -20.991 -0.098 0 0 2861.4
159 -18.837 -18.813 186 -18.791 -18.771 -0.17 0.002 0.002 1878.1
203 -18.646 -18.629 238 -18.565 -18.543 -0.172 0.004 0.005 1736
224 -18.58 -18.57 233 -18.515 -18.505 -0.04 0.003 0.004 1799.9
674 -18.079 -18.129 669 -18.077 -18.134 0.007 0 0 1691.8
772 -18.076 -18.131 627 -18.076 -18.136 0.188 0 0 1579.6
4332 -18.047 -18.136 1968 -18.014 -18.221 0.546 0.002 -0.005 1694.9
25488 -18.009 -18.156 11956 -17.969 -18.622 0.531 0.002 -0.026 1935.2
48564 -17.94 -18.241 12302 -17.912 -18.834 0.747 0.002 -0.033 2410
131328 -17.76 -18.505 20418 -17.709 -20.074 0.845 0.003 -0.085 3272.9
289008 -17.607 -18.772 31620 -17.164 -22.148 0.891 0.025 -0.18 4444
727056 -17.529 -19.678 26614 -16.649 -26.175 0.963 0.05 -0.33 9434.2

Table A.13. Summary of hybrid learning on Rnd20 data.

177

APPENDIX B

ON EXPECTATION WHEN SAMPLING
WITH REPLACEMENT

Let S be a set of NV distinct elements. Consider the experiment of sampling from S with
replacement, and let R be the size of a sample with replacement. Define the random variable
X on the sample space of the Nt different possible sequences of such samples:

X . Number of distinct elements in a sample of size R. (B.1)

Let new(K) be true if the K’th element drawn is an object not drawn before, and false

otherwise. We can define X(® recursively as:
X = XD 4 1(new(R)), (B.2)

where 1(+) is the indicator function, here assuming value 1 when the R’th draw results in
sampling an element we have not sampled before, and 0 otherwise.

Theorem B.1
The expected value of X js:

Iy (%) ey (B.3)

=1

Proof: We will prove the theorem by induction in R.

For R = 1 we only draw a single which will trivially always be distinct from every other
element drawn, and E[X)] =1 from .

Assume holds for R — 1. For R we can then write the expectation as:

E[XW] = B XD + E[1(new(R))]. (B.4)
By the induction hypothesis E[X =] is given by eq. (B.3), so we need to show that:

N 1>R_1. (B.5)

El(nen(r)] = (2

179

B On Ezxpectation when Sampling with Replacement

Let distinct(k, 1) be true if k distinct elements have been sampled in the first [draws and false
otherwise. We can then derive an expression for E[1(new(n))].

E[1(new(R))] = P(new(R))

R—-1
= P(new(R)|distinct(k, R — 1)) - P(distinct(k, R — 1))
k=1
R—1
N —k
= ——— - P(distinct(k, R — 1))
N
k=1
R—1 Rl
= P(distinct(k,R — 1)) — NP(distmct(k:, R-1))
k=1 k=1
1
=1- —E[X(ED
~B[X (]
R VA At
N« N
=1
R—1 _
_1_i (N_ll 1NR7271
o N NR-2
i=1
;| Bl '
-1 NR - (N 1)271NR7171
=1
1 R—1 ‘
_ R (NR—l o Z(N 1)7,—1NR—1—1>
i=1
From this it is clear that to show relation , it is sufficient to show that:
R—1 ‘ ‘
NEL_ N (N = 1) INF = (v - Rt (B.6)
i=1

We show by induction in R. For R =1 is satisfied. Assume is satisfied for
R — 1, for R we then get:

R—1 R—-1
NE-1_ Z(N _ 1)1‘71NR7@'71 — NBR-1_ yR-2 _ Z(N _ 1)i71NR7i71
=1 =2
R—2
o R—1 R—2 _ inTR—1—2
=N N > (N-1)'N
=1
NEB-1_ yR-2 B2
— (N _ 1) < ~ : _ (N 1)@—1NR—1—2
=1
NE-2(N —1) 2
_ (N 1) ((N(_ 1)) _ (N 1)2—1NR—2—2
i=1
= (N -1f!

180

The last equation is valid by the induction hypothesis and is therefore true for all R,
which then concludes our proof for theorem []

181

ApPPENDIX C

DANSK RESUME

Dette resumé er en direkte oversattelse af naerveerende athandling med den danske titel Om
Leerring Uden Opsyn af Probabilistiske Grafiske Modeller.

Probabilistiske grafiske modeller (PGM’er) er et matematisk begrebsramme til repraesen-
tation af feelles sandsynligheds fordelinger over en maengde tilfeeldige variable ,
M; Jensen, 2001; [Lauritzen, M; Pearl, M) PGM’er er blevet en standard tilgang til

repraesentation og handtering af usikkerhed i Kunstig Intelligens. Ogsa i de relaterede omrader

som Mgnster Genkendelse og Maskine Laering har PGM’er modtaget megen opmaerksomhed

og er blevet andvendt succesfuldt i talrige domaener (IBishODL |200d; |Mitchel]|, |1997|; |Duda et al.|,
200l

Nar PGM’er bliver indleert fra data (til forskel fra manuelt konstrueret), bruges der en
scoringsfunktion til at vurdere kvaliteten af modeller og derved diskriminere mellem alterna-
tiver. Indleerings proceduren velger sa fra de alternative modeller den model der er optimal
mht. scoringsfunktionen. Typiske scoringsfunktioner kombinerer en gevinst for praecision med
en straf for kompleksitet i en vaegtet sum. Generelt kalder vi sdidanne scoreringsfunktioner for
straffede sandsynligheds scoringsfunktioner, og de antager fglgende simple form:

S(M,D) = X\~ L(D|M) — (1 — \) - size(M), (C.1)

for PGM M, data D, sandsyndlighed L, og en afvejnings koefficient 0 < A < 1. Typisk vil an-
tallet af forskellige alternative modeller veere alt for stort til at kunne foretage en udtgmmende

sggning, og studier har vist at mange instancer af leerings opgaver for PGM’er er NP-sveere

(Chickering et all, m; thickering, M) Fglgelig er det passende og ofte ngdvendigt i

praksis at anvende heuristiske procedure.

Studiet som rapporteres i denne afhandling har veeret fokusret pa aspekter af indleering
af PGM’er fra data. I det fglgende vil vi kort diskutere de problemer vi behandler samt de
Igsninger vi foreslar.

En af de mest populeere typer PGM’er er den Bayesianske Netveerks (BN) model ,
M; Jensen, 2001)). Indleering af BN modeller har veeret genstand for megen opmearksomhed
og bade mere og mindre oplgftende resultater er fundet. Mens det er blevet bevist at problemet

183

C Dansk Resumé

at leere BN modeller som optimere er et NP-sveert problem (Chickering et al.|, |2004]), er
det samtidig blevet vist at procedure der genskaber den optimale BN model ofte er brughare
for mange relevante domaner (for eksempel SGS algoritmen (Spirtes et al. OOd) og GES

algoritmen (Chickering and Meek| 002 eek| 1997)). Disse laerrlngsprocedure stgtter sig

imidlertid til den steerke antagelse omkring en data genererende proces der udviser relationer

af uafhaengighed mellem de observerede variable som kan indkodes i den orienterede ikke
cykliske grafiske (eng. directed acyclic graph eller DAG) struktur i en BN model, mao. en
proces der er DAG-troveerdig. Denne antagelse er ofte urealistisk i anvendelser i den virkelige
verden (dvs. ikke syntetisk konstruerede eksempler), og kvaliteten af de laerte modeller kan
vaere meget afheengig af hvorvidt denne antagelse er tilfredsstillet. Derfor kan den praktiske
anvendelighed af sddanne procedure vaere begraenset.

I denne athandling foreslar vi en simpel generalisering af en gradig sgge procedure. Ved gen-
eraliseringed introduceres en parameter der muligggr en afvejning af gradighed for tilfeeldighed
i beslutnings strategien der guider sggningen. Ved at anvende flere genstarter sammen med
en stokastisk beslutnings strategi opretholder algoritmen den teoretiske optimalitet fra den
gradige sggning, og tilmed muligggr dette en bredere afsggning af sggerummet. Dette vil blive
vigtigt nar den steerke antagelse af DAG-trovaerdighed bliver brudt. I sddanne tilfelde kan
deterministisk sggning som gradig sggning vise sig at lede til en sub-optimal model mens en
multipel genstartet stokastisk sggning vil identificere flere lokalt optimale modeller.

I de fleste anvendelseomrader er en af hovedopgaverne for PGM’er at vaere en reprasenta-
tion som tillader effektive opdatering af marginale betingede sandsynligheder (eng. belief up-
dating). Ved opdatering af marginale betingede sandsynligheder forstis processen at beregne
alle marginale sandsynligheder for alle variable betinget af observatloner af en delmangde
af variable. For BN modeller er dette problem NP-svaert m .Ofte er det dog
muligt at finde BN modeller som bade udviser en handterbare beregnehghed og stadig har en
tilstreekkelig preecis repraesentation. Pa den anden side kan der nemt konstrueres eksempler
hvor enhver model som er mindre kompleks en den maksimalt komplekse model ikke vil vaere
i stand til at repraesentere fordelingen praecist 1,!aege1L m; Beygelzimer and Ris ,M)
Sadanne udfordrene eksempler konstrueres typisk ved at definere fordelinger som indeholder

kontekst-specifikke (u)afhengigheds (eng. context-specific (in)dependence eller CSI) relationer.
Eksistensen af CSI relationer som ikke er repraesenterbare af en BN model har motiveret ud-
viklingen af udvidelser til den originale BN model som effektivt kan repraesentere sddanne
fordelinger. Eksempler herpa er Baysian Multinets (BM) af |Geiger and Heckerman (lM),
Mixtures of Bayesian Networks (MBN) af Thiesson et al. (IMI) og Recursive Bayesian Multi-
nets (RBM) af [Pefia et al. M) Disse er alle variationer af den faelgende faelles arkitektur:

en kontekst er defineret af en distingiveret variabel eller maengde af distingiverede variable, og
betinget pa konteksten eksistere der sa en BN model over de resterende variable. I MBN’er
er konteksten defineret ved en ikke observeret latent variabel, og i RBM’er er konteksten de-
fineret ved en maengde observerede variable. Algoritmer for generelt at udfgre probabilistiske
slutninger (som opdatering af tro) i disse modeller kan drage fordel af CSI relationer indkodet

184

af modellen , men i sidste ende eksistere det generelle problem mht. beregning i BN modeller
stadig.

I denne athandling foreslar vi en procedure til leering af Probabilistike Beslutnings Graf
(eng. Probabilistic Decision Graph eller PDG) modeller. PDG sproget er en tilfgjelse til den
voksende mangde af PGM repraesentations sprog til diskrete faelles sandsynligheds fordelinger
,) PDG’er tilbyder bade en naturlig tilgang til indkodning af en vis klasse af CSI
relationer mellem de observerede variable og tilbyder ogsa effektiv beregning. En szerdeles
indbydende egenskab ved PDG sproget er at repraesentations strukturen ogsa udggr en primeer
stuktut til effektiv beregning af generel opdatering af marginale betingede sandsyndligheder.
Dette er vigtigt for leerringsprocedure nar de lserte modeller senere skal bruges til sddanne
opdateringer. I et sadant scenario kan vi umiddelbart adskille modeller mht. beregneligheds
kompleksitet ud fra den givne repraesentation. For mange andre relevante PGM sprog er det
ikke trivielt at udlede et meningsfuldt méal for kompleksitet af beregnelighed - i saerdeleshed
er dette tilfeeldet for BN modeller hvor bestemmelse af beregningskompleksitet involvere et

NP-komplet optimerings problem (Arnborg et all, [1987).

Det er ofte ngdvendigt at antage at data er komplet i den forstand at der ikke forekommer
latente (ikke observerede) variable der pavirker de observerede variable gennem ikke trivielle
interaktioner. Dette er dog ofte en meget steerk antagelse og kan veere inkonsistent med den
generelle forstaelse af domaenet som domaene eksperter matte have. Eksistensen af sddanne
latente variable kan give en data genererende proces som udviser en maengde relationer af
uathaengighed som ikke kan repraesenteres i DAG strukturen af BN modeller. Den eksplicitte
genskabelse af sadanne latente variable er en ambitigs opgave. Ikke desto mindre har mange
studier i den seneste tid efterfulgt en Igsning til problemer forbundet med lzring af latente
variable bade i en generel DAG struktureret BN model ,) og ogsa med focus pa
hierarkiske (tree) strukturer 1Karéiauska§, IMI) En trae-struktureret BN model som mod-
ellere alle observerede variable som betinget uafhaengige givet tilstanden af en enkelt latent

variabel (normalt benzvnt en Naiv Bayes (NB) model), er blevet studeret omfattende til prob-
abilistisk blgd klynge-inddeling (eng. clustering) af datapunkter (Duda et al),2001). Sadanne

modeller kan dog ogsd nemt og naturligt anvendes til generel beregning af probabilistiske

slutninger. Et forholdsvist nyt studie sammelignede BN of NB modeller og resultaterne faldt
ud til NB sprogets fordel mht. beregnings kompleksitet og preecisionen af repraesentationen

(Lowd and Domingoé, 2005]).

I denne afthandling udfgrer vi en komparativ analyse af forskellige PGM sprog, deres evne

til effektivt og praecist at repraesentere en tilnaermelse af en given sandsynlighedsfordeling og
vores evne til at laere sddanne modeller fra en endelig database. Sadanne analyser er ikke
nye, og we tilfgjer derfor blot vores resultater til resultater fra tilsvarende analyser foretaget
i tidligere studier s& som den komparative analyse af empiriske malinger af effektivitet og

preecision af BN og NB modeller af |[Lowd and Domingoé dﬂ)ﬂ_d) og det mere teoretiske studie

af udvalget af forskellige tilnsermelser som er mulige i BN modeller af [Beygelzimer and Ris

). I vores analyse anvender vi fgrst som analytisk veerktgj SL-kurver. SL-kurver viser en
karakteristik af et sprog ved at plotte effektivitet og preaecision af modeller fra sproget. Som

185

C Dansk Resumé

et mal for effektivitet bruger vi beregningskompleksitet hvilket er en teoretisk kvantitet, mens
vi for preecision bruger sandsyndligheden for den observerede database under antagelse af at
den givne model genererede databasen. Derneest udfgrer vi en empirisk analyse af effektivitet
ved brug af en af de bedste implementationer til beregning af probabilistiske slutninger. Vi
inkluderer her ogsé en sammenligning af empiriske malinger af praesision ved et gennemsnit
over tilfaeldigt genererede forespgrgsler. Vi inkludere PDG’er i vores komparative analyse, der
som sagt er et forholdsvist nyt PGM sprog.

Endelig, som et i nogen grad separat spor, foreslar vi en algoritme til konstruktion af en
PDG model fra et klike tree (eng. Clique Tree eller CT) repraesentation af fordelingen. Vi
kombinerer BN laerring og PDG laerring ved at konstruere en CT repraesentation of fordelingen
reprasenteret af BN modellen, og oversztter sa denne CT repraesentation til en aekvivalent
PDG model som s& bliver udsat for optimerings operationer der kan give en reprasentation
som er konkurrencedygtig med den originale BN model. Vi benavner denne tilgang “hybrid
leerring” af PDG modeller da den kombinere en laert BN model og dennes CT repraesentation

med laerring af en optimeret PDG reprassentation.

C.1 Oversigt over Afhandlingen

I Kapitel 2] giver vi en introduktion til relevant baggrunds materiale og notationelle kon-
ventioner der bliver brugt i den resterende del af afhandlingen. Kapitel Blintroducere formelt
de PGM repraesentations sprog som vi vil undersgge i den senere analyse. Vi inkludere en
diskussion af beregnings kompleksitet af generelle probabilistiske forespgrgsler ved for hvert
sprog at praesentere procedure til udfgrsel af eksakt opdatering af alle marginale sandsyn-
ligheder betinget pa observationer. T Kapitel 4] foreslar vi procedure til leerring af modeller
fra data for hvert af de tidligere praesenterede PGM sprog. Kapitel Blindeholder en beskrivelse
af eksperimenter omkring leerring af PGM’er fra data, og vi udfgrer baden en teoretisk og em-
pirisk komparativ analyse af PGM sprogene mht. de foreslaede leerrings procedure. Yderligere
indeholder Kapitel Bl en analyse af hybrid leerring af PDG modeller. Endelig, i Kapitel 6] op-
sumere vi de vigtige observationer som blev gjort gennem den komparative analyse, og vi
diskutere hvilke konklusioner der kan drages pa baggrund af det studie som rapporteres i
denne afhandling.

186

	Preface
	Introduction
	Outline of The Dissertation

	Preliminaries and Notation
	Probability theory
	Random Variables
	Conditional Distributions
	Independence
	Sampled Data and likelihood

	Graphical Concepts

	Probabilistic Graphical Models
	Inference Tasks
	Bayesian Network Models
	The Bayesian Network Dependency Model
	BN Model Equivalence and Inclusion
	Inference
	Representation and Effective Size

	Probabilistic Decision Graphs
	The PDG Dependency Model
	Inference
	Representation and Effective Size

	The Naïve Bayes Model
	The Naïve Bayes dependency model
	Inference
	Representation and Effective Size

	Related Work

	Learning Probabilistic Graphical Models
	Selecting Models and Comparing Languages
	Accuracy and Efficiency
	SL-Curves
	Related Methodologies

	Parameter Estimation
	Learning Bayesian Network Models
	Selecting Optimal BN Models
	Greedy and k-greedy Model Selection
	Implementation
	Testing the BN Learning Procedure
	Related Work

	Learning Naïve Bayes Models
	Estimating Parameters from Incomplete Data: The EM-Algorithm
	Learning the Cardinality of the Latent Component Variable
	Related Work

	Learning Probabilistic Decision Graph Models
	Structural Learning in PDGs
	Testing the PDG Learner
	Related Work

	Combining BN and PDG Learning: A Hybrid Learning Approach
	Related Work

	Comparative Analysis
	Methodology and Experimental Setting
	Empirical Accuracy and Efficiency
	General Experimental Setup

	Learning from Synthetic Data
	Learning from BN Generated Data
	Learning from NB Generated Data
	Learning from PDG Generated Data
	Discussion of Results

	Learning from Real Data
	Discussion of Results

	Empirical Analyses
	Discussion of Results
	Related Work

	The Hybrid Learning Approach
	Discussion of Results

	Conclusion
	List of Symbols
	Bibliography
	Extended Test Results
	SL-Curves for Learning from Synthetic Data
	SL-Curves for Learning from Real Data
	Analyses of Empirical Efficiency and Accuracy
	Detailed Results from Hybrid Learning

	On Expectation when Sampling with Replacement
	Dansk Resumé
	Oversigt over Afhandlingen

