
On Unsupervised Learning ofProbabilisti
 Graphi
al Models
Jens Dalgaard NielsenDepartment of Computer S
ien
eAalborg UniversityDenmarkdalgaard�
s.aau.dk

July 2, 2007





Prefa
e
This dissertation is the result of my Ph.D. study at the Department of Computer S
ien
eat Aalborg University Denmark, from August 2003 to November 2006. The study has beenfo
used on the development of algorithms for automati
 learning of probabilisti
 graphi
almodels from data. Spe
i�
ally, I have fo
used on algorithms for learning Bayesian Networkmodels, Probabilisti
 De
ision Graph models and Naïve Bayes models. I report on experimentsof learning models both from real and syntheti
 data. I perform a 
omparative analysis ofthe three languages and their performan
e w.r.t. 
omputational e�
ien
y and a

ura
y of theapproximations o�ered.

A
knowledgementsDuring my study I have re
eived the ne
essary �nan
ial funding from Ph.D. stipend No.562/06�16�23603 granted to me by the Fa
ulty of Te
hnology and Engineering S
ien
es atAalborg University.This dissertation is the result of many di�erent 
ollaborations, and I 
ould never havea
hieved the results reported here without the support and help that I have been very fortunateto re
eive.First and foremost, I wish to thank my adviser Manfred Jaeger who always gave me veryen
ouraging and extremely 
ompetent advise. I have bene�ted greatly from his numerous
onstru
tive and always very honest 
omments on my work. He made it possible for me toget my work published, and he taught me how to present 
omplex material in the 
ondensedform of a resear
h paper. For his thorough reviews of preliminary versions of this dissertation� whi
h he did in his spare time � I am espe
ially thankful.I wish to thank Jose M. Peña and Tomá² Ko£ka for the fruitful 
ollaboration we had atthe De
ision Support Systems group at Aalborg University. This 
ollaboration resulted in my�rst publi
ation, a publi
ation that would never have been possible without the insight andideas Jose and Tomá² shared with me. They both were always willing to help me understandmany di�
ult issues 
on
erning learning of Bayesian Network models, whi
h was a new topi
for me.I would like to thank Tomi Silander for the 
ollaborations we have had. Even though weonly 
ommuni
ated through email, the 
ollaboration resulted in two publi
ations. I still hopeto see you fa
e to fa
e one day.Finn Verner Jensen was supportive and en
ouraging during my study. I espe
ially thankhim for hiring me for the position of resear
h assistant and, thereby, providing me with aperfe
t opportunity to get a taste of resear
h before de
iding on whether to apply for a PhD.stipend.From Mar
h to August 2005, I spend 5 month as a visiting s
holar at the AutonLab,Carnegie Mellon University in Pittsburgh (PA) USA. I wish to thank Andrew W. Moore forour many inspiring dis
ussions and for his very enthusiasti
 and en
ouraging attitude towardsmy work and my ideas. I wish to thank all the brilliant members of the AutonLab for making



me feel as a member of your little family right away. I wish to thank all of my Pittsburghfriends who made my stay extremely enjoyable � I never felt alone in the Steel City.I wish to thank the very 
ompetent group of se
retaries at the Department of ComputerS
ien
e at Aalborg University. They made my daily en
ounters with the university bureau-
ra
y mu
h less painful.Also, I wish to thank all the people in the Ma
hine Intelligen
e group at the Department ofComputer S
ien
e, Aalborg University for making my time there so enjoyable, in parti
ular myo�
e-mate Søren Holbe
h Nielsen with whom I had numerous weird dis
ussions on random
urrent events. I espe
ially liked our white-board-pillory, where we would hold any person(famous or not) up to ridi
ule if he/she so deserved.I thank the members of my 
ommittee Marek Druzdzel, Antonio Salmerón and Thomas D.Nielsen for valuable review 
omments on the �rst version of this dissertation. The 
ommentswere very useful in my preparation of this �nal version.Finally, I wish to thank my friends and family for showing me sin
ere and loving supportat all times � and espe
ially when I needed it most in the last stages of the writing pro
ess.Jens Dalgaard NielsenAlmería, July 2, 2007

ii



Contents

Prefa
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i1 Introdu
tion 11.1 Outline of The Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Preliminaries and Notation 52.1 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.2 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.3 Independen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1.4 Sampled Data and likelihood . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Graphi
al Con
epts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Probabilisti
 Graphi
al Models 133.1 Inferen
e Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2 Bayesian Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2.1 The Bayesian Network Dependen
y Model . . . . . . . . . . . . . . . . . 153.2.2 BN Model Equivalen
e and In
lusion . . . . . . . . . . . . . . . . . . . . 193.2.3 Inferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.4 Representation and E�e
tive Size . . . . . . . . . . . . . . . . . . . . . . 273.3 Probabilisti
 De
ision Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.3.1 The PDG Dependen
y Model . . . . . . . . . . . . . . . . . . . . . . . . 353.3.2 Inferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.3 Representation and E�e
tive Size . . . . . . . . . . . . . . . . . . . . . . 413.4 The Naïve Bayes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.4.1 The Naïve Bayes dependen
y model . . . . . . . . . . . . . . . . . . . . 453.4.2 Inferen
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.3 Representation and E�e
tive Size . . . . . . . . . . . . . . . . . . . . . . 463.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46iii



CONTENTS
4 Learning Probabilisti
 Graphi
al Models 494.1 Sele
ting Models and Comparing Languages . . . . . . . . . . . . . . . . . . . . 494.1.1 A

ura
y and E�
ien
y . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.1.2 SL-Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.1.3 Related Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3 Learning Bayesian Network Models . . . . . . . . . . . . . . . . . . . . . . . . . 574.3.1 Sele
ting Optimal BN Models . . . . . . . . . . . . . . . . . . . . . . . . 584.3.2 Greedy and k-greedy Model Sele
tion . . . . . . . . . . . . . . . . . . . 604.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.3.4 Testing the BN Learning Pro
edure . . . . . . . . . . . . . . . . . . . . 694.3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.4 Learning Naïve Bayes Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.4.1 Estimating Parameters from In
omplete Data: The EM-Algorithm . . . 784.4.2 Learning the Cardinality of the Latent Component Variable . . . . . . . 794.4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.5 Learning Probabilisti
 De
ision Graph Models . . . . . . . . . . . . . . . . . . . 814.5.1 Stru
tural Learning in PDGs . . . . . . . . . . . . . . . . . . . . . . . . 824.5.2 Testing the PDG Learner . . . . . . . . . . . . . . . . . . . . . . . . . . 934.5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014.6 Combining BN and PDG Learning: A Hybrid Learning Approa
h . . . . . . . . 1024.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 Comparative Analysis 1095.1 Methodology and Experimental Setting . . . . . . . . . . . . . . . . . . . . . . 1095.1.1 Empiri
al A

ura
y and E�
ien
y . . . . . . . . . . . . . . . . . . . . . 1105.1.2 General Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 1115.2 Learning from Syntheti
 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125.2.1 Learning from BN Generated Data . . . . . . . . . . . . . . . . . . . . . 1125.2.2 Learning from NB Generated Data . . . . . . . . . . . . . . . . . . . . . 1135.2.3 Learning from PDG Generated Data . . . . . . . . . . . . . . . . . . . . 1165.2.4 Dis
ussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.3 Learning from Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215.3.1 Dis
ussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225.4 Empiri
al Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285.4.1 Dis
ussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285.4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.5 The Hybrid Learning Approa
h . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.5.1 Dis
ussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346 Con
lusion 141List of Symbols 145iv



CONTENTS
Bibliography 147A Extended Test Results 155A.1 SL-Curves for Learning from Syntheti
 Data . . . . . . . . . . . . . . . . . . . . 155A.2 SL-Curves for Learning from Real Data . . . . . . . . . . . . . . . . . . . . . . 161A.3 Analyses of Empiri
al E�
ien
y and A

ura
y . . . . . . . . . . . . . . . . . . . 166A.4 Detailed Results from Hybrid Learning . . . . . . . . . . . . . . . . . . . . . . . 171B On Expe
tation when Sampling with Repla
ement 179C Dansk Resumé 183C.1 Oversigt over Afhandlingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

v





Chapter 1
Introdu
tion

Probabilisti
 graphi
al models (PGMs) is a mathemati
al framework for representing jointprobability distributions over sets of random variables (Cowell et al., 1999; Jensen, 2001;Lauritzen, 1996; Pearl, 1988). PGMs have be
ome a standard approa
h for representationand handling of un
ertainty in the �eld of Arti�
ial Intelligen
e. Also in the related �elds ofPattern Re
ognition and Ma
hine Learning, PGMs have re
eived a lot of attention and havebeen applied with su

ess in numerous domains (Bishop, 2006; Mit
hell, 1997; Duda et al.,2001).When PGMs are learnt from data (as opposed to being manually 
onstru
ted), some s
orefun
tion is used to assess the quality of models and, thereby, dis
riminate between alternatives.The learning pro
edure then sele
ts from amongst alternative models the one that is optimalw.r.t. the s
ore fun
tion. A typi
al s
ore-fun
tion 
ombine in a weighted sum a reward fora

ura
y (
omputed w.r.t. a database) and a penalty for 
omplexity. In general, we 
all su
hs
ore-fun
tions for penalised likelihood s
ores, and they take the following simple form:
S(M,D) = λ · L(D|M)− (1− λ) · size(M), (1.1)for PGM M , data D, likelihood L, and some trade-o� 
oe�
ient 0 < λ < 1. Typi
ally, thenumber of di�erent alternative models is mu
h too big to allow exhaustive sear
h, and studieshave shown that many instan
es of learning tasks for PGMs are NP-hard (Chi
kering et al.,2004; Chi
kering, 1996). Consequently, heuristi
 pro
edures are appropriate and often ne
es-sary in pra
tise.The study reported in this dissertation has fo
used on aspe
ts of learning PGMs from data.In the following, we will brie�y dis
uss the problems addressed and the solutions proposed.

One of the most popular types of PGMs is the Bayesian Network (BN) (Pearl, 1988; Jensen,2001). The learning of BN models has re
eived mu
h attention and both dis
ouraging anden
ouraging results have been found. While it has been proved that the problem of learningBN models that optimise (1.1) is NP-hard (Chi
kering et al., 2004), learning pro
edures thatre
over the optimal BN models have been shown to be tra
table for many relevant domains(the SGS algorithm (Spirtes et al., 2000) and the GES algorithm (Chi
kering and Meek, 2002;1



1 Introdu
tion
Meek, 1997)). These learning pro
edures, however, rely on the strong assumption that thedata generating pro
ess that exhibits independen
e relations between the observed variablesthat 
an be en
oded in the dire
ted a
y
li
 graph (DAG) stru
ture of the BN model, thatis, the pro
ess exhibits DAG faithfulness. This assumption is often unrealisti
 in real worldappli
ations, and the quality of the models that are learnt may be very dependent on thisassumption being satis�ed. Therefore, the pra
ti
al appli
ability of su
h learning pro
eduresmay be limited.In this dissertation we propose a simple generalisation of a greedy sear
h pro
edure. Thegeneralisation introdu
es a parameter for trading o� greediness for randomness in the de
ision-rule guiding the sear
h. By employing multiple restarts in 
onne
tion with sto
hasti
 de
isionrule, the algorithm maintains the theoreti
al optimality of greedy sear
h, and, in addition, itallows a broader exploration of the sear
h spa
e. This is important when the strong assumptionof a DAG faithful generative distribution is violated. In this 
ase, the deterministi
 sear
himplemented by a greedy de
ision rule may lead to a suboptimal model while a multiple restartsto
hasti
 sear
h will identify multiple lo
al optimal models.

In most appli
ation areas, one of the main tasks for PGMs is to provide a representationthat allows for e�
ient belief updating. By belief updating we understand the pro
ess of 
om-puting all posterior marginal probability distributions for all variables in the domain givenobservations of a subset of variables. For BN models this task is NP-hard (Cooper, 1987).Often, however, it is possible to obtain a 
omputationally tra
table BN model that still of-fers a su�
iently a

urate approximation. On the other hand, example distributions 
an be
onstru
ted where any model less 
omplex than the maximally 
omplex model will be un-able to approximate the distribution a

urately (Jaeger, 2004; Beygelzimer and Rish, 2003).Su
h 
hallenging examples are 
onstru
ted by de�ning distributions that 
ontains 
ontext-spe
i�
 (in)dependen
e (CSI) relations, also sometimes 
alled asymmetri
 (in)dependen
ies.The existen
e of CSI relations not representable by the BN model has motivated the develop-ment of extensions to the BN model that are able to e�
iently represent su
h distributions.Examples in
lude the Bayesian Multinets (BM) by Geiger and He
kerman (1996), Mixturesof Bayesian Networks (MBN) by Thiesson et al. (1997) and Re
ursive Bayesian Multinets(RBM) by Peña et al. (2002). These are all variations of the following 
ommon ar
hite
ture:a 
ontext is de�ned by a (set of) distinguished variable(s), and 
onditioned on the 
ontext, aBN representation over the remaining variables is sele
ted. For MBNs the 
ontext is de�nedby a non-observed latent variable, and for RBMs the 
ontext is de�ned by a set of observedvariables. Inferen
e algorithms in these models 
an bene�t from the CSI relations en
oded bythe model, but ultimately the inferen
e 
omplexity of BN models persists.In this dissertation we propose a pro
edure for learning of Probabilisti
 De
ision Graph(PDG) models. The PDG language is a re
ent addition to the growing set of PGM represen-tation language for dis
rete joint probability distributions (Jaeger, 2004). PDGs o�er botha natural en
oding of a 
ertain 
lass of CSI relations between the observable variables andalso o�ers e�
ient belief updating in the presen
e of eviden
e. One parti
ularly wel
omingproperty of the PDG language is that the representation stru
ture is itself a primary stru
ture2



for e�
ient 
omputations of general belief updating. This is important for learning pro
edureswhen the learnt models are expe
ted to o�er e�
ient belief updating. In this s
enario, we 
anthen readily dis
riminate between models w.r.t. 
omputational 
omplexity of belief updatingfrom the given representation. Retrieving a meaningful measure of 
omputational 
omplexityis troublesome for many other relevant PGM languages � in parti
ular for BN models, wheredetermining the 
omputational 
omplexity of a model involves an NP-
omplete optimisationproblem (Arnborg et al., 1987).
It is often ne
essary to assume data to be 
omplete in the sense that no latent (non-observed) variables in�uen
es the observed variables through non-trivial intera
tions. How-ever, this is often a very strong assumption and may not be 
onsistent with the understandingprovided by domain experts. The existen
e of su
h latent variables may yield a data gener-ating pro
ess that exhibits a set of independen
e relations that is not representable by theDAG stru
ture of BN models. Re
overing the existen
e of su
h latent variables expli
itly isan ambitious task. Nevertheless, many re
ent studies have pursued a solution to the prob-lem of learning latent variables both in a general DAG stru
tured BN model (Elidan, 2004)and when fo
using on hierar
hi
al (tree) stru
tures (Kar£iauskas, 2005). A tree-stru
turedBN model that models all observed variables 
onditionally independent given the state of asingle latent variable (usually denoted a Naïve Bayes (NB) model), is well studied for prob-abilisti
 soft 
lustering of data instan
es (Duda et al., 2001). However, su
h models 
an alsojust as easy and naturally be used for general 
omputation of probabilisti
 inferen
e tasks.Re
ent studies have shown en
ouraging results favouring the NB model when 
omparing NBto BN models w.r.t. 
omputational 
omplexity and a

ura
y of the approximation o�ered(Lowd and Domingos, 2005).In this dissertation we perform a 
omparative analyses of di�erent PGM languages, theirability to e�
iently and a

urately approximate distributions and our ability to learn su
happroximations from a �nite data sample. Su
h analyses are not new, and we therefore aug-ment the analyses performed in previous studies su
h as the 
omparative analyses of empiri
almeasurements of e�
ien
y and a

ura
y of BN and NB models by Lowd and Domingos (2005)and the more theoreti
al study of the range of di�erent approximations o�ered by BN modelsby Beygelzimer and Rish (2003). First, in our analysis we employ the analyti
al tool of SL-
urves. SL-
urves show language 
hara
teristi
s by plotting e�
ien
y and a

ura
y of modelsfrom the language. For e�
ien
y we use a measure of 
omputational 
omplexity whi
h is,therefore, a theoreti
al quantity, while for a

ura
y we use the likelihood of the data given themodel. Se
ond, we perform an empiri
al analysis of 
omputational e�
ien
y using implemen-tations of state-of-the-art algorithms for probabilisti
 inferen
e. We also in
lude a 
omparisonof a

ura
y measured empiri
ally by averaging over randomly generated queries. Third, wein
lude the novel PGM language of PDGs in the 
omparative analyses.Finally, as a somewhat separate issue, we propose an algorithm that 
onstru
ts a PDGmodel from a Clique Tree (CT) representation of a distribution. We 
ombine BN learning andPDG learning by 
onstru
ting a CT representation of the distribution represented by the BN3
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model, then translating this CT into an equivalent PDG model that is then exposed to opti-misation operations that may yield a representation that is 
ompetitive with the original BNmodel. We denote this approa
h �hybrid learning� of PDG models as it 
ombines a learnt BNmodel and its CT representation with learning a re�ned and optimised PDG representation.
1.1 Outline of The Dissertation

In Chapter 2 we give an introdu
tion to relevant ba
kground 
on
epts and basi
 notational
onventions used in the remainder of this dissertation. Chapter 3 introdu
es formally the PGMrepresentation languages that we investigate in the later analysis. We in
lude dis
ussions on
omputational 
omplexity of general probabilisti
 inferen
e by presenting for ea
h languagepro
edures for performing exa
t belief updating. In Chapter 4, we propose pro
edures forlearning models from data for ea
h of the PGM languages presented earlier. Chapter 5 
ontainsa des
ription of experiments on learning PGMs from data, and we perform both theoreti
al andempiri
al 
omparative analyses of the PGM languages using the proposed learning pro
edures.In addition, Chapter 5 
ontains an analysis of hybrid learning of PDG models.Finally, inChapter 6 we summarise important observations made from the 
omparative analyses anddis
uss the 
on
lusions that 
an be drawn from the study reported in this dissertation.

4



Chapter 2
Preliminaries and Notation

2.1 Probability theory
In this se
tion we introdu
e probability theory as a framework for handling un
ertainty. Wewill limit this introdu
tion to 
on
epts that are of parti
ular relevan
e to the study reportedin this thesis. For a 
omplete formal introdu
tion to the �eld of probability theory, the readermay 
onsult the books of DeGroot (1986) and Billingsley (1986). Also Hájek (2003) and thereferen
es found there should be mentioned as an ex
ellent review of di�erent interpretationsof probability theory.Let Ω be an arbitrary set where ea
h element ω ∈ Ω represents a possible state of nature.An event is a subset of Ω, and an event spa
e R w.r.t. Ω is a non-empty set of eventsin
luding Ω that is 
losed under the operations of 
omplement and �nite union, and thereforealso 
losed under �nite interse
tion as A ∩B = A ∪B. In measure theory, the pair 〈Ω,R〉 is
alled a measurable spa
e. A real-valued fun
tion P on R is a probability measure on Ω when

P satis�es the basi
 axioms of probability (Kolmogorov, 1950):Axiom 2.1 (Non-negativity)
P (E) ≥ 0, for all E ∈ R.Axiom 2.2 (Normalisation)
P (Ω) = 1.Axiom 2.3 (Finite additivity)For any sequen
e of disjoints E1, E2, . . . , En ∈ R

P (∪n
i=1Ei) =

n
∑

i=1

P (Ei). (2.1)
From these axioms it follows that P (E) = 1 − P (Ω \ E), P (∅) = 0 and P (E) ≤ 1 for all

E ∈ R. 5



2 Preliminaries and Notation
The triple 〈Ω,R, P 〉 is 
alled a probability spa
e. We usually think of the probability ofevent E (denoted P (E)) as the likelihood that E will o

ur, where E o

urs if the 
urrentstate of nature ω ∈ Ω is in
luded in E.
Ω is sometimes viewed as the set of all possible out
omes of some experiment. Some s
hoolsof probability theory (e.g., frequentists) requires experiments to be (in prin
iple) repeatablein order to assign a probability measure to an event spa
e. The probability of an event E isthen de�ned as the limiting relative frequen
y with whi
h E o

urs:

P (E) := lim
n→∞

NE

N
, (2.2)where N is the number of times the experiment has been performed and NE is the number oftimes E has o

urred. From this de�nition, a probability P (E) is an obje
tive measure.Other s
hools of probability theory (e.g., Bayesians) do not require experiments to berepeatable in order to talk about probabilities of events. For instan
e, when we talk aboutthe probability of our lo
al so

er 
lub winning the national league this year, we are notable to establish this number by repeated experiments. Instead, we have to 
ome up withsome number that sounds �right� to us, so this will be a subje
tive measure. Proponents ofsubje
tive probabilities usually term a persons subje
tive probability as this persons belief.Your belief in some event E 
an be determined by having you set a pri
e of a bet of 1 � onwhether E o

urs or not. You must set the pri
e x while not knowing whether you will haveto sell or buy the bet. That is, if I de
ide to buy the bet from you for the pri
e of x �, you willhave to pay me 1 � in the 
ase that E o

urs, and otherwise pay me nothing (and, thereby,earn the x �). The value of x for whi
h you are indi�erent of whether to buy or sell the betis your belief in E. When x is sele
ted su
h that one is not expose to 
ertain loss againsta prudent opponent with the same prior knowledge, beliefs will satisfy Axiom s2.1-2.3, see(Bernardo and Smith, 1994; Skyrms, 1984).

2.1.1 Random VariablesGiven a probability spa
e 〈Ω,R, P 〉, a dis
rete random variable X is a mapping:
X : Ω→ R(X), (2.3)where R(X) is a �nite set of states. When X is de�ned w.r.t. probability spa
e 〈Ω,R, P 〉, werequire for ea
h x ∈ R(X), {ω ∈ Ω : X(ω) = x} ∈ R, and de�ne the probability of dis
reterandom variable X being in state x as:

P (X = x) := P ({ω ∈ Ω : X(ω) = x}). (2.4)We denote by P (X) the probability distribution or probability mass fun
tion of variable X,whi
h is then a fun
tion on R(X).From the basi
 axioms of probability, it follows that P (X) satis�es:1. 0 ≤ P (X = x) ≤ 1 for all x ∈ R(X), and2. ∑x∈R(X) P (X = x) = 1. 6



2.1 Probability theory
Let X = {X1, X2, . . . , Xn} be a set of dis
rete random variables w.r.t. probability spa
e

〈Ω,R, P 〉. X then de�nes a mapping from Ω to R(X), where R(X) = ×Xi∈XR(Xi):
X : Ω→ R(X). (2.5)As R is 
losed under �nite interse
tion, it follows that {ω ∈ Ω : X(ω) = x} ∈ R for any

x ∈ R(X). We 
an de�ne the joint probability of X being in joint state x as:
P (X = x) := P ({ω : ω ∈ Ω,X(ω) = x}). (2.6)We will use the notation P (X) to refer to the joint probability distribution of random variables

X whi
h is then a fun
tion on R(X).From the basi
 axioms of probability, it follows that P (X) satis�es:1. 0 ≤ P (X = x) ≤ 1 for all x ∈ R(X), and2. ∑x∈R(X) P (X = x) = 1.A set of random variables X is therefore equivalent to a single random variable with statespa
e R(X).Let X be a set of random variables, Y ⊆ X, and x ∈ R(X). Then we denote by x[Y] theproje
tion of x onto variables Y. Let X = {X1, . . . , Xn} be a set of dis
rete random variables,and let P (X) be a distribution for X. We 
an derive the marginal distribution for a subset
Y ⊂ X by marginalisation, whi
h amounts to summing over all joint states of R(X \Y):

P (Y = y) =
∑

x:x∈R(X)and x[Y]=y

P (X = x). (2.7)
2.1.2 Conditional DistributionsLet X be a set of random variables w.r.t. probability spa
e 〈Ω,R, P 〉, and let A be a partitionof Ω into the k 
olle
tively exhaustive and mutually ex
lusive sets {A1, A2, . . . , Ak} where
Al ∈ R for 1 ≤ l ≤ k. We 
an 
onstru
t the joint 
onditional probability or joint posteriorprobability of X being in joint state x given some Al (1 ≤ l ≤ k), as:

P (X = x|Al) =
P (Al ∩ {ω ∈ Ω : X(ω) = x})

P (Al)
. (2.8)As R is 
losed under interse
tion it is 
lear that Al ∩ {ω ∈ Ω : X(ω) = x} ∈ R, and therefore

P is de�ned on the interse
tion. However, equation (2.8) requires the denominator P (Al)to be non-zero for P (X = x|Al) to be de�ned, and we will leave the 
onditional probabilityunde�ned when the 
ondition Al has zero probability1.We denote by P (X|A ) the joint 
onditional distribution of X given partition A whi
h isa fun
tion on R(X)×A .1While intuitively it may not make mu
h sense to allow 
onditioning on the impossible event (that is, apartitions of zero probability), it is allowed within 
ertain formalisations of probability theory su
h as that ofDe Finetti. 7



2 Preliminaries and Notation
There are several ways that one 
an de�ne a partitioning of Ω. Given set a of variables X,we 
an de�ne a partition A in terms of R(X). That is, a partitioning R = {R0, . . . , Rk} of

R(X) immediately de�nes the partitioning A = {A0, . . . , Ak} of Ω: Ai = {ω ∈ Ω : X(ω) =

x and x ∈ Ri}. Then we get a spe
ial 
ase of eq. (2.8):
P (X = x|Al) =







P (X=x)
P

x′∈Rl
P (X=x′) if x ∈ Rl,

0 otherwise. (2.9)
A partitioning that is often used is the one indu
ed by a subset of variables Z ⊆ X, su
h thatevery joint state zl ∈ R(Z) indu
es Al = {ω ∈ Ω : Z(ω) = zl}. Then we get yet anotherspe
ial 
ase of eq. (2.8):

P (X = x|Al) =

{

P (X=x)
P (Z=zl)

if x[Z] = zl,
0 otherwise. (2.10)

We will denote by P (X|Z) the joint 
onditional distribution of X given the partition of Ωindu
ed by Z, whi
h is then a fun
tion on R(X)×R(Z).By suitable marginalisation and re
ursive appli
ation of (2.10) one 
an 
onstru
t the fol-lowing fa
torisation of a joint distribution P (X) over a set of variables X:
P (X) =

n
∏

i=1

P (Xi|Xi+1, . . . , Xn). (2.11)
2.1.3 Independen
eLet X be a set of random variables de�ned on probability spa
e 〈Ω,R, P 〉. We say thatdisjoint subset of random variables W,Y ⊂ X are marginally independent under P i�:

∀w ∈ R(W), ∀y ∈ R(Y) : P (W = w,Y = y) = P (W = w)P (Y = y), (2.12)and we will use notation W⊥⊥Y[P ] to denote this relation.Let A = {A1, . . . , Ak} be a partition of Ω. We then say that W and Y are 
onditionallyindependent given A under P i�:
∀w ∈ R(W), ∀y ∈ R(Y), ∀Al ∈ A :

P (W = w,Y = y|Al) = P (W = w|Al)P (Y = y|Al). (2.13)We will use Y ⊥⊥W|A [P ] to denote this relation. Marginal independen
e is just a spe
ial
ase of 
onditional independen
e where the 
onditioning partition is the trivial partitioning
A = {Ω}.When the partitioning of Ω is indu
ed by a subset of variables Z disjoint from Y and W,we will write Y⊥⊥W|Z[P ] to denote that Y and W are 
onditionally independent given thestate of Z under joint distribution P . Equation (2.13) 
an then be rewritten as:8



2.1 Probability theory
∀w ∈ R(W), ∀y ∈ R(Y), ∀z ∈ R(Z) :

P (W = w,Y = y|Z = z) = P (W = w|Z = z)P (Y = y|Z = z). (2.14)We allow the 
onditioning set Z of variables to be empty, but using the notation Y ⊥⊥

W|∅[P ] is 
onfusing as P (∅) = 0, and (2.14) would not be de�ned. However, Z = ∅ generatesthe trivial partitioning A = {Ω}, and instead of Y⊥⊥W|∅[P ] we understand Y⊥⊥W|Z[P ] as
Y⊥⊥W[P ] when Z = ∅.If Y ⊥⊥W[P ] (respe
tably Y ⊥⊥W|Z[P ]) is not true, we write Y 6⊥⊥W|P (respe
tively
Y 6⊥⊥W|Z[P ]).De�nition 2.1 (Dependen
y Model)A statement of 
onditional independen
e is an expression of the form Y⊥⊥W|A . Let 〈Ω,R〉be measurable spa
e, and let X be a set of random variables de�ned on Ω. A dependen
ymodel over X is a rule that assigns a truth value to all statements of 
onditional independen
eof the form:

Y⊥⊥W|A ,where Y and W are disjoint non-empty subsets of X and A is any partitioning of Ω from a
ertain 
lass A of partitionings.Example 2.1Consider a probability spa
e 〈Ω,R, P 〉. Probability measure P en
odes a dependen
y modelover any set of variables X de�ned on Ω as any statement Y⊥⊥W|A [P ] 
an be veri�ed byinspe
ting relation (2.13) under P .Example 2.2Consider a measurable spa
e 〈Ω,R〉. One 
lass A of partitionings all those partitionings thatpartition Ω into measurable partitions A = {A1, . . . , Al}, that is Al ∈ R for any 1 ≤ l ≤ l.This is the least restri
tive 
lass of partitionings. Another 
lass of partitionings arises froma set variables X de�ned on Ω. A 
lass AX of partitionings of Ω is generated from allpossible partitionings R = {R0, . . . , Rk} of R(X). Here, partitioning R immediately de�nesthe partitioning A = {A0, . . . , Ak} of Ω: Ai = {ω ∈ Ω : X(ω) = x and x ∈ Ri}. A very
ommon 
lass of partitionings is the sub
lass of AX that is generated by any proper subset
Z ⊂ X.Given two partitionings B and C , we will de�ne the partition I (B,C ) as the partition
onsisting of the elements {B ∩ C : B ∈ B, C ∈ C }.Let Y be a set of dis
rete random variables w.r.t. probability spa
e 〈Ω,R, P 〉. Thepartitioning A (Y) is then de�ned as:

A (Y) =

{

{{ω ∈ Ω : Y(ω) = y}(y ∈ R(Y))} if Y 6= ∅,

{Ω} otherwise. (2.15)
9



2 Preliminaries and Notation
Axiomati
 Chara
terisations of Conditional Independen
eExtensive work has been done to 
hara
terise dependen
y models of a joint probability dis-tribution. In the following we will review a set of axioms provided by Pearl (1988).2 Let
X be a set of random variables w.r.t. probability spa
e 〈Ω,R, P 〉, and let U, Y and W bearbitrary disjoint subsets of variables X. Also, let S be some partition of the sample spa
e
Ω.3 The following axioms 2.4, 2.7, then provide a sound 
hara
terisation of the dependen
ymodel en
oded by P .4Axiom 2.4 (Symmetry)

W⊥⊥Y|S ⇔ Y⊥⊥W|S . (2.16)Axiom 2.5 (De
omposition)
W⊥⊥{Y ∪U}|S ⇒W⊥⊥Y|S ∧W⊥⊥U|S . (2.17)Axiom 2.6 (Weak Union)
W⊥⊥{Y ∪U}|S ⇒W⊥⊥Y|I (S ,A (U)). (2.18)Axiom 2.7 (Contra
tion)

W⊥⊥Y|I (S ,A (U)) ∧W⊥⊥U|S ⇒W⊥⊥{Y ∪U}|S . (2.19)From 
ontra
tion, weak union and de
omposition follows the so 
alled blo
k independen
elemma:
W⊥⊥Y|I (S ,A (U)) ∧W⊥⊥U|S ⇔W⊥⊥{Y ∪U}|S . (2.20)Furthermore, if P is positive, then we also have the Interse
tion axiom:Axiom 2.8 (Interse
tion)

W⊥⊥Y|I (S ,A (U)) ∧W⊥⊥U|I (S ,A (Y))⇒W⊥⊥{U ∪Y}|S . (2.21)A three-way relation that satis�es Axioms 2.4 to 2.7 are 
alled the semi-graphoid, and ifaxiom 2.8 is also satis�ed, the relation is 
alled graphoid. Conditional independen
e is a semi-graphoid relation. A set of inferen
e rules is 
omplete i� all true statements 
an be inferredusing the set of inferen
e rules. It was shown by Studený (1989) that the semi-graphoids doesnot provide a 
omplete 
hara
terisation of 
onditional independen
e. Still, the set of axioms2It should be mentioned that the axiomatisation of Pearl (1988) was pre
eded by an alternative but equiv-alent axiomatisation of 
onditional independen
e proposed by Dawid (1979).3Originally, the axioms proposed by Pearl (1988) only 
on
erned 
onditional independen
e relations, wherethe 
onditioning partition was generated by a subset of variables. The axioms, however, are still true whenthe 
onditioning partition is allowed to be any general partition of Ω.4A set of inferen
e rules forms a sound 
hara
terisation if no sequen
e of appli
ations of the rules 
an infera false statement from a set of true statements, but rather only true statements 
an be inferred from truestatements. 10



2.2 Graphi
al Con
epts
provides a sound 
hara
terisation, and 
an therefore still be used to infer more 
onditionalindependen
e relations from a set of true relations.
2.1.4 Sampled Data and likelihoodGiven a joint distribution P (X) over random variable X, an independent and identi
allydistributed (iid) sample of X of length l is a set of l random variables X1, . . . ,Xl, ea
h withstate-spa
e R(Xi) = R(X) and distribution P (Xi) = P (X). A database of 
ases or instan
esof X is a set D = {d1, . . . , dn} where ea
h element di is a realisation of variable Xi in an iidsample of X of length n. We will not emphasise the distin
tion between an iid sample anda database of realisation of an iid sample, and will for simpli
ity say that D is an iid sampleof X of length n when in fa
t D is a realisation of an iid sample of X of length n. When
D = {d1, . . . , dn} is an iid sample of X, Y ⊂ X, and di ∈ D, we will denote by di[Y] theproje
tion of realisation di onto variables Y.Let D be an iid sample of random variables X and let P (X) be an arbitrary distributionover variables X. The likelihood of data D under P is then de�ned as:

l(D|P ) =
∏

d∈D

P (X = d[X]). (2.22)
Taking the log of (2.22) yields the log-likelihood (L(D|P )) that de
omposes into a sum of logsof probabilities:

L(D|P ) =
∑

d∈D

logP (X = d[X]). (2.23)
2.2 Graphi
al Con
epts

An undire
ted graph (UDG) is a pair G = 〈V,E〉, where V is a �nite set of distin
t nodesand E is a �nite set of edges, de�ned as unordered pairs of distin
t nodes, E ⊆ {{X,Y } :

X ∈ V, Y ∈ V and X 6= Y }. In a graph G = 〈V,E〉, i� {X,Y } ∈ E we say that X and
Y are adja
ent in G. We denote the set of all adja
ent nodes of node X in graph G by
adjG(X) = {Y ∈ V : {Y,X} ∈ E}.For a graph G = 〈V,E〉, a subset A ⊆ V indu
es the subgraph GA = 〈A,EA〉, where
EA = {{X,Y } : {X,Y } ∈ E, X ∈ A and Y ∈ A}. A path π from node A to node B in a UDG
G = 〈V,E〉 is a sequen
e of n nodes X1, X2, . . . , Xn where n ≥ 2 and {Xi, Xi+1} ∈ E for all
1 ≤ i ≤ n, and X1 = A and Xn = B.Let G = 〈V,E〉 be an UDG and A, B and S be disjoint subsets of V. Then A and B areseparated by S i� all paths between nodes A and B, where A ∈ A and B ∈ B, 
ontains atleast one node S ∈ S.A path π from A to B in graph G = 〈V,E〉, is a 
y
le i� A = B.A graph is 
onne
ted i� there exists a path between any two distin
t nodes. Otherwise itis dis
onne
ted. A 
onne
ted 
omponent in a graph G = 〈V,E〉 is a subgraph of G indu
edby a maximal subset A ⊆ V where GA is 
onne
ted.11



2 Preliminaries and Notation
A dire
ted graph or digraph is a pair G = 〈V,E〉 of nodes V and dire
ted edges E, de�nedas ordered pairs of distin
t nodes. We will denote a pair of nodes as being ordered by en
losingthe pair in parenthesis (Xi, Xj), whi
h represents an edge with orientation Xi → Xj .The skeleton of a graph G = 〈V,E〉 is the undire
ted graph obtained from G by droppingthe orientation of all edges. We denote the skeleton of G by Gu. The skeleton of UDG G isjust G itself.Extending paths and 
y
les to digraphs gives rise to both undire
ted and dire
ted versions.Let G = 〈V,E〉 be a digraph. A sequen
e of nodes X1, . . .Xn in digraph G forms an undire
tedpath i� it is a path in Gu, and it forms an undire
ted 
y
le i� it is a 
y
le in Gu. Furthermore,the sequen
e of nodes forms a dire
ted path i� Xi → Xi+1 ∈ E for all i ∈ [1..n], and forms adire
ted 
y
le i� it forms a dire
ted path and X1 = Xn.A dire
ted a
y
li
 graph (DAG) is a digraph G = 〈V,E〉 that does not 
ontain any dire
ted
y
les.If G = 〈V,E〉 is a DAG and (X,Y ) ∈ E, we say (as for undire
ted graphs) that X and

Y are adja
ent, and in addition we say that Y is a 
hild of X and X is a parent of Y in
G. The set of all parents and 
hildren of node X in digraph G will be denoted paG(X)respe
tively chG(X). If there exists a dire
ted path from node X to node Y in DAG G, wesay that Y is a des
endant of X in G, and we denote the set of all des
endants of node Xin graph G by deG(X). By de∗G(X) we denote deG(X) ∪ X. By pa∗

G(X) we denote the set
{Y ∈ V : X ∈ deG(Y )}. A set of nodes A is an
estral i� for any node X ∈ A the parents of
X are also in
luded in A. By pa∗

G(A) we denote the smallest an
estral set in G in
luding A,that is pa∗
G(A) = A ∪ {∪X∈Apa∗

G(X)}.A rooted DAG is a DAG where a single unique node (the root node) has no parents.A tree is a rooted DAG with no 
y
les, whi
h also implies that any node X only hasat-most one parent. A forest is a set of trees.A poly-tree is a UDG that does not 
ontain any 
y
les.In dire
ted graph G = 〈E,V〉 the set of non-des
endants of node X is denote by ndG(X) =

V \ de∗G(X).A 
hain graph is a pair G = 〈V,E〉 of nodes V and edges E, where an edge 
an either bedire
ted or undire
ted. The graph obtained by removing all undire
ted edges from G must bea DAG (
onne
ted or dis
onne
ted). Both DAGs and UDGs are 
hain graphs.The moral graph of a DAG G = 〈V,E〉 is 
onstru
ted by 
onne
ting all non-adja
ent pairsnodes A and B where A and B have a 
ommon 
hild ({chG(A)∩ chG(B)} 6= ∅) and droppingall dire
tions of edges in G. We denote the moral graph of G by Gm.A graph G = 〈V,E〉 is said to be 
omplete if all nodes in V are pairwise 
onne
ted byedges in E. A 
lique of graph G = 〈V,E〉, is a maximal subset of nodes C ⊆ V, where GC is
omplete. By Cliques(G), we denote the set of all 
liques in graph G.

12



Chapter 3
Probabilisti
 Graphi
al Models

In this 
hapter we introdu
e three di�erent types of probabilisti
 graphi
al models. A proba-bilisti
 graphi
al model is a 
ompa
t representation of a joint probability distribution over a�nite domain of random variables, and it is 
omposed of two parts:1. a dependen
y model, and2. a set of parameters.The su

ess of graphi
al models in a pra
ti
al appli
ation often relies on the existen
e ofe�
ient algorithms for solving di�erent kinds of inferen
e tasks. Together with the generalsyntax and semanti
s of three di�erent probabilisti
 graphi
al model languages, we will alsointrodu
e algorithms for e�
ient and exa
t 
omputation of inferen
e.We will introdu
e the Bayesian Network (BN) model in Se
tion 3.2, the Naïve Bayes (NB)model in Se
tion 3.4, and the Probabilisti
 De
ision Graph (PDG) model in Se
tion 3.3.The BN model is probably one of the most popular graphi
al models, and it has be-
ome a standard method for handling un
ertainty in many �elds of resear
h, espe
ially in the�eld of arti�
ial intelligen
e (Jensen, 2001; Castillo et al., 1997; Pearl, 1988). The BN modelrepresents a distribution over a set of variables through a fa
torisation of lo
al 
onditional dis-tributions. The dependen
y model en
oded by the BN model is de�ned by a DAG stru
tureand using 
ertain separation 
riteria, the dependen
y model 
an easily be enumerated fromthat DAG.The NB model represents a distribution over a set of variables X by introdu
ing a spe
ialunobserved or latent variable C. The dependen
y model en
oded by the NB model rendersall pairs of disjoint subsets of X 
onditionally independent given C.The PDG model is still a fairly new language for probabilisti
 graphi
al modelling, andwas �rst introdu
ed by Jaeger (2004). Like the BN model, the PDG model also represents adistribution over a set of variables X through a fa
torisation of lo
al 
onditional distributionsfor ea
h variable. The dependen
y model en
oded by the PDG model is di�erent from the BNdependen
y model, as it di
tates variables as independent given 
ertain partitions of R(X).
13



3 Probabilisti
 Graphi
al Models
3.1 Inferen
e Tasks

There are many di�erent kinds of relevant probabilisti
 queries that we might want to inferanswers for using PGMs. For a set of random variables X and a joint probability distribution
P (X) over X, the most 
ommon queries in
lude:Belief Updating: This is the task of updating probabilities in the presen
e of eviden
e, thatis observations of a subset of variables E ⊂ X. Given that variables E ⊂ X have beenobserved in joint state e ∈ R(E), 
ompute the posterior marginal P (Xi|E = e) for all

Xi ∈ {X \E}.Most Probable Explanation (MPE): The task of �nding the joint 
on�guration of unob-served variables with maximal joint posterior probability given some eviden
e. That is,given E ⊂ X have been observed in joint state e ∈ R(E), then the solution to MPE is:
y = argmax

y′∈R(Y)
P (Y = y′|E = e), (3.1)

where Y = {X \E}.Maximum a Posteriori Hypothesis (MAP): This is a generalisation of the MPE (3.1),where Y is not ne
essarily all remaining variables but may be a proper subset Y ⊆

{X \E}.We regard belief updating as the primary task for any general purpose language for prob-abilisti
 graphi
al modelling. We will, therefore, identify for ea
h language the 
omplexityasso
iated with solving this problem in general. In parti
ular, for a model M from language
L, we will identify the e�e
tive size of model M , denoted sizeeff (M). The e�e
tive size is amodel spe
i�
 parameter su
h that in M general belief updating is 
omputable in linear timein sizeeff (M). This will enable easy 
omparison of the (theoreti
al) e�
ien
y of models fromdi�erent languages.
3.2 Bayesian Network Models

A BN B = 〈G, θ〉 is a pair 
onsisting of a DAG G = 〈V,E〉 and parameters θ. Let
X = {X1, . . . , Xn} be a set of n dis
rete random variables. A DAG over X is a DAG G =

〈V,E〉, where nodes are de�ned in a 1-to-1 
orresponden
e with variables in X. We willnot distinguish between nodes of a DAG and asso
iated random variables, when the meaningis 
lear from 
ontext. Thus, for random variable X asso
iated with node V , we will usethe notation paG(X) to mean both the parents of V in G, and the set of random variablesasso
iated with parents of V in G.A BN B = 〈G, θ〉 over X represents P (X) by the dire
ted fa
torisation de�ned by (3.2),where θ de�nes lo
al distributions for ea
h variable Xi 
onditional on its parents in G,
P (Xi|paG(Xi)). 14



3.2 Bayesian Network Models
De�nition 3.1 (Dire
ted Fa
torisation(DF))A joint probability distribution P over variables X is said to fa
torise w.r.t. DAG G over Xi�:

P (X) =
∏

Xi∈X

P (Xi|paG(Xi)). (3.2)
3.2.1 The Bayesian Network Dependen
y ModelThe dependen
y model en
oded by the BN has re
eived enormous attention (Lauritzen et al.,1990; Castelo, 2002; Pearl, 1988; Ko£ka, 2001). It is usually termed the DAG Markov model,and we will review the so-
alled Markov properties that follows from De�nition 3.1. Thedependen
y model is important for our learning pro
edure for BN models and for e�
ientinferen
e in a BN model. Some of the most popular algorithms for exa
t inferen
e in BNmodels does not work on the DAG stru
ture, but instead 
ompiles the DAG into an equivalentundire
ted (UDG) model on whi
h 
omputations are then performed. Su
h algorithms aretypi
ally referred to as 
lique tree algorithms, jun
tion tree algorithms, or variable 
lusteringalgorithms. We will review the basi
 ar
hite
ture of su
h algorithms in Se
tion 3.2.3. For ourlearning algorithms, it is important to establish an e�
ient 
hara
terisation of equivalen
e
lasses of BN models. The study of su
h 
hara
terisations builds on results of UDG models.Therefore we will brie�y review important results 
on
erning the UDG model.Fa
torisation w.r.t. an undire
ted graph over random variables X is de�ned as a fa
tori-sation over 
lique potentials of the graph in De�nition 3.2.De�nition 3.2 (Undire
ted Fa
torisation (UF))A joint probability distribution P over variables X is said to satisfy undire
ted fa
torisation(UF) w.r.t. UDG G = 〈V,E〉, i� there exists non-negative mutually independent 
lique-potential fun
tions ψA for whi
h:

P (X) =
∏

A∈Cliques(G)

ψA, (3.3)
where ψA is a fun
tion or potential over 
lique A.De�nition 3.3 (Undire
ted Global Markov Property (UG))A joint probability distribution P over random variables X satis�es the Undire
ted GlobalMarkov Property (UG) w.r.t. UDG G i� for any triple of disjoint subsets A, B and S of X,where S separates A from B in G, the following holds:

A⊥⊥B|S[P ]. (3.4)
UF and UG are 
onne
ted by Proposition 3.1. It was �rst stated and proved by Lauritzen et al.(1990): 15



3 Probabilisti
 Graphi
al ModelsProposition 3.1(Lauritzen et al., 1990, Proposition 1) If joint distribution P over random variables X satisfyUF w.r.t. UDG G, then P satis�es UG w.r.t. G.Lauritzen et al. (1990) 
onne
ts undire
ted and dire
ted fa
torisations (De�nitions 3.1 and3.2) in Lemmas 3.1 and 3.2:Lemma 3.1(Lauritzen et al., 1990, Lemma 1) If joint probability distribution P satis�es DF w.r.t. DAG
G, then P satis�es UF w.r.t. Gm (and therefore UG w.r.t. Gm).Lemma 3.2(Lauritzen et al., 1990, Lemma 2) If joint probability distribution P over random variables Xsatis�es DF w.r.t. DAG G, and A is an an
estral set in G, then the marginal distribution
P (A) satis�es DF w.r.t. GADe�nition 3.4 (Dire
ted Global Markov Property (DG))A dis
rete joint probability distribution P over random variables X is said to satisfy thedire
ted global Markov property (DG) w.r.t. DAG G over X i� for any triple of disjoint subsets
A ⊆ X, B ⊆ X and S ⊆ X, where S separates A from B in (Gpa∗

G
(A∪B∪S))

m:
A⊥⊥B|S[P ]. (3.5)From Lemmas 3.1 and 3.2, it follows that if P satis�es DF w.r.t. DAG G, then P satis�esthe DG w.r.t. G (Lauritzen et al., 1990, Corollary 1).De�nition 3.5 (Dire
ted Lo
al Markov Property (DL))A dis
rete joint probability distribution P over variables X satis�es the dire
ted lo
al Markovproperty w.r.t. DAG G i� for any variable X ∈ X:

X⊥⊥ndG(X)\paG(X)|paG(X)[P ]. (3.6)
Lauritzen et al. (1990) state and prove equivalen
e of dire
ted fa
torisation, dire
ted globaland dire
ted lo
al Markov properties (De�nitions 3.1, 3.4 and 3.5):Theorem 3.1(Lauritzen et al., 1990, Theorem 1) For a dis
rete probability distribution P over randomvariables X and DAG G over X, the following statements are equivalent:1. P satis�es DF w.r.t. G,2. P satis�es DG w.r.t. G,3. P satis�es DL w.r.t. G. 16
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When distribution P fa
torise w.r.t. DAG G, G is 
alled an I-map of P . Let I be astatement of 
onditional independen
e, we then say that DAG G entails I i� I is true for alldistributions P for whi
h G is an I-map (denoted G |=P I).A popular graphi
al 
riterion for reading independen
e relations entailed by a DAG is thed-separation 
riterion (Pearl and Verma, 1987), de�ned as:De�nition 3.6 (d-separation)Let G = 〈V,E〉 be a DAG with nodes V and dire
ted edges E. Two distin
t nodes X,Y ∈ Vare said to be d-separated in DAG G by Z ⊂ V i� for every path π (undire
ted or dire
ted)between X and Y there exists a node W su
h that either:
• W ∈ Z and there is no head-to-head 
onne
tion at W w.r.t. path π, or
• W 6∈ Z, non of deG(W ) are in
luded in Z and there is a head-to-head 
onne
tion at Ww.r.t. path π.The de�nition extends to sets of variables by denoting U ⊂ X being d-separated from subset

W ⊂ X by Z ⊂ X in G i� any two nodes U ∈ U and W ∈W are d-separated by Z in G.We denote by G |=d-sep X⊥⊥Y |Z the statement that in DAG G, X and Y are d-separatedby Z. As a rule for inferring 
onditional independen
ies entailed by DAG G, d-separation isboth sound ([G |=d-sep I] ⇒ [G |=P I]) and 
omplete ([G |=P I]⇒ [G |=d-sep I]), �rst provedby Geiger and Pearl (1988).If G is an I-map of P , and P does not 
ontain any more independen
ies than those entailedby G, then G is a perfe
t map of P . If some DAG G is a perfe
t map of distribution P , then
P is 
alled DAG-faithful.Lauritzen et al. (1990) prove that d-separation is equivalent to the dire
ted global Markovproperty as a separation 
riterion.De�nition 3.7 (Bayesian Network Dependen
y Model)The BN B with DAG stru
ture G over variables X de�nes a dependen
y model in whi
h thetrue independen
ies are:

M(G) = {A⊥⊥B|S : G |=P A⊥⊥B|S}. (3.7)So any distribution P that fa
torise w.r.t. DAG G will 
ontain (at least) all the indepen-den
ies M(G). Using the terminology of De�nition 2.1, we say that the 
lass of partitioningsused in BN dependen
y models, is the 
lass of all partitionings that 
an be indu
ed by somesubset of variables S ⊂ X.Given a DAG G = 〈V,E〉, and disjoint subsets A,S ⊆ V, Geiger et al. (1990) presentan algorithm for 
omputing the set B of all nodes that are d-separated from A given S.We present it here as fun
tion getDSeparated (Algorithm 3.2), whi
h uses the subroutinegetRea
hable to determine a set of nodes that are rea
hable by a legal path (see Algorithm3.1). getRea
hable has 
omplexity O(|E| · |V|) in general, however Geiger et al. (1990) showthat when the set of illegal pairs of edges is 
onstru
ted as in line 4 of getDSeparated,getRea
hable will run in time linear in |E|. As no operation in getDSeparated has worse
omplexity than O(|E|), the overall 
omplexity of getDSeparated is therefore O(|E|).17
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Algorithm 3.1 This algorithm is needed by algorithm 3.2.Input: G : DAG over X; F: a set of illegal pairs of edges; A: a set of nodes A ⊂ X.Output: A set of nodes R ⊂ X rea
hable from A via a legal path.1: fun
tion getRea
hable(G, F, A)2: X := X ∪Xs3: R := {Xs} ∪A4: for all X ∈ A do5: E := E ∪Xs → X6: label Xs → X with 17: i := 18: repeat9: Let U be the set of unlabelled edges Xk → Xl from E s.t. there exists Xj → Xklabelled i and (Xj → Xk, Xk → Xi) 6∈ F.10: for all Xk → Xl ∈ U do11: R := R ∪ {Xl}12: label Xk → Xl with i+ 1.13: i := i+ 114: until U = ∅15: return R

Algorithm 3.2 This fun
tion 
omputes and returns the set of variables B d-separated froma target set A given a separating set S in a DAG G.Input: G : DAG stru
ture over variables X; disjoint subsets A,S ⊂ X.Output: The set of variables B d-separated from A by S.1: fun
tion getDSeparated(B, A, S)2: Constru
t the graph G′ = 〈V,E′〉 where E′ := E ∪ {Xi → Xj : Xj → Xi ∈ E}.3: Constru
t the table des
endant(Xi) :=

{

true if {{Xi} ∪ deG(Xi)} ∩ S 6= ∅

false otherwise4: Constru
t the set FC of pairs of edges (Xj → Xk, Xk → Xl) where Xj 6= Xl and either
• Xj → Xk, Xk ← Xl ∈ E and des
endant(Xk) = true, or
• Xj → Xk, Xk ← Xl 6∈ E and Xk 6∈ S.5: B′ := getReachable(G′,E′ \ FC ,A)6: return V \ {B′ ∪A ∪ S}
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X

Z

Y

(a)
X

Z

Y

(b)
X

Z

Y

(
)
X

Z

Y

(d)Figure 3.1. 4 di�erent DAG stru
tures over X = {X,Y, Z}. (a) is not equivalent with any of theother, and (b), (
) and (d) are all equivalent.
3.2.2 BN Model Equivalen
e and In
lusionIn this se
tion, we de�ne a partial ordering of BN dependen
y models. By De�nition 3.7, theBN dependen
y model is the set of statements of independen
e that are entailed by the DAGstru
ture of the BN model. In
lusion of one dependen
y model in another is now de�ned w.r.t.the set of distributions that 
an be represented by the models:De�nition 3.8Let G1 = 〈X,E1〉 and G2 = 〈X,E2〉 be DAGs. We say that model M(G2) distributionallyin
ludes M(G1) i� M(G2) ⊆M(G1). We will denote this by M(G1) ⊆D M(G2).If M(G1) ⊆D M(G2) then for any parametrisation θ of BN B1 = 〈G1, θ〉 there exists aparametrisation θ′ of BN B2 = 〈G2, θ

′〉 su
h that PB1(X) = PB2(X).De�nition 3.9Let G and H be DAGs over the same set of variables X. G and H are distributionallyequivalent i� M(G) = M(H). We will denote distributional equivalen
e by G ≈ H.In the reminder of this thesis, we will refer to distributional in
lusion and distributionalequivalen
e by simply in
lusion and equivalen
e unless otherwise stated.Example 3.1The empty DAG G∅ with no edges de�nes dependen
y model M(G∅) = {A⊥⊥B|S : A,B ∈

X,S ⊆ X \ {A,B}}, i.e., all pairs of disjoint sets of variables are marginally and 
onditionallyindependent. The dependen
y model M(G∅) is in
luded in all other BN dependen
y modelsover X. The 
omplete DAG G∗ where all pairs of nodes are 
onne
ted by an edge, de�nes thedependen
y model M(G∗) = ∅, i.e., G∗ entails no independen
ies. M(G∗) obviously in
ludesall other BN dependen
y models over X.De�nition 3.10For a DAG G we de�ne the equivalen
e 
lass E(G) as:
E(G) = {H : H ≈ G}.
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al Models
X0

X1

X2

X3

X4

X5(a)

X0

X1

X2

X3

X4

X5(b)

X0

X1

X2

X3

X4

X5(
)Figure 3.2. (a) shows DAG G, (b) shows the pattern 
ommon to all members of E(G) and (
) showsthe 
ompleted pattern that identi�es all 
ompelled and reversible edges.
Example 3.2The 4 di�erent DAG stru
tures Ga, Gb, Gc and Gd over X = {X,Y, Z} in Figure 3.1(a)-(d)respe
tively, are related in terms of equivalen
e as: Ga 6≈ Gb ≈ Gc ≈ Gd. Gb, Gc and Gd allentail the single statement X⊥⊥Y |Z, while Ga entails the statement X⊥⊥Y .A v-stru
ture in a DAG G = 〈X,E〉 is a triple of nodes (X,Z, Y ) ∈ X where X → Z ∈ Eand Y → Z ∈ E and X 6∈ adjG(Y ). A 
lassi
 
hara
terisation of DAG equivalen
e was givenby Verma and Pearl (1991):Theorem 3.2(Verma and Pearl, 1991, Theorem 1) Let G and H be DAGs over the same set of nodes X.Then G ≈ H i� G and H have the same skeleton (Gu = Hu) and 
ontains the same set ofv-stru
tures.Theorem 3.2 says that not only is the skeleton invariant for equivalent DAGs, but also theorientation of some edges, in parti
ular those parti
ipating in v-stru
tures. An edge in DAG
G that has the same orientation in all DAGs G′ ∈ E(G) is said to be 
ompelled. An edge thatis not 
ompelled is reversible.Verma and Pearl (1991) de�nes the pattern of a DAG as the partially dire
ted a
y
li
graph (PDAG) 
onstru
ted by dropping the orientation of any edge not parti
ipating in av-stru
ture. By theorem 3.2, the pattern of a DAG G provides 
anoni
al representation of
E(G).Given a DAG G, we will denote the PDAG that 
ontains dire
ted edges for all 
ompellededges and undire
ted edges for all reversible edges in G, as the 
ompleted PDGA (CPDAG)for G.Example 3.3For a DAG G, there may be more edges than the ones parti
ipating in a v-stru
ture thatare 
ompelled and, hen
e, the pattern and the 
ompleted PDAG does not always 
oin
ide.Consider for example the DAG G in Fig. 3.2(a) for whi
h 3 edges are 
ompelled (X1 → X3,20
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Algorithm 3.3 Convert a DAG stru
ture to its pattern.Input: DAG G = 〈V,E〉Output: Pattern of DAG G1: fun
tion DAGToPattern(G)2: G′ := copy(Gu)3: L := ∅4: for all Xi → Xk ∈ E do5: if Xi → Xk 6∈ L then6: if paG(Xk) \ {adjG(Xi) ∪Xi} 6= ∅ then7: for all Xj ∈ {paG(Xk) \ {adjG(Xi)} do8: dire
t Xj → Xk in G′9: L := L ∪ (Xj → Xk)10: return G′

X4 → X3 and X3 → X5). The pattern of G is shown in Fig. 3.2(b) and the CPDAG of G inFig. 3.2(
).A simple algorithm for 
onstru
ting the pattern from a DAG is given in Algorithm 3.3. Itvisits every edge only on
e, and for ea
h edge a set subtra
tion is performed, whi
h 
an bedone in linear time in the size of the largest set. The size of the largest set is bounded by |E|,and the 
omplexity of the algorithm will then be bounded by O(k · |E|2). When DAGs aresparsely 
onne
ted (as is typi
ally the 
ase for BN models) the sets paG(Xi) and adjG(Xi)are small 
ompared to E, yielding in pra
tise sub-polynomial 
omplexity.A 
hara
terisation of equivalent DAGs based on a lo
al transformation was developed byChi
kering (1995) using the 
on
ept of 
overed edges in DAGs. An edge Xi → Xj in DAG Gis 
overed i� paG(Xi) = paG(Xj) \Xi.Lemma 3.3(Chi
kering, 1995, Lemma 1) Let G be a DAG over variables X 
ontaining the edge Xi → Xj .Let H be a DAG identi
al to G with the single ex
eption that H 
ontains Xi ← Xj insteadof Xi → Xj. Then G ≈ H i� Xi → Xj is 
overed in G.Chi
kering (1995) uses Lemma 3.3 to develop the following 
hara
terisation of E(G):Theorem 3.3(Chi
kering, 1995, Theorem 2) Let G and H be DAGs over the same set of variables X, let
G ≈ H and let n be the number of edges that do not have the same orientation in H and G.Then there exists a sequen
e of n distin
t edge reversals in G where:1. ea
h edge when reversed is 
overed,2. after ea
h reversal G is a DAG and G ≈ H, and3. after all reversals G = H, that is G and H are identi
al.
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In the ordering of models de�ned by the in
lusion relation, we 
an de�ne the boundary ofa model, the in
lusion boundary (Ko£ka, 2001; Ko£ka et al., 2001) of a BN dependen
y model

M(G):
De�nition 3.11 (In
lusion Boundary)Let B = 〈G, θ〉 be a BN model. The In
lusion Boundary of BN dependen
y model M(G),denoted IB(M(G)) is de�ned as:

IB(M(G)) = UIB(M(G)) ∪ LIB(M(G)), (3.8)
where:

UIB(M(G)) = {M(U) : M(G) ⊂D M(U), ∄U ′[M(G) ⊂D M(U ′) ⊂D M(U)]}, (3.9)
LIB(M(G)) = {M(L) : M(L) ⊂D M(G), ∄L′[M(L) ⊂D M(L′) ⊂D M(G)]}. (3.10)

LIB(M(G)) 
onsists of BN dependen
y models that 
ontains more statements of 
onditionalindependen
e than M(G), and UIB(M(G)) 
onsists of BN dependen
y models that 
ontainsless statements of 
onditional independen
e thanM(G). Both boundaries 
onsists of the set ofBN models �
losest� to M(G). A transformational 
hara
terisation of the in
lusion boundarywas provided by Castelo and Ko£ka (2003):
Theorem 3.4(Castelo and Ko£ka, 2003, Theorem 3.2) Let G be a DAG, and let G+e and G−e be the setof DAGs that 
an be 
onstru
ted from G by a single edge addition or removal, respe
tively.The in
lusion boundary of the BN dependen
y model de�ned by DAG stru
ture G is:

IB(M(G)) = {M(Q′) : Q′ ∈ {Q−e ∪Q+e} and Q ≈ G}. (3.11)
It is 
ertainly the 
ase that IB(M(G)) ⊇ {M(G′) : G′ ∈ {G−e ∪G+e}}. However, not allmodels in IB(M(G)) 
an be generated by adding or removing an edge from DAG G, as thefollowing example (Example 3.4) shows.

Example 3.4Consider a domain X = {X,Y, Z}. Let G be the DAG shown in Figure 3.3(a). The in
lusionboundary IB(M(G)) is de�ned by the DAGs with patterns shown in Figure 3.3(b)-(f). Noti
ethat from DAG G we 
an not 
onstru
t a DAG with the pattern shown in Figure 3.3(e) byedge addition or removal. However, by reversing the 
overed edge X → Y , 
reating DAG
Q ≈ G and adding Z → Y to Q we get the single DAG of Figure 3.3(e).
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(a)
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(b)
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Y

(
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(d)
X

Z

Y

(e)
X

Z

Y

(f)Figure 3.3. A DAG and its in
lusion boundary. Figure (a) shows DAG G over X = {X,Y, Z}, Figure(b), (
), (d) and (e) shows the patterns representing the 4 equivalen
e 
lasses in UIB(M(G)). Figure(f) shows the single model in LIB(M(G)), the empty DAG.
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(b)
Figure 3.4. A DAG G (a) and its underlying moral graph Gm (b).

3.2.3 Inferen
eThe general problem of belief updating in BNs is NP-hard (Cooper, 1987) and this is trueeven for algorithms that only 
ompute approximate solutions (Dagum and Luby, 1993). Inthis se
tion, we will give an overview of the nature of popular approa
hes to the problem ofexa
t belief updating and general inferen
e in BNs.Consider the BN B = 〈G, V 〉 over variables X = {X0, X1, . . . , X6} with the stru
ture Gshown in Fig. 3.4(a). We have the following fa
torisation:
P (X) = P (X0)P (X1|X0)P (X2|X1, X3)P (X3|X0)

P (X4|X3)P (X5|X2, X6)P (X6|X4).
(3.12)
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We will �rst fo
us on 
al
ulating PB(Y = y) for some Y ⊂ X and y ∈ R(Y). Let

Z = {x : x ∈ R(X) and x[Y] = y}. Then :
PB(Y = y) =

∑

x∈Z

PB(X = x) (3.13)
However, it is not tra
table to 
ompute the full joint distribution PB(X) as that would requirestorrage-spa
e of exponential size in the number of variables. By systemati
 query spe
i�
manipulations of (3.12) we 
an often redu
e the 
omplexity of (3.13).Query spe
i�
 simpli�
ationThis approa
h aims at simplifying the fa
torisation (3.12), before an answer to a given query is
omputed through repeated multipli
ations and summations. The simpli�
ations are 
apturedgraphi
ally by the removal of variables that are irrelevant w.r.t. the spe
i�
 query. Sha
hter(1988) introdu
es the 
on
ept of barren variables:De�nition 3.12Let G be a DAG over variables X, Y ⊆ X and y ∈ R(Y). A variable X ∈ X in a BN
B = 〈G, θ〉 is barren w.r.t. a query P (Y = y) if X is a leaf and X 6∈ Y.Let B be a BN model over random variables X, Y and y be like in De�nition 3.12, andlet B′ be the BN obtained from B by removing all barren variables X and the asso
iatedpotentials PB(X|paG(X)). Sha
hter (1988) then shows that:

PB(Y = y) = PB′

(Y = y).Removal of barren variables is equivalent to removing potentials in the fa
torisation that willsum to 1. When removing a barren variable, more variables may be
ome barren. In fa
t, byrepeatedly removing barren variables, we end up with a BN over X′ = {X : X ∈ pa∗
G(Y)} withstru
ture Gpa∗

G
(Y). After removing from B all variables X 6∈ pa∗

G(Y), we 
an further removevariables that are d-separated from Y. These variables 
an be identi�ed using Algorithm 3.2in linear time in the number of edges in the stru
ture. By removing all variables that areirrelevant w.r.t. our query in BN B we get a redu
ed BN B′, and we 
an 
ontinue 
al
ulating
P (Y = y) using the simpler stru
ture of B′ instead of the original stru
ture B.The variable elimination algorithm by Zhang and Poole (1994) starts by pruning variablesthat are irrelevant to the spe
i�
 query. After variable pruning, the remaining variables thatare not irrelevant but not in
luded in the �nal result (i.e., not in Y), are eliminated throughsummation as in eq. (3.13). This summation may be done in more stages, in ea
h stage onlyperforming the required multipli
ations. Assume that we wish to 
ompute P (X5 = x5,h) inthe model with stru
ture G shown in Figure 3.4(a). We 
ould for instan
e partition the sumin (3.13) into two sums, one over joint 
on�gurations of the variables X \X1 and one over all
x1,h ∈ R(X1), and get the equivalent sum:

PB(X5 = x5,h)
∑

x′∈
R(X\X1)

∑

x1,h∈

R(X1)

P (X = (x′, x1,h)), (3.14)
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X0
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(a)

X0, X1, X3

X1, X2, X3

X2, X3, X6

X3, X4, X6

X2, X5, X6(b)Figure 3.5. A triangulated version of the DAG shown in Fig. 3.4(a), and a join tree over the 
liques
onstru
ted from this triangulation (b).
For this operation we need to 
reate the potential φ = P (X1|X0)P (X2|X1, X3), then sumover values R(X1) of entries in φ 
reating the new potential φ′ over X0, X2 and X3 whi
hwe then work with from here on. Di�erent sequen
es of su
h summations lead to di�erentsized potentials that we need to handle in the 
omputation. Some sequen
es might leadto intra
tably large potentials, and a good elimination sequen
e has to be established. Anoptimal elimination sequen
e results in working only with potentials of minimal size.The moral graph of the DAG stru
ture reveals the 
ost of an elimination sequen
e in termsof the size of the potentials one will need to perform operations on. In the moral graph, anytwo variables that are 
ontained in the same fa
tor are adja
ent. Fig. 3.4(b) shows the moralgraph of the DAG in Fig. 3.4(a). When eliminating a variable X, one 
reates a potentialover all neighbours of X in the moral graph. If the moral graph is triangulated,1 it is possibleto �nd an elimination sequen
e that does not introdu
e potentials larger than the originalfa
tors. Su
h a sequen
e 
an be 
onstru
ted by repeatedly removing variables from the graph,always 
hoosing as the next variable to be removed, a variable that is only a member of onesingle 
lique. The moral graph in Fig. 3.4(b) is not triangulated, but we 
an triangulate itby adding an extra �ll-in edge, either X2 −X4 or X3 −X6. In Fig. 3.5(a) the �ll-in X3 −X6has been added to triangulate the moral graph in Fig. 3.4(b). The 
liques of the triangulatedmoral graph determines the size of the potentials that we need to work with in a summation.In our example we see that 
liques over at most 3 variables are ne
essary. Depending on therange of the variables in the domain, the size of the potentials over the 
liques 
an be di�erentfor di�erent triangulations. Finding a minimum triangulation is NP-
omplete (Arnborg et al.,1987), but e�
ient heuristi
s are known, see (Kjærul�, 1990) for an empiri
al 
omparison ofsome 
ommon heuristi
 approa
hes to minimal triangulation.

1A graph is triangulated i� there are no 
ordless 
y
les. A 
ordless 
y
le is a 
y
le π of length 4 or morewhere no proper subset of nodes from π forms a 
y
le.25
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Clique Tree PropagationA somewhat di�erent approa
h is taken in 
lique tree based algorithms. These algorithms workon a se
ondary 
lique tree stru
ture build from the triangulated moral graph. A 
lique treefor a graph is any tree stru
ture over the 
liques satisfying the running interse
tion property.The running interse
tion property is satis�ed if and only if for any two 
liques Ci and Cj inthe 
lique tree, all 
liques on the path between Ci and Cj 
ontain the variables Ci ∩ Cj .Figure 3.5(b) shows a 
lique tree over the 
liques in the triangulated moral graph of Figure3.5(a). By atta
hing ea
h potential P (Xi|paG(Xi)) from the original BN model to a single
lique Cj 
ontaining Xi ∪ paG(Xi), we 
onstru
t 
lique-potentials:

Φj =

{

∏

Aj
P (Xi|paG(Xi)) Aj 6= ∅

1 otherwise
,

where Aj is the set of potentials atta
hed to 
lique Cj . The undire
ted fa
torisation of thepotentials w.r.t. the 
lique tree over 
liques C is then:
P (X) =

∏

Cj∈C

Φj . (3.15)
Algorithms for inferen
e in a 
lique tree stru
ture have been studied extensively (Jensen et al.,1990a,b; Lauritzen and Spiegelhalter, 1988; Shafer and Shenoy, 1990), and they are all vari-ations over the 
ommon idea of absorbing eviden
e and passing messages. For answering aquery on the posterior distribution P (Xi|E = e), eviden
e e is absorbed as follows: for ea
hvariable E ∈ E �nd a 
lique Ci 
ontaining E and update the potential Φi as:

Φi = Φi · 1e[E](E), (3.16)where 1e[E](E) is the indi
ator fun
tion:
1e[E](E) =

{

1 if E = e[E] ,

0 otherwise.In the message passing phase, messages are send between adja
ent 
liques. The message φi→jsend from 
lique Ci to adja
ent 
lique Cj is 
onstru
ted as:
φi→j =

∑

Ci\Cj

Φi. (3.17)
A message 
an be sent from Ci to Cj when Ci has re
eived a message from all otherneighbours, whi
h means that initially only leafs 
an send messages. When a message φi→j isre
eived in 
lique Cj , the potential Φj is updated as:

Φj = Φj ·
φi→j

φj→i
, (3.18)

where φj→i = 1 if no message has yet been sent from 
lique Cj to 
lique Ci.26



3.2 Bayesian Network Models
When one message has been sent in both dire
tions along every link in the 
lique tree, theposterior P (Xi,E = e) 
an be 
onstru
ted from any 
lique potential Φj 
ontaining Xi by:

P (Xi,E = e) =
∑

Xj∈Cj\{Xi}

Φj . (3.19)
From (3.19) the posterior P (Xi|E = e) 
an easily be 
onstru
ted by multipli
ation with
P (E = e)−1 = (

∑

xi∈R(Xi)
P (Xi = xi,E = e))−1.For the general query 
ontaining multiple query variables Q, it is 
lear that P (Q = q|E =

e) 
an be 
omputed by �rst absorbing both Q = q and E = e as eviden
e to 
ompute the jointprobability P (Q = q,E = e) and thereafter 
omputing P (E = e), and �nally produ
ing theposterior P (Q = q|E = e). If all of the variables Q are members of the same 
lique C ′, the
omputation 
an be done simply by absorbing E = e and performing one full propagation. Thevariable propagation approa
h des
ribed in (Jensen, 2001, Se
tion 6.2) is a general approa
hto 
onstru
ting the posterior distributions P (Q|E = e) of arbitrary sets Q.
ComplexityClique tree propagation approa
hes require absorption of eviden
e as de�ned in Eq. (3.16),
omputation of messages as de�ned in Eq. (3.17), propagation of messages and updating ofpotentials as de�ned in Eq. (3.18) and �nally marginalisation as de�ned in Eq. (3.19). Thetime 
omplexity of these 
omputations is linear in the total number of parameters in the 
liquetree, that is, the number of entries in 
lique potentials. The number is bounded only by thesize of the joint state-spa
e of all variables |R(X)| as we may (in the worst 
ase s
enario) havea single 
lique 
ontaining all variables, so the overall 
omplexity ends up being exponential inthe number of variables.The query spe
i�
 simpli�
ation of the fa
torisation employed in dire
t approa
hes like thevariable elimination algorithm does not mitigate this problem, as we still need to 
onstru
ta good elimination sequen
e, whi
h is equivalent to �nding a triangulation of the moralisedgraph yielding minimal 
liques. Thus the 
omplexity is the same as 
lique tree propagation.Zhang (1998) 
ompares 
lique tree propagation and variable elimination approa
h in termsof exe
ution times. He �nds that variable elimination is advantageous when the subset of thequeried variables is relatively small. The di�eren
e in performan
e de
reases as more variablesare added to the query and, for larger queries, 
lique tree propagation is shown to outperformvariable elimination.Madsen and Jensen (1998) studies 
ombinations of the two approa
hes, and propose alazy evaluation s
heme in the general 
lique tree ar
hite
ture. In short, query spe
i�
 pruningof barren variables and simpli�
ations from d-separation 
an be employed to minimise thene
essary 
omputations of messages. See also (Madsen, 1999).
3.2.4 Representation and E�e
tive SizeAs previously stated, we regard the problem of belief propagation as the primary task forPGMs. Then, given a 
lique tree for the BN model, belief updating is solved by absorbing27
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eviden
e and performing one full propagation. The 
omplexity of this operation is linear in thenumber of parameters in the 
lique tree. We de�ne e�e
tive size of a BN model B (denoted
sizeeff (B)) as the size of the minimal 
lique tree 
onstru
ted from B:

sizeeff (M) =
∑

C∈C

|R(var(C))|, (3.20)
where C is the set of 
liques in the 
lique tree and var(C) is the set of variables that aremembers in 
lique C. In general there will not be only a single unique 
lique tree for M ,and, as mentioned above, 
onstru
ting the minimal 
lique tree is an NP 
omplete problem. Inour experiments we will rely on 
lique trees 
onstru
ted through heuristi
s. In parti
ular, weuse the default triangulation method implemented in the Hugin system (Jensen, 2006), whi
h
ombines good (lo
al) triangulations of prime 
omponents of the moral graph to get a goodglobal triangulation. As we shall see later, the triangulation provided by the Hugin systemusually is very satisfa
tory.The representational size of a BN model M is the number of free parameters de�ned bythe model, and is trivially 
omputed from its DAG stru
ture G over variables X:

sizerep(M) =
∑

X∈X

(|R(X)| − 1) · |R(paG(X))|. (3.21)
3.3 Probabilisti
 De
ision Graphs

The Probabilisti
 De
ision Graph (PDG) model was �rst introdu
ed by Bozga and Maler(1999), and was originally proposed as an e�
ient representation of probabilisti
 transitionsystems. In this study, we 
onsider the more generalised version of PDGs introdu
ed by Jaeger(2004).A PDG stru
ture is de�ned w.r.t. an underlying variable forest:De�nition 3.13 (Variable Forest)Let F be a forest of rooted and dire
ted trees F = {T0, . . . , Tk} and let X = {X0, . . . , Xn}be a domain of n random variables. F is a variable forest over X when nodes from F andvariables from X are asso
iated in a one-to-one relation.De�nition 3.14 (PDG Stru
ture)Let F be a variable forest over domain X. A PDG-stru
ture G = 〈V,E〉 for X w.r.t. F is aset of rooted DAGs (RDAGs), su
h that:1. Ea
h node ν ∈ V is labelled with some Xi ∈ X. By Vi, we will refer to the set of allnodes in a PDG-stru
ture label-led with the same variable Xi.2. For ea
h node νi label-led with Xi, ea
h possible state xi,h of Xi and ea
h su

essor
Xj ∈ chF (Xi) there exists exa
tly one edge label-led with xi,h from νi to some node νjlabel-ed with random variable Xj. Let Xj ∈ chF (Xi) and νi ∈ Vi. By succ(νi, Xj , xi,h)we will then refer to the unique node νj ∈ Vj that is rea
hed from νi by an edge label-led
xi,h. 28
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X0

X1

X3

X2

X4

X5

X6 X7(a)
V0 ν0

V1 ν1 ν2 V2 ν3 ν4

V3 ν5 ν6 ν7

V4 ν8

V5 ν9 ν10

V6 ν11 ν12 V7 ν13 ν14(b)Figure 3.6. A variable forest F over binary variables X = {X0, . . . , X7} is shown in (a), and aPDG-stru
ture over X w.r.t. variable forest F is shown in (b).
Example 3.5A variable forest F over binary variables X = {X0, . . . , X7} 
an be seen in Figure 3.6(a), and aPDG stru
ture over X w.r.t. F in Figure 3.6(b). The labelling of nodes ν in the PDG-stru
tureis indi
ated by the dashed boxes, e.g., the nodes label-led with X2 are visualised as the set
V2 = {ν3, ν4}. Dashed edges 
orresponds to edges labelled 0 and solid edges 
orresponds toedges labelled 1, for instan
e succ(ν9, X6, 0) = ν12.A PDG model is a spe
ial instan
e of a general Real Fun
tion Graph (RFG) model:De�nition 3.15 (Real Fun
tion Graph)A Real Fun
tion Graph (RFG) model D = 〈G, θ〉 over dis
rete random variables X 
onsistsof a PDG-stru
ture G = 〈V,E〉 w.r.t. variable forest F and independent parameters θ. θde�nes for ea
h node ν labelled with Xi a lo
al real fun
tion over R(Xi):

pν : R(Xi)→ R. (3.22).De�nition 3.16 (Probabilisti
 De
ision Graph)Let D = 〈G, θ〉 be an RFG model over X. If for all Xi ∈ X and ν ∈ Vi, pν de�nes a probabilitydistribution for random variable Xi we 
all D a Probabilisti
 De
ision Graph (PDG) model.29
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For notational 
onvenien
e, we will refer to the lo
al distribution at node ν in a PDG/RFGin the form of a parameter ve
tor pν = (pν

1 , . . . p
ν
ki

) ∈ Rki , where ki = |R(Xi)| is the numberof distin
t states of Xi. We will by pν
xi,h

refer to the h'th element of pν under some orderingof R(Xi).The remainder of this se
tion will be fo
used on reviewing important aspe
ts of the se-manti
s of the PDG model w.r.t. its dependen
y model and e�
ient methods for performingexa
t inferen
e, previously developed by Jaeger (2004). To make the interpretation of thePDG model more smooth, we give the following Example 3.6. This is meant to help thereader build a more intuitive understanding of the PDG model.Example 3.6A patient arrives at the do
tor with pain in the stoma
h. The do
tor 
onsiders three possible
auses of the pain: food poisoning (p), stoma
h �u (f) or an ul
er (u). Under the assumptionthat these three 
auses are mutually ex
lusive and 
olle
tively exhaustive, we 
an represent theunknown 
ause of the stoma
h pain by a random variable H with possible states {p, f, u}. Toperform the diagnosti
s of the patient, the do
tor is interested in the presen
e (p) or absen
e(a) of two symptoms: diarrhoea and fever. We 
an represent these two symptoms by twobinary random variables D and F with possible states {p, a}. The do
tors beliefs are thefollowing:
• If the patient is su�ering from food poisoning, he/she is likely to experien
e diarrhoeabut not ne
essarily fever whi
h is only likely in severe 
ases where diarrhoea is 
ertainlypresent. In terms of 
onditional (in)dependen
e, this is expressed as D 6⊥⊥F |H = p.
• If, however, the patient is su�ering from stoma
h �u, the do
tor expe
ts the patient tohave a fever but not ne
essarily any diarrhoea. Again, if the �u is unusually severe,diarrhoea may be present, and then 
ertainly also the patient has a fever. In terms of
onditional (in)dependen
e this is expressed as D 6⊥⊥F |H = f

• Lastly, if the patient su�ers from an ul
er, the do
tor does not imagine any 
onne
tionbetween the presen
e/absen
e of diarrhoea and fever. This is 
aptured in terms of
onditional (in)dependen
e as D⊥⊥F |H = c.The s
enario des
ribed above 
an be represented in the PDG model over variables H, Dand F shown in Figure 3.7(a). Outgoing edges from ν0 have been labelled a

ording to thestates of H, and edges outgoing from ν1, ν2 and ν3 are solid 
orresponding to state p anddashed 
orresponding to state a of variable F .The parameters of the PDG shown in Figure 3.7 have the probabilisti
 interpretation listedin Table 3.1.Assume that the do
tor has the same belief of the likelihood of observing diarrhoea giventhe two following unexpe
ted states of nature:1. the patient su�ers from food poisoning (H = p) and has fever, and2. the patient su�ers from stoma
h �u (H = f) and has diarrhoea.30
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H ν0

F ν1 ν2 ν3

D ν4 ν5 ν6 ν7 ν8

u p f

(a)

H ν0

F ν1 ν2 ν3

D ν4 ν5 ν6 ν7

u p f

(b)Figure 3.7. Sub-�gure (a) shows the PDG stru
ture 
apturing the belief of the do
tor from Example3.6, and (b) shows one example of re�ning the model by reusing parameters.
Parameter ve
tor Lo
al distribution Example instantiation
pν0 = P (H) = {.3, .3, .4}

pν1 = P (F |H = u) = {.2, .8}

pν2 = P (F |H = p) = {.7, .3}

pν3 = P (F |H = f) = {.6, .4}

pν4 = P (D|H = u) = {.7, .3}

pν5 = P (D|H = p, F = p) = {.1, .9}

pν6 = P (D|H = p, F = a) = {.5, .5}

pν7 = P (D|H = f, F = p) = {.1, .9}

pν8 = P (D|H = f, F = a) = {.3, .7}Table 3.1. Probabilisti
 interpretation of the parameters de�ned by the PDG-stru
ture in Figure3.7(a).
This means that pν5 = pν8 in Figure 3.7(a), and su
h reuse of parameters are easily 
apturedin the graph stru
ture by redire
ting the edge ν3

a
−→ ν8 to ν5 and then removing ν8, see Figure3.7(b).Example 3.7A full parametrisation of the PDG stru
ture in Fig. 3.6(b) 
onsists of a binary probabilitydistribution for ea
h parameter-node νi, an example is shown in Table 3.2 in
luding also theprobabilisti
 interpretation of the parameters.The following two de�nitions introdu
e the 
on
epts of a node being rea
hed by a jointstate x ∈ R(X) (De�nition 3.17) and the 
on
ept of a path (De�nition 3.18).
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Parameter ve
tor Lo
al distribution Example instantiation
pν0 = P (X0) = {.9, .1}

pν1 = P (X1|X0 = 0) = {.7, .3}

pν2 = P (X1|X0 = 1) = {.1, .9}

pν3 = P (X2|X0 = 0) = {.5, .5}

pν4 = P (X2|X0 = 1) = {.4, .6}

pν5 = P (X3|X0 = 0, X1 = 1) = {.9, .1}

pν6 = P (X3|X1 = 0) = {.8, .2}

pν7 = P (X3|X0 = 1, X1 = 1) = {.5, .5}

pν8 = P (X4) = {.2, .8}

pν9 = P (X5|X4 = 1) = {.2, .8}

pν10 = P (X5|X4 = 0) = {.7, .3}

pν11 = P (X6|X4 = 1, X5 = 1) = {.6, .4}

pν12 = P (X6|{X4 = 1, X5 = 0} ∨ {X4 = 0}) = {.1, .9}

pν13 = P (X7|X4 = X5) = {.5, .5}

pν14 = P (X7|X4 6= X5) = {.2, .8}Table 3.2. One possible PDG-parametrisation of the stru
ture in Fig. 3.6(b) and the probabilisti
interpretations of the parameters.De�nition 3.17 (Rea
h)Let D = 〈G, θ〉 be a PDG over variables X w.r.t. forest F . A node ν in G labelled with Xi isrea
hed by x ∈ R(X) if
• ν is a root, or
• Xi ∈ chF (Xj), ν ′ ∈ Vj , ν ′ is rea
hed by x and ν = succ(ν ′, Xi,x[Xj]).Proposition 3.2Let G be a PDG stru
ture over variables X, then for any joint state x ∈ R(X) and anyvariable Xi ∈ X, x rea
hes a single parameter-node ν ∈ Vi.

Proof: Proposition 3.2 
an be proved by indu
tion in the depth of G. When G has depth1 only a single parameter-node exists and is then trivially the unique node rea
hed by every
x ∈ X. Assume Proposition 3.2 is true for stru
ture G. Now, 
onstru
t stru
ture G′ by addinga new variable Xj as leaf under Xi in the forest. Then, for any instan
e x ∈ R(X) a singlenode ν is rea
hed in Vi, and by the de�nition of a PDG-stru
ture (Def. 3.14), a single node
ν ′ ∈ Vj will be rea
hed by x, namely the node ν ′ = succ(ν,Xj,x[Xi]).We denote by reach(i,x) the single parameter-node ν ∈ Vi rea
hed by x.Example 3.8Consider the PDG-stru
ture of Figure 3.6(b), and the full instantiation x = 01100111 (i.e.,
x[X0] = 0, x[X1] = 1 et
.). reach(i,x) is then:
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i 0 1 2 3 4 5 6 7
reach(i,x) ν0 ν1 ν5 ν3 ν8 ν10 ν12 ν14De�nition 3.18 (Path)Let D = 〈G, θ〉 be a PDG over variables X. Let ν ∈ Vi, pa∗

F (Xi) ⊆ Y ⊆ X. Then
Path(ν,Y) := {y ∈ R(Y) : ν = reach(i,x) and x[Y] = y}. (3.23)

Example 3.9Consider the PDG-stru
ture of Figure 3.6(b). In this stru
ture we have:
Path(ν6, {X0, X1}) = {(0, 0), (1, 0)},by whi
h we see that whether ν6 is on the path de�ned by x only depends on whether x[X1] =

0, and is independent of the value of any other variable.We de�ne the real valued fun
tion fG represented by RFG D = 〈G, θ〉 as follows:De�nition 3.19LetD = 〈G, θ〉 be an RFG over variables X w.r.t. forest F , ν ∈ Vi and chF (Xi) = {Y1, . . . , Yl}.De�ne fun
tion fν
G re
ursively on R(X)[de∗F (Xi)] as:

fν
G(xi,h, z1, . . . , zl) := pν

h

l
∏

j=l

f
succ(ν,Yj ,xi,h)
G (zj), (3.24)

where xi,h ∈ R(Xi) and zj ∈ R(X)[chF (Yj)]. The base 
ase of (3.24) is when Xi is a leaf of
F and, therefore, de∗F (Xi) = {Xi} and we get:

fν
G(xi,h) := pν

h, (3.25)for ν ∈ Vi. De�ne the fun
tion fG:
fG(x) :=

∏

ν:ν is root fν
G(x). (3.26)

Example 3.10Consider the PDG of Figure 3.6(b) with the parametrisation given in Table 3.2. In this model,we 
al
ulate fν9
G (x) where x[X5] = 1, x[X6] = 0 and x[X7] = 1 as:

fν9
G (x) = pν9

2 · f
ν11
G ({0}) · fν13

G ({1})

= pν9
2 · p

ν11
1 · pν13

2

= 0.8 · 0.6 · 0.5 = 0.24Proposition 3.3Let D = 〈G, θ〉 be a PDG model over variables X w.r.t. variable forest F . Fun
tion fG de�nesa probability distribution PD over X. 33
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Proof: We need to show that 1) 0 ≤ PD(x) ≤ 1 and 2) ∑x∈R(X) P

D(x) = 1.1) First, note that as PD is a produ
t over fa
tors that are all between 0 and 1, hen
e PDmust be between 0 and 1.2) Next, noti
e that:
∑

x∈R(X)

PD(x) =
∑

x∈R(X)

∏

ν:root
in D

fν
G(x)

=
∏

ν:root
in D

∑

x′∈
R(de∗

F (Xi))

fν
G(x′),

where variable Xi generating the set x ∈ R(de∗F (Xi)) is the variable represented by the singleparameter-node ν, and therefore the root of a variable tree. Then, to prove∑x∈R(X) P
D(x) =

1 we only need to prove that for any root variable Xi:
∑

x∈R(de∗F (Xi))

fν
G(x) = 1, (3.27)

where {ν} = Vi. This 
an be proved by indu
tion in the depth of the tree. Assume that (3.27)is true for a PDG stru
ture G over variables X. Constru
t PDG stru
ture G′ by adding anew leaf-node Xi to the variable forest underlying G, let X′ = X ∪Xi and let |R(Xi)| = ki.The sum for fν
G′ 
an be 
onstru
ted as:

∑

x′∈R(X′)

fν
G′(x′) =

∑

x∈R(X)



fν
G(x)

∑

xi,h∈R(Xi)

pν′

h





=
∑

x∈R(X)

fν
G(x) · 1

= 1where ν ′ = succ(reach(j,x), Xi,x[Xj ]).In addition to the re
ursive de�nition of PD above, Jaeger (2004) provides the followingtwo alternative 
hara
terisation of the PD:Proposition 3.4(Jaeger, 2004, Proposition 2.5(A)) Let D = 〈G, θ〉 be a PDG over variables X (w.r.t. forest
F ), then:

PD(x) =
∏

Xi∈X

p
reach(i,x)
x[Xi]

. (3.28)
Proof: Equation (3.28) follows immediately from equations (3.24) and (3.26).

34



3.3 Probabilisti
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ision GraphsProposition 3.5(Jaeger, 2004, Proposition 2.5(B)) Let D = 〈G, θ〉 be a PDG over random variables X w.r.t.forest F . Let G\Xi denote the PDG stru
ture obtained from G by removing all nodes labelledwith some Xj ∈ de∗F (Xi). For any ν ∈ Vi, and any x ∈ Path(ν,X) then
PD(x) = fG\Xi

(x[X \ de∗F (Xi)]) · f
ν
G(x[de∗F (Xi)]). (3.29)

Proof: Note that x[X \ de∗F (Xi)] will rea
h exa
tly the same nodes for X \ de∗F (Xi) in G \Xias x in G. Also, note that when x ∈ Path(ν,X) and ν ∈ Vi then x[de∗F (Xi)] rea
hes the samenodes in the sub-graph of G rooted at ν as those rea
hed by x in G. Therefore:
fG\Xi

(x[X \ de∗F (Xi)]) =
∏

Xj∈X\de∗F (Xi)

p
reach(j,x)
x[Xj ]

, (3.30)
and

fν
G(x[de∗F (Xi)]) =

∏

Xj∈de∗
F (Xi)

p
reach(j,x)
x[Xj ]

. (3.31)
From (3.30) and (3.31) the following 
an be derived:

fG\Xi
(x[X \ de∗F (Xi)]) · f

ν
G(x[de∗F (Xi)]) =

∏

Xj∈de∗
F (Xi)

p
reach(j,x)
x[Xj ]

∏

Xj∈X\de∗F (Xi)

p
reach(j,x)
x[Xj ]

=

∏

Xi∈X

p
reach(i,x)
x[Xi]

= PD(x),

where the last equality is due to Proposition 3.4.
3.3.1 The PDG Dependen
y ModelA PDG stru
ture en
odes independen
e relations that are 
ontext spe
i�
. A parameter-node
ν in a PDG-stru
ture partitions R(X) into Path(ν,X) and its 
omplement.Proposition 3.6(Jaeger, 2004, Proposition 3.2) Let D = 〈G, θ〉 be a PDG over dis
rete random variables Xw.r.t. forest F . Let ν ∈ Vi, Y = pa∗

F (Xi). Then for all y ∈ Path(ν,Y):
pν = PD(Xi|Y = y) = PD(Xi|Path(ν,Y)) (3.32)Further, we identify the lo
al fun
tion fν

G de�ned in (3.31) as:
fν

G = PD(de∗F (Xi)|Y = y) = PD(de∗F (Xi)|Path(ν,Y)) (3.33)
Proof: We �rst prove eq. (3.32) then (3.33).35
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(3.32): By the fundamental rule of 
onditional probability we 
onstru
t PD(Xi|Y = y) =

P D(Xi,Y=y)
P D(Y=y)

. To 
onstru
t the joint marginal PD(Xi = xi,h,Y = y), we sum over U = {x ∈

R(X) : x[Xi] = xi,h and x[Y] = y}:
PD(Xi = xi,h,Y = y) =

∑

x′∈U

∏

Xj∈X

p
reach(j,x′)
x′[Xj ]

(3.34)
All x′ ∈ U rea
hes the same parameter-node for any Xl ∈ {Xi ∪Y} as Y = pa∗

F (Xi). Letthis parameter-node be denoted νl, we 
an then extra
t the 
ommon fa
tor ∏Xl∈{Xi∪Y} p
νl

h(where x′[Xl] = xl,h, x′ ∈ U) from the sum in (3.34), whi
h 
an then be expressed as:
PD(Xi = xi,h,Y = y) =

∏

Xl∈{Xi∪Y}

pνl

h

∑

x′∈U

∏

Xk∈

{X\{Xi∪Y}}

p
reach(k,x′)
x′[Xk] (3.35)

=
∏

Xl∈{Xi∪Y}

pνl

h . (3.36)
Through a similar derivation, we 
an show that:

PD(Y = y) =
∏

Xj∈Y

p
reach(j,y)
y[Xj ]

. (3.37)
The division then 
an
els all fa
tors ex
ept from pνi

h .(3.33): Noti
e that:
fν

G(x) =
∏

de∗F (Xi)

p
reach(i,x)
x[Xi]

.

Therefore, the proof follows similar arguments as the proof of (3.32) above.A set of nodes Vi in a PDG stru
ture over variables X generates the partitioning 
onsistingof the sets {x ∈ R(X) : x ∈ Path(ν,X)}(ν ∈ Vi), and we will denote this partition A (Vi).Using su
h partitions we 
hara
terise the independen
ies en
oded by a PDG stru
ture inProposition 3.7.Proposition 3.7(Jaeger, 2004, Proposition 3.3) The probability distribution PD represented by a PDG D =

〈G, θ〉 satis�es the 
onditional independen
e relations:
PD(Xi|X \ de∗F (Xi)) = PD(Xi|pa

∗
F (Xi)) = PD(Xi|A (Vi)). (3.38)A PDG stru
ture G therefore de�nes the dependen
y modelM(G) in
luding the independen
erelations:

M(G) = {Xi⊥⊥Xj |A (Vi) : Xj ∈ {X \ de∗F (Xi)}, Xi ∈ X}. (3.39)Proposition 3.8Let F be a variable forest over variables X, and let Xi, Xj ∈ X be 
ontained in di�erent trees.Then any PDG model with underlying variable forest F in
ludes the marginal independen
e
Xi⊥⊥Xj . 36
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Proof: LetXk be the root of the tree 
ontainingXi, then by (3.39) we have thatXk⊥⊥Xj |A (Vk)and Xi ⊥⊥ Xj |A (Vi). As Xk is root, A (Vk) is the trivial partition {Ω}, and therefore
B = I (A (Vk),B) for any other partition B. Then, Xi ⊥⊥ Xj |I (A (Vk),A (Vi)) is true,and 
ontra
tion (Axiom 2.7) then implies:

Xi⊥⊥Xj |I (A (Vk),A (Vi)) ∧Xk⊥⊥Xj |A (Vk)⇒ {Xi, Xk}⊥⊥Xj |A (Vk). (3.40)Finally, by de
omposition Xi ⊥⊥ Xj|A (Vk) and as A (Vk) is the trivial partition, this is amarginal independen
e: Xi⊥⊥Xj .
Proposition 3.9Let Xi, Xj and Xk be members of the same tree T in variable forest F , let T bran
h at Xkand let Xi and Xj be in separate sub-bran
hes underneath Xk. Then any PDG model w.r.t.variable forest F will en
ode the independen
e relation: Xi⊥⊥Xj |I (A (Xk),A (Vk)).
Proof: For x ∈ R(X), membership a

ording to A (Vi) is independent of the value of Xj as
Xj ∈ X \ de∗F (Xi), and Proposition 3.9 immediately follows as an instan
e of Eq. (3.39).

For a distribution P , any PDG stru
ture G that only en
odes independen
e relations thatare also true in P is 
alled an I-map of P . This is analogous to the notion of an I-map for BNmodels, dis
ussed earlier (see Se
tion 3.2.1). In addition, any variable forest F that supportsa PDG stru
ture G that is an I-map of P , is also 
alled an I-map of P .Similarly analogous to BN models, we use the notion of faithfulness. When PDG stru
ture
G is an I-map of P , and P does not 
ontain any more independen
e relations than those that
an be read of G, we say that P is faithful to G. We 
all a distribution P for PDG-faithful,i� there exists a PDG stru
ture G su
h that P is faithful to G.
3.3.2 Inferen
eIn this se
tion we present an algorithm for solving inferen
e in a PDG. Central 
on
epts arein-�ow and out-�ow of a node ν in a PDG. They are de�ned as:De�nition 3.20Let D = 〈G, θ〉 be an RFG over random variables X w.r.t. forest F . Let ν ∈ Vi and G \Xibe as in Proposition 3.5. The in�ow of node ν (denoted ifl(ν)) is de�ned as:

ifl(ν) :=

{

∑

y∈Path(ν,X\de∗F (Xi))
fG\Xi

(y) when X \ de∗F (Xi) 6= ∅,

1 otherwise. (3.41)
The spe
ial 
ase X \ de∗F (Xi) = ∅ in eq. (3.41) only happens when F 
onsists of a singletree rooted at Xi. 37
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al ModelsDe�nition 3.21Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest F , and ν ∈ Vi. The out�owof node ν (denoted ofl(ν)) is de�ned as:
ofl(ν) :=

∑

z∈R(X)[de∗F (Xi)]

fν
G(z). (3.42)

Note that when D is a PDG, ofl(ν) = 1 for any ν.Lemma 3.4Let D = 〈G, θ〉 be an RFG over random variables X and let ν be a node in D, then:
ifl(ν)ofl(ν) =

∑

x∈Path(ν,X)

fG(x). (3.43)
Proof: Equation (3.43) follows immediately from Proposition 3.5 and De�nitions 3.20 and3.21.

From Lemma 3.4, it follows that when D is a PDG in�ow of a node is the probability ofthat node being rea
hed by x ∈ R(X) drawn under distribution PD.Corollary 3.1Let D be a PDG over variables X, then:
PD(Xi = xi,h) =

∑

ν∈Vi

pν
hifl(ν), (3.44)

for any Xi ∈ X.Lemma 3.5(Jaeger, 2004, Lemma 4.3 (a)) Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest
F , and let ν ∈ Vi and ki = |R(Xi)|. Then:

ofl(ν) =

ki
∑

h=1

pν
h

∏

Y ∈chF (Xi)

ofl(succ(ν, Y, xi,h)). (3.45)
Lemma 3.6(Jaeger, 2004, Lemma 4.3 (b)) Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest
F , and ν ∈ Vi where Xi is a root of some tree in F . Then:

ifl(ν) =
∏

ν′ 6=ν and

ν′ root in D

ofl(ν ′). (3.46)
38
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Algorithm 3.4 Compute out-�ow of node ν and all node in the sub-tree rooted at ν in PDG
D = 〈G, θ〉. Global data-stru
ture ofl is used to store out-�ows and global data-stru
ture πis used to store intermediate results needed for subsequent 
omputation of in-�ow.Input: RFG D over variables X w.r.t. forest F , and a node ν ∈ Vi1: pro
edure 
omputeOfl(D, ν)2: ofl(ν) := 03: if chF (Xi) 6= ∅ then4: for h = 1, . . . ki do5: π(ν, h) := 16: for all Y ∈ chF (Xi) do7: if ofl(succ(ν, Y, xi,h)) has not been 
omputed then8: 
omputeOfl(succ(ν, Y, xi,h)))9: π(ν, h) := π(ν, h) · ofl(succ(ν, Y, xi,h))10: ofl(ν) := ofl(ν) + pν

h · π(ν, h) ⊲ Eq. (3.45)11: else12: for h = 1 . . . ki do13: ofl(ν) := ofl(ν) + pν
h

Lemma 3.7(Jaeger, 2004, Lemma 4.3 (
)) Let D = 〈G, θ〉 be a RFG over random variables X w.r.t. forest
F , ν ∈ Vi where Xi is not a root of F , and paF (Xi) = {Xj}. Then:

ifl(ν) =

kj
∑

h=1

∑

ν′∈Vj :

ν=succ(ν′,Xi,xj,h)

[ifl(ν ′)pν′

h

∏

Y ∈chF (Xj)\Xi

ofl(succ(ν ′, Y, xj,h))] (3.47)
The out-�ow of all nodes in a RFG 
an be 
omputed by invoking the pro
edure 
omputeOflin Algorithm 3.4 on all roots ν of RFG stru
ture G.Computing out�ow for root node ν in a RFG by pro
edure 
omputeOfl (Algorithm 3.4)
onsists of traversing the stru
ture of D 
omputing (3.45) for ea
h parameter node. ForPDG/RFG stru
ture with underlying variable forest F , the 
omplexity is O(k) where:

k =
∑

Xi∈X

|R(Xi)| · |Vi| ·max(1, |chF (Xi)|). (3.48)
Computing the in-�ow of any node and all prede
essor nodes in a RFG D = 〈G, θ〉 
anbe done e�
iently if out-�ow of all nodes has �rst been 
omputed.Line 14 of Algorithm 3.5 implements eq. (3.47) by using the following relation:

∏

Y ∈chF (Xj)\Xi

ofl(succ(ν ′, Y, xj,h)) =

∏

Y ∈chF (Xj)
ofl(succ(ν ′, Y, xj,h))

ofl(succ(ν ′, Xi, xj,h))
, (3.49)

where Xj = paF (Xi) and ν ∈ Vi. Re
all that we 
ompute the numerator of (3.49) and store itas π(ν ′, h) during the 
omputation of out�ows in line 9 of Algorithm 3.4. Therefore, assuming39
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Algorithm 3.5 Compute in-�ow of a node ν in a PDG D = 〈G, θ〉. Assumes that ofl and πdata-stru
tures are updated through invoking 
omputeOfl on all roots of G.Input: RFG D = 〈G, θ〉 where stru
ture G is over variables X w.r.t. forest F , node ν ∈ Vi1: pro
edure 
omputeIfl(D, ν)2: if ν is root in G then3: ifl(ν) := 14: for all ν ′ 6= ν and ν ′ is root in G do5: ifl(ν) := ifl(ν)ofl(ν ′) ⊲ Eq. (3.46)6: else7: ifl(ν) := 08: Xj := paF (Xi)9: for all ν ′ ∈ Vj do10: if ifl(ν ′) has not been 
omputed then11: 
omputeIfl(D, ν ′)12: for h = 1, . . . , kj do13: for all ν ′ ∈ Vj where succ(ν ′, Xi, xj,h) = ν do14: ifl(ν) := ifl(ν) + ifl(ν ′)pν′

h
π(ν′,h)
ofl(ν) ⊲ Eq. (3.47)

that pro
edure 
omputeOfl has been invoked on all roots and π(ν ′, h) has been saved for alledges, we 
an e�
iently 
ompute (3.49).Algorithm 3.6 Compute in-�ow and out-�ow of every node in a PDG.1: pro
edure 
omputeIflOfl(D)2: for all roots νr of D do3: 
omputeOfl(D, νr)4: for all leaves νl of D do5: 
omputeIfl(D, νl)
In pro
edure 
omputeIflOfl (Algorithm 3.6) both in-�ow and out-�ow are 
omputed forevery node in the PDG.To 
ompute the marginal PD(Y = y) of an arbitrary subset of variables Y ⊆ X in a PDG

D = 〈G, θ〉, we �rst 
onstru
t a spe
ial RFG DY=y from D by inserting eviden
e Y = ydes
ribed by the simple operations of the insertEviden
e pro
edure (Algorithm 3.7).Constru
ting eviden
e RFG DY=y by the insertEviden
e pro
edure of Algorithm 3.7has 
omplexity O(
∑

Xi∈Y |Vi|), assuming that updating parameter ve
tors is done in 
onstanttime instead of the suggested loop 
onstru
t in line 5.It is 
lear that when DY=y is 
onstru
ted from PDG D by insertEviden
e(D, Y, y)(Algorithm 3.7), then for any x ∈ R(X) we have:
fDY=y

(x) =

{

PD(x) if x[Y] = y

0 otherwise40
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Algorithm 3.7 Constru
t eviden
e RFG from PDG D by inserting eviden
e Y = y.1: fun
tion insertEviden
e(D, Y, y)2: DY=y := copy(D)3: for all Xi ∈ Y do4: for all ν ∈ Vi do5: for all xi,h ∈ R(Xi) do6: if xi,h 6= y[Xi] then7: set pν

h := 0 in DY=y8: return DY=y

If ofl has been 
omputed for all roots in DY=y, we 
an then get PD(Y = y) by multipli
ationof root out�ows, whi
h is shown in the following derivation:
PD(Y = y) =

∑

x∈R(X)

fDY=y
(x)

=
∑

x∈R(X)

∏

ν root
in D

fν
DY=y

(x[de∗D(Xi)]), (3.50)
where the proje
tion x[de∗D(Xi)] is onto des
endandt variables of variable Xi that is repre-sented by root parameter-node ν. The equality of (3.50) holds be
ouse of Proporsition 3.5,and from the de�nition of out-�ows (De�nition 3.21) we then have:

PD(Y = y) =
∏

ν root
in D

ofl(ν) (3.51)
The 
omplexity of 
al
ulating PD(Y = y) therefore 
onsists of 
onstru
ting DY=y, 
al
u-lating out-�ows in DY=y and the multipli
ation of root out�ows (3.51). Constru
ting DY=yhas 
omplexity O(

∑

Xi∈Y |Vi|) but this is dominated by the 
omplexity for 
al
ulating out�ows(3.48). The overall 
omplexity therefore remains O(k) where k is 
omputed by (3.48).The in-�ows are only ne
essary for 
al
ulating all posterior marginals by equation (3.44).Therefore, 
omputing a spe
i�
 query on the probability PD(Y = y|E = e) 
an be done basi-
ally by 
omputing out�ows twi
e, on
e in DE=e to get PD(E = e) and on
e in D(Y,E)=(y,e)to get the joint PD(Y = y,E = e).
3.3.3 Representation and E�e
tive SizeWe have established that general inferen
e in PDG models has linear time 
omplexity in thequantity of (3.48), and we therefore use this measure as the e�e
tive size of PDG model Dover variables X w.r.t. variable forest F :

sizeeff (D) =
∑

Xi∈X

|R(Xi)| · |Vj | ·max(1, |chF (Xi)|). (3.52)
41
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X0 ν0

X1 ν1 ν2

X2 ν3 ν4

Xn odd even

...
(a)

X1 X2 . . . Xn

X0(b)
X0 X1

H1

X2

H2 . . . Xn(
)Figure 3.8. The parity distributions PDG (a) and BN (b) representation. Fig. (
) shows a BNrepresentation with linear e�e
tive size by allowing auxiliary variables H1, . . . , Hn to be in
luded inthe network.
We de�ne the representational size of PDG M (sizerep(M)) as the number of free parame-ters de�ned by the model. For PDG modelM over variables X, this size measure is 
omputedby:

sizerep(D) =
∑

Xi∈X

(|R(Xi)| − 1) |Vi|. (3.53)
Therefore, the di�eren
e between sizeeff (D) and sizerep(D) depends on the degree of bran
hingof the underlying variable forest F , as:

sizeeff (D)− sizerep(D) =
∑

Xi∈X

(1 + |R(Xi)|[|chF (Xi)| − 1])|Vi|. (3.54)
Expressibility of PDGsThe development of the PDG language was initially an attempt to extend the languageof binary de
ision diagrams to represent probabilisti
 transition systems (Bozga and Maler,1999) and later generalised to represent dis
rete probability distribution over sets of variables(Jaeger, 2004). The following Example 3.11 illustrate the expressibility and potential e�
ien
yof the PDG language, using the distribution de�ned by the logi
al �parity�-fun
tion.Example 3.11(Parity) Let X = {X0, . . . , Xn} be a set of binary random variables, and let P be the jointdistribution over X de�ning uniform marginals for every Xi ∈ X. Let P (X = x) = 2−(n−1)
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for any joint 
on�guration x with even parity (that is, the sum ∑

Xi∈X x[Xi] is even), and
P (X = x) = 0 otherwise. This restri
tion yields the 
onditional distributions:

P (Xi = 1|X \ {Xi}) =





∑

Xi∈X

Xi



 mod 2.

The parity distribution is e�
iently represented by the PDG-stru
ture over a linear orderof the variables depi
ted in Figure 3.8(a). Two parameter-nodes for ea
h variable summarisesthe parity of all variables pre
eding it in the linear ordering. The bottom variable Xn is nowdetermined exa
tly depending on parity of the rest of the variables.When representing the parity distribution by a BN model, we need a stru
ture like theone in Figure 3.8(b) to 
apture the parity of every instan
e x ∈ R(X). While the PDGrepresentation has an e�e
tive size that is linear in the number of variables (4(n − 1) + 2),the BN will need exponentially many parameters (2n) assuming a full tabular representationof the 
onditional probability distributions. From a modelling perspe
tive, we 
an produ
ea more e�
ient BN model by introdu
ing auxiliary variables, denoted by Hi (1 ≤ i ≤ n) inFigure 3.8(
). These variables are binary, and 
olle
ts intermediate parity of the variables,whi
h makes it possible to model the distribution exa
tly with only 8(n−1)+4 parameters. Ingeneral, there always exists su
h an e�
ient transformation from a PDG into a BN representingthe same distribution over X, by the introdu
tion of latent auxiliary variables.Theorem 3.5(Jaeger, 2004, Theorem 5.3) Let D be a PDG model over variables X = {X0, . . . , Xn}. Thenthere exists a BN model B su
h that:1. B is de�ned over variables X ∪ {H0, . . . , Hn},2. PB(X) = PD(X), where PB is the joint distribution de�ned by B, and3. there exists a jun
tion tree of size O(|D|2), where |D| is the size of D.From this theorem we 
an 
on
lude that in theory BNs and PDGs provide representationsthat have similar e�
ien
y. However, when learning models from data rather than 
onstru
tinga BN model from a given PDG model, the problem of learning the latent auxiliary variablesemerges. In the general setting, not 
onstraining the stru
ture of the BN nor assuming priorknowledge on the existen
e and 
ardinality of latent variables, this problem is still widelyregarded as open. For solutions to spe
ial instan
es of the problem using more or less restri
tiveprior knowledge, see Kar
iauskas et al. (2004); Zhang (2004); Elidan and Friedman (2005).Theorem 3.5 establishes the ability of BNs to e�
iently represent distributions en
odedby PDGs. Jaeger (2004) further proves that for any BN model, there exists an e�
ienttransformation into a PDG model representing the same distribution:Theorem 3.6(Jaeger, 2004, Theorem 5.1) Let B be a BN model over variables X. Then there exists a PDG
D over variables X that represents the same distribution as B, and sizeeff (D) = O(sizeeff (B)).43
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The proof of Theorem 3.6 provided by Jaeger (2004), 
ontains an algorithm that transformsa 
lique tree 
onstru
ted from B into an equivalent PDG. This algorithm will be presented inSe
tion 4.6.

3.4 The Naïve Bayes Model
The Naïve Bayes (NB) model represents a joint probability distribution P (X) over randomvariables X by introdu
ing a latent variable C that models a set of 
omponents R(C). TheNB model asso
iates to ea
h variable Xi ∈ X a 
onditional distribution P (Xi|C) and to latentvariable C a prior distribution P (C). The NB model then represents P (C,X) through thefa
torisation:

P (C,X) = P (C)
∏

Xi∈X

P (Xi|C). (3.55)
NB models have traditionally been used mostly for 
lassi�
ation and 
lustering problems.When used for 
lassi�
ation, the latent variable C models 
lass membership and C has a �xednumber of states, one for ea
h possible 
lass. Ea
h variable Xi ∈ X models an attribute (orfeature) and has a dis
rete state-spa
e. The 
lassi�
ation problem is the problem of assigningthe 
orre
t 
lass-label to an instan
e E = 〈E, e〉, where E ⊆ X, and e ∈ R(E). This problemis solved using a NB model by assigning to E the most likely 
lass label c given E, that is

c = argmax
c′∈R(C)

P (C = c′|E = e).In 
lassi�
ation, C is not a latent variable outside our domain, but rather C is in
ludedin our domain by asso
iating a known (and observed) 
lass label with ea
h 
omponent in aone-to-one mapping.Unsupervised 
lustering is 
losely related to 
lassi�
ation, but no 
lass-labels exists. Thelatent C variable then models 
luster membership, but the number of 
lusters (
omponents) istypi
ally unknown. The problem is to �nd the �best� number of 
lusters (the �best� 
ardinalityof C), and a prior for P (C). What is meant by �best� is usually problem spe
i�
, but preferen
eis typi
ally given to models of small 
ardinality that de�ne few dense 
lusters.Many studies have demonstrated the 
ompetitiveness of the NB model over more sophisti-
ated and 
omplex models for 
lassi�
ation and unsupervised 
lustering (Cheeseman and Stutz,1996; Langley et al., 1992; Domingos and Pazzani, 1997; Vilalta and Rish, 2003).The NB model has re
ently re
eived some attention in the area of probabilisti
 inferen
e(Lowd and Domingos, 2005). Applying the NB model for general probabilisti
 inferen
e andgeneral belief updating is quite di�erent from the two traditional (and su

essful) appli
ationsof the NB model dis
ussed above. In the setting of general probabilisti
 inferen
e, the learningtask is then to 
onstru
t an NB model with latent 
luster variable, that approximates someprobability distribution over the set X of observable variables. Moreover, we are interested inanswering arbitrary probabilisti
 queries over X, and not in the spe
i�
 
lustering provided bythe model. Given a spe
i�
 NB model, we would, therefore, not be interested in the 
ardinalityof C to the extent that inferen
e is still tra
table. Nor would we be interested in the priors
P (C), rather we would always query the model for a joint marginal or 
onditional distribution44
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C

X0 X1 . . . Xn

Figure 3.9. The DAG stru
ture 
apturing the Naïve Bayes dependen
y model.
that never in
ludes the latent variable C. We will dis
uss the learning problem in Chapter 4.
3.4.1 The Naïve Bayes dependen
y modelDe�nition 3.22Let N be a NB model over variables X with latent variable C. The dependen
y model de�nedby N is then:

M(N) = {A⊥⊥B|C}, (3.56)where A,B ⊆ X.Intera
tion between variables are only possible indire
tly through C. The 
ardinality of Cdi
tates how many parameters are to be de�ned. With |R(X)| 
omponents (|R(X)| = |R(C)|),there will be enough parameters to independently represent ea
h distin
t joint state of R(X).
3.4.2 Inferen
eFrom the dependen
y model de�ned by the NB model (Def. 3.22), it is 
lear that the depen-den
ies 
an be 
aptured graphi
ally by a DAG stru
ture where C is the single parent of all
X ∈ X, see Figure 3.9. Then, we see that in 
omputing the posterior P (Q|E = e) for disjointsubsets Q and E of X, all variables B = X \ {Q∪E} are barren (by De�nition 3.12) and 
ansafely be removed. This then yields the e�
ient 
omputation of posterior probabilities:

P (Q = q|E = e) =

β
∑

c∈R(C)

P (C = c)
∏

Q∈Q

P (Q = q[Q]|C = c)
∏

E∈E

P (E = e[E]|C = c), (3.57)
where β is the normalisation 
onstant P (E = e)−1. The problem of belief updating in NBmodel M given eviden
e E = e then 
onsists of 
omputing (for every Xi ∈ X):

P (Xi,E = e) =
∑

c∈R(C)

P (C = c)P (Xi|C = c)
∏

E∈E

P (E = e[E]|C = c). (3.58)
The 
omplexity of (3.58) is O(|R(C)| · |E|). Constru
ting all entries R(Xi) in P (Xi|E = e)requires |R(Xi)| − 1 su
h 
omputations. Then, the overall 
omplexity of performing beliefupdating in NB models is O(|R(C)| · |E| · k) where k =

∑

X∈{X\E}(|R(X)| − 1). However,the produ
t P (C,E = e) = P (C) ·
∏

E∈E P (E = e[E]|C = c) 
an be re
y
led as this same45
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produ
t is required in all 
omputations of posteriors, and then only adds to the 
omplexityon
e. We get O(|R(C)| · (k+ |E|)), and (k+ |E|) is maximal when E = ∅ as all variables then
ontribute to k.
3.4.3 Representation and E�e
tive SizeFrom the above dis
ussion, we de�ne the e�e
tive size of NB model M over dis
rete variables
X with latent 
omponent variable C as:

sizeeff (M) := |R(C)| ·
∑

Xi∈X

(|R(Xi)| − 1). (3.59)
The number of free parameters that needs to be spe
i�ed for NB model M , that is therepresentational size of M (sizerep(M)), is:

sizerep(M) = |R(C)| − 1 + |R(C)|
∑

Xi∈X

(|R(Xi)| − 1). (3.60)
So for NB models, e�e
tive size (3.59) and representational size (3.60) is related as:

sizerep(M) = |R(C)| − 1 + sizeeff (M). (3.61)
Expressibility of the NB modelRe
all the parity distribution introdu
ed in Example 3.11. To represent the parity distributionover n variables, the NB model will need the latent variable C to have 
ardinality 2n. In thisway, C 
an be seen as representing the joint state of the n variables in X and the prior P (C)
an be 
on�gured to be 0 when the given 
on�guration has odd parity. Thus, for ea
h variable
Xi we will need 2n independent parameters, whi
h yields a total e�e
tive size of the NB modelof n · 2n + (2n − 1).The NB model 
an represent any dis
rete distribution over variables X by �xing the
ardinality of the latent variable to |R(X)|. However, in general a latent variable of this sizewould yield intra
table inferen
e in the NB model.
3.5 Related Work

In this 
hapter we have introdu
ed three di�erent probabilisti
 graphi
al model languages.We have introdu
ed the independen
e model en
oded by ea
h language and derived 
omplex-ity of performing belief updating in the models. We introdu
ed the PDG language 
apable of
apturing 
ertain 
ontext-spe
i�
 (in)dependen
ies that are not expressible by the DAG stru
-ture of a BN model. Many studies have previously fo
used on in
orporating su
h asymmetri
(in)dependen
ies as an extension to the popular BN language, we will review a few important
ontributions below.Boutilier et al. (1996) propose to use a de
ision tree representation of lo
al distributionsin a BN model instead of the more usual full tabular representation. By using su
h tree46
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stru
tures 
ontext spe
i�
 independen
ies are expli
itly represented. From su
h lo
al treerepresentations, Boutilier et al. (1996) proposes a deterministi
 de
omposition of parents byintrodu
ing suitable so-
alled multiplexer -nodes, whi
h e�e
tively redu
es the sizes of familiesin the network. By redu
ing the size of families, Boutilier et al. (1996) shows that the impa
ton 
omplexity of inferen
e using 
lique tree approa
hes 
an be signi�
ant.Cano et al. (2000) propose to use tree representations of 
lique potentials in general 
liquetree probagation. Here, the aim is not so mu
h to represent 
ontext spe
i�
 independen
iesthat 
an be identi�ed in lo
al 
lique potentials, but rather to approximate the potentials bya tree representation. This approa
h o�ers a natural tradeo� between a

ura
y and e�
ien
yof the inferen
e 
omputation: with larger trees, the approximation is more a

urate whilee�
ien
y is degraded, while smaller trees provides a (potentially) less a

urate approximationbut faster inferen
e.Many extensions to the global stru
ture of BN models to represent 
ertain asymmetri
independen
ies has been proposed, e.g., Bayesian Multinets (Geiger and He
kerman, 1996),Mixtures of Bayesian Networks (Thiesson et al., 1997) and Re
ursive Bayesian Multinets(Peña et al., 2002). Ea
h of these languages de�nes a de
ision tree stru
ture that 
ontains atits leaves di�erent BN stru
tures. Ea
h leaf 
orresponds to a di�erent, and the di�eren
e inthe above languages redu
es to whether the 
ontext is de
ided by one of more variable andwhether a latent 
ontext-de�ning variable is allowed. In the Bayesian Multinets proposed byGeiger and He
kerman (1996) a single hypothesis variable de�nes the 
ontext. The Re
ursiveBayesian Multinets proposed by Peña et al. (2002) de�nes the 
ontext using a set of variables.The framework of Mixtures of Bayesian Networks proposed by Thiesson et al. (1997) uses alatent variable to de�ne the 
ontext, and then basi
ally 
omputes an average over a small setof di�erent Bayesian Networks.
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Chapter 4
Learning Probabilisti
 Graphi
al

Models

The problem addressed in this 
hapter is the following:Let X be a set of dis
rete random variables w.r.t. a probability spa
e
〈Ω,R, P 〉. Given a database D of iid samples of P (X), 
onstru
t a PGM
M over X su
h that PM provides an a

urate and e�
ient approximationof P (X).

To assess whether M provides an a

urate approximation of P we use a distan
e mea-sure for probability distributions, and the relative distan
e from P to PM is then used as ameasure of a

ura
y. By the e�
ien
y of the approximation provided by M we understandthe 
omplexity of belief updating, that is, 
omputing all posterior marginal distributions from
PM . Both measures are important when sele
ting models from a single language and also for
omparison of di�erent languages for probabilisti
 graphi
al modelling.
4.1 Sele
ting Models and Comparing Languages

Given a spe
i�
 language of probabilisti
 graphi
al models L and a probability distribution
P (or a �nite sample D of P ), we are interested in extra
ting a 
hara
teristi
 of L that tellus whi
h alternative approximations to P L has to o�er. Su
h 
hara
teristi
s is also relevantboth for 
omparing di�erent languages and when sele
ting among alternative models from thesame language.
4.1.1 A

ura
y and E�
ien
yLet M be a probabilisti
 graphi
al model and let P be a target distribution, where P and
M are de�ned over the same set of dis
rete variables X. Let PM be the distribution de�nedby M . One standard measure for 
omparing probability distributions is the Kullba
k-Leibler49
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distan
e (KL-distan
e) (Cover and Thomas, 1991; Kullba
h and Leibler, 1951).1 KL-distan
eis an information theoreti
 measure that assigns a distan
e from a �true� distribution P to anapproximation Q. For dis
rete distributions, it is de�ned as:

DKL(P ||Q) =
∑

x∈R(X)

P (x) log
P (x)

Q(x)
, (4.1)

where we adopt the 
onvention (following Cover and Thomas (1991)) that 0 log 0
q

= 0 for
0 ≤ q ≤ 1 and p log p

0 = ∞ for p 6= 0, whi
h makes (4.1) well de�ned for any pair of dis
retedistributions (not ne
essarily positive) over the same domain.2Lemma 4.1Let X be a set of dis
rete random variables. Let P be a �xed distribution over X. Then,
DKL(P ||·) is a fun
tion:

DKL(P ||·) : PX → [0,∞], (4.2)where PX is the set all distributions over X. DKL(P ||·) is a 
ontinuous fun
tion on {Q ∈ PX :

Q(x) = 0⇒ P (x) = 0}.
Proof: Under the 
onvention that 0 · log 0

q
= 0 for 0 ≤ q ≤ 1, 
ontinuity of DKL(P ||Q) atany {Q : Q(x) = 0⇒ P (x) = 0} is immediate.

DKL(P ||Q) is always non-negative, 0 only when P = Q, and asymmetri
al (hen
e, (4.1)is not a metri
). When logarithms are base 2, the information theoreti
al interpretation of
DKL(P ||Q) is the expe
ted extra bits that will be 
ommuni
ated when a 
oding s
heme thatis optimal under the distribution of messages Q is used, in a setting where P is the truedistribution of messages. From our point of view, we will interpret DKL(P ||PM ) as a measureof in-a

ura
y of model M . When using M for inferen
e, we 
an express the in-a

ura
y ofthe inferred posterior joint distribution PM (Q|E = e) as DKL(P (Q|E = e)||PM (Q|E = e)).Then the expe
ted ina

ura
y of inferring the joint posterior of variables Q given that variables
E are observed is:

∑

e∈R(E)

P (E = e)DKL(P (Q|E = e)||PM (Q|E = e)). (4.3)
DKL(P ||PM ) is an upper bound for (4.3) (Cover and Thomas, 1991, Theorem 2.5.3), and 
antherefore be used as a 
onservative estimate for su
h expe
ted ina

ura
y. The entropy ofdis
rete distribution P is de�ned as:

H(P ) = −
∑

x∈R(X)

P (x) logP (x), (4.4)1Kullba
k-Leibler distan
e is also sometimes referred to as information divergen
e, information gain orrelative entropy.2The 
onvention of repla
ing 0 log 0
q
with 0 makes sense as limp→0 p log p

q
= 0, and repla
ing p log p

0
with

∞ when p 6= 0 makes sense be
ause limq→0 p log p

q
= ∞ for p > 0. However, there exists alternative measuresfor 
omparing dis
rete probability distributions, that does not require paying spe
ial attention to zeros, e.g.,the Hellinger's distan
e: DH(P ||Q) =

P

x∈X
(P (x)

1
2 − Q(x)

1
2 )2.50
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and DKL(P ||PM) 
an then be expressed as:

DKL(P ||PM ) = −H(P )−
∑

x∈R(X)

P (x) logPM (x). (4.5)
We usually do not have the �true� distribution P at our disposal, but only a �nite sample Dof P .3 We then use the empiri
al distribution PD de�ned by maximum likelihood estimatesunder the assumption of multinomial sampling D (Agresti, 1990):

PD(x) =
Nx

|D|
, (4.6)where Nx is the 
ount of x in D, that is, the number of instan
es d ∈ D where d = x.Substituting PD for P in equation (4.5), we then get:

DKL(PD||PM ) = −H(PD)−
∑

x∈R(X)

Nx

|D|
logPM (x)

= −H(PD)−
1

|D|
L(D|PM ), (4.7)where L(D|PM ) is the log-likelihood of D under PM , de�ned by Eq. (2.23). As the right-hand side of (4.7) only depends onM through L(D|PM ), we 
an use L(D|PM ) as a meaningfullmeasure of a

ura
y of a model M learned from data D. Furthermore, as 0 ≤ DKL(PD||PM )we see that −H(PD) provides an upper bound on 1

|D|L(D|PM ).In Chapter 3, we identi�ed parameters for ea
h of the model language introdu
ed, in whi
hgeneral belief updating will be 
omputable in linear time, making it possible to dis
riminatebetween models from di�erent languages based on theoreti
al e�
ien
y. Popular metri
s forassessing the quality of a single model given a database, 
ombines likelihood and a measureof size in a weighted sum. We refer to su
h metri
s as penalised likelihood s
ores, and theyhave the general form:
Sλ(D,M) := (1− λ)L(D|PM )− λ · size(M), (4.8)where size(M) is some measure of 
omplexity (not always dire
tly related to 
omplexity ofinferen
e) and 0 ≤ λ ≤ 1. Popular penalised likelihood s
ores for BN models use the repre-sentational size (number of free parameters) of the BN model as the measure of 
omplexity.For instan
e, substituting sizerep(M) for size(M) in (4.8), the Bayesian Information Crite-rion (BIC) (S
hwarz, 1978) is proportional to (4.8) with λ = 1 − log(|D|)

2+log(|D|) , and the AkaikeInformation Criterion (AIC) (Akaike, 1974) is proportional to (4.8) for λ = 1
2 .Penalised likelihood metri
s are often used to sele
t among alternative models in a learningpro
edure. It may, however, not be lu
rative to settle for a model that optimise the onespe
i�
 (maybe arbitrarily 
hosen) λ tradeo� between a

ura
y and e�
ien
y di
tated bythe s
ore metri
. Depending on the spe
i�
 appli
ation domain, we might want to penaliseoverly 
omplex models di�erently. Also, if we are to 
ompare models from di�erent languages,settling for one spe
i�
 tradeo� may (unintentionally) give favour to models from one languageover models from another language.3KL-distan
e has been and often still is used as a 
riterion in developing pro
edures for learning PGM fromdata, see Chow and Liu (1968) or Beygelzimer and Rish (2003).51
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Figure 4.1. Ideal SL-
urves. 'Training' plots SL 
oordinates for non-dominated models where log-likelihood is measured over DA, and 'Test' plots SL 
oordinates for the same models where log-likelihood is measured over DB . The straight lines titled '
onstant tradeo� (training)' displays lines
onstru
ted by linear extrapolation of SL 
oordinates that s
ore equally under that spe
i�
 tradeo�.
4.1.2 SL-CurvesTo evaluate our ability to learn a model M from data D that e�
iently and a

urately ap-proximates the empiri
al distribution PD, we will use plots of e�e
tive size vs. log-likelihood(L(D|PM )) of a range models. The range of models will ideally ea
h yield optimal Sλ s
orefor som λ. Figure 4.1 shows idealised plots of e�e
tive model size vs. model likelihood fora range of models optimising Sλ (see Eq. 4.8) for di�erent settings of λ. We 
all su
h plotsSL-
urves.First, in Figure 4.1, the 
urve titled �Training� plots the likelihood over the data set usedfor learning (hen
eforth referred to as DA) vs. e�e
tive size. The 
urve titled �Test� plotsthe likelihood of the same models but now 
omputed over a separate test dataset not used inthe learning phase (hen
eforth referred to as DB ). Ea
h of the straight lines titled �Constanttradeo� (Training)� is 
onstru
ted by extrapolation of a set of models that s
ores equallyunder some 
onstant tradeo�. Therefore, when sele
ting models a

ording to a 
onstant λ,the optimal model 
an be identi�ed in SL spa
e as the model with SL-
oordinates on 
urve�Training� at whi
h the tangent has slope λ

1−λ
.SL-
urves over likelihood obtained from DA will show the ability of the spe
i�
 modellanguage to 
apture the empiri
al distribution PDA . The interpretation of likelihood valuesobtained over DA is non-trivial. While a relatively high value is preferable, any model M thatsu

essfully enumerates DA (and thereby represents the empiri
al distribution PDA exa
tly),will re
eive a maximal likelihood value over DA of L(DA|P

M ) = −|D|H(PDA). Any modellanguage that has the ability to represent any distribution over the observed variables is, of
ourse, expe
ted to approa
h this value asymptoti
ally as the number of free parameters is52
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in
reased. Su
h models are not interesting unless we are 
on�dent that the empiri
al distri-bution PDA and the data generating distribution P are 
lose to indistinguishable. Whetherthe assumption of PDA being 
lose to P is reasonable, depends on the size of DA, the lessdata we have the less reasonable the assumption is. As data will always be limited in anypra
ti
al appli
ation, models that enumerate DA by 
apturing PDA perfe
tly, typi
ally su�erfrom over�tting as any idiosyn
rasies of DA are 
aptured and as a result does not generalisewell to new samples from P . We de�ne the 
on
ept of an over�tting model in De�nition 4.1.4De�nition 4.1Given a model language L, a dataset D and partition into training data DA and test data DB .A model M ∈ L over�t DA if there exists a model M ′ ∈ L su
h that:

L(DA|P
M ) > L(DA|P

M ′

), and (4.9)
L(DB |P

M ) < L(DB |P
M ′

). (4.10)Likelihood values obtained over dataset DB , 
an be used to provide some stability toour 
on
lusions and guide sele
tion of models. L(DB |P
M ) is then typi
ally used to dete
tover�tting DA.When 
omparing multiple languages using SL-
urves we have 2 
urves for ea
h language,one for likelihoods over DA and one for likelihoods over DB . For ea
h language L, the model

M = argmax
M ′∈L

L(DB |P
M ′

) 
an be identi�ed, and will automati
ally be the model amongst allmodels from L that maximise L(DA|P
M ) without over�tting DA (a

ording to De�nition 4.1).We 
an then 
ompare su
h optimal models from the di�erent languages w.r.t. dominan
e andsele
t the dominating model if one exists or sele
t one of the alternatives based on requirementson a

ura
y or e�
ien
y.Consider the 
onstru
ted SL 
urves in Figure 4.2 for languages PGM1 and PGM2. Theupper 
urves shows log likelihood over DA while the lower shows log likelihood over DB . Weuse DB for guiding the sele
tion amongst alternative models. The models that maximise loglikelihood over DB is indi
ated by M1 and M2 for PGM1 and PGM2 respe
tively. These are themodels that would be sele
ted (from the respe
tive language) by a model sele
ting pro
edurethat uses DB to dete
t over�tting. As M1 and M2 have similar log-likelihood values over DB ,and M1 has higher log-likelihood value over DA than M2, then, 
omparing M1 and M2 we seethat M2 has higher likelihood over the entire dataset. This observations should not be hastilyinterpreted as an indi
ation that M1 provides the more a

urate approximation of the datagenerating distribution. Instead, we 
an only 
on
lude that M1 and M2 provide an equallya

urate approximation, while M2 provides the more e�
ient approximation. On the level oflanguage 
omparison, we 
an make the observation that PGM1 
onsistently dominates PGM2in approximating DA, however, PGM1 su�ers a

ordingly from over�tting DA and a

ura
yon DB degrades qui
kly. When sele
ting a single model in a spe
i�
 s
enario, this observationis less interesting. However, for a more general 
omparison of model language performan
ein a s
enario where models are learned from real data, su
h observations are 
learly relevant.4De�nition 4.1 is a slightly modi�ed version of a more traditional de�nition (see (Mit
hell, 1997, p. 67)),where log-likelihood over DA and DB has been substituted for predi
tion error over DA and the entire dataset.53
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Figure 4.2. Example of SL-
urves used to sele
t models from two di�erent languages PGM1 andPGM2. The upper 
urves are log-likelihood values over DA while the lower 
urves are over DB .
When 
omparing the languages PGM1 and PGM2 rather than the models M1 and M2 usingFigure 4.2, we would make the observation that PGM1 has less propensity to over�tting thanPGM2.
4.1.3 Related MethodologiesBeygelzimer and Rish (2003) use tradeo� 
urves that display the tradeo� between tree-widthand likelihood of BN models. The tree-width of a BN model is a measure of the size ofthe smallest jun
tion tree representation, and is therefore equivalent to our notion of e�e
-tive size of BN models. The 
urves used by Beygelzimer and Rish (2003) are equivalent toour SL-
urves, but the motivation for the analysis is somewhat di�erent from our analysis.Beygelzimer and Rish (2003) aims at identifying the so-
alled approximabillity of probabilitydistributions by BN models. That is, a measure of how e�e
tive a BN approximation of agiven distribution 
an be. In the present study, we aim at a 
omparison of di�erent languagesof probabilisti
 graphi
al models using SL-
urves with likelihoods for both DA and DB . Whenonly 
onsidering a single language, our SL-
urves (for DA) tell exa
tly the same story as thetradeo�-
urves of Beygelzimer and Rish (2003).SL-
urves are 
losely related to 
urves showing predi
tion error against 
omplexity, whi
hare 
ommonly used in ma
hine learning for the assessment of generalisation performan
e inboth unsupervised and supervised model sele
tion (Hastie et al., 2001; Mit
hell, 1997). A stan-dard learning pro
edure then in
reases the 
omplexity by adding parameters to the model,and eventually sele
ts the model that minimises the predi
tion error on DB . It is natural toview log-likelihood over DB as a bound on the expe
ted a

ura
y in predi
ting new instan
essampled from the generative distribution, and the model yielding maximal log-likelihood over
DB is then the same model that has minimal predi
tion error on DB . A slight di�eren
e, how-54
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ever, is that we expli
itly use e�e
tive size that is proportional to 
omputational 
omplexityof general inferen
e in the model, instead of the more 
ommon representational 
omplexitytypi
ally used for su
h analyses.
4.2 Parameter Estimation

In this se
tion we dis
uss the problem of estimating parameters of a model given a datasetof observations. Assume that for model stru
ture M over dis
rete variables X, we need to �nda good parametrisation for M . Let D be a dataset of iid samples of joint distribution P (X).Assume that after observing data D we 
an 
onstru
t the posterior density P (Θ|D), e�e
tivelyassigning a 
onditional probability to any parametrisation θ given the observed samples D. ABayesian approa
h to estimation would then sele
t the mean of P (Θ|D), that is:
θ′ = E[Θ|D] =

∫

Θ
θP (θ|D)dθ. (4.11)Another Bayesian approa
h is the maximum a posterior (or MAP) estimation, where theparametrisation attaining the maximum posterior probability is sele
ted:

θ′ = argmax
θ

P (θ|D). (4.12)The posterior P (θ|D) = P (D|θ)P (θ)/P (D) 
an be simpli�ed by assuming that any sequen
eof observations is equally likely a priori, 
orresponding to a uniform prior P (D) whi
h 
anthen be disregarded when 
omparing posteriors. Further, if we assume a uniform prior onparameters, the posterior P (θ|D) be
omes proportional to the likelihood of data P (D|θ).Then (4.12) be
omes the popular maximum likelihood estimator:
θ′ = argmax

θ

P (D|θ). (4.13)If we assume multinomial sampling, the ML estimate for the 
onditional probability P (Y =

y|U = u) from data D is given by the fra
tion:
P (Y = y|U = u) =

Ny,u

Nu

, (4.14)where Ny,u is the number of data instan
es d ∈ D for whi
h d[Y,U] = (y,u), and Nu =
∑

y∈R(Y)Ny,u. Therefore, when data D is 
omplete (i.e., fully observed), ML estimates 
anbe 
omputed in 
losed form by simple proportions of 
ounts. When data is in
omplete, we
an not 
ompute this estimate dire
tly and must rely on methods su
h as the EM algorithm,that produ
es an ML estimate using expe
ted 
ounts. For NB models, we fa
e the problemeven for 
omplete data. The di�
ulty arises from estimating parameters in the presen
e ofthe latent variable C for whi
h no observations exit. We will dis
uss the solution providedby the EM algorithm in dealing with the problem of in
omplete data and latent variables inSe
tion 4.4.1. For now, we will fo
us on the simpler task of ML estimation in BN and PDGmodels from 
omplete data. 55
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Algorithm 4.1 The pro
edure s
ores a smoothing parameter α by a 
ross-validation method.Input: Model M , smoothing value α, fully observed data D.Output: A s
ore for smoothing value α.1: fun
tion CVS
ore(M,α,D)2: Randomly divide D into n equal size disjoint folds D1,D2 . . . ,Dn3: s := 0.04: for all folds Di do5: Let θi be α-smoothed ML-parameters for M estimated from D \ Di.6: s := s+ L(Di|θi)7: return s/n
SmoothingPure ML estimation of parameters are often not desired, as a 
ount of zero will yield a zeroprobability 
on�guration in the model. As data is always limited, 
onsidering any event whi
his not observed in the data as an impossible event is never justi�able (in theory) as either theevent (or the data-sample) may just be parti
ularly unlikely in nature.A standard method to avoiding su
h zero 
ounts is to use smoothed ML-parameters, whi
hamounts to adding a smoothing fa
tor (or pseudo 
ount) α to the 
ount when 
al
ulating theestimate of P (Y = y|U = u):

P (Y = y|U = u) =
Ny,u + α

Nu + α · |R(Y)|
(4.15)

We will denote parameters 
al
ulated from eq. (4.15) α-smoothed ML-parameters.5The larger the α, the more aggressive the smoothing and parameters will approa
h unifor-mity and the 
ounts from data will vanish. Choosing α too small may not provide su�
ientsmoothing to 
an
el out the unlikely events observed in the data. A good value for α is there-fore very dependent on the nature of data. By �a good value� we understand a value for whi
h
α-smoothed parameters yields a 
loser and more a

urate approximation of the generatingdistribution than pure un-smoothed ML parameters.For a given parameterised model M representing distribution PM , the likelihood of sepa-rate test dataset DB may be used as valid measure of a

ura
y of the approximation providedby PM . Alternatively, instead of leaving out a subset of the dataset for validation purposesonly, we 
an use a 
ross-validation approa
h to estimate the a

ura
y of an approximation.We will employ a 
ross-validation approa
h in assessing the quality of a smoothing value α.Fun
tion CVS
ore of Algorithm 4.1 assesses the quality of a α-value by 
ross-validation.We will assume that CVScore(M,α,D) de�nes a unimodal fun
tion in the α argument.Empiri
al observations has shown that this is not an unreasonable assumption. Figure 4.3shows CVScore(M,α,DA) and L(DB |M) for a PDG model M over the variables observed ina real dataset. Not only does this plot support our assumption of unimodal CVS
ore in α,5Equation (4.15) 
orresponds to MAP estimation of parameters with prior P (θ) following a Diri
hlet dis-tribution with parameter α for ea
h dimension, see He
kerman (1995).56
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Figure 4.3. The plot shows CVScore(M,DA, α) for �xed model M and �xed data DA depi
ted by thesolid line. The dashed line plots the value of L(Dtest|M) for a separate data-sample Dtest and for Mwith α-smoothed ML parametrisation. The dataset used is the Abalone dataset with |DA| = 3758 and
|DB | = 419.
but also we see that L(DB |M) and CVScore attains their maximum value in the same regionof smoothing values α.A

epting the assumption of unimodality, we will use a simple sear
h pro
edure to estimate
α that yields maximal CVS
ore. The pro
edure tuneSmooth (Algorithm 4.2) optimises an αusing a simple narrowing sear
h. The result of tuneSmooth is plotted in Figure 4.3 as a verti
aldashed line.The verti
al line in the plot in Figure 4.3 shows the α value resulting from our implemen-tation of the tuneSmooth pro
edure (Algorithm 4.2).
4.3 Learning Bayesian Network Models

This se
tion is 
on
erned with the problem of learning BN models from data. The re
entbook by Neapolitan (2003) serves both as an ex
ellent introdu
tion to the topi
 and a 
om-prehensive referen
e 
ontaining many important results that have emerged over the past 10-15years of intensive resear
h in this spe
i�
 �eld of automated learning.In this se
tion we propose an algorithm for learning BN models from data. In short, thepro
edure performs a sto
hasti
 sear
h in the spa
e of equivalen
e 
lasses of BN models. Majorparts of the material presented in this se
tion is based on the ideas previously published in(Nielsen et al., 2003).Our proposed pro
edure, the k-greedy Equivalen
e Sear
h (or KES) pro
edure, is a gen-eralisation of the Greedy Equivalen
e Sear
h (or GES) pro
edure, �rst proposed by Meek57
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Algorithm 4.2 Given a dataset and a model M this algorithm optimises a smoothing fa
torby using the 
ross-validation s
ore, CVS
ore.Input: Dataset D and model MOutput: Optimal smoothing parameter α.1: fun
tion tuneSmooth(D,M)2: l := 03: u := αmax4: repeat5: if CVScore(M, l + ǫ,D) > CVScore(M, l,D) then6: l := l + ǫ7: if CVScore(M,u+ ǫ,D) > CVScore(M,u,D) then8: u := u− ǫ9: until neither u nor l 
hanged, or u− l is small enough.10: if CVScore(M,u,D) > CVScore(M, l,D) then11: return u12: else13: return l
(1997).
4.3.1 Sele
ting Optimal BN ModelsWe say that a distribution P is representable by BN dependen
y modelM(G) i� G is an I-mapof P , whi
h then implies that for some parametrisation θ, BN model B = 〈θ,G〉 representsdistribution PB = P . We will by BD

G denote the BN model with DAG stru
ture G and MLparameters θ estimated from data D.De�nition 4.2 (Lo
al (In
lusion) Optimality)A BN dependen
y modelM(G) is in
lusion optimal w.r.t. distribution P i� P is representableby M(G) and no model M(G′) stri
tly (distributionally) in
luded in M(G) exists for whi
h
P is representable.De�nition 4.3 (Global (Parameter) Optimality)A model M(G) is said to be parameter optimal w.r.t. distribution P i� P is representable by
M(G) and no other model with fewer free parameters is P representable.Proposition 4.1Let P be a distribution faithful to DAG G, then the model M(G) is the unique global optimalmodel w.r.t. P .
Proof: As P is faithful to G, for any other model M(H) 6= M(G) that 
an represent Pit must be the 
ase that M(G) ⊂D M(H). For any su
h model M(H), DAG H 
an be
onstru
ted from DAG G by a series of 
overed edge reversals and single edge additions (by58
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De�nition 3.11 and Theorem 3.4). It 
an easily be shown that reversing a 
overed edge 
annot 
hange the number of free parameters in the model de�ned by the DAG, see (Chi
kering,1995). However, edge additions always will in
rease the number of free parameters. Therefore
M(H) must ne
essarily 
ontain more free parameters than M(G), whi
h proves unique globalparameter optimality of M(G).For learning pro
edures that traverse the spa
e of equivalen
e 
lasses representing ea
hequivalen
e 
lass by a DAG, it is desirable that the s
ore fun
tion does not dis
riminatebetween equivalent DAGs, and instead assign the same s
ore to equivalent models. We 
allsu
h s
ore fun
tions s
ore equivalent.De�nition 4.4 (S
ore Equivalen
e)S
ore fun
tion S is s
ore equivalent i� for any pair of DAGs G and H where G ≈ H it is the
ase that S(D, BD

G ) = S(D, BD
H).Generi
 s
ore fun
tions like Sλ (equation (4.8)) dis
ussed in Se
tion 4.1 are typi
ally usedto assess the quality of BN models. For re
overing a model that represents the data generatingdistribution, 
onsisten
y of the s
ore fun
tion is important.De�nition 4.5 (Consistent S
ore Fun
tions)Let D be a dataset of iid samples of a positive dis
rete probability distribution P (X). A s
orefun
tion for BN models S is then 
onsistent if, asymptoti
ally as |D| → ∞, the followingholds:1. If DAG G is an I-map of P while H is not, then S(D, BD

G) > S(D, BD
H).2. If both G and H are I-maps of P but sizerep(M(G)) < sizerep(M(H)), then S(D, BD

G) >

S(D, BD
H).For learning pro
edures, that traverse the spa
e of DAGs by lo
al transformations su
h assingle edge addition and removal operations, the requirement of lo
al 
onsisten
y is important.De�nition 4.6 (Lo
ally Consistent S
ore Fun
tions)Let D be a dataset of iid samples of a positive dis
rete probability distribution P (X). Let Gbe a DAG over X and let G′ be the DAG 
onstru
ted from G by adding the edge Xi → Xj .A s
ore fun
tion for BN models S is then lo
ally 
onsistent if, asymptoti
ally as |D| → ∞,(4.16) and (4.17) below hold:

Xi 6⊥⊥Xj |paG(Xj)[P ]⇒ S(D, BD
G′) > S(D, BD

G) (4.16)
Xi⊥⊥Xj |paG(Xj)[P ]⇒ S(D, BD

G′) < S(D, BD
G) (4.17)Assuming DAG-faithfulness of the generative distribution, the in
lusion boundary neigh-bourhood ensures asymptoti
 optimality, as shown by Castelo and Ko£ka (2003).Theorem 4.1(Castelo and Ko£ka, 2003, Theorem 4) Let D be a fully observed dataset of iid samples froma dis
rete joint probability distribution P . Let P be faithful to DAG stru
ture G and let S be59
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Algorithm 4.3 The k-greedy Equivalen
e Sear
h pro
edure (KES). S is any lo
ally 
onsistents
ore 
riterion and IB+(·) is the set de�ned in (4.18).Input: Data D; 0 ≤ k ≤ 1Output: DAG stru
ture of lo
al optimal BN model.1: pro
edure KES(D, k)2: G := empty DAG model over observed variables in D3: B := IB+(G,D)4: while B 6= ∅ do5: C := random subset of B of size max(1, k|B|)6: G := argmax

G′:M(G′)∈C

S(D, BD
G′)7: B := IB+(G,D)8: return G

a lo
ally 
onsistent s
ore fun
tion. Then, as |D| → ∞, for any DAG H 6≈ G with probability1 there is a model M(H ′) ∈ IB(M(H)) s.t. S(D, BD
H) < S(D, BD

H′).4.3.2 Greedy and k-greedy Model Sele
tionThe GES algorithm for sele
ting optimal BN models was proposed by Meek (1997), and theoptimality was later proved by Chi
kering (2002). A generalisation of the GES algorithm wasproposed by Nielsen et al. (2003), the k-greedy Equivalen
e Sear
h (KES). Algorithm 4.3 givesa simple high-level formulation of the KES pro
edure. With k = 1, KES e�e
tively redu
es toGES.We de�ne the set IB+(G) as:
IB+(G,D) := {M(G′) ∈ IB(M(G)) s.t. S(D, BG′

D ) > S(D, BG
D)}. (4.18)where S is a lo
ally 
onsistent and s
ore equivalent s
ore fun
tion.We will by GES refer to KES with k = 1.Theorem 4.2(Nielsen et al., 2003, Theorem 3) Let D be a dataset of fully observed iid samples of dis
retejoint probability distribution P , let P be faithful to DAG G and let 0 ≤ k ≤ 1. Then,asymptoti
ally for |D| → ∞, with probability 1, KES(D, k) returns DAG H ≈ G.

Proof: Theorem 4.2 follows almost immediately from Theorem 4.1. As the KES pro
edureof Algorithm 4.3 at ea
h iteration moves to a model in the in
lusion boundary of the 
urrentmodel, that has higher s
ore than the 
urrent model, by Theorem 4.1 KES will only terminatewhen the global optimal model G is rea
hed. As the number of dependen
y models for any�nite set of variables is �nite, KES will eventually terminate and return G.The original formulation of the GES algorithm by Meek (1997) implemented a two-phasedsear
h. In the �rst phase only the upper in
lusion boundary UIB(G) was used in the generation60
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P (X,Y )

x0 x1 x2 x3

y0 0.22 0.03 0.22 0.03
y1 0.03 0.22 0.03 0.22 P (Y, Z)

y0 y1

z0 0.35 0.15
z1 0.15 0.35

P (X,U)

x0 x1 x2 x3

u0 0.22 0.22 0.03 0.03
u1 0.03 0.03 0.22 0.22 P (U,Z)

u0 u1

z0 0.35 0.15
z1 0.15 0.35Table 4.1. Marginal joint distributions for the undire
ted sele
tion-four-
y
le distribution.

of IB+(G,D) (eq. (4.18)), and in the se
ond phase only the lower in
lusion boundary LIB(G)was used. The original formulation 
ould lead to super�uous addition of edges in the �rst(forward) phase that would then be removed in the se
ond phase. Our formulation uses thefull in
lusion boundary in ea
h step and, thereby, may avoid some super�uous additions, whileleading to the same theoreti
al results.The assumption of DAG faithfulness in Theorem 4.2 is a strong assumption to make ona joint probability distribution. We will give an example of a distribution for whi
h DAGfaithfulness is not satis�ed and whi
h exhibits multiple lo
al maxima.Example 4.1(Nielsen et al., 2003, Example 1) Let X = {X,Y, U, Z} be a set of dis
rete random variableswhere X has 4 states and Y , U and Z are all binary. Let P be a probability distributionover X that satis�es the 
onditional independen
ies X ⊥⊥Z|{Y, U}[P ] and Y ⊥⊥U |{X,Z}[P ],and with marginal joint probability distributions given in Table 4.1. The (in)dependen
ies ofthis distribution are perfe
tly 
aptured by the undire
ted graph in Fig. 4.4(a). This UDG isnot de
omposable (that is, not triangulated) and therefore no equivalent DAG model exists(Andersson et al., 1997, Corollary 4.1). Two distin
t BN dependen
y models are in
lusionoptimal w.r.t. P , the DAG stru
tures in Fig. 4.4(b) and (
) represents these models. Themodel in Fig. 4.4(b) 
ontains 19 independent parameters while the model in Fig. 4.4(
) requires23 independent parameters, therefore the global optimal model is the model in Fig. 4.4(b).As one last note, the model in Figure 4.4(d) is a dire
ted model that 
aptures the distri-bution by in
luding the latent sele
tion variable S. Variable S is a spe
ial variable that willalways be in one unique state for all observations, but is never in
luded in the observationsitself. It 
an be seen as a variable that sele
ts the observations that are observed.We will denote this distribution the undire
ted sele
tion-four-
y
le distribution.Random parametrisation of the sele
tion-four-
y
le distribution of Example 4.1 was usedfor experiments by Chi
kering and Meek (2002) in experimenting on GES performan
e in thepresen
e of multiple in
lusion optimal models. The spe
i�
 parametrisation we bring here wasmanually designed to guide a greedy sear
h to a suboptimal model.Meek (1995) investigates some aspe
ts of the assumption of DAG faithfulness and �rstproves existen
e of faithful (dis
rete) distributions for any DAG stru
ture. Furthermore,if parameters are sele
ted at random over a uniform distribution of legal parameters, withprobability 1, parameters will yield a probability distribution faithful to G (Meek, 1995).61
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X

U

Y

Z(a)
X

U

Y

Z(b)
X

U

Y

Z(
)
X

U

Y

Z

S

(d)Figure 4.4. Four models that 
an represent the undire
ted sele
t-four-
y
le distribution.
However, these theoreti
al results are of little importan
e to the pra
ti
al problem of learningBN models from data. It is not hard to imagine situations where this assumption is invalidated.The existen
e of a relationship like the one des
ribed by the DAG in Figure 4.4 (where S isthe hidden sele
tion variable), 
learly invalidates the assumption of DAG faithfulness. Thisobservation prompted Chi
kering and Meek (2002) to propose its repla
ement by the weakerassumption of satisfa
tion of the 
omposition property assumption.The 
omposition property (or 
omposition axiom of independen
e (Pearl, 1988)) is de�nedas:De�nition 4.7 (Composition property)A dis
rete joint probability distribution P over variables X, satis�es the 
omposition propertyi� for any X ∈ X and any nonempty disjoint subsets U,W of X and subset Z of X:

X⊥⊥U|Z[P ] ∧X⊥⊥W|Z[P ]⇒ X⊥⊥{U ∪W}|Z[P ]. (4.19)
Sometimes the 
ontra-positive of (4.19) is easier to apply when working with a spe
i�
 example:

X 6⊥⊥{U ∪W}|Z[P ]⇒ X 6⊥⊥U|Z[P ] ∨X 6⊥⊥W|Z[P ]. (4.20)The distribution of Example 4.1 satis�es the 
omposition property. The 
omposition prop-erty is a less restri
tive assumption than the assumption of DAG-faithfulness, as distributionsthat are DAG-faithful automati
ally satis�es the 
omposition property (Pearl, 1988). The
onverse is not true, whi
h the distribution in Example 4.1 exempli�es. That the modelin Example 4.1 satis�es the 
omposition property 
an be seen by the fa
t that no pairs of
onditional independen
e relations from the model �ts the left-hand side of equation (4.19).Therefore, the 
omposition property is trivially ful�lled.Still, the 
lass of distributions that satis�es the 
omposition property may be too restri
-tive. For instan
e, one relevant distribution that does not satisfy the 
omposition property isthe parity distribution (see Example 3.11). To realise this, let P be the parity distribution overbinary variables X and let Y = {Xi, Xj, Xl} ⊂ X. We then have that Xi 6⊥⊥{Xj , Xl}|X\Y[P ]but neither Xi 6⊥⊥Xj |X \Y[P ] nor Xi 6⊥⊥Xl|X \Y[P ], and the impli
ation of (4.20) is then notsatis�ed. 62
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Substituting the assumption of satisfying the 
omposition property for the assumption ofDAG faithfulness, Chi
kering and Meek (2002) prove in
lusion optimality of GES. This resultextends to KES whi
h we formally state in Theorem 4.3. The proof of Theorem 4.3 pro
eeds inthe same manner as the proof for GES in
lusion optimality provided by Chi
kering and Meek(2002).Theorem 4.3(Nielsen et al., 2003, Theorem 4) Let D be a dataset of fully observed iid samples from a jointprobability distribution P that satis�es the 
omposition property, and let M(H) be in
lusionoptimal w.r.t. P . Then, for any 0 ≤ k ≤ 1 and |D| → ∞, with probability 1 KES(D,k) returnDAG G ≈ H.

Proof: We will prove Theorem 4.3 by 
ontradi
tion. Assume KES(D, k) returns DAG Gthat is not in
lusion optimal w.r.t. P . That KES returns G implies that there is no DAG
G′ : M(G′) ∈ IB(M(G)) s.t. S(D, BD

G) < S(D, BD
G′). That G is not in
lusion optimalw.r.t. P implies that M(G) does not in
lude P , and G is therefore not an I-map of P .Then, for some Xi in G it must be true that Xi 6⊥⊥ {ndG(Xi) \ paG(Xi)}|paG(Xi)[P ]. Byrepeated appli
ation of (4.20), a singleton Xj ∈ {ndG(Xi) \ paG(Xi)} 
an be identi�ed forwhi
h Xi 6⊥⊥Xj|paG(Xi)[P ]. Adding the edge Xj → Xi to G will produ
e graph H, and as

Xj ∈ ndG(Xi), H will remain a DAG. By the de�nition of lo
ally 
onsistent s
ore fun
tions(De�nition 4.6) we get S(D, BD
G) < S(D, BD

H). By Theorem 3.4, M(H) ∈ IB(M(G)), whi
h
ontradi
ts the assumption that KES 
ould return G.Theorem 4.3 establishes in
lusion optimality of KES. For a distribution satisfying the 
om-position property, the number of in
lusion optimal models may be exponential in the numberof variables, while only a single (or a some small subset) of these models may be global pa-rameter optimal. The distribution presented in Example 4.1 is an example of this. We 
an
onstru
t a distribution by in
luding n 
opies of the undire
ted sele
tion-four-
y
le of Fig-ure 4.4(a). For ea
h su
h 
opy, 2 distin
t in
lusion optimal models exists, only one of whi
his global parameter optimal. Therefore, the distribution over all 4n variables would exhibit
2n distin
t lo
al in
lusion optimal models while still only one unique model is the globalparameter optimal model.The greedy traversal of the neighbourhood implemented by GES is not guaranteed tore
over the global parameter optimal model. However, by relaxing greediness and 
hoosing
k < 1 we introdu
e some randomness into the sear
h and thereby may explore a larger areaof the sear
h spa
e. Con�guring KES for maximal randomness (by setting k = 0) we are ableto re
over any in
lusion optimal model.Theorem 4.4(Nielsen et al., 2003, Theorem 5) Let D be a dataset of fully observed iid samples from adis
rete joint probability distribution P that satis�es the 
omposition property. Let G be aDAG representing a BN model M(G) that is in
lusion optimal w.r.t. P . Then, as |D| → ∞,with non-zero probability, KES(D, 0) will return G.63
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Proof: Let M(G) be any in
lusion optimal model w.r.t. P . We 
an then prove Theorem 4.4by 
onstru
ting a sequen
e of models M(G0), . . . ,M(Ge), where G0 is the empty DAG and
M(Ge) = M(G), and ea
h model M(Gi) ∈ IB+(Gi−1,D) for 1 ≤ i ≤ e.Consider the sequen
e of DAGs G0, . . . , Ge, where G0 is the empty DAG, ea
h DAG is
onstru
ted from the immediately pre
eding DAG by a single edge addition, and Ge = G.For all 0 ≤ i < e it is 
lear that M(Gi+1) ∈ UIB(Gi), hen
e we only need to show that
S(D, BD

Gi
) < S(D, BD

Gi+1
) to prove M(Gi+1) ∈ IB+(Gi,D). As every model in the sequen
e isin the upper in
lusion boundary of the immediately pre
eding model,M(Gi) ⊂P M(Gj) for all

0 ≤ i < j ≤ e, in parti
ular M(Gi) ⊂P M(G) for any 0 ≤ i < e. AsM(G) is in
lusion optimalw.r.t. P , no model stri
tly in
luded in M(G) (and therefore no model in our sequen
e) 
anrepresent P . For any model M(Gi) where i < e, Gi is therefore not an I-map of P , and then,for some variable X:
X 6⊥⊥{ndGi

(X) \ paGi
(X)}|paGi

(X)[P ]. (4.21)However, as G is an I-map of P , for the same X we have:
X⊥⊥{ndG(X) \ paG(X)}|paG(X)[P ]. (4.22)As Gi is a subgraph of G, it is 
lear that {ndG(X) \ paG(X)} ⊂ {ndGi

(X) \ paGi
(X)}. Ittherefore follows from (4.21) and (4.22) (by the blo
k independen
e lemma (2.20)), that:

X 6⊥⊥{paG(X) \ paGi
(X)}|paGi

(X)[P ]. (4.23)We 
an then (using (4.20)) identify a singleton Y ∈ {paG(X) \ paGi
(X)} for whi
h X 6⊥⊥

Y |paGi
(X)[P ]. Adding the edge Y → X to Gi produ
ing Gi+1 will (asymptoti
ally for |D| →

∞) yield a s
ore improvement for any lo
ally 
onsistent s
ore fun
tion, hen
e M(Gi+1) ∈

IB+(M(Gi)) for all 0 ≤ i < e.
4.3.3 ImplementationIn this se
tion we dis
uss some important issues relating to the implementation of KES (Alg. 4.3).In parti
ular we will prove 
onsisten
y od the general penalised likelihood s
ore fun
tion anddis
uss our approa
h to generating IB+(G,D) (4.18).
The λ-s
ore for BN modelsFor BN models, we will use Sλ as a s
ore fun
tion with sizerep as penalty. Let B be theparametrised BN model, then we de�ne the s
ore:

SBN
λ (D, B) = (1− λ)L(D|PB)− λsizerep(B). (4.24)Lemma 4.2

SBN
λ is s
ore equivalent for BN models for 0 ≤ λ ≤ 1.64
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Proof: Chi
kering (1995) proves that for equivalent DAGs G and H, L(D|BD

G) = L(D|BD
H)and sizerep(M(G)) = sizerep(M(H)). As SBN

λ is the sum of two quantities that are equivalentfor equivalent models, SBN
λ is itself equivalent.

A s
ore fun
tion for BN models is de
omposable if it 
an be expressed as a sum overterms, ea
h of whi
h is only a fun
tion of one variable and its parents in the DAG stru
tureof the BN model. As both terms of SBN
λ de
ompose into su
h terms, we see that SBN

λ is itselfde
omposable for BN models.Lemma 4.3
SBN

λ is a 
onsistent s
ore for BN models when 0 < λ < 1.
Proof: Let D be iid samples from the dis
rete distribution P (X). Then, with probability 1,
PD → P when |D| → ∞. We prove ea
h of the requirements of De�nition 4.5 in the following:1. Consider two DAGs G and H, and let G be an I-map of the generative distribution Pwhile H is not. We then need to prove that as |D| → ∞:

SBN
λ (D, BD

G)− SBN
λ (D, BD

H) > 0. (4.25)Combining (4.24) and (4.25) we get:
SBN

λ (D,M(G))− SBN
λ (D,M(H)) =(1− λ)[L(D|PBD

G )− L(D|PBD
H))]

− λ[sizerep(BD
G)− sizerep(B

D
H)]

>0.Then, by (4.7) we get:
(1− λ)(−|D| · [DKL(P ||PBD

G )−DKL(P ||PBD
H )]) > c, (4.26)where c = sizerep(M(G))− sizerep(M(H)). For |D| → ∞, with probability 1 PBD

G → P(and, therefore, DKL(P ||PBD
G )→ 0). (4.26) is then asymptoti
ally satis�ed if:
(1− λ)|D|DKL(P ||PBD

H ) > c, (4.27)for some c > 0. Consider the set H of probability distributions representable by M(H).Now, 
onstru
t the non-empty setHr = {Q ∈ H : DKL(P ||Q) ≤ r} for some r <∞.6 By
ontinuity of DKL(P ||·) (Lemma 4.1), Hr is a 
ompa
t set. Then, a well known resultfrom topology (Apostol, 1974, Theorem 4.25) guarantees that there exists a minimalelementQ′ = argmin
Q∈Hr

DKL(P ||Q). Re
all thatH is not an I-map of P . ThenDKL(P ||Q′)is positive (non-zero) and (4.27) is then satis�ed for |D| → ∞ and λ < 1.6That Hr will be non-empty for some r < ∞ is easily realised by the fa
t that any DAG 
an represent auniform distribution, and for uniform distribution Q, DKL(P ||Q) < ∞ for any P .65
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2. The se
ond requirement for 
onsisten
y 
an be proved to be satis�ed by somewhatsimilar arguments. When both G and H are I-maps of P , for |D| → ∞ with probability1 PBD

G → P and PBD
H → P , and the di�eren
e in likelihood L(D|PBD

G )−L(D|PBD
H ) willapproa
h 0. Then, as 0 < λ, we have:

sizerep(M(G)) < sizerep(M(H))⇒ SBN
λ (D, BD

G) > SBN
λ (D, BD

H). (4.28)
From Lemma 4.3, Corollary 4.1 immediately follows:Corollary 4.1Let D be a dataset of iid samples from joint probability distribution P , and let P be faithfulto DAG G. Then, asymptoti
ally for D →∞ and any H 6≈ G:

SBN
λ (D, G) > SBN

λ (D, H). (4.29)Lemma 4.3 then establishes global 
onsisten
y for sele
ting BN models a

ording to SBN
λ .Lemma 4.4

SBN
λ for BN models is a lo
ally 
onsistent s
ore fun
tion.The proof for Lemma 4.4 follows similar arguments as the proof for lo
al 
onsisten
y ofthe Bayesian s
ore (Chi
kering, 2002, Lemma 7).Proof: As SBN

λ is de
omposable, the di�eren
e SBN
λ (D, BD

G)− SBN
λ (D, BD

G′) is invariant forall pairs of DAGs that only di�ers in the single adja
en
y Xi → Xj . We are, therefore, free to
hoose the stru
ture 
ommon to G and G′. Let G′ be a fully 
onne
ted DAG. Then,M(G′) = ∅and M(G) = {Xi⊥⊥Xj |paG(Xj)}. AsM(G′) 
an represent any distribution, M(G′)is triviallyan I-map for P . If Xi 6⊥⊥Xj |paG(Xj)[P ], then M(G) is not an I-map of P and by 
onsisten
yof SBN
λ the impli
ation of (4.16) is true. If Xi⊥⊥Xj |paG(Xj)[P ], then both M(G′) and M(G)are I-maps of P and sizerep(M(G)) < sizerep(M(G′)), and by 
onsisten
y of SBN

λ , impli
ation(4.17) is true.
On the Choi
e of Size MeasureIt may seem more natural (or even more fair) to use the e�e
tive size as the penalty term inthe lambda s
ore of (4.24) instead of the representational size. Espe
ially when 
onsideringthat in Chapter 5 we are going to base our 
omparative analysis on e�e
tive sizes. How-ever, our reasons for not doing so are mainly the 
ompli
ations 
onne
ted with 
omputingthe in
rease/redu
tion of the e�e
tive size lo
ally given a lo
al modi�
ation like addition orremoval of an edge. Having a de
omposable s
ore is preferable from a pra
ti
al point of view,as it yields a straightforward way of reusing 
omputations by 
a
hing lo
ally 
omputed s
ores.Also, the theoreti
al results of Se
tion 4.3.1 and Se
tion 4.3.2 very mu
h depends on the s
orebeing de
omposable and lo
ally 
onsistent. 66
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Algorithm 4.4 Given a DAG G, this algorithm produ
es a representative DAG for a randommember of IB(G)Input: DAG GOutput: Random member of IB(G)1: fun
tion sampleIB(G)2: H := G3: r := random integer between 0 and |E|4: for r times do5: reverse a random 
overed ar
 in H6: (X,Y ) := random pair of nodes in H7: if Y ∈ adjH(X) then8: Remove the adja
en
y (X,Y ) from H.9: else10: Introdu
e the adja
en
y (X,Y ) with random orientation into H without introdu
-ing a 
y
le.11: return H

Obviously, rebuilding a full 
lique tree representation whenever 
omputing the 
hange ins
ore implied by a modi�
ation is not a lo
al operation. Instead, we 
ould 
onsider buildingthe 
lique tree in
rementally during the BN learning pro
edure. In
remental 
onstru
tion andmaintenan
e of a 
lique tree representation was studied by Flores et al. (2003). Given a 
liquetree model and a stru
tural modi�
ation of the original BN model (add/remove a link), thepro
edure of Flores et al. (2003) identi�es small sub-graphs (Maximal Prime Sub-graphs) ofthe 
lique tree that needs re-triangulation. In pra
tise, this 
an be mu
h simpler than re-building the full 
lique tree representation, but in the worst 
ase it still may turn out to beequivalent to a full global re-triangulation.We are not aware of any reliable lo
ally (and e�
iently) 
omputable estimates for thein
rease in e�e
tive size resulting from a lo
al modi�
ation to the BN model stru
ture. Forthese reasons, we 
hoose to use the representational size as the penalty in our s
ore fun
tionfor BN models.
Generating the In
lusion BoundaryTheorems 3.3 and 3.4 suggest a simple way of sampling a random member of the in
lusionboundary of any DAG G. By reversing 
overed edges and adding or removing a single edgewe will generate a DAG G′ that represents a model in IB(G). The fun
tion sampleIB (Algo-rithm 4.4) gives a high-level formulation of this pro
edure.The sampleIB fun
tion of Algorithm 4.4 is able to sample any member of IB(G). First,by Theorem 3.3 the sequen
e of r random 
overed edge reversals (line 5) 
an generate anymember G′ ∈ E(G). Next, by Theorem 3.4 the random addition/removal (lines 8 and 10)
an generate any member of IB(G). However, the sampling of DAG models equivalent to Gin line 5 is not uniform, as �
lose� DAGs requiring only a few 
overed ar
 reversals are more67
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likely to be sampled than �distant� DAGs requiring more 
overed ar
 reversals. The intuitionbehind this observation is that only a few of the edges that needs to be reversed to get fromDAG G to distant (equivalent) DAG H may be 
overed in G. After reversing 
overed edge ein G produ
ing G′, the set of 
overed edges will then typi
ally have 
hanged between G and
G′, but one edge remains 
overed in both, namely e. Therefore, there is a 
han
e that in G′,
e is reversed again, e�e
tively produ
ing G again from G′.The implementation of IB+(G,D) is based on the sampleIB fun
tion, whi
h means thatinstead of exhaustively enumeration of IB(G), we sample from IB(G) su�
iently many times.The sampleIB pro
edure performs sampling with repla
ement from the set IB(G). Let X(R)be the number of distin
t models in a random sample of size R. That is, assuming that wedraw (with repla
ement) R models from IB(G), X(R) then is the number of distin
t modelsdrawn. Assuming uniform sampling, the expe
tation of X(R) is:

E[X(R)] =
R−1
∑

i=1

(

N − 1

N

)(i−1)

, (4.30)
where N is the size of IB(G) (see Appendix B for the proof). The mean per
entage of IB(G)that will be represented in a sample of size R is then E[X(R)]

N
. Therefore, if we want to generatea random sample of average size k · N from IB(G), we 
an simply draw R samples, where

E[X(R)]
N

= k. We 
an not solve (4.30) dire
tly, instead we expand the sum one term at a timeand 
he
k if we are within some small error ǫ of k. Allowing for an error of ǫ is ne
essary forany 
omputer implementation as otherwise we would expand the sum with in�nitely manyterms for k = 1.0. Figure 4.5 shows E[X(R)]
N

for N = 100 against R. In the plot of Figure 4.5we have indi
ated 
orresponding k (that is E[X(R)]
N

) and R values for ǫ = 0.001. For example,we see that for k = 0.8 we will sample R = 162 times, and for k = 0.9 we will sample R = 231.In KES, however, we need to sample IB+(G) rather than IB(G). For simpli
ity, we �rstsample IB(G) by the method outlined above, and then sele
t from this sample the model withhighest s
ore. If no su
h model was found in the �rst sample, a new sample is drawn, and soforth. Eventually, we terminate the sear
h when the full IB(G) has been sampled.This reversal of operations only has an impa
t on the implementation of KES, none of thetheoreti
al properties of KES is a�e
ted by this.The above proposed method still la
ks e�
ient 
omputation of N = |IB(G)|. This value isdi�
ult to obtain without exhaustive enumeration. In our implementation, we approximate Nby the number of edges that 
an be added to the empty graph over variables X, i.e., |X|2−|X|.7This approximation is justi�ed by the fa
t that any model in the in
lusion boundary of DAGmodel G has one more or one less edge than G. On one hand this is an underestimate asmore than one unique equivalen
e 
lass may exist for whi
h the same 
onne
tion has beenadded/removed from G. On the other hand it is an overestimate as not all node 
onne
tionsare possible as some 
onne
tions may result in 
y
les. In pra
tise we have found this estimateto be adequate.7Chi
kering (2002) proposed this estimate. 68
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Figure 4.5. The expe
ted fra
tion of distin
t models sampled from a set of 100 elements, when sampling
R elements with repla
ement. That is, E[X(R)]

N
for N = 100 as a fun
tion of R.

4.3.4 Testing the BN Learning Pro
edureOne motivation for developing a pro
edure that allows trading o� greediness for random-ness was the identi�
ation of distributions with multiple lo
al in
lusion optimal models.An example of su
h a distribution was the sele
tion-four-
y
le distribution used by bothChi
kering and Meek (2002) and Nielsen et al. (2003) and repeated here in Example 4.1.To investigate the performan
e of both greedy and sto
hasti
 heuristi
s in sear
h spa
es
ontaining numerous lo
al optima, we �rst 
onstru
t a distribution exhibiting numerous lo
alin
lusion optimal DAG models. We 
an 
onstru
t a model representing a distribution exhibit-ing 2n lo
al in
lusion optimal DAG models, by 
onstru
ting the UDG model 
onsisting of n
opy's of the sele
tion-four-
y
le of Example 4.1. In this experiment, we use a model 
on-stru
ted in this way with n = 10 whi
h then is a model over 40 random variables that exhibits1023 lo
al in
lusion optimal DAG models and a single global optimal DAG model. We thensample 20000 instan
es from this model and invoked the KES pro
edure (Algorithm 4.3) usingthis data. We use 11 di�erent settings of k ∈ {0.0, 0.1, . . . , 1.0}, and for ea
h setting of k, theKES pro
edure was restarted 1000 times, and we used the BIC s
ore in all experiments. Resultsare displayed in the plots of Figure 4.6(a) and (b). First, Fig. 4.6(a) show the lowest settings of
k yielding the more sto
hasti
 sear
h. We have also in
luded the deterministi
 and maximallygreedy version with k = 1.0 (
orresponding to the GES pro
edure of Chi
kering and Meek(2002)) for 
omparison. We observe that all models learnt for k ∈ {0.0, 0.1} and most modelsfor k ∈ {0.2, 0.3, 0.4} attain higher BIC s
ore than the single model obtained by GES. For
k ∈ {0.4, 0.5, . . . , 0.9} (Fig. 4.6(b)), we again observe that for k < 1.0 we are able to re
overmodels that attain higher BIC s
ore than GES.The results reported above shows that GES may gets trapped in a low quality lo
al in-69
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(b)Figure 4.6. Result of 1000 restarts of KES learning from data sampled from the sele
tion-four-
y
ledistribution (see Example 4.1). Models are sorted in as
ending order of BIC s
ore.

lusion optimal model. This is not surprising, as the distribution from whi
h the data wassampled is a manually 
onstru
ted distribution spe
i�
ally designed to trap GES. The in
lu-sion optimal model re
overed by GES is (asymptoti
ally) the lowest s
oring in
lusion optimalmodel over the 1024 di�erent in
lusion optimal models.To investigate the e�e
t of learning from data sampled from a DAG faithful distribution,70
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we use data sampled from 2 di�erent standard BN models:8
• The Alarm model represents medi
al knowledge of relationships between �ndings anddiagnoses in the domain of patient 
are in an operating room (Beinli
h et al., 1989). It
ontains 37 dis
rete variables and 46 ar
s, and the stru
ture of the model is displayedin Figure 4.10 and the table 
ontains des
riptive names for the node indexes.
• The Hail�nder model was developed by Abramson et al. (1996) as a weather fore
astingsystem. It 
ombines meteorologi
al data and expert knowledge in fore
asting of severeweather 
onditions in Northeaster Colorado. The model 
ontains 56 dis
rete randomvariables and 66 ar
s, the stru
ture is displayed in Figure 4.11.For ea
h of the two above models, we generated databases by sampling 20000 instan
es.The results of the 1000 restarts of the KES pro
edure is plotted in Figure 4.7 and 4.8.Figure 4.7(a)-(b) shows the results of learning from Alarm-sampled data. As expe
ted,we observe that the model re
overed by GES (KES for k = 1.0) is the highest s
oring model,and the greedier the KES pro
edure, the better models are re
overed on average over the 1000restarts. In addition, from the plots 
orresponding to k < 1.0 we 
an observe that a lot of lo
alin
lusion optimal models still exists in the data. Re
all that we use a s
ore-equivalent s
ore-fun
tion, and therefore any two models attaining di�erent s
ore are not equivalent. Therefore,for every di�erent s
ore-value in the plots of Figure 4.7 there exists a distin
t in
lusion optimalmodel. From Theorem 4.1 we see that only a single in
lusion optimal model exists in the limitof large data, therefore this observation is explained by the fa
t that our data-sample is oflimited size.Figure 4.8(a)-(b) shows the results of learning from Hail�nder-sampled data. From Fig-ure 4.8(b) we observe that the model re
overed by the GES pro
edure is not the highests
oring model over all the di�erent settings of k. This is explained by the fa
t that optimalityof GES is an asymptoti
 property, and for any �nite dataset we then are not guaranteed tooptimality. In fa
t, as reported by Nielsen et al. (2003), in any pra
ti
al appli
ation of KESusing real world datasets, we often re
over better models by k < 1. In addition, this exper-iment shows us that even in the 
ases where DAG faithfulness is a safe assumption, limiteddata may yield suboptimal result of GES.Lastly, Figure 4.9 shows the average learning times for KES with di�erent settings of k.It is notable that the learning time in
reases dramati
ally from an almost 
onstant level atapproximately 2.2 se
onds for k = 0.0, 0.1, . . . , 0.9 to approximately 4.9 se
onds for k = 1.0.The reason is found in the way we sample the in
lusion boundary and the exponential natureof (4.30), see Figure 4.5. For k = 0.0 up to k = 0.9 there are only moderate in
reases inthe a
tual number of models sampled, while for k = 1.0 we need to in
rease the number ofmodels sampled mu
h more than for any other in
rease in k. This also explains why we donot see a 
lear in
rease in exe
ution time for k = 0.0 to k = 0.9, as these exe
ution times areall dominated by the �nal steps of the algorithm. In any �nal step we need to sample the fullin
lusion boundary to guarantee there are no models in the boundary of better s
ore.8Both models are obtainable from many on-line repositories, see for examplehttp://genie.sis.pitt.edu/networks.html. 71
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(b)Figure 4.7. Result of 1000 restarts of KES learning from data sampled from the Alarm BN model.Results are sorted in as
ending order of BIC s
ore.

As an initial test, these experiments show us that our implementation of KES and, inparti
ular, the sampling of the in
lusion boundary (as dis
ussed in the previous subse
tion),performs as expe
ted on syntheti
 datasets. 72
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(b)Figure 4.8. Result of 1000 restarts of KES learning from data sampled from the Hail�nder BN model.Results are sorted by as
ending order of BIC s
ore.
4.3.5 Related WorkOne of the earliest works on learning BN models in
lude the work by Chow and Liu (1968)on learning tree stru
tured BN models. Restri
ting the sear
h to only in
lude tree stru
turesredu
es the size of the sear
h spa
e dramati
ally from exponential in the number of variables(the 
ase for unrestri
ted DAG stru
tures) to quadrati
. Chow and Liu (1968) proposes apro
edure that produ
es a tree stru
tured BN model that has maximal weight, where the73



4 Learning Probabilisti
 Graphi
al Models

 0

 1

 2

 3

 4

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

PSfrag repla
ements Averag
eexe
u
tiontim
es(se

onds)

k

KES exe
ution times.

Figure 4.9. Average learning times of the KES algorithm applied to data sampled from the Alarmmodel for 11 di�erent settings of k.

74



4.3 Learning Bayesian Network Models

1
25

2
18
17

3
26

6 5

7
28
4
19

8
29
27
20
10

30
9

11
31
21

12
32

33

34
15
22

14

35
23

24
36

13

37
16

1 
entral venous pressure2 pulmonary 
apillary wedge pressure3 history of left ventri
ular failure4 total peripheral resistan
e5 blood pressure6 
ardia
 output7 heart rate obtained from blood pressure monitor8 heart rate obtained from ele
tro
ardiogram9 heart rate obtained from oximeter10 pulmonary artery pressure11 arterial-blood oxygen saturation12 fra
tion of oxygen in inspired gas13 ventilation pressure14 
arbon-dioxide 
ontent of expired gas15 minute volume, measured16 minute volume, 
al
ulated17 hypovolemia18 left-ventri
ular failure19 anaphylaxis

20 insu�
ient anesthesia or analgesia21 pulmonary embolus22 intubation status23 kinked ventilation tube24 dis
onne
ted ventilation tube25 left-ventri
ular end-diastoli
 volume26 stroke volume27 
ate
holamine level28 error in heart rate reading due to low 
ardia
 output29 true heart rate30 error in heart rate reading due to ele
tro
autery de-vi
e31 shunt32 pulmonary-artery oxygen saturation33 arterial 
arbon-dioxide 
ontent34 alveolar ventilation35 pulmonary ventilation36 ventilation measured at endotra
heal tube37 minute ventilation measured at the ventilatorFigure 4.10. The DAG stru
ture of the Alarm BN model and the table of labels for ea
h node. Thee�e
tive size of the Alarm model is 771.
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weight of the tree is the a

umulated mutual information between 
hild-parent variable pairsin the tree, whi
h 
orresponds to minimising KL-distan
e (4.1).Later works, where the restri
tion on stru
ture is relaxed to in
lude general DAG stru
-tures, in
lude the SGS algorithm (see Spirtes et al. (2000)). This algorithm performs statis-ti
al tests of 
onditional independen
e, and in
rementally builds a DAG stru
ture entailingd-separation properties 
orresponding to the 
onditional (in)dependen
ies that are veri�edfrom data. One problem with this approa
h is that it assumes a reliable way of testing 
on-ditional independen
e. Using a statisti
al hypothesis tests we are always running the risk ofthe test failing by 
han
e while the hypothesis is in fa
t true. This problem be
omes in
reas-ingly important when multiple su
h tests are needed, whi
h is typi
ally the 
ase for the SGSalgorithm. However, it 
an be proved that the SGS algorithm returns the optimal model ifgiven a reliable test of 
onditional (in)dependen
e. Approa
hes following the general re
ipe ofexpli
itly indu
ing a stru
ture that entails 
orre
t (in)dependen
e relations is usually referredto as 
onstraint based sear
h approa
hes.Apart from the already mentioned GES algorithm (Meek, 1997), another important earlywork on learning general BN models is the work by Cooper and Herskovits (1992). Here,the K2 pro
edure is proposed for re
overing a BN stru
ture by a heuristi
 sear
h for �ndingthe most probable stru
ture. The K2 pro
edure requires an ordering of the variables asinput and in addition an upper bound on the number of parents that a node may have.Cooper and Herskovits (1992) shows promising results by learning from datasets sampled fromthe Alarm network (Beinli
h et al., 1989). The K2 pro
edure employs a greedy sear
h for thebest parents for ea
h node, 
hoosing the parent that in
reases a lo
al s
ore (based on likelihoodof the model) the most without violating the ordering or the threshold for number of parents.Approa
hes to learning BN models that aims at optimising some s
ore fun
tion are usually
alled s
ore based sear
h approa
hes.The result of multiple restarts of KES was used by Peña et al. (2004) in assisting the user inthe interpretation of a BN model learnt from data. Spe
i�
ally, after a sequen
e of restarts ofKES, a spe
ial graph 
an be 
onstru
ted over the variables where ea
h edge is annotated witha relative frequen
y of existen
e of the edge in the set of in
lusion optimal models re
overedin the sequen
e of restarts of KES.It was shown by Cowell (2001) that 
onstrain based sear
h and s
ore based sear
h areidenti
al approa
hes when learning BN models under the assumptions that: 1) an ordering ofthe variables is given; 2) data is 
omplete; 3) the statisti
al test is based on 
ross entropy, and;4) the s
ore metri
 is based on maximising log-likelihood (possibly with some penalty). Underthese assumptions, s
ore based and 
onstraint based approa
hes will have identi
al preferen
ebetween models and should therefore only be viewed as di�erent interpretations of the sameapproa
h.The justi�
ation for using restarts of the KES algorithm was based on the fa
t that theremay be exponentially many lo
al optima and in su
h settings, restarts of the sto
hasti
 sear
hpro
edure enables KES to investigate a larger area of the sear
h spa
e. Gomes and Selman(1997) investigates 
ost pro�les of sear
h pro
edures in a more general 
ombinatorial problem.They show that when the 
ost pro�le is 
hara
terised by a heavy tailed distribution, the average77
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performan
e of a sequen
e of sear
h pro
edures 
an be improved dramati
ally by introdu
ingrandom restarts of the sear
h. We 
an view the event that KES re
overs a lo
al optimal modeland not the global optima as a heavy tail of the 
ost pro�le of KES, and therefore, the restarts
an be seen as a similar way of exploiting the heavy-tailed behaviour as the random restartsused by Gomes and Selman (1997).
4.4 Learning Naïve Bayes Models

The problem of leaning a NB model from data redu
es to the problem of learning the
ardinality of the latent 
omponent variable C, a prior distribution over latent 
omponents
P (C) and marginal 
onditional distributions P (Xi|C) for all variables Xi observed in data.
4.4.1 Estimating Parameters from In
omplete Data: The EM-AlgorithmAs the latent 
omponent variable of the NB model is never observed in data, maximumlikelihood estimation from Equation (4.14) is not possible, as we la
k the possibility to 
ountobservations of C in D. The standard approa
h to estimating parameters in the presen
eof in
omplete data and latent variables is the Expe
tation-Maximisation (EM) algorithm(Dempster et al., 1977; M
La
hlan and Krishnan, 1997; Lauritzen, 1995). The EM algorithmalternates between two steps, the E-step and the M-step. The E-step amounts to 
omputingexpe
ted 
ounts for the missing observations, while the M-step uses these expe
ted 
ountsas if they were observed in the e�
ient 
omputation of maximum likelihood parameters. Byiterating over these two steps, the EM algorithm 
onverges to a parameterisation that isde�nes a lo
al maximum of the likelihood fun
tion. Assuming some initial (typi
ally random)parameterisation θ0 of NB model M , EM is then implemented by the two steps:E-step: augment ea
h instan
e d ∈ D by a ve
tor of fra
tional 
ounts for C of PM (C|X = d),where M is the 
urrent NB model with parameters θn. In this way, we 
an 
onstru
tthe expe
ted 
ounts:

N∗
c =

∑

d∈D

PM (C = c|X = d), (4.31)
N∗

c,xi,h
= Nxi,h

· PM (C = c,Xi = xi,h). (4.32)
M-step: 
onstru
t parameters θn+1 by ML estimation using expe
ted 
ounts as if they werea
tual observed 
ounts. This amounts to updating 
onditional distributions PM (Xi|C)for every Xi ∈ X and prior PM (C) as:

PM (C = c) =
N∗

c

N
, (4.33)

PM (Xi = xi,h|C = c) =
N∗

c,xi,h

N∗
c

. (4.34)
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Algorithm 4.5 Simple algorithm for learning a range of NB models from data.Input: Fully observed data D.Output: Range of NB models of in
reasing e�e
tive size.1: pro
edure LearnNB(D)2: initialise NB model M with kmin latent 
omponents3: repeat4: estimate parameters of M by EM5: output M6: prune low weight 
omponents of M7: split large 
omponents of M8: add k new 
omponents to M9: until stopping 
riteria is met
The EM algorithm iterates between these two steps until a termination 
riterion is met.Common termination 
riteria in
lude 
onvergen
e in parameters, and setting a threshold onthe number of iterations allowed.The EM algorithm is only guaranteed to 
onverge to a lo
al maximum, and there may bemany su
h lo
al maxima where only a small fra
tion are 
lose to the global maximum. The
ommon strategy used to mitigate the problem of poor EM estimates is to perform multiplerestarts of EM with di�erent random starting points.
4.4.2 Learning the Cardinality of the Latent Component VariableWe aim at learning NB models for approximation of a probability distribution and for per-forming belief updating inferen
e task using the model. This aim is somewhat di�erent frommost previous appli
ations of the NB model, as mentioned in Se
tion 3.4. Typi
ally, the learn-ing of a NB model with latent 
omponent variable is aimed at dis
overing hidden stru
tureamong the variables or to attain a soft 
lustering of instan
es. In both 
ases, it is preferable tokeep the 
ardinality of the latent variable from growing unbounded, as too many 
lusters 
anmake it hard for users to use the 
lustering for understanding latent stru
ture in the domain.However, for general probabilisti
 inferen
e, bounding the 
ardinality of the latent variable isonly relevant from the point of view of bounding the loss of e�
ien
y.Lowd and Domingos (2005) proposes the NBE algorithm for learning NB models for gen-eral probabilisti
 inferen
e. In the NBE algorithm, the 
ardinality of the latent 
omponentvariable is optimised by basi
ally repeating the three steps: 1) in
rease the 
urrent 
ardinality,2) estimate parameters by EM, and 3) prune low weight 
omponents.9 Low weight 
ompo-nents are 
omponents with relatively low prior probability. As a termination 
riterion, theNBE algorithm uses a separate hold-out dataset and measures likelihood over this dataset. Thefailure to improve likelihood then makes the algorithm terminate returning the model of maxlikelihood over the hold-out dataset. We adopt the NBE algorithm of Lowd and Domingos9In our appli
ation of the EM algorithm we do not employ any heuristi
 in order to es
ape lo
al optima,su
h as random restarts. 79
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(2005) with minor modi�
ations. To obtain a range of NB models of di�erent e�
ien
y anda

ura
y rather than a single model, we do not need a holdout dataset to de
ide on termi-nation. Instead we will 
ontinue to in
rease the 
ardinality to get more and more 
omplexmodels. Algorithm 4.5 gives a high-level des
ription of our LearnNB pro
edure.In LearnNB, when the 
ardinality has been in
reased from m to k, we initialise the prior ofea
h of the k−m new 
omponents to 1

k
. While we have no theoreti
al justi�
ation to 
hooseexa
tly 1

k
as the initial prior of new 
omponents instead of any other initialisation, it seemsat least reasonable to 
hoose a uniform prior for all new 
omponents. Also, subsequently, theEM pro
edure will be applied to estimate better parameters. To ensure that P (C) remainsnormalised, them old priors are s
aled by m

k
. For all variables X, probabilities P (Xi|C = cnew )is initialised by a randomly drawn instan
e d ∈ D as follows:

P (Xi = xi,h|C = cnew ) :=

{

1+0.1·P ′(xi,h)
1.1 if xi,h = d[Xi],

0.1·P ′(xi,h)
1.1 otherwise, (4.35)

where P ′(xi,h) =
Nxi,h

|D| . This way of initialising new 
omponents is intuitive if we view thelearning of an NB model as the pro
ess of dis
overing unlabelled natural groups within thedataset, i.e., latent 
lusters. By initialising a new 
omponent by a randomly sele
ted datainstan
e d, we then initialise a new latent 
luster with 
entre at d.The pruning of low weight 
omponents (line 6 of Algorithm 4.5) imposes an impli
it upperbound on the 
ardinality of the latent 
omponent variable, and thereby on the 
omplexityof the NB model, in the following way: all 
omponents c′ with a prior P (C = c′) ≤ 1
w
areremoved from the model, for some integer w. This automati
ally yields a maximum 
ardinality

|R(C)| of w, and in our implementation we use w = 1000.All aspe
ts of the LearnNB pro
edure introdu
ed so far are adopted dire
tly from theNBE algorithm of Lowd and Domingos (2005). One new addition to the proposal of Lowdand Domingos is the introdu
tion of 
omponent splitting. If we view the learning of an NBmodel as the pro
ess of dis
overing 
lusters within the data, the splitting of 
omponents(or 
lusters) is the substitution of one existing 
luster for two new 
lusters. This makessense when a single 
omponent 
aptures two (or more) 
lusters. To sele
t 
omponents that
aptures more than one 
omponent, it would be natural to sele
t 
omponents c ∈ R(C) forwhi
h the joint 
onditional distribution P (X|C = c) is inhomogeneous, that is, low entropy.The exa
t 
omputations of the 
onditional entropy H(X|C = c) =
∑

x∈R(X) P (X = x|C =

c) logP (X = x|C = c) requires a sum of |R(X)| terms. A more e�
ient approa
h wouldbe to approximate the distribution P (X|C = c) by simulation or sampling te
hniques (see(Neal, 1993) or (Castillo et al., 1997, Se
tion 9.3)). However, we use a mu
h more simpleheuristi
 for 
hoosing 
omponents for splitting whi
h simply 
hooses a 
omponent c if theprior P (C = c) has 
aptured the majority of the total probability mass. The reasoningbehind 
hoosing 
omponents of high prior is that splitting su
h 
omponents has the largestpotential for in
reasing the overall a

ura
y. In our implementation, we will split 
omponent cwhen P (C = c) ≥ 0.9. The splitting of 
omponents (line 7 of Algorithm 4.5) is performed forlarge 
omponent cl by repla
ing cl with 2 new 
omponents c′l and c′′l , ea
h with prior P (C =

c′l) = 1
2P (C = cl), where P (C = cl) is the prior of the 
omponent cl before splitting. Ea
h80
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onditional P (Xi|C = c′l) and P (Xi|C = c′′l ) is initialised as a 
opy of the old P (Xi|C = cl)exposed to a random perturbation.
4.4.3 Related WorkLearning the 
ardinality of the latent 
omponent variable of a NB model is a problem thathas re
eived 
onsiderable attention. One dire
t approa
h would be to perform an exhaustivesear
h over a range of possible 
ardinalities, 
hoosing the one that results in a NB modelthat attains maximal s
ore (Cheeseman and Stutz, 1996). However, to s
ore ea
h model,parameters needs to be estimated by EM whi
h may be too time 
onsuming 
onsidering alsothat multiple restarts of EM for ea
h 
ardinality may be required.Elidan and Friedman (2001) proposes an approa
h to learning the 
ardinality of hiddenvariables in BNmodels that avoids expensive EM algorithm in the sear
h for a good 
ardinality.They work with hard assignments of instan
es in the data to ea
h latent state of the hiddenvariable, that is, ea
h instan
e in the data is at any point in time asso
iated with a single latentstate of the hidden variable. Initially, the hidden variable has a relatively large 
ardinality andin ea
h iteration, states are merged to redu
e the 
ardinality and the model is s
ored using the
urrent hard assignment of instan
es. Eventually, the 
ardinality 
an not be redu
ed furtherand the best 
ardinality en
ountered during the sear
h is returned.The operation of splitting 
omponents in learning the 
ardinality of C in a NB model haspreviously been proposed (see eg. Kar£iauskas (2005) or Elidan (2004)). The heuristi
 for
hoosing 
omponents for splitting used by Kar£iauskas (2005) is an exhaustive sear
h over allpossible splits, 
hoosing the one that yields the model of maximal s
ore.
4.5 Learning Probabilisti
 De
ision Graph Models

In this se
tion we will address the problem of learning PDG models that optimise s
orefun
tion Sλ (see Eq. 4.8) for some λ. Major parts of the material presented in this se
tion isbased on ideas previously published in (Jaeger et al., 2004). It was established in Se
tion 4.2,that the problem of estimating ML parameters from 
omplete data with no latent variables is
omputable by taking fra
tions of 
ounts. By (3.28), the likelihood fun
tion for PDG model
M over variables X is :

l(D|M) =
∏

d∈D

∏

Xi∈X

p
reach(i,d)
d[Xi]

. (4.36)
Then, the log likelihood of data D given PDG model M over variables X is:

L(D|M) =
∑

d=D

∑

Xi∈X

log p
reach(i,d)
d[Xi]

=
∑

Xi∈X

ki
∑

h=0

∑

νi∈Vi

Nνi

h log pνi

h , (4.37)
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where Nνi

h is the number of instan
es d ∈ D rea
hing νi ∈ Vi for whi
h d[Xi] = xi,h, and
ki = |R(Xi)|. For a given PDG stru
ture G, the ML estimate p̂νi for parameters atta
hed toparameter node νi ∈ Vi is:

p̂νi

h =
Nνi

h

Nνi
, (4.38)

where Nνi =
∑ki

h=0N
νi

h . We 
an then express (4.37) as:
L(D|M) =

∑

Xi∈X

ki
∑

h=0

∑

νi∈Vi

Nνi

h log
Nνi

h

Nνi
, (4.39)

Then the general penalised log-likelihood s
ore Sλ for PDG model M be
ome:
Sλ(D,M) = (1− λ)L(D|M)− λsizeeff (M)

= (1− λ)
∑

Xi∈X

ki
∑

h=0

∑

νi∈Vi

Nνi

h log
Nνi

h

Nνi
− λ

∑

Xi∈X

(max(1, |chG(Xi)|) · |Vi| · ki)

=
∑

Xi∈X



(1− λ)

ki
∑

h=0

∑

νi∈Vi

Nνi

h log
Nνi

h

Nνi
− λ (max(1, |chG(Xi)|) · |Vi| · ki)



 (4.40)
For the rest of this se
tion, we will fo
us on the sear
h for a stru
ture G that optimises(4.40). For a given domain X = {X1, X2, . . . , Xn} there exists n! distin
t orderings of theelements, so n! is a (
onservative) lower bound on the number of distin
t forest stru
tures.For ea
h forest stru
ture, the number of distrin
t PDG stru
tures is at least exponential inthe number of variables 
ontained in the tree of maximal depth in the forest. The 
ardinalityof the sear
h spa
e therefore makes exhaustive stru
ture sear
h intra
table, and we will resortto heuristi
 pro
edures for learning stru
tures.

4.5.1 Stru
tural Learning in PDGsWe will divide the sear
h for good PDG stru
tures into two 
on
eptually disjoint tasks:1. learning a good forest stru
ture over the variables, and2. learning a PDG stru
ture w.r.t. that forest.This de
omposition is motivated by the following points:
• Con
eptually, this de
omposition is natural, while in pra
ti
e they are not 
ompletelyindependent 
omponents of the learning task.
• Considering e�
ien
y of the learning pro
edure, �xing a variable forest stru
ture Fe�e
tively redu
es the spa
e of possible PDG stru
tures to be 
onsidered by the learningpro
edure. 82
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Algorithm 4.6 The pro
edure LearnPDGs that learns a set of PDG models from a fully ob-served dataset D. The two 
on
eptually distin
t phases are implemented by the LearnForestpro
edure of Algorithm 4.12 and the LearnPDG of Algorithm 4.7.Input: D : fully observed dataset; Λ : list of values from [0, 1]; T : list of values from [0, 1].

λ ∈ Λ.1: fun
tion LearnPDGs(D,Λ,T)2: F := ∅ ⊲ Population of forest stru
tures3: G := ∅ ⊲ Population of PDGs4: for all t ∈ T do ⊲ Phase I5: F := F ∪ {LearnForest(D, t)}6: for λ from λmax . . . λmin in Λ do ⊲ Phase II7: for all F ∈ F do8: G := G ∪ {LearnPDG(F, λ,D)}9: output argmax
G∈G

Sλ(D, G)10: prune low forests yielding low s
oring PDGs from F11: G := ∅

For the reasons mentioned above, we de
ompose our stru
tural learning algorithm intotwo phases. In Phase I, a variable forest is indu
ed from data. By performing suitablestatisti
al tests of 
onditional independen
e relations, we build a tree stru
ture that onlyentails independen
ies that were veri�ed through the test. In the se
ond phase (Phase II)we then optimise a PDG stru
ture w.r.t. the variable forest from the Phase I, for the s
orefun
tion of (4.40).Algorithm 4.6 
ontains a pseudo-
ode des
ription of the top-level learning pro
edureLearnPDGs. The two phases are implemented in lines 4-5 and 6-11 respe
tively. We in-
orporate a population based sear
h for good forest stru
tures. That is, a population F ofvariable forests is 
onstru
ted in Phase I. Next, this population is pruned by removing foreststru
tures for whi
h we fail to build high-s
oring PDG stru
tures in Phase II.We will postpone the detailed des
ription of Phase I, and in the following assume that aPDG forest have already been 
onstru
ted.
Optimising the PDG-stru
ture: Phase IIAlgorithm 4.7 des
ribes the LearnPDG pro
edure. The LearnPDG pro
edure optimises aPDG stru
ture w.r.t. variable forest F for (4.40).Initially a minimal PDG stru
ture is build, and this stru
ture is then repeatedly exposedto a sequen
e of lo
al s
ore optimising stru
tural transformations, until the s
ore 
onverges.In the following, we des
ribe the pro
edures splitNodes, mergeNodes and redire
tEdges,that implements lo
al operations for s
ore optimisation.
Splitting nodes The splitNodes pro
edure introdu
es new parameters by repla
ing exist-ing parameter nodes with a set of new parameter nodes. The stru
tural transformation of83
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Algorithm 4.7 This pro
edure sear
hes for a optimal (w.r.t. (4.40)) PDG stru
ture w.r.t.a variable forest F . The lo
al pro
edures splitNodes (Alg. 4.8), mergeNodes (Alg. 4.9) andredire
tEdges (Alg. 4.10) are used to optimise the s
ore fun
tion.1: pro
edure LearnPDG(F, λ,D)2: G := minimal PDG for F3: repeat4: for all trees T of F do5: Xr := root of T6: splitNodes(Vr, λ,D)7: mergeNodes(Vr, λ,D)8: redire
tEdges(Vr, λ,D)9: until Sλ(D, G) did not improve10: return G

Vi ν1 ν2

Vj ν3 ν4

Vk ν5 ν6 ν7(a)

Vi ν1 ν2

Vj ν3 ν ′4 ν ′′4 ν ′′′4

Vk ν5 ν6 ν7(b)
Figure 4.12. The stru
tural modi�
ation performed when splitting node ν4 by the split operation isshown. (a) shows the lo
al stru
ture before the split, and (b) shows the resulting stru
ture. Only therelevant se
tion of the PDG shown.

splitting a parameter-node by the split operation 
an be seen in Figure 4.12.
When splitting a parameter-node νi having an in-degree of n, we repla
e νi with n newparameter-nodes, one for ea
h in
oming edge. The set of 
hildren of νi are 
opied to ea
h ofthe n new parameter-nodes. Parameters for new nodes needs to be re-estimated, while 
ountsfor no other nodes in the PDG will 
hange as a result of the split operation. Denote by

new(νj , l, νi) the node that would be 
reated for edge νj
l
→ νi when splitting νi, and let in
(ν)be the set of edges in
oming to ν. We 
an then express the s
ore gain asso
iated with splitting84
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νi ∈ Vi in PDG stru
ture G as:

Sλ(D,M2)− Sλ(D,M1) =(1− λ)[L(D|M2)− L(D|M1)]− λ[sizeeff (M2)− sizeeff (M1)]

=(1− λ)













∑

νj
l
→νi

∈in
(νi)

(

ki
∑

h=0

N
νj

lh log p̂
new(νj ,l,νi)
h

)

−
ki
∑

h=0

Nνi

h log pνi

h













− λ[(|paG(νi)| − 1) ·max(1, |chG(Xi)|) · ki] (4.41)whereM1 is the PDG model before splitting νi andM2 is the model after the split. p̂new(νj ,l,νi)in (4.41) is the ML estimates for pnew(νj ,l,νi):
p̂
new(νj ,l,νi)
h =

N
νj

lh

N
νj

l

, (4.42)
where Nνj

lh is the number of instan
es d ∈ D rea
hing νj for whi
h d[Xj] = xj,l and d[Xi] = xi,h.If we assume ML parameters, we 
an re
over the 
ounts for data instan
es rea
hing node
νi by Nνi = |D| · ifl(νi). Then 
ounts Nν

h 
an also easily be re
overed from ML parameter pν
hby (4.38). However, Nνi

lh is not easily re
onstru
ted without a

essing the data.To avoid data a

ess needed to extra
t 
ount Nνj

lh in (4.42) ne
essary for 
omputing theexa
t s
ore gain through (4.41), we will instead fo
us on a heuristi
 s
ore for sele
tion of nodes.Let νi ∈ Vi and paF (Xi) = Xj . The potential for positive 
ontribution to the s
ore bysplitting νi very mu
h depends on the number of data instan
es rea
hing νi. Denote by γ(e)the probability mass �owing into νi via edge e, that is:
γ(νj

h
→ νi) = ifl(νj) · p

νj

h . (4.43)The relative distribution of 
ontributions to the in�ow over in
oming edges is also importantto the potential of splitting a node. Even for a relatively high ifl(νi), if most of the probabilitymass �ows into νi via a single edge, the possible a

ura
y gain will be low, as a split wouldbasi
ally produ
e one node identi
al to νi and a number of �low in
ome� nodes that, therefore,
an not impa
t the total a

ura
y signi�
antly. For this reason, we prefer nodes for whi
h thedistribution of in
oming probability mass {γ(e) : e ∈ in
(νi)} is less peaked and, hen
e, hashigh entropy.From the above dis
ussion, we arrive at the heuristi
 s
ore given in equation (4.44):
splitPotential(νi) = ifl(νi) ·

H({ γ(e)
ifl(νi)

: e ∈ in
(νi)})

log(|in
(νi)|)
, (4.44)where H(·) is the entropy fun
tion, and log(|in
(νi)|)

−1 then normalise H(·).Algorithm 4.8 des
ribes the splitNodes pro
edure that sele
ts nodes for splitting usingthe splitPotential measure of (4.44). The splitNodes pro
edure may 
ause the PDG tobe fully expanded by splitting all nodes top down. To avoid this, in our implementation wesimply disallow the splitting of nodes that have one or more parents that was split in the
urrent traversal of the stru
ture. 85
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Algorithm 4.8 This pro
edure randomly sele
ts node for splitting by the split operation,biasing the sele
tion towards nodes with relatively high splitPotential. The aggressivenessof the sele
tion is 
ontrolled by the λ value, the larger the λ, the more aggressive the sele
tionwill be. The split operation of line 6 performs the stru
tural modi�
ation of the split (seeFig. 4.12).1: pro
edure splitNodes(Vi, λ)2: if paF (Xi) 6= ∅ then3: for all ν ∈ Vi do4: rnd := random number from [0, 1)5: if (1− λ) · splitPotential(ν) > rnd then ⊲ See (4.44).6: split(ν)7: for all Xj ∈ chF (Xi) do ⊲ The top-down traversal8: splitNodes(Vj,λ)

Vi ν1 ν2

Vj ν3 ν4 ν5

Vk ν6 ν7 ν8(a)

Vi ν1 ν2

Vj ν3 ν ′

Vk ν6 ν7 ν8(b)
Figure 4.13. The stru
tural modi�
ation performed when merging nodes ν4 and ν5 by the mergeoperation is shown. (a) shows the lo
al stru
ture before the merge, and (b) shows the resultingstru
ture. Only the relevant se
tion of the PDG shown.
Merging Nodes Redundant parameters that do not 
ontribute signi�
antly to the a

ura
yof the model but only 
ontributes to the size-penalty should be removed from the model.The merge pro
edure obtains this by merging parameter-nodes. Figure 4.13(a)-(b) shows thestru
tural modi�
ation of merging nodes ν4 and ν5. In Figure 4.13(a), ν4 and ν5 have identi
al
hildren, and this removes the problem of de
iding whi
h 
hild to keep, had the 
hildren notbeen identi
al succ(ν4, Xk, h) 6= succ(ν5, Xk, h). We will require of two nodes being 
onsideredfor merging that they have identi
al 
hildren. Then the s
ore gain of merging two nodes
νi1 , νi2 ∈ Vi 
an be 
omputed as:
Sλ(D,M2)− Sλ(D,M1) =

(λ− 1)[L(D|M2)− L(D|M1)]− λ[sizeeff (M2)− sizeeff (M1)], (4.45)
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where M1 is the PDG model before the merge and M2 is the model after the merge. It is
lear that the e�e
tive size is redu
ed by max(1, |paF (Xi)|) · |R(Xi)| when merging two nodes
νi1 , νi2 ∈ Vi. For 
omputing the possible loss in a

ura
y, we need to 
ompute the ML estimate
p̂

νi1+2 for the node νi1+2 
reated by merging νi1 and νi2 . This estimate is:
p̂

νi1+2

h =
N

νi1
h +N

νi2
h

Nνi1 +Nνi2

=
p̂

νi1
h · ifl(νi1) + p̂

νi2
h · ifl(νi2)

∑

xi,l∈R(Xi)
p̂

νi1
l · ifl(νi1) + p̂

νi2
l · ifl(νi2)

. (4.46)
Please note that only existing values of ifl and ML estimates of the parameters p for the nodes
νi1 and νi2 are used to 
ompute (4.46), and no data a

ess is ne
essary. The loss in a

ura
y
an be expressed as:
L(D|M2)− L(D|M1) =

∑

xi,h∈R(Xi)

(

(N
νi1
h log p

νi1
h +N

νi2
h log p

νi2
h )− (N

νi1
h +N

νi2
h ) log p̂

νi1+2

h

)

=
∑

xi,h∈R(Xi)

(

N
νi1
h (log p

νi1
h − log p̂

νi1+2

h ) +N
νi2
h (log p

νi2
h − log p̂

νi1+2

h )
)

=
∑

ν∈{νi1
,νi2

}

NνDKL(pν ||p̂νi1+2 ), (4.47)
where Equality 4.47 assumes ML parameters pν1 and pν2 . By (4.46) these are obtainablewithout a

essing data. As Nν = ifl(ν) ·N , for 
omparing (4.47) for di�erent pairs of nodes,we 
an use the in�ows of the nodes involved. We then arrive at the general s
ore mergeS
oreof (4.48):

mergeScore(νi1 , νi2) =
∑

ν∈{νi1
,νi2

}

ifl(ν) ·DKL(pν ||p̂νi1+2 ). (4.48)
It is 
lear that (4.48) is 
omputable without a

essing data. Algorithm 4.9 shows the bottom-up merging of nodes. Nodes are sele
ted for merge based on a λ-weighted sum of themergeS
ore and number of parameters that will be removed from the model.Redire
ting Edges The lo
al stru
tural transformation of redire
tion of edge νj → νiassigns a new head ν ′i for the edge. We will need the following notation: For data D and PDGmodel M over variables observed in D, we will denote by Dνi (where νi ∈ Vi) the subset ofdata instan
es {d ∈ D : reach(i, d) = νi}, i.e., the part of D that rea
hes νi. Maintaining Dνifor all nodes is possible for limited sized D. Ea
h parameter-node νi 
an e�
iently represent
Dνi by a list of pointers to instan
es in a stati
 version of D. For ea
h variable Xi ∈ X everyinstan
e d ∈ D rea
hes a unique node, so in total we will need to store |D||X| pointers inaddition to the stati
 data D. The number of pointers is then invariant to the stru
ture ofthe PDG model, and the storage requirement is therefore stati
 for a given database D. Inaddition, we will by Dνi

h denote the set {d ∈ Dνi

h : d[Xi] = xi,h}.Returning to the redire
tion of edges, let νj ∈ Vj , νi ∈ Vi and paF (Xi) = Xj. Re
all thatevery parameter-node de�nes a marginal distribution over des
endant variables in the variable87
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Algorithm 4.9 The mergeNodes pro
edure merges parameter-nodes by the merge operation(see Fig. 4.13) in a top down traversal of a PDG stru
ture.Input: Vi : set of parameter-nodes representing Xi in a PDG stru
ture G w.r.t. variableforest F ; λ : value from [0, 1]Output: Valid PDG stru
ture1: pro
edure mergeNodes(Vi, λ)2: for all j su
h that Xj ∈ chG(Xi) do3: mergeNodes(Vj, λ)4: for all {νi1 , νi2} ∈ Vi s.t. νi1 6= νi2 do5: if νi1 and νi2 have the same 
hildren then6: if then(1− λ) · mergescore(νi1 , νi2) < λ · ki ·max(1, |paF (Xi)|)7: merge(νi1,νi2)Algorithm 4.10 The redire
tEdges pro
edure performs �ne grained optimisation on a PDGstru
ture, by redire
ting edges in optimising (4.41).Input: Vi : set of nodes; λ : value from [0, 1].1: pro
edure redire
tEdges(Vi, λ)2: for all Xj ∈ chG(Xi) do3: redire
tEdges(Vj, λ)4: for all νi ∈ Vi do5: for all xi,h ∈ R(Xi) do6: for all Xj ∈ chG(Xi) do7: νj := succ(νi, Xj, xi,h)8: ν∗j := argmax

ν∈Vj\νj

(L(Dν
h|f

ν
G))9: if L(Dνi

h |f
ν∗

j

G ) > LL(Dνi

h |f
νj

G ) then10: redire
t νi
h
→ νj to new head node ν∗j11: Remove any orphan nodes

forest de�ned by the re
ursive fun
tion fνi

G (see Def. 3.19). Therefore, when sele
ting a newhead node ν ′i ∈ Vi for edge νj
h
→ νi, we prefer a node ν ′i ∈ Vi for whi
h data Dνj

h is more likelyunder fν′
i

G than under fνi

G .The log-likelihood of Dνi

h under fνi

G is:
L(Dνi

h |f
νi

G ) =
∑

d∈D
νi
h

log fνi

G (d[de∗G(Xi)]). (4.49)
Algorithm 4.10 shows the redire
tEdges pro
edure whi
h performs redire
tions bottom-up in a PDG-stru
ture, maximising (4.49).The stru
tural transformation of the redire
tion operator 
an result in some nodes beingorphaned. As a result, a set of parameter-nodes (potentially more nodes than the orphannodes) may be
ome unrea
hable by any dire
ted path from the root parameter-node. After88
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all redire
tions have been performed, we remove su
h nodes from the PDG-stru
ture.Complexity Let M be a PDG model of stru
ture G w.r.t. variable forest F over variables
X. The splitNodes pro
edure (Alg. 4.8) 
omputes splitPotential by eq. (4.44) for everyparameter-node in M with more than one parent. The 
omplexity of 
omputing (4.44) fornode ν is linear in the number of in
oming edges O(|in
(ν)|). In general, |in
(ν)| 
an beexponential in the |X| − 1 when F 
ontains a single linear tree and the sets of parameter-nodes are maximal for all but the leaf variable that 
ontains a single node. As explainedearlier, we do not 
onsider node ν for splitting if a parent of ν has already been split in thesame traversal. Also, in-between 
onse
utive invo
ations of the splitNodes pro
edure, wemerge nodes through the mergeNodes pro
edure (Alg. 4.9), whi
h further redu
es the riskof experien
ing exponential blowup. The 
omplexity in pra
ti
e is therefore expe
ted to besub-exponential, and indeed the splitNodes pro
edure exhibits tra
table exe
ution times inpra
tise.In the mergeNodes pro
edure (Alg. 4.9), we 
ompute the mergeS
ore (eq. (4.48)) for everypair of parameter nodes {νi1 , νi2} in ea
h node set Vi. Therefore, the 
omplexity is quadrati
in the largest set Vi of parameter-nodes O(|Vi|

2). This size 
an again in theory be exponentialin the number of variables, given suitable sequen
es of splits. However, as explained above, theaggressiveness of the splitNodes pro
edure is e�
iently suppressed, making the pro
eduretra
table in pra
ti
e.For the redire
tEdges pro
edure (Alg. 4.10), for every edge νi
h
→ νj where νj ∈ Vj and

νi ∈ Vi, the marginal likelihoods are 
omputed through (4.49) for every node ν ′j ∈ vj \ {νj}.In general, this yields quadrati
 
omplexity in the largest set Vi, i.e., O(|Vi|
2). By argumentssimilar to those above, we expe
t that even though |Vi| 
an be exponential in the number ofvariables, in pra
ti
e the size of |Vi| is sub-exponential. Computing (4.49), however, is not free.Rather, it is an expensive pro
edure, as it in
ludes a

essing the data Dνi . For this reason,in our implementation of the LearnPDG pro
edure (Alg. 4.7), we invoke the redire
tEdgespro
edure less often than the splitNodes and mergeNodes pro
edures.Indu
ing the variable forest: Phase IThe type of 
onditional independen
e relation that are en
oded in a PDG model D w.r.t. avariable forest F , are based on partitions of the state-spa
e de�ned by sets of parameter-nodes

Vi:
PD(Xi|X \ de∗F (Xi)) = PD(Xi|pa

∗
F (Xi)) = PD(Xi|A (Vi))

⇒Xi⊥⊥pa∗
F (Xi)|A (Vi)[P

G] (4.50)On the variable level, the partition A (Vi) is de�ned by the value of paF (Xi), and theonly 
onditional independen
e that are identi�able from the variable forest without inspe
tingthe PDG stru
ture are Xi⊥⊥X \ {pa∗
F (Xi) ∪ de∗F (Xi)}|pa

∗
F (Xi). Variables that are membersof di�erent trees in the variable forest F will be marginally independent in any distributionrepresented by a PDG model w.r.t. forest F . Therefore, when learning the variable-forest, wewish to organise variables as follows: 89
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1. Marginally independent variables are assigned to di�erent trees, and marginally depen-dent variables to the same tree.2. Within trees, the stru
ture will bran
h at variable Xk su
h that for all pairs {Xi, Xj} ⊆

chF (Xk) it is the 
ase that Xi⊥⊥Xj |{pa
∗
F (Xk) ∪Xk}.On Testing for Conditional Independen
e To de
ide on marginal and 
onditional inde-penden
e relations amongst the variables we use a χ2-test of independen
e (DeGroot, 1986).We will 
onstru
t the X2 (or Pearson) statisti
 for the test. The X2 statisti
s is:

X2 =
∑

B∈B

ki
∑

h=1

kj
∑

l=1

(NB
hl − E[NB

hl ])
2

E[NB
hl ]

, (4.51)
where B is the 
onditioning partitioning, NB

hl is the observed 
ount of instan
es d ∈ D where
d[Xi, Xj ] = (xi,h, xj,l) and d ∈ B, and E[NB

hl ] is the expe
ted 
ount NB
hl under the assumptionthat Xi⊥⊥Xj |B is true. This expe
tation is then 
omputed as:

E[NB
hl ] = |D|

NB
h+ ·N

B
+l

|DB|2
, (4.52)

where NB
h+ =

∑kj

l=1N
B
hl and NB

+l =
∑ki

h=1N
B
hl and DB = {d ∈ D : d ∈ B}. For marginalindependen
e tests, the 
onditioning partitioning will be trivial partition B = {Ω}.When the tested independen
e holds true, then statisti
 X2 will be χ2 distributed with

|B| · (ki − 1) · (kj − 1) degrees of freedom. The degrees of freedom is the number of freeparameters that needs to be estimated, see Agresti (1990) (pages 174�175) for a dis
ussion ofthe χ2-test and degrees of freedom. We will redu
e the degrees of freedom by one for ea
h 
ell
ount of zero, whi
h is a 
ommon approa
h (Spirtes et al., 2000).As mentioned above, we wish to build a variable tree su
h that the tree bran
hes at variable
Xk and Xi⊥⊥Xj |{pa

∗
F (Xk) ∪Xk} for all pairs of 
hildren {Xi, Xj} of Xk. The 
ardinality ofthe 
onditioning set {pa∗

F (Xk) ∪ Xk} is exponential in the size of the set. Therefore, it isvery likely that data is too limited for us to perform reliable tests. However, the a
tual
onditional independen
e relation en
oded by the PDG stru
ture is typi
ally not based onthe full A ({pa∗
F (Xk) ∪ Xk}) as 
onditioning partition, but rather a more 
oarse grainedpartition. That is, dire
t 
hildren of Xk will be independent in a PDG stru
ture 
onditionalon I (A (Vk),A (R(Xk))), whi
h is typi
ally not as �ne grained as A ({pa∗

F (Xk) ∪Xk}). Wetherefore, in addition to building the underlying variable trees, also indu
e a simple PDGstru
ture. As will be
ome apparent soon, we 
an do this by interleaving in
remental buildingof variable trees through tests of independen
e, by an indu
tion of a partial PDG stru
tureover the variables 
urrently in
luded in the trees. We will then only need to estimate atmostas many parameters as the full partition generated by all prede
essor variables, and in pra
tisethe number of parameters will be mu
h smaller.We need to have a strategy for handling situations where the amount of data is too limitedto provide reliable estimates for the X2 statisti
s of (4.51). For simpli
ity, we will only performthe test when we have more than 5 data instan
es (on average) per parameter for estimation90
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Algorithm 4.11 The Grow pro
edure grows a partially build PDG stru
ture by in
reasing thedepth by one more level. The depGraph fun
tion builds a dependen
y graph over variables byperforming pairwise tests of 
onditional independen
e, using a χ2 test and signi�
an
e level t.Input: T : partially build PDG stru
ture; t : signi�
an
e level from [0, 1].1: pro
edure Grow(T, t)2: for all leaves Vi of T where below(Xi) 6= ∅ do3: B := I (A (Vi),A (Xi))4: H := depGraph(below(Xi),B, t)5: for all 
onne
ted 
omponents C in H do6: Xj := random variable from C7: Vj := {νj}8: chF (Xi) := chF (Xi) ∪Xj9: below(Xj) := C \Xj

in 
omputing the X2 statisti
. This is a 
ommonly used rule-of-thumb (see eg. Spirtes et al.(2000) (pages 94�95)). When the 
ardinality of the 
onditioning partition be
omes less than5 instan
es we will assume the independen
e relation to be true without performing the test.Statisti
ally, of 
ourse, this is an unjusti�ed assumption, however, we will still use this heuristi
to promote simpler models with fewer parameters and thereby the ability to obtain morereliable estimates for the parameters.10,11
Growing Variable Trees Algorithm 4.11 des
ribes the Grow pro
edure, whi
h is the 
entralpro
edure in learning the variable forest. The Grow pro
edure extends the underlying variabletree of a partially build PDG-stru
ture by adding another level of variables to the leafs of thetree. Ea
h leaf Xl has an asso
iated (possibly empty) set below(Xl) of variables that are to bein
luded in the subtree rooted at Xl. The depGraph(Y,B, t) fun
tion returns a dependen
ygraph over variables Y where Xi, Xj ∈ Y are 
onne
ted if Xi 6⊥⊥ Xj |B tests positive by astatisti
al test for 
onditional independen
e, using signi�
an
e level t.Figure 4.14 depi
ts an example of the stru
tural transformations performed by the Growpro
edure. Figure 4.14(a) depi
ts the initial situation. The partially build PDG stru
turealready 
ontains the variables X6, X2 and X4, and variables below(X4) = {X1, X3, X7, X5}will the members of the subtree rooted at X4. The next step, depi
ted in Figure 4.14(b), thenbuilds a dependen
y graph over variables below(X4). The third and last step, depi
ted inFigure 4.14(
), then initialises a separate bran
h rooted at X4 for ea
h 
onne
ted 
omponentin the dependen
y graph over variables below(X4). A bran
h is initialised by 
hoosing avariable Xi at random as the root of the bran
h, and then pla
ing the remaining variables from10An alternative approa
h 
ould be to use a s
ore fun
tion instead of a statisti
al test to evaluate 
onditionalindependen
e when data is limited. Su
h approa
hes was investigated by Abellán et al. (2006).11It should be mentioned that Fisz (1980) (pages 439�440) 
onsiders the ne
essary amount of data for the
χ2 test to give reliable results, and Fisz (1980) mentions the work of Vessereau (1958). Vessereau (1958)shows that when the expe
ted frequen
ies are 
onstant, one only needs a single data instan
e per parameterin (4.51). However, in our 
ase, the expe
ted frequen
ies are not ne
essarily 
onstant as the partitions doesnot ne
essarily partition the data uniformly. 91
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Figure 4.14. Snapshots of the pro
edure for growing variable forests. In this example, a tree is beingbuild over 7 variables X1 to X7. The sets below(·) is indi
ated by the solid box atta
hed underneathleafs.
the 
onne
ted 
omponent {C \Xi} in the set below(Xi). Figure 4.14(d) depi
ts the partiallybuild PDG after having been exposed to lo
al stru
tural transformations implemented in theLearnPDG pro
edure of Algorithm 4.7.
Building Variable Forests Algorithm 4.12 des
ribes the pro
edure LearnForest. Thispro
edure builds a full variable forest over variables X by �rst building a dependen
y graphover X, using the trivial partitioning as 
onditioning partitioning, that is, marginal indepen-den
e tests (line 4). Then, for ea
h 
onne
ted 
omponent in this dependen
y graph, we growa tree using the Grow pro
edure des
ribed above (see Alg. 4.11).In line 11 of Algorithm 4.12, trees are grown by alternating between the Grow pro
edureand the LearnPDG pro
edure that optimises the partially build PDG stru
ture returned fromGrow. A tree is fully grown when no leaf Vi has a non-empty below(Xi) set.92
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Algorithm 4.12 The LearnForest pro
edure builds a variable forest by growing ea
h treethrough alternating between the Grow pro
edure and the LearnPDG pro
edure.1: fun
tion LearnForest(D, t, λmax)2: X := variables from D3: F := ∅4: H :=depGraph(X, {Ω}, t)5: for all 
onne
ted 
omponents C in H do6: Xi :=rndVar(C)7: Vi := {νi}8: below(Xi) := C \Xi9: Ti := tree w. Vi as root10: F := F ∪ {Ti}11: repeat12: Grow(Ti, t)13: LearnPDG(F, λmax)14: until Ti is full-grownreturn F
4.5.2 Testing the PDG LearnerTo perform initial quality 
he
ks of the PDG learning pro
edure of Algorithm 4.6, we experi-mented with several di�erent databases 
onsisting of iid samples from distributions representedby a PDG models. We performed two distin
t experiments:1. learning PDG stru
tures with the 
orre
t variable forest given as a starting point, and2. learning the PDG stru
ture in
luding the indu
tion of a variable forest.Clearly, the latter is both the harder and the more relevant test, the former was mainlyperformed as an initial sanity 
he
k of the LearnPDG pro
edure.
PDG sampled dataThe merits of the PDG model is most 
learly visible when representing logi
al relations asdemonstrated by the parity distribution in Example 3.11. It is therefore natural to in
ludemanually 
onstru
ted models that represents 
ertain logi
al relationships.We used 5 di�erent PDG models, 3 of whi
h were manually 
onstru
ted (shown in Fig-ure 4.15) and 2 randomly generated (shown in Figure 4.16). We sampled full instan
es fromea
h model to get a fully observed dataset. This dataset was then partitioned into DA and
DB , where |DA| = 10000 and |DB | = 5000.The 3 manually 
onstru
ted PDG models (Logi
1, Logi
2 and Logi
3) and the pro
eduresfor generating the 2 random PDG models (Rnd15 and Rnd20) are des
ribed below.
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Figure 4.15. PDG stru
tures: Logi
1 (a) en
odes a distribution 
ontaining the logi
al relationshipslisted in Table 4.2; Logi
2 (b) en
odes the parity distribution over 10 binary variables (see Exam-ple 3.11); Logi
3 (
) en
odes a relation where one variable assumes the value de�ned by the disjun
tionof pairwise 
onjun
tions of the remaining variables (see Eq. (4.53)).

Variable C D F G I JTruth-value A ∨B A ∧B D ⊕ E ¬C ¬(F∨H) ¬(F∧H)Table 4.2. Logi
al fun
tions en
oded in model Logi
1. Variables A, B, E and H models input bitswith a uniform ( 1
2 ,

1
2 ) prior.
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Logi
1 This PDG model (depi
ted in Fig. 4.15(a)) represents a distribution over 9 binaryrandom variables, 4 of whi
h models input bits with a uniform (1

2 ,
1
2) prior, while the othersare determined by the logi
al relations listed in Table 4.2.

Logi
2 This PDG model (depi
ted in Fig. 4.15(b)) en
odes the parity distribution des
ribedin Example 3.11 over 5 binary variables X0, . . . , X4.Logi
3 The last manually 
onstru
ted PDG model (depi
ted in Fig. 4.15(
)) representsa distribution over the binary variables. Ea
h variable, ex
ept a spe
ial variable H, has auniform (1
2 ,

1
2) prior, while H is determined by a disjun
tion of pairwise 
onjun
tions of therest of the variables, expressed as:

H =
n
∨

i=0

(Xi ∧Xi+1). (4.53)
For the 
on
rete Logi
3 model we in
luded 8 binary variable in total.
Random PDG Models In the last two experiments, we used randomly generated PDGmodels. Parameters were randomly generated, following the method proposed in (Caprile,2001). The stru
tures were for
ed to be single tree forests as underlying variable forests andthe 
ardinality of variables were randomly sele
ted to be either 2 or 3 for simpli
ity.Figure 4.16(a) shows the Rnd15 model over 15 dis
rete random variables and with ane�e
tive size 182. Figure 4.16(b) shows the Rnd20 model over 20 dis
rete random variablesand with an e�e
tive size 233.
Results

The results of applying the PDG learning algorithm on the PDG-sampled data are sum-marised in Table 4.3. Also in Table 4.3 we list the initial size of the population of foreststru
tures (#F ) and the number of λ-values for whi
h a model was optimised (#λ). For ea
hdataset we report the SL-
oordinates (e�e
tive size and a

ura
y on DA and DB ) of the modelsele
ted for optimal a

ura
y over test data, that is M = argmax
M ′

L(DB |M
′). Figure 4.17(a)shows the learning times for both experiments measured in se
onds. Figure 4.17(b) shows thee�e
tive sizes relative to the e�e
tive sizes of the true models.

Re
overing Logi
al Models From results of Experiment 1 we observe that the true mod-els are mat
hed in SL-spa
e by the learned models for Logi
1-3. From the more relevantExperiment 2 where indu
tion of the variable forest is in
luded in the learning task, we arestill su

essful in re
overing an approximation as a

urate as the true model for Logi
1-3,however, only for Logi
2 are we able to re
over the approximation at the same e�e
tive sizeas the true model. 95
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Figure4.16.RandomPDGmodelsusedinexperiments.(a)showsmodelRnd15whi
hisarandomlygeneratedPDGmodelover15dis
rete

randomvariables.TheRnd15modelhase�e
tivesize182.(b)showsmodelRnd20whi
hisgeneratedover20dis
reterandomvariablesandhas

e�e
tivesize233.
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teristi
s from applying the LearnPDG pro
edure (Algorithm 4.6) todata sampled from arti�
ial PDG models. (a) shows learning times (in se
onds) of experiment 1 on theleft y-axis and of experiment 2 on the right y-axis. (b) shows the e�e
tive size of the model sele
tedin ea
h of the experiments, relative to the e�e
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Experiment 1 Experiment 2 True model
#F #λ sizeeff L(DA) L(DB) sizeeff L(DA) L(DB) sizeeff L(DA) L(DB)Logi
1 30 22 46 -4.000 -4.000 76 -4.000 -4.000 46 -4.000 -4.000Logi
2 30 10 18 -4.000 -4.000 18 -4.000 -4.000 18 -4.000 -4.000Logi
3 30 21 40 -6.998 -7.001 68 -6.998 -7.001 40 -7.000 -7.000Rnd15 30 16 143 -14.860 -14.859 323 -14.959 -15.037 182 -14.852 -14.833Rnd20 30 21 211 -18.088 -18.102 449 -18.684 -18.714 233 -18.082 -18.081Table 4.3. Summary of our experiments on PDG sampled data. Column '#F ' 
ontains the size of theinitial population of variable forests, whi
h is only relevant for Experiment 2. Column '#λ' 
ontainsthe number of lambda values for whi
h a model was optimised. Experiment 1 and Experiment 2 refersto experiments using the 
orre
t variable forest as a starting point, and experiments where the forest isautomati
ally indu
ed, respe
tively. Columns L(DA) and L(DB ) lists log-likelihood values for trainingand test data respe
tively (per data instan
e).
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98



4.5 Learning Probabilisti
 De
ision Graph Models
Figure 4.18(a) and (b) shows the models sele
ted from Experiment 1 and 2 respe
tively,using the Logi
1 sampled data, while Figure 4.18(
) and (d) shows the models sele
ted fromexperiments using the Logi
3 sampled data. We observe that the re
overed models in Fig-ure 4.18(a) and (
) only di�ers from the 
orresponding true models (Figure 4.15(a) and (
))by a few lo
al transformations that are of no signi�
an
e to the representation. Both modelssu

essfully represents the 
orre
t logi
al relations by assigning probability 0 to all and onlythe joint 
on�gurations that are false. For the models in Figure 4.18(b) and (d), the 
orre
tlogi
al formula was not represented as some false joint 
on�gurations were assigned a non-zeroprobability. For the Logi
2 sampled data, the 
orre
t model representing the 
orre
t logi
alformula was re
overed in both experiments.

Re
overing Random Models The results of using data sampled from the Rnd15 andRnd20 models are quite similar, and we will dis
uss them in the following. For the �rstexperiment we are not able to obtain an approximation of the same a

ura
y as the truemodels, but the sele
ted models have smaller e�e
tive size than the true models, and they arethen not dominated by the true models. For the se
ond experiment the sele
ted models areboth less a

urate and has larger e�e
tive size than the true models.Figure 4.19(a)-(b) shows SL-
urves for the four distin
t experiments involving Rnd15 andRnd20 sampled data respe
tively. First, from the SL-
urve Figure 4.19(a) we observe thatfor the �rst experiment, the attainable level of likelihood seems to be 
lose to the level ofthe true model. That is, using the 
orre
t variable forest as a starting point we do not gainmu
h from in
reasing the size beyond the size of the true model. For the se
ond experiment,where the learning pro
edure was not restri
ted to the 
orre
t variable forest, models of bettera

ura
y over DA are re
overed. However, as we have already observed, these models o�er apoor a

ura
y over DB .Similar observations were made from the experiments using Rnd20 sampled data. In the
orresponding SL-
urves shown in Figure 4.19(b), dis
repan
ies between the two experimentsare more 
lear than for Rnd15 sampled data.
Dis
ussionFrom the observations made from the results of these preliminary experiments, we 
on
ludethat the indu
tion of a good variable forest as a basis for the PDG learner is the harder task.It is of great importan
e to the quality and e�
ien
y of the �nal PDG model, as we 
learlyobserved for Rnd15 and Rnd20 sampled data. It is not surprising that the underlying variableforest 
an have a huge impa
t on the learning pro
edure. Any independen
e en
oded in avariable forest is also imposed on any PDG model with that forest as underlying stru
ture.However, if the forest fails to 
apture important independen
e relations, these must then been
oded either numeri
ally in the parameters or in the PDG stru
ture. Our experiments showthat without the 
orre
t forest, we may need mu
h larger stru
ture than the 
orre
t stru
tureto 
ompensate for the suboptimal underlying variable forest.On the positive side, when a good variable forest is given, our PDG learning pro
edure isvery su

essful in �nding good models by the lo
al transformations. Even though relying on99
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(b)Figure 4.19. SL-
urves for both experiments using Rnd15 and Rnd20 sampled data. In both plots theSL-
oordinates of the true model is marked with a 
ir
le (for DA likelihood) and a triangle (for DBlikelihood). Log likelihoods are per data-instan
e, that is, divided by the size of the dataset.

heuristi
s for traversing the spa
e of PDG models, the merge, split and redire
t operationssu

essfully re
over high s
oring models. 100
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4.5.3 Related WorkA re
ent framework that is 
losely related to PDGs is the that of 
ase-fa
tor diagrams (CFDs)of M
Allester et al. (2004). The CFD language is (like the PDG language) inspired by binaryde
ision diagrams, and also supports 
omputation of belief updating in time linear in the sizeof the representation. The stru
tural 
onstraints of CFD models di�er from the stru
tural
onstraints of PDG language in two key points: 1) CFD models do not allow undire
ted
y
les, whi
h means that reuse of parameters in a similar natural way as in the PDG languageis not possible; and, 2) in two di�erent paths through the CFD model, variables may o

urin di�erent orderings, whi
h is not possible in PDG models. M
Allester et al. (2004) does notpropose learning pro
edures for CFDs, and, to our knowledge, no study on learning CFDs hasbeen published.A framework that is very 
losely related to PDGs (and CFDs) is the Independen
y Tree(IT) model, investigated by Flores et al. (2006). Flores et al. (2006) proposes a pro
edure forlearning ITs from data, and reports initial and promising results when using the IT model infor 
lustering.Probability estimation trees (PETs) represent a 
onditional probability distribution for atarget variable given a set of 
onditioning variables, see e.g. (Provost and Domingos, 2003;Liang et al., 2006). Learning of PETs usually follow a traditional pro
edure for learningDe
ision Trees (eg. the popular ID3 algorithm (Quinlan, 1986)) with few modi�
ations. ThePET is then used to give a ranking in form of probabilities of 
lass membership 
onditional onattribute variables, and CSI relations 
an easily be represented in a 
ompa
t way. The PETframework, however, is not able to e�
iently represent a joint probability distribution over adomain of variables, and therefore does not o�er a natural and e�
ient way to perform beliefupdating in a domain.Many studies have fo
used on using lo
al CSI relations to improve learning of BN mod-els. Boutilier et al. (1996) propose to use a PET representation for ea
h lo
al 
onditionaldistribution in a BN model. These lo
al PETs are then used to guide a de
omposition of theBN model in whi
h auxiliary multiplexer variables are introdu
ed to redu
e the size of 
liquepotentials in the asso
iated Clique Tree representation. Finally, this then yields faster 
liquetree inferen
e in the de
omposed BN model. Thus, the lo
al PET representation is only usedas a prepro
essing step to obtain a simpler BN model.Chi
kering et al. (1997) use a De
ision Graph (DG) representation of the lo
al 
onditionaldistributions in a BN model, and propose an algorithm for obtaining both the BN model andlo
al DG representations simultaneously. The learning pro
edures of the lo
al DG represen-tations proposed by Chi
kering et al. (1997) 
ontains splitting and merging operators thatresemble the operators presented here for PDG learning. However, the heuristi
s for 
hoosingnodes for splitting and merging employed by Chi
kering et al. (1997) is purely random, andnot guided by the gain in s
ore as is the 
ase for our appli
ation. Also, Chi
kering et al. (1997)only 
onsider leaf nodes and not internal nodes for splitting and merging. Using the lo
al DGstru
ture, Chi
kering et al. (1997) show how to further simplify the global stru
ture of theBN model.The Re
ursive Bayesian Multinets (RBM) of Peña et al. (2002) 
apture CSI relations by a101
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de
ision tree over a set of distinguished variables. Ea
h leaf ot the de
ision tree then 
ontainsa BN model over the variables that was not in
luded on the path from the root to the leaf.Con
erning 
omputational 
omplexity, RBMs aims at representing a 
omplex domain in withmany CSI relations, by a few simpler models, one for ea
h relevant 
ontext. In the study ofPeña et al. (2002), the leaf BN models are 
onstrained to 
ertain 
lasses of NB models.
4.6 Combining BN and PDG Learning: A Hybrid LearningApproa
h

In the previous se
tion, we observed that the variable forest indu
tion is often the �A
hillesheel� of our PDG learning pro
edure. Motivated by this observation, we will introdu
e analternative way to handle the 
onstru
tion of variable forest. The material presented in thisse
tion is based on ideas previously published in (Jaeger et al., 2006).As previously stated in Theorem 3.6, there exists an e�
ient translation from a 
lique treemodel into an equivalent PDG model. Given that a 
lique tree model for some domain exists,we 
an then 
onvert this model into an equivalent PDG model, and thereby evading the dire
tindu
tion of a variable forest. This PDG model 
an then be exposed to the s
ore optimisinglo
al transformations of the LearnPDG pro
edure (Alg. 4.7), and we will denote this approa
has the hybrid approa
h.Jaeger (2004) proposes an algorithm for performing su
h a 
onversion, and we will reviewthis algorithm in the following. We need the following de�nition:De�nition 4.8 (Fully Expanded PDG)A PDG D over variables X w.r.t. forest F is said to be fully expanded i� any parameter node
ν has only a single parent.From De�nition 4.8, it follows that |Vi| = |R(pa∗

F (Xi))| for any set of parameter nodes Viin a fully expanded PDG D over variable forest F .Lemma 4.5Let X be a set of dis
rete random variables. A fully expanded PDG stru
ture D w.r.t. anylinear ordering of X 
an represent any probability distribution over X.
Proof: Let D be a fully expanded PDG w.r.t. a linear order X0, X1, . . . , Xn of variable X,that is, for the underlying variable forest F the relation pa∗

F (Xi) = {X0, . . . , Xi−1} holds forany Xi ∈ X. Furthermore, as D is fully expanded, Path(ν, pa∗
F (Xi)) 
ontains a single elementfrom R(pa∗

F (Xi)) for any ν ∈ Vi. Denote this element y. Then by Propositions 3.4 and 3.6
pν = PD(Xi|pa

∗
F (Xi) = y), and PD fa
torises as:

PD(X) =
∏

Xi∈X

PD(Xi|Xi+1, . . . , Xn). (4.54)
By the 
hain-rule of 
onditional distributions (2.11), any multivariate distribution fa
torisea

ording to (4.54), and therefore D 
an represent any multivariate distribution over X.102



4.6 Combining BN and PDG Learning: A Hybrid Learning Approa
h
Algorithm 4.13 Transforms a dire
ted 
lique tree into an equivalent PDG. The underlyingvariable tree is build by the buildVariableTree pro
edure of Algorithm 4.14.Input: J : 
lique tree.Output: D: PDG model equivalent to J .1: pro
edure 
liqueTreeToPDG(J)2: Let Cr be the root of J3: T :=buildVariableTree(Cr, J)4: Let D be an empty PDG-stru
ture w.r.t. variable tree T5: buildPDGFromCliques(Cr, J , D)6: return DAlgorithm 4.14 A variable tree is build from a dire
ted 
lique tree J at from 
lique-node Cand all 
lique-nodes below C.Input: C: 
lique of 
lique tree JOutput: T : variable tree representing variables of 
lique C and all 
liques below C in J1: fun
tion buildVariableTree(C)2: Let T be a linear tree over variables new(C)3: Let Xl be the leaf of T4: for all Cc ∈ chJ(C) do5: Tc :=buildVariableTree(Cc, J)6: Atta
h Tc to T as a bran
h, rooted at Xl7: return T

Lemma 4.5 states a key property of PDGs, and it is 
entral to 
onstru
ting a PDG modelfrom a 
lique tree model.Pro
edure 
liqueTreeToPDG (Algorithm 4.13) implements the top-level transformationfrom a 
lique tree to an equivalent PDG. Invoking this pro
edure for ea
h tree in a dire
ted
lique forest, a general 
lique forest is transformed to an equivalent PDG stru
ture.Pro
edure buildVariableTree (Algorithm 4.14) builds a variable tree from a 
lique tree
J . The produ
ed variable tree essentially has the same stru
ture as J , but with ea
h 
lique
C ex
hanged for a linear order bran
h over 
ertain new variables new(C). new(C) 
ontainsvariables that appears in 
lique C and that have not appeared in any 
lique above C in the
lique tree stru
ture, that is:

new(C) = var(C) \ {∪C′∈pa∗
J
(C)var(C ′)}, (4.55)where var(C) is the set of variables asso
iated with 
lique C. Any 
lique potential φC over
lique node C is fully spe
i�ed by |R(var(C))| − 1 parameters. The e�e
tive size of a fullyexpanded PDG w.r.t. variable forest F over var(C) is ∑Xi∈var(C) |R(pa∗

F (Xi) ∪Xi)|, whi
his bounded by 2|R(X)|.Example 4.2Consider the 
lique tree of Figure 4.20(a). We have 
hosen the 
lique 
ontaining variables
{X1, X2, X3} as the root 
lique Cr, and invoke the buildVariableTree pro
edure on Cr. As103



4 Learning Probabilisti
 Graphi
al Models
X1, X2, X3

X1, X4 X3, X5, X6

(a)

X1

X2

X3

X4 X5

X6(b)
Figure 4.20. A 
lique tree (a) and the variable tree 
onstru
ted by pro
edure buildVariableTreeinvoked on 
lique {X1, X2, X3}.
Algorithm 4.15 Pro
edure for re
ursively building a PDG from a dire
ted 
lique tree. Cliquesare expanded into suitable sets of parameter-nodes by the expandClique pro
edure of Algo-rithm 4.16.Input: C: root 
lique; J : 
lique tree; D: empty PDG stru
ture build from 
lique tree J .1: pro
edure buildPDGFromCliques(C, J , D)2: expandClique(C, J , D)3: for all C ′ ∈ chJ(C) do4: buildPDGFromCliques(C ′, J , D)
new(Cr) = var(Cr), we �rst build a linear tree X1 → X2 → X3. For the two remaining
liques {X1, X4} and {X3, X5, X6} the tree fragments X4 and X5 → X6 are 
onstru
ted, andthis �nally yields the tree in Figure 4.20(b).Pro
edure buildPDGFromCliques (Algorithm 4.15) re
ursively expands an empty PDG Dby 
reating sets of parameter-nodes for all variables in the underlying variable forest. Nodesare 
onne
ted su
h that PDG D 
an represent the distribution en
oded by 
lique tree J .This task is a

omplished by always mat
hing a free parameter in the 
lique tree model by a
orresponding free parameter in the PDG model.The expandClique pro
edure (Algorithm 4.16) essentially ensures this, by expanding vari-ables new(C) of 
lique C into sets of parameter-nodes. First, variables var(C) \ new(C) havealready been in
luded in the PDG, and we ensure that new(C) 6⊥⊥ var(C) \ new(C) in PDG
D. The 
reateParameterNodes pro
edure 
reates parameter nodes for variable Xi, and 
on-ne
ts these nodes in PDG D su
h that any free parameter in the JT will be mat
hed by a freeparameter in D.Example 4.3Consider the variable-tree from Example 4.2 depi
ted in Figure 4.20(b), and assume all vari-ables are binary. Invoking pro
edure buildPDGFromCliques(C, J,D) (Alg. 4.15), where 
lique104
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h

Algorithm 4.16 Expand a 
lique node C from 
lique tree J into sets of parameter nodes ina PDG D.Input: C: 
lique node; J 
lique tree (
ontaining C); D: PDG stru
ture not 
ontainingparameter-nodes for variables new(C).1: pro
edure expandClique(C, J , D)2: Let F be the variable forest underlying D3: Y := var(C) \ new(C)4: for all Xi ∈ new(C) do5: 
reateParameterNodes(Xi, Y, D)6: Y := Y ∪ {Xi}
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Algorithm 4.17 Given a variable Xi in variable forest F and a subset of variables Y ⊆

pa∗
F (Xi) on whi
h Xi depends, pro
edure 
reateParameterNodes 
reates the ne
essary pa-rameter nodes needed to represent this dependen
e in PDG D over variable forest F .Input: Xi: random variable; Y: set of dependent variables; D partially build PDG stru
ture.1: pro
edure 
reateParameterNodes(Xi, Y, D)2: let F be the underlying variable forest of D3: let Xj = paF (Xi)4: Vi := ∅5: U := pa∗

F (Xi)6: for all y ∈ R(Y) do7: add new parameter node νy to Vi8: for all ν ∈ Vj do9: for all u ∈ Path(ν,u) : u[Y] = y do10: set succ(ν,Xi,u[Xi]) to be νy
V1

V2

V3

(a)

V1

V2

V3

V4

(b)

V1

V2

V3

V4 V5

V6(
)Figure 4.21. The result of applying the buildPDGFromCliques pro
edure to the 
lique-tree and vari-able forest from Example 4.2 (Figure 4.20(a) and (b)). The three steps 
orresponding to the three
liques of the 
lique-tree are depi
ted in sub-�gures (a),(b) and (
).
C is the root of the 
lique tree J in Fig. 4.20(a) and D is the empty PDG stru
ture of thevariable tree in Figure 4.20(b). Figure 4.21 shows snapshots of the pro
ess of building aPDG by this pro
edure. First, Figure 4.21 shows the result of expanding the root 
lique bythe expandCligue pro
edure. The 
lique 
ontains variables {X1, X2, X3}, and gives rise to a
lique table with 23 = 8 entries. To mat
h every entry, the sub-tree over X1, X2 and X3 isfully expanded. In Figure 4.21(b), the result of expanding the 
lique 
ontaining X1 and X4
an be seen. This 
lique gives rise to a table with 22 = 4 entries over joint 
on�gurations of
X1 and X4. Consequently, instead of expanding this subtree fully, we just 
reate a new node
ν ∈ V4 for ea
h value of X1. Figure 4.21(
) then shows the �nal result after expansion of thelast 
lique.
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V1

V2

V3

V4 V5

V6(a)

V1

V2

V3

V4 V5

V6(b)Figure 4.22. Example of 
ollapsing non-rea
hed nodes. Light-gray nodes in (a) are not rea
hed byany data instan
e and are thus removed, 
reating the dark-gray garbage-nodes of (b).
Collapsing Non-rea
hed Nodes We aim at re�ning the newly 
onstru
ted PDG modelusing data. This means that we are ultimately less interested in a
tually 
apturing the distri-bution represented by the 
lique tree model, but rather we wish to 
onstru
t a good approx-imation to the unknown generative distribution from whi
h data was sampled. To this end,we perform an initial sweep through the newly 
onstru
ted PDG model, removing nodes thatare not rea
hed by any data instan
es. A new �garbage�-node is 
reated for ea
h node-set, andany edge in
oming to a node that is removed is dire
ted into the garbage-node. For a newly
reated garbage-node, we 
an assign the garbage-node(s) of the su

eeding variable(s) in theunderlying variable forest as 
hildren. Su
h garbage-nodes ν are assigned a parameter ve
tor
pν of uniform values.Example 4.4Consider the PDG model shown in Figure 4.22(a), and assume that the light-gray parameter-nodes are not rea
hed by any instan
es d ∈ DA. Removal of non-rea
hed nodes and 
reationof suitable garbage-nodes then results in the stru
ture of Figure 4.22(b), where garbage-nodesare dark-gray.In this toy example, the e�e
tive size of the PDG is redu
ed from 38 to 36, assuming allvariables as binary.Instead of keeping the garbage nodes that results from merging the non-rea
hed nodesin the model, these garbage nodes 
ould be removed 
ompletely. One would then need toredire
t ea
h edge in
oming to a garbage-node to another existing parameter-node. Thisredire
tion 
ould be to any other node without a�e
ting the likelihood of training data, asno data-instan
es is asso
iated with the edge. Rather, the removal would yield a sure s
ore-improvement from the redu
tion in size. However, we 
hoose to keep the garbage nodes in themodel for two reasons:1. In pra
tise, the redu
tion in size resulting from 
ompletely removing garbage nodes,proved to be insigni�
ant 
ompared to the dramati
 redu
tion from the initial mergingof non-rea
hed nodes. 107
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Algorithm 4.18 The hybridLearn pro
edure learns a sequen
e of PDG models from aninitial 
onstru
tion of a PDG model from a 
lique tree J . This initial PDG stru
ture is theniteratively re�ned by a sequen
e of merge operations. The merge operations use in
reasing λvalues, thus the merging of nodes will be more and more aggressive.1: pro
edure hybridLearn(J,Λ)2: D := cliqueTreeToPDG(J)3: Collapse non-rea
hed nodes in D4: for λmin up to λmax in Λ do5: mergeNodes(D,λ)6: output D

2. The garbage nodes may still be useful, even when no instan
e d ∈ DA justify theirexisten
e. They provide uniform parameters for instan
es d ∈ DB that still may rea
hthem, and hen
e may improve the a

ura
y of the model.The hybridLearn pro
edure of Algorithm 4.18 
ombines the approa
h to learning PDGmodels des
ribed in this se
tion with a subsequent optimisation of the stru
ture. We �rsttranslate a 
lique tree model into an equivalent PDG model. Then we perform a series ofmerges by the mergeNodes pro
edure (see Algorithm 4.9). The sequen
e of merges are in-
reasingly aggressive, and in this way we expe
t to produ
e a series of models de
reasing insize and a

ura
y.
4.6.1 Related WorkDarwi
he (2002) propose to use Arithmeti
 Cir
uit (AC) representations for probabilisti
 in-feren
e. AC is a general representation framework for multi-linear fun
tions, and are notdedi
ated to representing joint probability distributions. Unlike PDGs, no simple synta
ti

riterion 
hara
terise the set of ACs that do represent probability distributions. It would,therefore, seem di�
ult to learn ACs dire
tly from data dire
tly. Instead, Darwi
he (2002)proposes a pro
edure for 
ompiling a BN model into an equivalent AC representation, whi
heasily 
apture and exploit CSI relations yielding a more 
omputationally e�
ient represen-tation. Compared to our hybrid learning of PDGs, Darwi
he (2002) does not propose anyoptimisations of the AC after the 
ompilation from a BN model. ACs do not naturally lendthemselves to parameter re-estimation as is the 
ase for PDGs, and re-estimation of param-eters is espe
ially important in su
h post-
ompilation optimisations to ensure that the lossin a

ura
y is minimised. However, the empiri
al results reported by Darwi
he (2002) oftenshows a signi�
ant improvement in 
omputational 
omplexity of the 
ompiled AC 
omparedto the Clique Tree representation, even without su
h post-
ompilation optimisations.

108



Chapter 5
Comparative Analysis

In this 
hapter we perform a 
omparative analyses of the PGM languages presented in Chap-ter 3 and the methods for learning presented in Chapter 4. The overall goal of this 
hapteris to evaluate the ability of model languages to e�
iently and a

urately approximate a dis-tribution, and to evaluate our learning methods ability to re
over su
h e�
ient and a

uratemodels. Major parts of the material presented in this 
hapter is based on ideas previouslypublished in (Nielsen and Jaeger, 2006).
5.1 Methodology and Experimental Setting

We have applied our learning algorithms for BN, NB and PDG models to several datasetsboth real and syntheti
, and produ
ed SL-
urves for ea
h model language and ea
h dataset.Ea
h dataset was split up in two separate sets, one set for training (hen
eforth denoted DA)and one set of testing (hen
eforth denoted DB ), and SL-
urves over likelihood values obtainedfrom both DA and DB was then produ
ed. SL-
urves were introdu
ed in Se
tion 4.1.2 as ananalyti
al tool for 
ross-language 
omparisons.As mentioned above, we will use both real and syntheti
 datasets in the 
omparative study.The use of syntheti
 data has the advantage that the generating distribution P is known. Thisapproa
h is therefore popular for initial ben
hmarking of algorithms for the obvious reasonthat it avoids the di�
ulty of having to approximate the true generating distribution P by theempiri
al distribution PD of a small sample D from P . Using data D sampled from knowndistributions P for the learning of model M will then enable us to evaluate the quality of theapproximation provided by PM dire
tly by 
omputation of DKL(P ||PM ). However, in ouranalysis the obvious reasons for not only taking this approa
h are the following:1. We wish to 
ompare multiple PGM languages, and depending on the 
hosen distribution
P we may give unfair treatment to some languages and favour others. It would be fairto assume that if data D has been sampled from a distribution P that is represented bya (non-trivial) model from PGM language L1, then P 
ontains independen
e relationsthat are e�
iently expressible in language L1 while these independen
e relations are lesse�
iently expressible in language L2, if expressible at all. Results reported in Se
tion 5.2109
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support this assumption to some extent.2. Su

essful learning from real data is typi
ally the ultimate end goal of a learning algo-rithm. Any experiments on syntheti
 data is then only of interest in preliminary studiesand ben
hmarking. In the �nal appli
ation of the learning algorithm, the data generatingdistribution will not be available, and all we have is a �nite data-set of observations.By optimising (4.8) we attempt to learn models that yield optimal e�e
tive-size/likelihoodtrade-o�s (SL-optimal), i.e., models that are non-dominated in SL-spa
e.1 If the SL-
urve forone model language L1 
onsistently dominates the SL-
urve for another language L2, there
an be (at least) two explanations for this:1. for any SL-optimal L2 model M there exists a L1 model M ′ that dominates M (for thisspe
i�
 real-world distribution), or2. we are unable to learn SL-optimal models for L2 by our learning pro
edures.In our experiments we use real-world data, and are unable to guarantee that the SL-
urve we
onstru
t 
onsists of the SL-
oordinates for SL-optimal models. We are therefore never able to
on
lude that explanation 1 above true. Again, as our learning pro
edures have no guaranteesof learning SL-optimal models, explanation 2 
an never be dismissed as false. Moreover,the existen
e of e�
ient and a

urate SL-optimal models is of little pra
ti
al value if we areunable to re
over these models from data. The �pra
ti
al� e�
ien
y and a

ura
y of a modellanguage will then be the e�
ien
y and a

ura
y of the models we are able to learn, and these�pra
ti
al� properties are then the basis for our 
omparative analysis.As dis
ussed previously (Se
tion 4.1.2) when using SL-
urves for sele
ting a single model,the model that attains maximal likelihood value over the testing data would typi
ally be the
anoni
al 
hoi
e. For every experiment we will 
ompare su
h models from ea
h language.Instead of avoiding over�tting by using the test dataset DB (or 
ross-validation when data islimited), a model optimising some �xed tradeo� between e�
ien
y and a

ura
y (su
h as BICor AIC s
ores) may be sele
ted. We therefore also investigates the models optimising BIC andAIC s
ores for ea
h dataset.

5.1.1 Empiri
al A

ura
y and E�
ien
yThe analysis dis
ussed thus far 
on
erns the use of SL-
urves that plots the tradeo�s betweene�e
tive size and likelihood, o�ered by a model language. The e�e
tive size was previouslyintrodu
ed as a parameter of the model, su
h that general belief updating is 
omputable intime linear in that parameter (see Se
tion 4.1.2). The use of e�e
tive size allows 
on
lusionsabout the di�eren
es in e�
ien
y (of belief updating) only up to a linear fa
tor. The linearfa
tor depends on the spe
i�
 implementation, and only then will it be measurable. We are1A model M1 is dominated by another model M2, if M2 has SL-
oordinates that are to the left and above theother model's SL-
oordinates, that is, M2 has both smaller e�e
tive size and better likelihood s
ore 
omparedto M1. Model M1 is non-dominated if there does not exist a model M2 from the same language that dominates
M1. 110
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interested in this fa
tor as 
on
lusions may be sensitive to 
hanging the e�
ien
y measurefrom the theoreti
al measure of e�e
tive size to an empiri
ally measured exe
ution time.We then measure the e�
ien
y of exa
t inferen
e empiri
ally by the exe
ution times forupdating beliefs given random eviden
e. That is, we 
ompute all marginal posteriors given ajoint observation of a random set of eviden
e variables E, and measure the average exe
utiontime of su
h random queries.In addition to measuring the empiri
al e�
ien
y, we also measure the empiri
al a

ura
y.Following the methodology of Lowd and Domingos (2005), a random query is generated asfollows: draw an instan
e d at random from test data DB and generate two random disjointsubsets of variables Q and E from X. The random query is then P (Q = d[Q]|E = d[E]).The empiri
al a

ura
y of model M on this query, is then the log posterior probability:
logPM (Q = d[Q]|E = d[E]). Compared to the global a

ura
y measure of log-likelihood oftest data L(DB |M), the empiri
al a

ura
y 
an be seen as a measure for �lo
al� a

ura
y, i.e.,restri
ted to spe
i�
 marginal 
onditional distributions of PM .
Setup of Experiments for Performing Empiri
al MeasuresIn pra
ti
e, we generate n random queries, i.e., pairs of disjoint sets of variables 〈Q,E〉 and
orresponding observations 〈q = d[Q], e = d[E]〉 extra
ted from randomly drawn instan
es
d from a set of test-data (as explained above). Then, belief updating is performed in ea
hmodel M both for eviden
e E = e and eviden
e (Q,E) = (q, e). After a belief update,we store the joint probabilities (PM (E = e) and PM (Q = q,E = e) respe
tively) and themeasured exe
ution time. From the joint posteriors, we 
ompute the empiri
al a

ura
y
logP (Q = q|E = e). In this way, we measure both the empiri
al e�
ien
y of belief updatingand the empiri
al a

ura
y of joint posteriors given random eviden
e.
5.1.2 General Experimental SetupFor learning BN models, the KES pro
edure (Algorithm 4.3) with the SBN

λ s
ore (see (4.24))was used. BN models were optimised for a range of di�erent λ values, and for ea
h value of λwe used 11 di�erent k values k ∈ {0.0, 0.1, . . . , 1.0}. For ea
h pair of k and λ, 100 restarts ofKES was performed, and for ea
h spe
i�
 λ value the highest s
oring BN model was sele
ted.For learning PDG models, we used the LearnPDGs pro
edure of Algorithm 4.6. The initialpopulation size was manually tuned for ea
h dataset, as was the spe
i�
 signi�
an
e levels usedin the 
onditional independen
e tests in building the initial variable forests for ea
h dataset.2Finally, for learning NB models, the NB learning algorithm des
ribed in Se
tion 4.4 wasused. Re
all that learning NB models with in
reasing e�e
tive size is espe
ially simple as the2The manual tuning of the initial population size and the signi�
an
e levels was aimed at learning a rangeof di�erent models. For some initial settings we experien
ed that the learning pro
edure was only able tore
over a small set of di�erent models. More spe
i�
ally, we would typi
ally start with a small populationsize and subsequently in
rease the size if the varian
e in learned models turned out to be too small. Also, thesigni�
an
e level used in the independen
e test would sometimes yield forest stru
tures so simple that only avery small set of di�erent PDG stru
tures were possible. In su
h 
ases we would restart the pro
edure withless stri
t signi�
an
e levels. 111
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Name |X| |E| Rmax Rmin Rmean sizeeff L(DA|P

M ) L(DB |P
M )Alarm 37 42 2 4 2.8 771 -13.720 -13.839Hail�nder 56 66 2 11 4.0 9406 -70.812 -70.785Table 5.1. Chara
teristi
s of the BN models used for sampling syntheti
 data. 
olumns Rmax , Rminand Rmean lists maximum, minimum and mean range of the random variables, sizeeff lists the e�e
tivesize of the model, while L(DA|P

M ) and L(DB |P
M ) lists log-likelihood values of the models averagedover instan
es in the respe
tive datasets.

stru
ture is given and the only parameter that a�e
ts the e�
ien
y is the number of latent
omponents. The termination 
riterion for the EM algorithm (that is, maximum iterationsand minimum 
hange in parameters) was tuned manually for ea
h dataset.3
Implementations The KES pro
edure (Alg. 4.3) was implemented in the C language, usinge�
ient state-of-the-art Ma
hine Learning libraries.4 Both the LearnPDGs (Alg. 4.7) and theLeandNB (Alg. 4.5) pro
edures were implemented in the Java language using standard librariesof JDK v. 1.5 and the Weka pa
kage for basi
 data handling routines.5, 6 All the learningexperiments was performed on a Sun Fire X4100, 2.4 GHz CPU ar
hite
ture with 4096 MBRAM running the RedHat-Enterprise Linux4 64bit operating system.
5.2 Learning from Syntheti
 Data

We will learn models from a 
olle
tion of syntheti
 databases. Ea
h database was generatedby drawing random samples under a distribution represented by a known model. For produ
ingSL-
urves, we will use log-likelihood values averaged over the size of the data, and we willin
lude in the plots a horizontal line representing the (negative) entropy of the data −H(DA),as this is the maximal attainable log-likelihood value for any model.
5.2.1 Learning from BN Generated DataIn this se
tion, we report on experiments using data sampled from manually 
onstru
ted BNmodels. We use two widely studied models, the Alarm network (Beinli
h et al., 1989) andthe Hail�nder network (Abramson et al., 1996). We used data sampled from these models,in Se
tion 4.3.4. Data sampled from these models was previously used in testing the KESpro
edure in Se
tion 4.3.4. Chara
teristi
s of these networks 
an be seen in Table 5.1.3The tuning was mainly ne
essary in order to ensure a

eptable run times. For the larger datasets it wasne
essary to terminate EM after fewer iterations than for smaller datasets. The run time of EM is of 
ausedire
tly dependent on the 
ardinality of the latent 
omponents.4These libraries were initially developed at the AutonLab, Carnegie Mellon University, and most kindlymade available to us by Dr. Andrew W. Moore.5For information on the Java language, see http://java.sun.
om/6Weka is a library of tools and algorithms for Ma
hine Learning and Data Mining tasks implemented inJava. The libraries 
an be obtained online at http://www.
s.waikato.a
.nz/~ml/weka/, and for futher detailon the Weka-toolbox, see (Witten and Frank, 2005).112
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5.2 Learning from Syntheti
 Data
Name |X| |R(C)| Rmin Rmax Rmean sizeeff L(DA|P

M ) L(DB |P
M )NB10 15 10 2 4 3.13 470 -20.468 -20.512NB20 15 20 2 4 2.9 880 -19.641 -19.614Table 5.2. Chara
teristi
s of NB models used for generating syntheti
 NB data. Columns L(DA|P

M )and L(DB |P
M ) lists likelihood values (averaged over instan
es in the training data) for datasetsgenerated from the respe
tive models.

Results on BN Generated Data
Figure 5.1 shows SL-
urves generated from models learned from data sampled from the Alarmmodel. As expe
ted, the BN models shows superior performan
e and 
onsistently domi-nates NB and PDG models in Figure 5.1(b) where likelihoods are 
omputed over DB . InFigure 5.1(a) where likelihoods are 
omputed over DA BN models dominates PDG and NBmodels only up to a 
ertain e�e
tive size. The SL 
urves for BN models raises qui
kly to thelevel of a

ura
y of the generating model and then does not improve a

ura
y for models ofin
reased 
omplexity. NB models show a mu
h more smooth in
rease in a

ura
y for in
reas-ingly 
omplex models. For PDG models we have a large interval of e�e
tive size where nomodels where learned, whi
h is probably due to poor tuning of the parameters in the learningpro
edure. When tuning the parameters, we were trying 
arefully to avoid su
h gabs in theSL-
urves. The reason they still appear 
an have (at least) two explanations. Either theresimply do not exist models in the range where we do not observe models, or we are unableto learn these models. Assuming there exists models, we might have 
hosen a set of signi�-
an
e levels that produ
e forest stru
tures that do not support these models, and hen
e weare not able to learn them. Thus, poor tuning of the parameters 
ould result in the observedSL-
urves.However, SL 
oordinates for the learned PDG models that are learned are 
lose to NBmodels, and we therefore do not expe
t major di�eren
es in the performan
e of the PDGlanguage 
ompared to the NB language even for model sizes we have not observed.Observations similar to these were made from the experiment on data sampled from theHail�nder model, the only di�eren
e being that NB models does not as 
learly over�t theHail�nder data as it is the 
ase for the Alarm data. SL-
urves for the experiments using datasampled from the Hail�nder model 
an be found in Appendix A (Figure A.1).
5.2.2 Learning from NB Generated Data
We have used 2 randomly generated NB models (NB10 and NB20) over 15 dis
rete randomvariables with ranging from binary valued to 5 state variables. The NB10 model has 10 latent
omponents and NB20 has 20 latent 
omponents. Datasets DA of size 10000 and DB of size5000 were sampled. Table 5.2 
ontains 
hara
teristi
s of the models.113
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(b)Figure 5.1. SL-
urves for models learned from the Alarm data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with asquare. The Log-Likelihood is per data-instan
e, that is, divided by the data size (|DA| and |DB |,respe
tively). Log likelihoods are per data instan
e.
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(b)Figure 5.2. SL-
urves for models learned from the NB10 data, for likelihood values over training data
DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with a square.Log likelihoods are per data instan
e.
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5 Comparative Analysis
Name |X| Rmin Rmax Rmean sizeeff L(DA|P

M ) L(DB |P
M )Logi
1 10 2 2 2 46 -4.000 -4.000Logi
2 5 2 2 2 18 -4.000 -4.000Logi
3 8 2 2 2 40 -7.000 -7.000Rnd15 15 2 3 2.6 182 -14.852 -14.833Rnd20 20 2 3 2.4 233 -18.082 -18.081Table 5.3. Chara
teristi
s of PDG models used for generating syntheti
 PDG data. Columns

L(DA|P
M ) and L(DB |P

M ) lists log-likelihood values (averaged over the number instan
es in trainingdata) for datasets generated from the respe
tive models.
Results on NB Generated DataFigure 5.2 shows SL-
urves from learning from NB10 sampled data. We �rst observe thatfor models of small e�e
tive size, NB models outperform both BN and PDG models as ex-pe
ted. However, no single language 
onsistently dominates the other languages in neitherFigures 5.2(a) nor 5.2(b). In Figure 5.2(a) BN models are 
onsistently dominated, while inFigure 5.2(b) no language is 
onsistently dominated. In Figure 5.2(b) we observe a remarkablestability in a

ura
y of the BN models that is not observed for neither PDG nor NB models.PDG models in parti
ular seems to su�er from over�tting DA.The results of experiments on NB20 sampled data leads to similar observations and doesnot lead to new 
on
lusions. Figure A.2 in Appendix A 
ontains SL-
urves from learning fromNB20 sampled data.
5.2.3 Learning from PDG Generated DataThree datasets were sampled from the manually 
onstru
ted Logi
1-3 PDG models (see Fig-ure 4.15). The datasets are the same as the ones used for initial ben
hmarking of the learningpro
edure for PDG models, as dis
ussed in Se
tion 4.5.2.Two datasets were sampled from randomly generated PDG models, the Rnd15 and Rnd20models (see Figure 4.16). These datasets were also used in the initial ben
hmarking of thePDG learning algorithm, as dis
ussed in Se
tion 4.5.2.
Results on PDG Generated Data Figure 5.3 shows SL-
urves from learning from Logi
2sampled data. Re
all that the Logi
2 model en
odes the parity distribution over 5 binaryvariables. We observe the expe
ted superiority of PDG models over both BN and NB mod-els. BN models are 
apable of approximating the distribution as a

urately as PDG models,however, BN models 
an only represent the parity distribution exa
tly with an e�e
tive sizethat is exponential in the number of parameters (as previously dis
ussed, see Se
tion 3.3.3).In the 
ase of Logi
2 with n = 5 we get 25 = 32, whi
h is exa
tly the e�e
tive size of the BNmodel that attains maximum likelihood value in Figure 5.3. The NB models fail to providean e�
ient approximation for this dataset. As previously dis
ussed (Se
tion 3.3.3), the NBmodel will need an e�e
tive size of 5 ∗ 25 + (25 − 1) = 191 to represent the parity distributionover 5 binary variables exa
tly. In our experiments we were not able to re
over this model.116
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(b)Figure 5.3. SL-
urves for models learned from the Logi
2 data, for likelihood values over training data
DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with a square.Log likelihoods are per data instan
e.
The smallest e�e
tive size of a model with maximum likelihood was only learned when the
ardinality of the latent variable was in
reased to 40, yielding e�e
tive size of 239. This is notparti
ularly surprising as it is well known that the EM algorithm is prone to get trapped inlo
al optima. In representing the parity distribution, the NB model needs to represent everyjoint 
on�guration over the variables using a single 
omponent. More than one 
omponent of117
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(b)Figure 5.4. SL-
urves for models learned from the Rnd15 data, for likelihood values over training data
DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with a square.Log likelihoods are per data instan
e.
the latent variable may represent the same 
on�guration, that is, the 
omponent 
onditional
P (Xi|C = cl) = P (Xi|C = ck) for some pair of 
omponents cl 6= ck and for all Xi ∈ X.This is a
tually quite likely given that our NB learning algorithm uses instan
es drawn atrandom from DA to instantiate new 
omponents, after the 
ardinality has been in
remented(see Se
tion 4.4). Therefore, we need more than the theoreti
al optimal 32 
omponents to118
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represent the distribution exa
tly. This problem 
ould be mitigated by merging equivalent
omponents after termination of EM. The potential bene�t from in
luding an operator formerging of 
omponents in learning NB models is well studied, a detailed dis
ussion is pro-vided in (Kar£iauskas, 2005). Our reason for not in
luding su
h an operator was mainly toredu
e the learning time. Also, we are aiming at produ
ing a range of NB models of di�erentsize, and the merging operator is spe
i�
ally aimed at �nding the model with optimal latent
ardinality.The SL-
urves for learning from Rnd15 sampled data 
an be seen in Figure 5.4. Thereare only small di�eren
es in the 
hara
teristi
s of the 
urves for likelihood values over DA inFig. 5.4(a). In Figure 5.4(b) however, BN models show very stable performan
e and 
onsis-tently dominates BN and PDG models. For both PDGs and NBs, over�tting DA is very 
lear,while BN models again are very stable in a

ura
y.SL-
urves for the experiments of learning from data sampled from the Hail�nder, Logi
1,Logi
3 and Rnd20 models 
an be found in Appendix A.1.
5.2.4 Dis
ussion of ResultsOne general 
on
lusion that 
an be drawn from learning from the syntheti
 datasets is thatgenerally, the language of the model from whi
h the data was sampled, is often the superiorlanguage for a

urate and e�
ient approximations of the empiri
al distribution. Ex
eptionsto this observations are the experiments of learning from the Logi
1 and Rnd20 sampled datawhere BN models outperform the generative language of PDGs.Table 5.4 
ontains SL 
oordinates for the models of maximal likelihood over DB , the BICoptimal models and the AIC optimal models. The SL 
oordinates of the generative models
an be found in Tables 5.1, 5.2, and 5.3.From the numbers in Table 5.4 we see that both BIC and AIC s
ores sele
t models withan a

ura
y relatively 
lose to the a

ura
y of the Mmax(L(DB )) models, while (of-
ourse)AIC punishes less for 
omplexity when 
ompared to BIC. The expe
ted e�e
t of redu
ingthe punishment for in
reased size would be to over�t to DA, and indeed we observe thise�e
t. When 
omparing the SL-
oordinates of the learned models to the SL-
oordinates of thegenerative models (see Tables 5.1, 5.2, and 5.3) we do not see any learned models dominatingthe generative model for any of the datasets.The main 
on
lusion we draw from the results of these experiments is �rst of all that nosingle PGM language proves to 
onsistently outperform the others and no single language is
onsistently outperformed by the others. Also, when 
onsidering the Mmax(L(DB )) sele
tedmodels, NBs and BNs seem to have trouble approximating a distribution represented by theopposite model. That is, NB models perform poorly both 
on
erning a

ura
y and e�
ien
yon Alarm and Hail�nder sampled data while BN models have exhibits a blowup in e�e
tivesize in order to approximate the NB10 and NB20 sampled data. The PDG models provideina

urate approximations only for the Alarm and Hail�nder sampled data. For the Rnd15and Rnd20 randomly generated PDG models we are somewhat surprised to observed BNmodels as providing the more a

urate approximation than 
ompared to PDG models at onlya slightly larger e�e
tive size. Comparing the obtained BN models to the SL-
oordinates of119
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5.3 Learning from Real Data
Name |X| |DA| |DB | Rmin Rmax |R(X)| H(D) − log2(

1
|D| )Page-blo
ks 11 4482 574 5 5 107 10.669 12.304Letter Re
ognition 17 18012 1988 4 26 1012 13.828 14.288Landsat 37 4435 2000 5 6 1025 12.349 12.652Adult 15 30162 15060 2 41 1011 13.561 15.465King,Rook vs. King 7 25188 2868 4 18 106 14.776 14.776Abalone 8 3758 419 3 5 106 9.193 12.028Poisonous Mushroom 23 7337 787 2 11 1014 12.988 12.988Table 5.5. Summaries of the real datasets used in the analysis. D refers to the full dataset, DA isthe part of D used for training, DB is the part of D used for testing, Rmax and Rmin refers to themaximunm and minimum range of the variables X observed in the data. H(D) is the entropy of thedata.

the Rnd15 and Rnd20 models, we see that there indeed exists PDG models with the same levelof a

ura
y. And re
alling the su

essful results of learning from this data using the 
orre
ttree stru
ture as a starting point (see Se
tion 4.5.2) we see that one explanation of BNs beingmore a

urate than PDGs on these datasets 
ould be the indu
tion of in
orre
t underlyingvariable forests.
5.3 Learning from Real Data

In this se
tion we report on the results of learning PGMs from real datasets. The datasetswe have used are available online at the UCI ML repository (Newman et al., 1998) in theiroriginal form. Table 5.5 
ontains a short summary of the datasets used. If a standard train-ing/test partitioning of the original dataset were available we used it, otherwise instan
eswhere randomly assigned to either DA (90%) or DB (10%).We in
lude a short des
ription of the datasets below.
Page-blo
ks This dataset 
ontains instan
es of blo
ks of the page layout of a text do
ument.A do
ument has been pre-pro
essed by a segmentation pro
ess, partitioning ea
h page intodisjoint blo
ks where ea
h blo
k has been labelled as either �text�, �horizontal line�, �pi
ture�,�verti
al line� or �graphi
�. For ea
h blo
k, 10 di�erent features (height, length, number ofbla
k pixels, et
.) of the blo
k are re
orded, and the label together with the value of these 10features then makes up an instan
e in the dataset. This dataset has previously been used forevaluation of de
ision tree learning, e.g., Esposito et al. (1997).The 10 features were originally numeri
al values, to avoid working modelling 
ontinuousrandom variables, we have dis
retised ea
h of the 10 features into 5 equal frequen
y bins. Wein
lude the 
lass label as a regular variable in our dataset.
Letter Re
ognition Ea
h instan
e of this dataset 
ontains label spe
ifying one of the 26
apital letters from the English alphabet, plus 16 primitive measurements of a bla
k-and-whitere
tangular pixel display when displaying this 
hara
ter. Ea
h 
hara
ter was displayed in 20121



5 Comparative Analysis
di�erent fonts, and ea
h display were randomly distorted before the 16 measurements werere
orded. We in
lude the 
lass label as a regular variable in our dataset.
Landsat This dataset 
ontains information extra
ted from digital satellite images of landsurfa
es. Ea
h 
ase in the database is extra
ted from a 3× 3 pixel image, with values for ea
hpixel for 4 di�erent spe
tral bands, thus totals 36 features. Ea
h su
h feature is en
oded asa 8 bit word, hen
e the range is 0 to 255. Ea
h 
ase is then augmented with a 
lass label,labelling ea
h 
ase with one of 6 di�erent types of surfa
e. We have redu
ed the range of the36 features to 5 approximately equal frequen
y bins.
Adult This dataset was extra
ted from a 1994 US Census database. Ea
h instan
e 
ontainsvalues for 14 features (age, sex, marital status, ra
e, work-
lass, edu
ation, et
.) and a 
lasslabel indi
ation whether the yearly in
ome of the individual is above or below $USD 50.000.Past usage of this dataset has been aiming at developing 
lassi�ers for predi
ting the in
ome-label of an individual given the values of the features. We have dis
retised numeri
al valuedfeatures into 5 equal frequen
y bins. We in
lude the 
lass-label into our dataset as a regularvariable.
King, Rook vs. King This dataset is 
onstru
ted from 
hess endgames in whi
h only threepie
es are left on the board, white king, white rook and bla
k king. Ea
h instan
e 
ontains
oordinates for ea
h pie
e and a value for the optimal depth of win for white ranging from 0to 16 moves. If white 
an not win within 16 moves a spe
ial �draw� state is re
orded.
Abalone This dataset is made up of measurements of features of the abalone shell�sh su
has lenght, height, weight, age et
. In total 9 di�erent features are re
orded for a single abalone,8 of them having numeri
 values. This dataset has previously been used for learning to 
lassifythe age of the abalone, based on the rest of the features. For our experiments, numeri
 valuedfeatures were dis
retised into 5 equal frequen
y bins.
Poisonous Mushrooms This dataset is made up of features of di�erent mushrooms su
h as
olour, shape, size, et
. In total, 22 nominal features are re
orded and ea
h 
ase is augmentedwith a label 
lassifying the mushroom as either edible or poisonous.
5.3.1 Dis
ussion of ResultsFigure 5.5(a)-(b) shows SL-
urves from learning from the Adult database. We observe verysimilar performan
e of all three languages on DA, although BN models gain less in likelihoodwhen in
reasing 
omplexity 
ompared to both PDG and NB models. In Figure 5.5(b), we ob-serve 
lear dissimilarities in performan
e. While BN models are still very stable and likelihoodvalues are not a�e
ted in either dire
tion by in
reasing 
omplexity of the models, both PDGand NB models su�er from over�tting DA. In Figure 5.5(b), the BN language 
onsistentlydominates while the NB language is 
onsistently dominated. The observations of dominan
ein Figure 5.5(b) is 
learer than what we have observed for other datasets.122
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(b)Figure 5.5. SL-
urves from learning from the Adult dataset. Figure (a) displays plots using likelihoodsover DA and (b) displays plots of likelihoods over DB . Log likelihoods are per data instan
e.
Figure 5.6(a)-(b) shows SL-
urves from learning from the Abalone data, and this is amore typi
al set of SL-
urves where no language 
onsistently dominates the others. For DA(Fig. 5.6(a)) the PDG and NB models are again observed to bene�t more in a

ura
y by thein
rease in 
omplexity than does the BN models. For DB (Fig. 5.6(b)), however, models fromthe PDG language are 
onsistently dominated. NB and BN models o�er an approximationof almost the same maximum a

ura
y over DB , while the more e�
ient approximation iso�ered by the NB model. 123
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(b)Figure 5.6. SL-
urves from learning from the Abalone data. Figure (a) displays plots of likelihoodvalues over DA while plots in (b) uses likelihood values over DB . Log likelihoods are per data instan
e.
Tables 5.6 and 5.7 summarise the results from learning from real data.7 First, Table 5.6 listsobserved dominan
e. For ea
h dataset we observe 1) if one language 
onsistently dominatesthe others and 2) if one language is 
onsistently dominated by the others. These observationsare made for both DA and DB , and in Table 5.6 we denote by L1/L2 the observation thatlanguage L1 
onsistently dominates the others and language L2 is 
onsistently dominated by7See Appendix A.2 for SL-
urves for models learned from the Page-blo
ks, Letter Re
ognition, King Rookvs. King, Poisonous Mushroom and Landsat data. 124
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Page-blo
ks Letter R. Adult K.R.v.K Abalone P. Mushroom Landsat

DA -/BN -/BN -/- NB/BN -/- -/BN NB/-
DB PDG/- NB/PDG BN/NB -/NB -/PDG PDG/NB BN/PDGTable 5.6. Summary of observations of 
onsistent dominan
e. Row DA lists 
onsistent dominan
eobserved for SL-
urves of log likelihoods over DA, and DB for SL-
urves of log likelihoods over DB .For ea
h dataset we list two observations in the format 'L1/L2', whi
h denotes that language L1
onsistently dominates in this experiment, while L2 is 
onsistently dominated. Either of the two orboth might not be observed, indi
ated by -.
the others. If only one or none of these observations are made, this is indi
ated by a dash −.Table 5.7 lists SL-
oordinates for three models from ea
h language for ea
h dataset: 1) themodel attaining maximal likelihood over DB , 2) the model attaining maximal BIC s
ore, and3) the model attaining maximal AIC s
ore. Also, Table 5.7 lists the number of models learnedand exe
ution times for learning pro
edures.From Table 5.6 we see that the BN language is the language most frequently dominatedon DA. As previously observed, BN models do not often gain mu
h in a

ura
y by an in
reasein 
omplexity. By 
omplexity we here refer to the e�e
tive size, whi
h for BN models is notin linear relation to the number of free independent parameters in the model. Therefore,the observation that BN models do not 
apitalise on in
reased 
omplexity, is probably fullyexplained by the fa
t that for any two BN models of di�erent e�e
tive size, the number of freeparameters (and therefore the ability to represent the empiri
al distribution of the data) maybe the almost the same. In Figure 5.7 we investigate the relationship between e�e
tive andrepresentational size of models learned from real data. For models learned from Page-blo
ksdata we plot representational size vs. e�e
tive size for BN and PDG models in Figure 5.7(a)and similar plots for models learned from the Letter Re
ognition data in Figure 5.7(b). We
learly see that in
reased e�e
tive size in
reases the representational ability of PDG models ata rate that is approximately linear. For BN models, the relationship is sub-linear or linear withat a very low rate. The important observation from Figure 5.7 is that in
reased 
omplexitydoes not ne
essarily buy mu
h representational power for the BN model.The sub-linear relationship between e�e
tive size and representational size also explainsthe low propensity of BN models to over�t DA. This then also explains why we do not observeBN models being dominated 
onsistently for likelihood values over DB (see Table 5.6).From the summaries given in Table 5.7 we observe 
on
erning maximal likelihood over DB ,a BN model is most frequently the model with highest value, whi
h is not surprising given theabove dis
ussion on 
onsistent dominan
e of BN models. However, the superior a

ura
y ofthe BN models over DB when 
omparing to NB and PDG models, is often a

ompanied by ahuge e�e
tive size. For none of the experiments do we observe a dominating model in termsof both e�e
tive size and likelihood.Comparing the models sele
ted by maximal likelihood value over DB to the models sele
tedby the BIC and AIC 
riterions (
olumns MBIC and MAIC in Table 5.7), we see that BIC
onsistently sele
ts models of lower 
omplexity than the Mmax(L(DB )) models. AIC oftensele
ts models that are more 
omplex than the Mmax(L(DB )) models. The model sele
ted by125
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5.3 Learning from Real Data
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5 Comparative Analysis
AIC is often 
loser to the model attaining maximal likelihood over DB than that sele
ted byBIC. The fa
t that AIC penalises less than BIC for in
reased 
omplexity is 
lear from thede�nitions of BIC and AIC (see Se
tion 4.1).We 
an sum up the observations dis
ussed above by stating that a surprisingly similarperforman
e of the three PGM languages is observed, while the BN language exhibits themost stable performan
e with less propensity for over�tting the training data.
5.4 Empiri
al Analyses

For the analyses of SL-
urves reported in the previous se
tions, the e�e
tive size has beenused as a theoreti
al measure of e�
ien
y. The e�e
tive size for PGM M is a (model) spe
i�
parameter for whi
h general belief updating is 
omputable in linear time. This means that
on
lusions drawn from 
omparison of e�e
tive size are only valid up to a linear fa
tor. Inthis se
tion, we report on experiments measuring the absolute pra
ti
al 
omplexity in
ludingthe linear fa
tor.The experimental setup is as follows:
• For belief updating in PDG models we use the 
opmuteIflOfl pro
edure of Algo-rithm 3.6 after inserting eviden
e. The probability of the eviden
e is then 
omputedby Equation 3.51. The 
omputeIflOfl pro
edure was implemented in the Java lan-guage using standard libraries of JDK v. 1.58 and the Weka pa
kage for basi
 datahandling routines (Witten and Frank, 2005).
• For BN and NB models we used the Hugin9 inferen
e engine through the Hugin JavaAPI. The Hugin inferen
e engine is a C implementation of a 
lique tree propagationalgorithm, see (Jensen et al., 1990b,a; Andersen et al., 1989). It is a highly optimisedimplementation and frequently re
ommended as one of the best tools for probabilisti
inferen
e (Cowell et al., 1999; Jensen, 2001; Castillo et al., 1997).
• For 
omputing averages, we generated 1000 random queries from ea
h set of test data.We used a �xed size for the random sets of variables: |Q| = 4 and |E| = 3. Thepro
edure for generating queries were des
ribed in Se
tion 5.1.1.
• The experiments where all performed on a Sun Fire280R, 900MHz SPARC CPU ar
hi-te
ture with 4GB of main memory running Solaris 9.

5.4.1 Dis
ussion of ResultsTo extra
t the linear fa
tor between e�e
tive size and the a
tual exe
ution time of beliefupdating, we plot measured exe
ution time against e�e
tive size. Examples 
an be seen inFigure 5.8(a) for models learned from Abalone data and Figure 5.8(b) for models learnedfrom the Adult data. In addition, we plot the linear expression y = α · sizeeff + β where8http://java.sun.
om/9http://www.hugin.
om/ 128
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ution time of performing belief updating vs. e�e
tive size for models learned(a) the Abalone dataset and (b) the Adult dataset.

y is the average exe
ution time and α and β are �tted through a standard least squaresMarquardt-Levenberg �tting pro
edure.10 This �tting pro
edure �ts parameters α and βsu
h that the sum of squared errors over data instan
es are minimised. The �tted α-valuesfor all experiments are listed in Table 5.8 together with an asymptoti
 standard error. Weobserve that di�eren
es are quite limited, ex
ept for the Letter and Landsat data-bases. Herethe linear fa
tor for PDGs are mu
h larger than for BNs and NBs. That BNs and NBs are10We used the fit 
ommand in the gnuplot system (Williams and Kelley, 2004).129



5 Comparative Analysis
BN NB PDGPage-blo
ks 0.22 ±7.10 · 10−6 0.30 ±2.25 · 10−6 0.27 ±4.29 · 10−6Letter Re
ognition 0.26 ±5.65 · 10−6 0.26 ±5.92 · 10−6 0.98 ±3.59 · 10−5Adult 0.20 ±3.99 · 10−6 0.22 ±1.07 · 10−6 0.25 ±5.84 · 10−6King, Rook v. King 0.22 ±3.09 · 10−6 0.23 ±6.91 · 10−7 0.16 ±3.63 · 10−6Abalone 0.16 ±9.55 · 10−6 0.28 ±4.25 · 10−6 0.24 ±7.42 · 10−6Poisonous Mushroom 0.25 ±5.36 · 10−6 0.26 ±6.89 · 10−7 0.20 ±1.04 · 10−5Landsat 0.24 ±2.90 · 10−6 0.30 ±4.18 · 10−7 0.64 ±3.62 · 10−5Table 5.8. The slope α (times 103) of the line y = α·sizeeff +β, where y is the measured exe
ution timeand α, β are �tted by the standard least squares �tting pro
edure implemented by the fit 
ommandin the gnuplot system (see (Williams and Kelley, 2004)), ± asymptoti
 standard error of α.

always very 
lose is of 
ourse not surprising 
onsidering that exa
tly the same belief updatingpro
edure is used. We also observe that no single language is 
onsistently better or worse thanthe others. Considering the standard errors, we observe that there exists some dis
repan
ybetween the di�erent languages. In fa
t, for the datasets Landsat and Poisonous Mushroomthe dis
repan
y is on the order a fa
tor 100 (between NBs and PDGs) and a fa
tor 10 (betweenBNs and PDGs). We believe that this is due irremovable measurement error stemming fromdi�erent fa
tors su
h as garbage 
olle
tion in the Java Virtual Ma
hine.Figures 5.9(a) and 5.9(b) shows plots of the empiri
al a

ura
y measured as the averagedlog-likelihood of random queries. Comparing the plot of empiri
al a

ura
y over queries gen-erated from the Adult data in Figure 5.9(b) against e�e
tive size to the 
orresponding plotusing the full log-likelihood of Adult test data in Figure 5.5(b), we see that PDG models aremore 
ompetitive when measuring a

ura
y empiri
ally. A similar observation is made forAbalone data from 
omparisons of empiri
al a

ura
y over the Abalone data (Fig. 5.9(a)) andthe 
orresponding plot using the full log-likelihood over test data (Fig. 5.6(b)).The values in Table 5.8 gives an estimate on the linear fa
tor asso
iated with the 
omplex-ity of general belief updating. While the di�eren
es are relatively small, we are still interestedin the stability of 
on
lusions drawn from the e�e
tive size in the light of the a
tually mea-sured exe
ution times. That is, if 
hanging the measure of e�
ien
y from e�e
tive size toaverage exe
ution time will have any impa
t on model sele
tion. Therefore, we list in Ta-ble 5.9 for ea
h dataset and ea
h language, two models. First, the models attaining maximalempiri
al a

ura
y are listed under Mmax(log P (Q|E)). Se
ond, the models attaining maximallog-likelihood value over DB are listed under Mmax(L(DB )). The se
ond set of sele
ted modelswhere previously listed in Table 5.7, and we here augment the SL-
oordinates for the modelswith the average exe
ution time.First, we 
onsider the models Mmax(L(DB )), and the language that would be preferredw.r.t. e�
ien
y. For ea
h dataset, the ordering of the models sele
ted from the three languagew.r.t. average exe
ution time is the same as ordering w.r.t. e�e
tive size, ex
ept for Letterdata. Here the sele
ted PDG model has lowest e�e
tive size while the sele
ted NB model haslowest average exe
ution time. It should be noted that the NB and PDG models do not di�ersigni�
antly in neither e�e
tive size nor average exe
ution time, so even though the relative130
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5 Comparative Analysis

Mmax(log P (Q|E)) Mmax(L(DB ))

sizeeff logP (Q|E) time (ms) sizeeff L(DB ) time (ms)Page-blo
ks BN 35250 -3.134 7.961 13875 -13.362 3.434PDG 11925 -2.774 3.392 11925 -11.998 3.392NB 6490 -2.994 2.074 6490 -12.916 2.073Letter BN 141675 -4.705 44.435 141675 -23.872 44.435PDG 56485 -4.645 54.567 14138 -28.046 5.954NB 24582 -4.668 6.866 20640 -24.655 5.666Landsat BN 5451000 -3.520 3162.610 5451000 -36.000 3162.610PDG 130247 -3.953 125.973 7418 -50.465 2.868NB 7440 -3.644 2.963 5850 -42.417 1.879Adult BN 62270 -3.337 12.955 62270 -16.182 12.955PDG 17359 -3.348 4.697 4208 -16.695 1.056NB 21672 -3.635 4.956 19205 -17.677 4.955King, Rook v. BN 6912 -6.461 1.745 6912 -16.880 1.745King PDG 18930 -6.441 3.336 18930 -16.783 3.336NB 35786 -6.616 8.382 32032 -17.279 7.712Abalone BN 4575 -2.811 0.963 4575 -10.439 1.223PDG 1416 -2.899 0.509 694 -10.883 0.386NB 1720 -2.785 0.698 1365 -10.463 0.428Poisonous BN 85477 -1.909 24.226 208333 -13.883 61.458Mushroom PDG 16854 -1.883 3.776 6560 -13.95 1.792NB 35105 -1.883 9.517 28518 -14.421 8.058Table 5.9. Columns Mmax(log P (Q|E)) 
ontains the models of maximum lo
al a

ura
y, that is, averagelog probability of 1000 random queries. Columns Mmax(L(DB )) 
ontains models sele
ted maximallikelihood values over DB and asso
iated e�e
tive size and average exe
ution time.
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5.5 The Hybrid Learning Approa
h
ordering is 
hanged, the models have 
lose to similar average exe
ution time.Next, 
onsider the models Mmax(log P (Q|E)) sele
ted for maximal empiri
al a

ura
y. Theordering of the three languages w.r.t. maximal empiri
al a

ura
y is the same as the orderingof languages w.r.t. maximal log-likelihood over DB for 4 of the 7 datasets. For the Letter,Abalone and Poisonous Mushroom datasets the BN language provides the most a

urate modelw.r.t. log-likelihood over DB , however when doing the 
omparison w.r.t. empiri
al a

ura
ythe BN language no more provides the most a

urate approximation.One last observation, for the Landsat data, we observe that the huge relative di�eren
esin a

ura
y w.r.t. log-likelihood over DB does not reemerge when we measure a

ura
y bylog-likelihood over random queries.One possible explanation for why orderings w.r.t. a

ura
y 
hange when 
onsidering log-likelihood over random queries instead of log-likelihood over the full test data DB , 
ould bethe existen
e of a few unlikely data instan
es in DB . Then BN models will often providea more smoothed model as they 
ontain fewer free parameters than NB and PDG models,as shown for two examples by the plot in Figure 5.7. The likelihood of the more smoothedmodel will then not be as sensitive to a few rare instan
es in the data as the less smoothedmodels. However, when measuring a

ura
y by the log-likelihood over queries, this meansonly 
onsidering a marginal distribution over a subset of variables for every term in the sumof likelihoods. Therefore, the unlikely joint 
on�gurations may not be expressed in the subsetsof variables used in the queries, and the less smoothed models prevails over the more smoothedmodels.Lastly, the empiri
al measures of exe
ution time for PDG models is en
ouraging as ourprototype implementation performs 
ompetitively when 
ompared to the Hugin inferen
e en-gine.
5.4.2 Related WorkLowd and Domingos (2005) performs an empiri
al 
omparison mu
h like the one we have per-formed in this se
tion, though only 
omparing BN and NB models. The measure of e�
ien
yis based on 
omputing only the joint 
onditional posterior of a subset of variables given somerandom eviden
e. This is parti
ularly e�
ient in NB models as every variable not parti
i-pating as a query variable or as eviden
e 
an immediately be removed from the 
omputation.In this setting, Lowd and Domingos (2005) show that NB models exhibit superior e�
ien
yto BN models, and that the a

ura
y of NB models is 
ompetitive with that o�ered by BNmodels. Our analysis shows that the 
omputational e�
ien
y of NB models does not extendto the inferen
e task of belief updating, and 
on
erning a

ura
y we are unable to pro
laimany language the winner.
5.5 The Hybrid Learning Approa
h

The hybrid learning approa
h dis
ussed in Se
tion 4.6 
ombines BN learning and PDGlearning. By using the 
lique tree (CT) of a BN model as the basis for a PDG stru
ture,133
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we merge parameter nodes in the PDG stru
ture with in
reasing aggressiveness (see Algo-rithm 4.18). In this way, we aim at 
onstru
ting e�
ient PDG models without trading o�a

ura
y, potentially improving on the e�
ien
y of the original BN model. In this se
tion, weevaluate the performan
e of PDG models learned using the hybrid approa
h. We use exa
tlythe BN models learned from real data as dis
ussed in Se
tion 5.3.Before going into a detailed analysis of the full experiment, we will analyse a single exper-iment in some detail.Figures 5.10(a) and (b) show the result of the hybrid learning using a BN model learnedfrom the Abalone data. By the re
tangular point we mark the SL-
oordinates of the BNmodel, and the points 
onne
ted by the dashed line 
orresponds to SL-
oordinates of thePDG models obtained by 
ontinued merging of nodes. That is, the rightmost point on thedashed line 
orresponds to the PDG model obtained without merging and 
ollapsing of zero-in�ow nodes. The rest of the points in the plot then ea
h 
orresponds to the PDG modelobtained by in
reasingly aggressive merge operations. The diamond marks the smallest PDGmodel that has higher or equal likelihood s
ore over training data DA 
ompared to the originalBN model. We denote this PDG model the �Best� PDG model.From Figures 5.10(a) and (b), we see that the initial translation from CT to PDG resultsin an in
rease in e�e
tive size of the PDG model when 
omparing to the original e�e
tive sizeof the BN model indi
ated by the square. Also, an in
rease in likelihood is observed, whi
h isexplained by the fa
t that parameters are re-estimated for the PDG model after the stru
turehas been 
onstru
ted from the CT of the BN model. For the CT model, parameters 
omedire
tly from the BN model and the CT therefore does not exploit the extended expressibilityof more parameters. Parameters 
ould have been re-estimated for the CT model, however,we use the more 
ommon approa
h of using parameters estimated in the BN model. Also, re-estimating parameters for the CT model obtained from a BN model would make our analysisless 
lear as learning has been performed only for the BN model and not the CT model.The most interesting observation from Figures 5.10(a) and (b), is that a

ura
y does notdeteriorate rapidly when the e�e
tive size is de
reased by repeated merge operations. Thisshows us that the initial PDG model 
onstru
ted from the CT model 
ontains redundant pa-rameter nodes that are not needed in the approximation o�ered by the model. This redundant
omplexity is then su

essfully identi�ed and removed from the PDG by merge operations.
5.5.1 Dis
ussion of ResultsFor ea
h dataset and ea
h BN model learned from the dataset, we summarise the importantobservations from three sele
ted experiments. For ea
h database, we have sele
ted experimentsusing the following BN models:1. the smallest e�e
tive size BN model,2. the BN model that attains the highest likelihood value over DB and3. a BN model with an e�e
tive size in between the two other models.134



5.5 The Hybrid Learning Approa
h
For ea
h of the 7 datasets, these 3 sele
ted experiments are summarised in Table 5.10. Ea
hexperiment is summarised in form of the SL-
oordinates of the original BN model, the SL-
oordinates of the �Best� PDG model, and the relative improvement of the �Best� PDG modelover the original BN model. Relative improvement for a value is 
al
ulated as:

Relative Improvement =
BN − Best PDGBN .

Please refer to Appendix A.4 for summaries of all experiments and all datasets.The results summarised in Table 5.10 generally show that the hybrid approa
h (with fewex
eptions) su

essfully 
onstru
ts PDG models that dominate the original BN models inSL-spa
e, both when 
onsidering likelihood over DA and DB .The �rst experiment sele
ted for ea
h dataset is summarised in the �rst row within ea
hblo
k of three rows in Table 5.10. These are result of applying the hybrid approa
h to smalleste�e
tive size BN model that we learned for the given dataset. In these experiments we arenot always su

essful in 
onstru
ting PDG models that improve on the original BN model(Page-blo
ks and Letter Re
ognition being ex
eptions). This observation is not surprising,as the BN model that we try to improve is quite 
ompa
t in the �rst pla
e. Therefore, notmany super�uous parameter nodes exists in the PDG representation of the CT model, andthe merge operations are not able improve on the size by removal of nodes without redu
inga

ura
y.For the se
ond row experiments we use a BN model of an e�e
tive size in between theoptimal BN model (w.r.t. likelihood over DB ) and the simplest (smallest e�e
tive size). Herewe more 
onsistently observe an improvement by the best PDG model over the initial BNmodel. For the Adult and Letter Re
ognition datasets we observe a small degradation inlikelihood (2% and 0.6% when measure over DB ). For the Landsat dataset, however, thedegradation in likelihood over DB is severe (40.2%). Figure 5.11 shows a detailed plot of thisparti
ular experiment, and we see that a few merges results in a major de
rease in likelihoodover DB (Figure 5.11(b)). This parti
ular dataset previously has proved di�
ult for dire
tlearning of PDG models (Se
tion 5.3) and we are therefore not surprised to �nd this parti
ulardataset 
ausing problems for the hybrid approa
h also. PDG models seem to fail in smoothingthe representation su�
iently and instead 
aptures the empiri
al distribution of DA too 
losely,yielding the poor generalisation power to the instan
es of DB .Figure 5.11 on page 139 shows plots of the SL 
oordinates of all the PDG models visitedin this experiment. From this we see that the 
ollapsing of zero in�ow nodes redu
es sizedramati
ally, and the result is a PDG model that already s
ores worse on DB 
ompared tothe original BN model (marked by the square). With the 
ollapsing of zero in�ow nodes, thePDG model keeps only the parameters ne
essary for 
apturing the distribution of DA. Thehuge joint state-spa
e of the observable variables of the Landsat data (≈ 1025) in 
ombinationwith the small size of the dataset (6435), the empiri
al distribution is not expe
ted to providea good estimate of the generative distribution. However, by 
ollapsing zero in�ow nodes wede
rease the models ability to smooth over DB by removing (amongst others) parameters thatare only rea
hed by instan
es of DB . 135



5 Comparative Analysis
If we investigate the measured exe
ution times, we observe some quite unexpe
ted timesespe
ially for Abalone, King Rook vs. King and Poisonous Mushroom. Here, the simplestmodels of smallest e�e
tive size also had the longest exe
ution times. When pro�ling theimplementations in detail we found that the extra time was used on tuning the smoothingfa
tor by the tuneSmooth pro
edure (Alg. 4.2). Spe
i�
ally, when the optimal (unknown)smoothing value was relatively large, the initial values used in the sear
h was quite poorly
hosen by an internal tuning pro
edure. This then yields a large number of 
ross validations,ea
h of whi
h in
ludes expensive data a

ess. This problem is implementation spe
i�
 issue,and as we did not experien
e problems for examples of a more typi
al e�e
tive size, we willnot spend more time on this.We also applied the hybrid learning approa
h to BN models learned from the syntheti
datasets, the results are summarised in Table 5.11. The results are di�erent from the resultssummarised in Table 5.10 in that the relative improvements in e�e
tive size are smaller. Oneobvious explanation is that the BN models that in this experiment set of experiments hassmaller e�e
tive size (that is, smaller CT models) and therefore the potential size improvementis smaller. For the larger models (espe
ially for Hail�nder and Rnd15), we still observe asigni�
ant improvement in size and at the prize of a fairly limited degradation in log-likelihood.This is espe
ially pleasing to observe as these two datasets previously 
aused problems fordire
t learning of PDG models (see Se
tion 5.2).When inspe
ting the exe
ution times, we again observe problems with the smaller models.This is similar to what we already observed in the summary in Table 5.10, and again originatesfrom a bad 
hoi
e of initial values for the tuneSmooth pro
edure.The hybrid approa
h to learning PDG models has proven to be a feasible approa
h toobtaining good PDG models. We typi
ally observe a signi�
ant redu
tion in e�e
tive size when
omparing the best PDG model to the original BN model at a limited 
ost in a

ura
y andgeneralisation to new 
ases. The only experiments that fail in this respe
t are the ones usingBN models learned from the Landsat data. This is not entirely unexpe
ted, as the Landsatdata proved to be one of the harder problems for the PDG learning algorithm as previouslydis
ussed in Se
tion 5.3. The dataset on whi
h the hybrid approa
h is most su

essful is thePoisonous Mushroom data. Again, this is not surprising when remembering that the PDGlearner was also observed to be most su

essful on exa
tly this dataset (see Se
tion 5.3).
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(b)Figure 5.10. PDGs learned from JTs obtained from BNs learned from Abalone data. The square marksthe SL 
oordinates of the BN model, and the rightmost point in the plot marks the PDG 
onstru
tedfrom the JT of the BN. Points 
onne
ted by the dashed line 
orresponds to SL 
oordinates obtainedfor the PDG model after in
reasingly aggressive merging of nodes. The square point marks the SL
oordinates of the BN model and the diamond marks the best PDG model obtained in the experiment.Log likelihoods are per data instan
e.
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Page-blo
ks
1000-14.512-14.607675-14.363-14.4820.3250.0100.009
31.0

8375-13.734-13.7713935-13.210-13.2860.530.0380.035
74.9

13875-13.239-13.3628045-12.502-12.5770.420.0560.059
51.1

Abalone

190-10.915-10.851270-10.904-10.837-0.4210.0010.001
66.9

2700-10.445-10.475758-10.362-10.4230.7190.0080.005
38.5

4575-10.401-10.4421003-10.346-10.4870.7810.005-0.004
59.8

Adult

950-16.388-16.473965-16.380-16.468-0.0160.0000.0001654.9

18966-16.016-16.19014316-16.011-16.2900.2450.000-0.0062038.6

62270-15.993-16.18231564-15.860-16.4400.4930.008-0.0162068.2

King,Rookvs.King
120-18.413-18.426124-18.412-18.426-0.0330.0000.0001461.8

3744-16.957-17.0922906-16.919-17.0650.2240.0020.0021035.9

6912-16.700-16.8805782-16.633-16.8350.1630.0040.0031053.3

Landsat

910-43.622-43.7051210-43.605-43.703-0.3300.0000.000
266.9

383000-36.030-36.41949583-35.532-51.0440.8710.014-0.402
463.4

760375-35.989-36.30464796-35.836-55.7760.9150.004-0.5361413.4

LetterRe
ognition
3119-28.759-28.6092683-28.372-28.2750.1400.0130.0122049.2

74075-24.037-24.31119660-23.886-24.8090.7350.006-0.022679.5

141675-23.477-23.87262494-23.317-25.2540.5590.007-0.0582714.3

PoisinousMushroom
121-32.332-32.283123-32.332-32.283-0.0170.0000.0001737.4

114741-14.281-14.1942212-13.747-13.7720.9810.0370.030
113.5

208333-13.924-13.8832010-13.564-13.5600.9900.0260.023
141.4

Table5.10.Summaryofthehybridapproa
htolearningPDGmodels.Forea
hdatasetthreeexperimentshavebeensele
ted(seeSe
tion5.5.1

fordetails).Ea
hrowthen
orrespondstooneexperiment.Thethree
olumnswithheadline'BN'showsSL
oordinatesfortheinitialBNmodel;

thethree
olumnswithheadline'PDG'showsSL
oordinatesforthebestPDGmodels;andthethree
olumnswithheadline'RelativeDi�eren
e'

showstherelativeimprovementoverBNSL
oordinatesbythebestPDGSL
oordinates.Thelast
olumn
ontainsexe
utiontimeinse
onds,

notin
ludinglearningoftheoriginalBNmodel,butin
ludingtheCT
onstru
tionandtranslationfromCTtoequivalentPDG.
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(b)Figure 5.11. SL 
oordinates for all PDG models visited in experiment 3 of the Landsat data. The SL
oordinates of the BN model is marked by the square. This experiment is summarised in the se
ondrow of the Landsat blo
k in Table 5.10 on the pre
eding page. Log likelihoods are per data instan
e.
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Alarm

142-18.342-18.618171-18.500-18.431-0.204-0.0090.012916.6

335-13.847-14.047538-13.937-13.848-0.606-0.0060.0141881.8

624-13.666-13.868858-13.741-13.669-0.375-0.0050.0141688.9

Hail�nder

1628-71.678-71.7501957-71.618-71.698-0.2020.0010.001
232.5

4820-70.842-70.9894778-70.787-71.0270.0090.001-0.001
307.1

8472-70.804-70.9765691-70.761-71.1620.3280.001-0.003
335.5

NB10

300-21.222-21.306463-21.220-21.305-0.5430.0000.0001022.2

2772-20.842-21.0593550-20.758-21.092-0.2810.004-0.0021018.0

5220-20.687-21.0519074-20.564-21.166-0.7380.006-0.0051111.5

NB20

179-20.172-20.170224-20.151-20.155-0.2510.0010.0011018.0

1296-19.895-20.0131425-19.889-20.010-0.1000.0000.0001002.3

4320-19.819-19.9914193-19.810-20.0830.0290.000-0.0051050.5

Rnd15

42-16.229-16.256
46-16.229-16.256-0.0950.0000.0001671.8

657-14.872-14.913577-14.865-14.9080.1220.0000.000
947.5

1080-14.837-14.903607-14.833-14.9090.4380.0000.000
964.5

Rnd20

51-20.977-20.991
56-20.977-20.991-0.0980.0000.0002847.1

224-18.580-18.570233-18.515-18.505-0.0400.0030.0041786.3

674-18.079-18.129669-18.077-18.1340.0070.0000.0001683.1

Table5.11.Summaryofthehybridapproa
htolearningPDGmodelsfromsyntheti
.Themodelsusedintheexperimentsreportedherewhere

sele
tedinthesamewayasthosereportedforreal-data,seeTable5.10.
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Chapter 6
Con
lusion

In this dissertation, we have addressed aspe
ts of unsupervised learning of PGMs. We haveproposed algorithms for learning three di�erent PGM languages, and performed a 
omparativeanalysis of the tradeo�s o�ered by di�erent the di�erent models we are able to learn.The task of learning Bayesian Network models from data 
an be viewed as the task ofre
overing the true model representing the generative distribution, the strong assumption ofdata being samples of a DAG-faithful distribution has to be satis�ed. Algorithms like theSGS algorithm (Spirtes et al., 2000) and the GES algorithm Meek (1997) exhibit asymptoti
optimality when learning from su
h data sampled from DAG-faithful distributions. However,in pra
ti
e the assumption of DAG faithfulness is unrealisti
, and even when it is satis�ed, theavailable sample may be too small, yielding suboptimal results for the asymptoti
ally optimalpro
edures. In Se
tion 4.3, we presented the KES pro
edure for learning Bayesian Networkmodels. The KES pro
edure generalises the greedy sear
h employed by the GES pro
edure(Meek, 1997) by o�ering a parameterised tradeo� between greediness and randomness in thesear
h. KES maintains the asymptoti
 optimality of the GES pro
edure, while often avoidinglow quality suboptimal models. In Se
tion 4.3.4, we reported on initial experiments with theKES pro
edure. By multiple restarts of KES using a non-greedy setting (k < 1.0) we showed thatthe number of lo
al in
lusion optimal models that exists for a limited data-sample of a DAG-faithful distribution 
an be huge. While the greedy sear
h of GES is inherently deterministi
,the introdu
tion of the sto
hasti
 sear
h in KES broadens the �eld of vision of the sear
h. Themodel re
overed by the greedy sear
h 
an be suboptimal when the sample is too small, andintrodu
ing a broader sto
hasti
 sear
h 
an result in better models (e.g., see Figure 4.8(b)).The importan
e of investigating more lo
al optima be
omes very 
lear for distributions thatare not DAG-faithful. Su
h data may misguide the greedy sear
h to a suboptimal model, seeFigure 4.6. In most realisti
 settings, data will be limited and, in addition, DAG-faithfulnesswill be violated. Therefore, the pra
ti
al appli
ability of greedy heuristi
s are limited andsto
hasti
 sear
hes are to be preferred.Jaeger (2004) introdu
es the language of Probabilisti
 De
ision Graphs (PDGs) as a gen-eral representation framework for joint probability distributions. PDGs 
an 
apitalise on theexisten
e of CSI relations in providing a 
ompa
t and 
omputationally e�
ient representa-tion. The 
omputational stru
ture used for general inferen
e and belief updating is the PDG141
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representation itself, and no extra 
ompilation step is needed. In Se
tion 4.5, we present aheuristi
 pro
edure for learning PDG models from data. The pro
edure is 
omposed of two
on
eptually disjoint phases. First, we indu
e a forest stru
ture over the domain of variables.Se
ond, we optimise a PDG stru
ture over this variable forest. We use lo
al split and mergeoperations, and for guiding the appli
ation of these operators we use both heuristi
 and exa
tmeasures of s
ore improvement. In Se
tion 4.5.2, we perform preliminary tests that demon-strates the ability of our proposed pro
edure to re
over PDG models from data that o�era

urate and e�
ient approximations of the generative distribution.In Se
tion 4.6 we proposed a pro
edure for learning PDG models from Clique Tree (CT)representations. By using CT representations obtained from a learned BN model, we 
om-bine BN learning and PDG learning in a hybrid approa
h. In this way, we provide a PDGrepresentation that is equivalent to the CT representation in that it 
an represent the sameset of joint probability distributions. In addition, by using data we optimise the e�
ien
yof the PDG representation by estimating parameters and then removing redundant nodes bymerging. In this way, we exploit CSI relations to a
hieve a more 
ompa
t representation.In Chapter 5 we performed a 
omparative analysis of the performan
e of BN, PDG andNaïve Bayes (NB) models, when learned from data. Our main goal was to evaluate theperforman
e of the di�erent model languages when models are learned from data. In thisanalysis, we both used syntheti
 data sampled from distributions represented by PGMs andreal world data. In our 
omparison, we wanted to emphasise the 
omputational e�
ien
yas a main fa
tor of 
omparison. We 
onsidered the task of probabilisti
 belief updating asthe main 
omputational task for PGMs and, therefore, identi�ed for ea
h modeling languageits e�e
tive size as a model spe
i�
 parameter in whi
h belief updating is 
omputable inlinear time. This enabled us to perform a fair 
ross-language 
omparison of (theoreti
al)
omputational 
omplexity. Con
erning the a

ura
y of the approximation o�ered by models,we used the log-likelihood of a separate test-dataset DB . These two measures were 
ombinedin SL-
urves, and we used su
h plots as the basis of one part of the analysis.First, we analysed SL-
urves of learning from syntheti
 data in Se
tion 5.2. The analysisshowed some expe
ted and some unexpe
ted out
omes. BN models and NB models bothproved superior when exposed to learning from data sampled from the given models, respe
tivelanguages, whi
h was also what we expe
ted to observe. For PDG models, we experien
edsome problems in learning from randomly generated PDG models, where instead BN modelsproved to o�er more a

urate approximations at a relatively low 
ost in e�e
tive size. Thiswas somewhat unexpe
ted, but it 
an be explained as another e�e
t of the �A
hilles heel�of our LearnPDGs pro
edure, namely the initial indu
tion of a underlying variable forest. Inthe initial experiments of the pro
edure, we found that learning a good stru
ture was not aneasy task and suboptimal forests often had a signi�
ant impa
t on the PDG models that wea
tually learned (see Se
tion 4.5.2).Se
ond, we analysed SL-
urves of learning from real data in Se
tion 5.3. One major resultof the analysis was the observation that BN models are less prone to over�tting the trainingdata than both BN and NBE models. We explained this observation by the fa
t that BNmodels typi
ally have mu
h fewer free parameters than both NB and PDG models of similar142



e�e
tive size. For both PDG and NB models, there is a linear relationship between e�e
tiveand representational size (given a �xed variable forest for the PDG). For BN models, nosu
h trivial relationship between representational and e�e
tive size exists, but the observedrelationship is typi
ally sub-linear. Consequently, BN models do not gain representationalpower at the same rate as NB and PDG models when e�e
tive size is in
reased and we,therefore, observe over�tting at a lower rate for BN models. That being said, the analysis wasunable to identify a 
lear winner among the three di�erent languages, and results are verymixed over the di�erent datasets.Third, in Se
tion 5.4 we performed an empiri
al analysis of 
omputational e�
ien
y bymeasuring exe
ution times on randomly generated queries. We used our own prototype imple-mentation of the in�ow/out�ow pro
edure for general belief updating in PDG models and forNB and BN models we used the Hugin1 inferen
e engine that implements a variation of thegeneral CT algorithm for exa
t inferen
e. In the results of these experiments, we were �rst ofall pleased to observe that our prototype implementation of PDG inferen
e was not 
ompletelyin
omparable to the state-of-the-art implementation of the Hugin inferen
e engine. Next, wefound that the 
on
lusions drawn from using e�e
tive size as a measure of e�
ien
y weremostly stable. That is, the ordering of language w.r.t. e�
ien
y did not 
hange by 
hangingthe measure of e�
ien
y from e�e
tive size to average measured exe
ution time. Next we
onsidered the average log probability of randomly generated queries as an empiri
al measureof a

ura
y. Also here we found that the 
on
lusions drawn from using the global measure oflog-likelihood of data were mostly stable. However, for one example we found that a relativelylarge di�eren
e in log-likelihood of data between the three models was dramati
ally redu
edwhen 
hanging to the lo
al measure of log probability of random queries. This observation
an be explained by the existen
e of a few rare 
ases in the training data, that only 
ontribute(negatively) to the 
omputations of the global measure of a

ura
y. For the lo
al measureusing randomly generated queries, su
h extremely rare joint 
on�gurations are not sampled.Finally, in Se
tion 5.5 we analyse results of employing the hybrid approa
h to learning PDGmodels from CT representations 
ompiled from learned BN models. Mostly, the experimentsdemonstrates the ability of the hybrid approa
h for learning PDG models that when 
ompareto the original CT model o�ers a dramati
 redu
tion in e�e
tive size without trading o�a

ura
y. In this way PDG models may o�er a more e�
ient 
omputational stru
ture forBN models than the more traditional CT algorithms. Compared to the related approa
hof 
ompiling Arithmeti
 Cir
uits (ACs) from BN models by Darwi
he (2002), our 
urrentproposal for hybrid learning ne
essitates an initial 
onstru
tion of a CT model from the BNmodel. Darwi
he (2002) 
onstru
ts ACs dire
tly from the BN model and therefore avoids anypotential problems with 
onstru
ting the CT representation. On the other hand, the PDGlanguage allows subsequent re�nements in the form of merging of parameter-nodes and re-estimation of optimal parameters. The 
onstru
tion of AC representations from BN modelsby Darwi
he (2002) exploits CSI relations that are identi�ed in the parameterisation of theBN model. A key di�eren
e between that framework and our hybrid learning is then that wedo not investigate the parameters of the CT model to exploit any CSI relations there may be.1http://www.hugin.
om/ 143
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Instead we turn to data and reestimate parameters and from here we exploit CSI relationsindire
tly by merging parameter-nodes. Our exploitation of CSI relations is therefore not veryexpli
it, as we will 
onsider any pair of nodes for merging, given the asso
iated parameters aresu�
iently 
lose and without requiring that parameters mat
h exa
tly. When working withreal-world data we do not always expe
t CSI relations to manifest themselves 
learly in dataas noise may blur the image. Therefore, the merging of nodes seems a reasonable approa
hto optimising PDGs for size, and indeed in Se
tion 5.5 we have shown good performan
e ofPDG models learned by the hybrid approa
h when 
ompared to the original CT model.
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List of Symbols

A (Y) Partition generated by set if dis
rete random variables Y, page 9.
adjG(X) Set of nodes adja
ent to X in graph G, page 11.
pa∗

G(A) Minimal an
estral set of nodes A in graph G, page 12.
BD

G Parameterised BN model with DAG stru
ture G and ML parameters θ estimatedfrom data D, page 58.
chG(X) Set of 
hildren of node X in graph G, page 12.
Y⊥⊥U|Z[P ] Conditional independen
e of Y and U given Z under distribution P , page 8.
D Sampled data, page 11.
DA Part of data D used for training, page 52.
DB Part of data D ex
lusively used for evaluation purposes, page 52.
deG(X) Set of des
endants of node X in graph G, page 12.
de∗

G(X) deG(X) ∪X, page 12.
sizeeff (M) E�e
tive size of model M , see (3.20) for BN models, (3.48) for PDG models and(3.59) for NB models, page 27.
I (B,C ) Partition generated by interse
ting partitions B and C , page 9.
IB(M(G)) In
lusion boundary of BN model M(G), page 22.in
(ν) Edges in a PDG stru
ture in
oming to node ν., page 85.
ifl(ν) In�ow of parameter-node ν, page 37.
Gm Moral graph of graph G, page 12.
ndG(X) Set of non-des
endants of node X in graph G, page 12.
ν Parameter-node in PDG stru
ture, page 29.
ofl(ν) Out�ow of parameter-node ν, page 38.
P (X) Probability distribution of random variable X, page 6.145



List of Symbols
pν

l Element l in pν , page 29.
pν Parameter ve
tor for parameter-node ν, page 29.
paG(X) Set of parents of node X in graph G, page 12.
Path(ν,Y) Set of joint instantiations of Y rea
hing ν, page 33.
pa∗

G(X) Set of prede
essors of node X in graph G, page 12.
P (X) Joint probability distribution of random variables X, page 7.
reach(i,X) Parameter-node rea
hed by x in Vi, page 32.
R(X) The set of mutually ex
lusive joint states of dis
rete random variables X, page 7.
R(X) The set of mutually ex
lusive states of dis
rete random variable X, page 6.
GA Subgraph of graph G indu
ed by subset of nodes A, page 11.
succ(νi, Xj , xi,h) The su

essor of parameter-node νi ∈ Vi for 
hild variable Xj and for outgoingedge label-led xi,h ∈ R(Xi), page 29.
Vi Set of parameter-nodes in PDG stru
ture label-led with variable Xi, page 29.
x[Y] The proje
tion of joint state x ∈ R(X) onto a subset Y ⊆ X, page 7.
X,Y,Z, . . . Sets of random variables, page 7.
x,y, z, . . . Joint states or of sets of random variables, page 7.
X,Y, Z, . . . Random variables, page 6.
x, y, z, . . . States of random variables, page 6.
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Appendix A
Extended Test Results

In this appendix we 
omplete the results for learning from syntheti
 data (see Se
tion 5.2),learning from real data (see Se
tion 5.3), empiri
ally measurements of e�
ien
y and a

ura
y(see Se
tion 5.4) and for the hybrid learning approa
h (see Se
tion 5.5). Se
tion A.1 
ontainsresults from experiments on syntheti
 data in the form of SL-
urves. Se
tion A.2 
ontains SL-
urves from experiments with real data. Se
tion A.3 
ontains plots of empiri
al measurementsof 
omputational e�
ien
y and a

ura
y.
A.1 SL-Curves for Learning from Syntheti
 Data

Below we bring SL-
urves to 
omplete the results of the experiments on data generatedfrom syntheti
 data. We in
lude the SL-
urves for experiments that was previously not expli
-itly reported in the analysis in Se
tion 5.2, but only in the summary in table 5.4 on page 120.That is, for data sampled from the Hail�nder BN model (�gure A.1), from the NB20 NBmodel (�gure A.2) and from the Logi
1, Logi
3 and Rnd20 PDG models (�gures A.3, A.4 andA.5 respe
tively).
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(b)Figure A.1. SL-
urves for models learned from the Hail�nder data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with asquare.
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A.1 SL-Curves for Learning from Syntheti
 Data
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(b)Figure A.2. SL-
urves for models learned from the NB20 data, for likelihood values over training data
DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with a square.
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(b)Figure A.3. SL-
urves for models learned from the Logi
1 data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with asquare.
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A.1 SL-Curves for Learning from Syntheti
 Data
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(b)Figure A.4. SL-
urves for models learned from the Logi
3 data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with asquare.
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(b)Figure A.5. SL-
urves for models learned from the Rnd20 data, for likelihood values over trainingdata DA (a) and test data DB (b). The SL 
oordinates for the generative model is marked with asquare.
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A.2 SL-Curves for Learning from Real Data
A.2 SL-Curves for Learning from Real Data

In this se
tion we bring SL-
urves to 
omplete the results of learning PGMs from realdata. We in
lude SL-
urves for the experiments that was previously not expli
itly in
luded inthe analysis of this set of experiments in Se
tion 5.3, but only represented in the summariesof tables 5.6 on page 125 and 5.7 on page 127.
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(b)Figure A.6. SL-
urves for models learned from the Page-blo
ks data.
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(b)Figure A.7. SL-
urves for models learned from the Letter Re
ognition data.
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A.2 SL-Curves for Learning from Real Data
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A.2 SL-Curves for Learning from Real Data
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A Extended Test Results
A.3 Analyses of Empiri
al E�
ien
y and A

ura
y

In this se
tion we 
omplete the results of the empiri
al analysis of 
omputational e�
ien
yand a

ura
y reported in Se
tion 5.4. We bring plots of empiri
al measures of exe
ution timevs. e�e
tive size and the least squares �t to a line, whi
h was previously only summarisedby the slope of the �t in table 5.8 on page 130. We also bring SL-
urves produ
ed by usingempiri
ally measured a

ura
y that was previously summarised in table 5.9 on page 132.
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A.4 Detailed Results from Hybrid Learning
A.4 Detailed Results from Hybrid Learning

In this se
tion, we 
omplete the results of applying hybrid learning on both real andsyntheti
 datasets. Summaries were previously given in tables 5.10 on page 138 and 5.11.Here we present results of all BN models learned from ea
h dataset. In the table below, ea
hrow 
orresponds to one experiment of exposing a spe
i�
 BN model for the hybrid learningapproa
h des
ribed in Se
tion 5.5.BN Best PDG Relative Di�eren
e Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)1000 -14.512 -14.607 675 -14.363 -14.482 0.325 0.01 0.009 312500 -13.758 -13.927 2600 -13.525 -13.637 -0.04 0.017 0.021 49.93000 -13.859 -14.069 2990 -13.388 -13.635 0.003 0.034 0.031 39.14000 -13.465 -13.513 3520 -13.066 -13.137 0.12 0.03 0.028 43.54000 -13.937 -14 3145 -13.389 -13.463 0.214 0.039 0.038 38.24875 -13.788 -13.924 3700 -13.265 -13.417 0.241 0.038 0.036 474875 -13.796 -14 5510 -13.365 -13.604 -0.13 0.031 0.028 37.28375 -13.734 -13.771 3935 -13.21 -13.286 0.53 0.038 0.035 74.99875 -13.808 -13.922 8885 -13.028 -13.179 0.1 0.056 0.053 43.810375 -13.794 -13.902 4780 -13.157 -13.25 0.539 0.046 0.047 61.210875 -13.774 -13.87 7575 -12.966 -13.104 0.303 0.059 0.055 52.613875 -13.239 -13.362 8045 -12.502 -12.577 0.42 0.056 0.059 51.122750 -13.26 -13.384 7850 -12.435 -12.472 0.655 0.062 0.068 48.725250 -13.529 -13.696 9045 -13.252 -13.338 0.642 0.02 0.026 69.535250 -13.228 -13.373 8390 -12.491 -12.569 0.762 0.056 0.06 56.2Table A.1. Summary of hybrid learning on Page-blo
ks data.

BN Best PDG Relative Di�eren
e Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)190 -10.915 -10.851 270 -10.904 -10.837 -0.421 0.001 0.001 66.9825 -10.572 -10.614 603 -10.499 -10.59 0.269 0.007 0.002 42.9950 -10.729 -10.762 503 -10.674 -10.69 0.471 0.005 0.007 34.41700 -10.495 -10.552 933 -10.404 -10.503 0.451 0.009 0.005 45.42700 -10.445 -10.475 758 -10.362 -10.423 0.719 0.008 0.005 38.54575 -10.401 -10.442 1003 -10.346 -10.487 0.781 0.005 -0.004 59.8Table A.2. Summary of hybrid learning on Abalone data.
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A Extended Test Results
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)950 -16.388 -16.473 965 -16.38 -16.468 -0.016 0 0 1654.92087 -16.137 -16.256 2224 -16.12 -16.252 -0.066 0.001 0 1833.32087 -16.138 -16.258 2224 -16.12 -16.252 -0.066 0.001 0 18352119 -16.136 -16.259 2287 -16.117 -16.251 -0.079 0.001 0 1802.22286 -16.249 -16.357 1384 -16.235 -16.346 0.395 0.001 0.001 1508.22491 -16.229 -16.331 1652 -16.229 -16.336 0.337 0 0 1488.62559 -16.125 -16.252 2563 -16.099 -16.241 -0.002 0.002 0.001 1667.84826 -16.12 -16.251 2881 -16.1 -16.249 0.403 0.001 0 1583.55191 -16.101 -16.235 3859 -16.065 -16.242 0.257 0.002 0 1880.46795 -16.097 -16.234 3477 -16.072 -16.248 0.488 0.002 -0.001 1849.89331 -16.072 -16.226 8300 -16.027 -16.273 0.11 0.003 -0.003 1855.913910 -16.082 -16.221 11694 -16.032 -16.34 0.159 0.003 -0.007 1923.416586 -16.036 -16.198 15152 -15.959 -16.258 0.086 0.005 -0.004 1945.518966 -16.016 -16.19 14316 -16.011 -16.29 0.245 0 -0.006 2038.662270 -15.993 -16.182 31564 -15.86 -16.44 0.493 0.008 -0.016 2068.2Table A.3. Summary of hybrid learning on Adult data.

BN Best PDG Relative Di�eren
e Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)120 -18.413 -18.426 124 -18.412 -18.426 -0.033 0 0 1461.8256 -18.1 -18.115 290 -18.1 -18.114 -0.133 0 0 1428.1280 -18.062 -18.08 314 -18.062 -18.078 -0.121 0 0 1253.7864 -17.834 -17.87 986 -17.696 -17.739 -0.141 0.008 0.007 1255.4864 -17.834 -17.87 986 -17.696 -17.739 -0.141 0.008 0.007 1256.91136 -17.597 -17.663 1314 -17.587 -17.654 -0.157 0.001 0.001 993.83744 -16.957 -17.092 2906 -16.919 -17.065 0.224 0.002 0.002 1035.95184 -16.982 -17.096 1958 -16.92 -17.013 0.622 0.004 0.005 1043.46912 -16.7 -16.881 5782 -16.633 -16.835 0.163 0.004 0.003 1045.16912 -16.7 -16.88 5782 -16.633 -16.835 0.163 0.004 0.003 1053.37936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1051.47936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 10597936 -16.826 -16.948 6232 -16.713 -16.884 0.215 0.007 0.004 1060.57936 -16.852 -16.982 6232 -16.713 -16.884 0.215 0.008 0.006 1061.77936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1049.77936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1060.17936 -16.861 -16.987 6232 -16.713 -16.884 0.215 0.009 0.006 1047.39216 -16.777 -16.93 5206 -16.709 -16.888 0.435 0.004 0.002 1041.5Table A.4. Summary of hybrid learning on KRvK data.
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A.4 Detailed Results from Hybrid Learning
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)910 -43.622 -43.705 1210 -43.605 -43.703 -0.33 0 0 266.9910 -43.622 -43.705 1210 -43.605 -43.703 -0.33 0 0 265.21900 -42.416 -42.464 1887 -42.144 -42.252 0.007 0.006 0.005 170.91925 -42.326 -42.485 1555 -42.168 -42.407 0.192 0.004 0.002 153.42275 -42.322 -42.463 1742 -42.082 -42.354 0.234 0.006 0.003 1652625 -42.356 -42.405 1925 -42.069 -42.348 0.267 0.007 0.001 138.42825 -42.053 -42.073 2061 -41.909 -41.989 0.27 0.003 0.002 180.86200 -41.055 -41.103 3167 -40.655 -40.951 0.489 0.01 0.004 171.119050 -40.122 -40.283 6170 -39.979 -40.881 0.676 0.004 -0.015 147.5157650 -41.124 -41.354 38565 -40.87 -51.047 0.755 0.006 -0.234 268.7323400 -36.55 -36.876 53070 -35.924 -52.307 0.836 0.017 -0.418 382.1335800 -38.679 -38.865 48932 -37.11 -50.91 0.854 0.041 -0.31 421383000 -36.03 -36.419 49583 -35.532 -51.044 0.871 0.014 -0.402 463.4445000 -36.035 -36.465 53415 -35.12 -53.028 0.88 0.025 -0.454 463.9678875 -36.21 -36.535 60392 -35.73 -54.43 0.911 0.013 -0.49 1351.1685500 -36.264 -36.707 58798 -35.509 -56.045 0.914 0.021 -0.527 505.8741375 -36.015 -36.425 58963 -34.995 -55.784 0.92 0.028 -0.531 1897.6743375 -36.1 -36.362 67371 -35.972 -55.812 0.909 0.004 -0.535 1363.5760375 -35.989 -36.304 64796 -35.836 -55.776 0.915 0.004 -0.536 1413.4853875 -36.261 -36.679 68605 -35.299 -56.923 0.92 0.027 -0.552 1351.9966750 -36.228 -36.589 82237 -35.318 -63.261 0.915 0.025 -0.729 2870.2988250 -36.007 -36.425 62803 -35.487 -59.231 0.936 0.014 -0.626 2467.81082375 -36.177 -36.57 62990 -35.984 -58.839 0.942 0.005 -0.609 2028.31097875 -36.078 -36.553 73346 -35.221 -60.162 0.933 0.024 -0.646 2290.41861250 -35.75 -36.321 71141 -34.78 -58.26 0.962 0.027 -0.604 3229.9Table A.5. Summary of hybrid learning on Landsat data.
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)3119 -28.759 -28.609 2683 -28.372 -28.275 0.14 0.013 0.012 2049.25303 -29.112 -28.919 2069 -28.631 -28.493 0.61 0.017 0.015 1486.210321 -25.95 -25.9 11633 -25.615 -25.625 -0.127 0.013 0.011 1763.513025 -25.923 -25.883 10022 -25.812 -25.763 0.231 0.004 0.005 1708.413479 -26.184 -26.096 6512 -26.071 -26.052 0.517 0.004 0.002 2212.427775 -25.678 -25.66 19875 -25.586 -25.748 0.284 0.004 -0.003 1673.128275 -25.523 -25.574 25282 -25.365 -25.518 0.106 0.006 0.002 1878.230895 -25.971 -25.945 21826 -25.383 -25.525 0.294 0.023 0.016 2255.174075 -24.037 -24.311 19660 -23.886 -24.809 0.735 0.006 -0.02 2679.5110559 -25.141 -25.227 24862 -24.896 -26.144 0.775 0.01 -0.036 2752.4123455 -24.621 -24.827 34627 -24.464 -25.464 0.72 0.006 -0.026 2975.6123455 -24.627 -24.805 34627 -24.464 -25.464 0.72 0.007 -0.027 2958.9131125 -24.255 -24.495 38396 -24.178 -25.311 0.707 0.003 -0.033 3157.4141675 -23.477 -23.872 62494 -23.317 -25.254 0.559 0.007 -0.058 2714.3188845 -23.842 -24.165 54991 -23.772 -25.289 0.709 0.003 -0.047 2998.4447075 -23.875 -24.2 45407 -23.869 -25.544 0.898 0 -0.056 3897.1Table A.6. Summary of hybrid learning on Letter data.
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A Extended Test Results

BN Best PDG Relative Di�eren
e Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)121 -32.332 -32.283 123 -32.332 -32.283 -0.017 0 0 1737.4862 -20.301 -19.911 856 -19.627 -19.265 0.007 0.033 0.032 68.11382 -18.432 -18.067 1041 -17.831 -17.527 0.247 0.033 0.03 69.11646 -18.195 -17.878 1024 -17.248 -16.981 0.378 0.052 0.05 69.51707 -18.918 -18.564 977 -18.012 -17.771 0.428 0.048 0.043 70.32493 -17.317 -17.03 1289 -16.528 -16.329 0.483 0.046 0.041 75.43227 -17.678 -17.245 1231 -16.682 -16.369 0.619 0.056 0.051 71.85037 -16.182 -15.986 1674 -15.534 -15.423 0.668 0.04 0.035 71.95531 -14.898 -14.771 1860 -14.446 -14.373 0.664 0.03 0.027 72.56401 -14.487 -14.452 1945 -14.187 -14.165 0.696 0.021 0.02 72.211369 -15.197 -15.096 1573 -14.598 -14.556 0.862 0.039 0.036 71.811411 -15.607 -15.43 1500 -14.718 -14.616 0.869 0.057 0.053 72.314339 -14.505 -14.392 2272 -13.988 -13.96 0.842 0.036 0.03 75.634359 -14.284 -14.218 2171 -13.719 -13.712 0.937 0.04 0.036 79.443341 -14.197 -14.09 2167 -13.654 -13.623 0.95 0.038 0.033 82.868377 -14.207 -14.14 2288 -13.669 -13.676 0.967 0.038 0.033 87.970731 -14.268 -14.154 2139 -13.874 -13.789 0.97 0.028 0.026 9081463 -14.451 -14.39 2363 -13.949 -13.951 0.971 0.035 0.031 87.785477 -13.937 -13.931 1878 -13.535 -13.55 0.978 0.029 0.027 98.593183 -14.503 -14.429 1771 -13.997 -13.966 0.981 0.035 0.032 120.6114741 -14.281 -14.194 2212 -13.747 -13.772 0.981 0.037 0.03 113.5208333 -13.924 -13.883 2010 -13.564 -13.56 0.99 0.026 0.023 242.3215351 -14.426 -14.378 1902 -13.771 -13.803 0.991 0.045 0.04 141.4Table A.7. Summary of hybrid learning on Mushroom data.

174



A.4 Detailed Results from Hybrid Learning
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)142 -18.342 -18.618 171 -18.5 -18.431 -0.204 -0.009 0.01 2924.5312 -13.963 -14.181 480 -14.066 -13.96 -0.538 -0.007 0.016 1994.8333 -13.853 -14.051 525 -13.943 -13.856 -0.577 -0.006 0.014 1870.1335 -13.847 -14.047 538 -13.937 -13.848 -0.606 -0.006 0.014 1882.4432 -13.735 -13.936 691 -13.821 -13.741 -0.6 -0.006 0.014 1888.2448 -13.686 -13.885 762 -13.765 -13.68 -0.701 -0.006 0.015 1749.9496 -13.678 -13.879 849 -13.756 -13.68 -0.712 -0.006 0.014 1762.1504 -13.675 -13.874 857 -13.752 -13.677 -0.7 -0.006 0.014 1755.3598 -13.671 -13.875 898 -13.744 -13.678 -0.502 -0.005 0.014 1726.4624 -13.666 -13.868 858 -13.741 -13.669 -0.375 -0.005 0.014 1694.2636 -13.666 -13.869 876 -13.741 -13.669 -0.377 -0.005 0.014 1702.8636 -13.666 -13.869 876 -13.741 -13.669 -0.377 -0.005 0.014 1696.7646 -13.665 -13.869 904 -13.74 -13.669 -0.399 -0.005 0.014 1815.3811 -13.665 -13.868 1246 -13.735 -13.672 -0.536 -0.005 0.014 1729.51632 -13.661 -13.871 2760 -13.716 -13.697 -0.691 -0.004 0.013 1710.21760 -13.657 -13.87 3215 -13.712 -13.69 -0.827 -0.004 0.013 1862.22862 -13.654 -13.872 5391 -13.688 -13.717 -0.884 -0.002 0.011 1910.26330 -13.652 -13.876 13736 -13.672 -13.755 -1.17 -0.001 0.009 1815.66372 -13.649 -13.876 12482 -13.659 -13.775 -0.959 -0.001 0.007 1708.125233 -13.638 -13.896 85277 -13.6 -13.873 -2.38 0.003 0.002 1751.8Table A.8. Summary of hybrid learning on Alarm data.
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)1628 -71.678 -71.75 1957 -71.618 -71.698 -0.202 0.001 0.001 236.41933 -71.266 -71.349 2573 -71.244 -71.348 -0.331 0 0 227.72289 -71.04 -71.131 2752 -71.031 -71.151 -0.202 0 0 248.12361 -71.053 -71.144 2867 -71.044 -71.183 -0.214 0 -0.001 265.22884 -70.917 -71.03 3508 -70.855 -71.033 -0.216 0.001 0 337.64070 -70.881 -71.008 4373 -70.824 -71.028 -0.074 0.001 0 259.84253 -70.876 -71.005 4646 -70.81 -71.029 -0.092 0.001 0 290.24622 -70.862 -70.997 4060 -70.81 -71.01 0.122 0.001 0 349.74639 -70.857 -71.002 4835 -70.793 -71.023 -0.042 0.001 0 274.54820 -70.842 -70.989 4778 -70.787 -71.027 0.009 0.001 -0.001 310.15226 -70.843 -70.993 5584 -70.822 -71.073 -0.069 0 -0.001 269.76776 -70.822 -70.991 5543 -70.766 -71.105 0.182 0.001 -0.002 440.47234 -70.832 -70.988 5144 -70.786 -71.071 0.289 0.001 -0.001 354.18472 -70.804 -70.976 5691 -70.761 -71.162 0.328 0.001 -0.003 339.838871 -70.8 -70.983 18351 -70.714 -72.133 0.528 0.001 -0.016 573.559098 -70.793 -70.988 32579 -70.75 -75.619 0.449 0.001 -0.065 4618.6Table A.9. Summary of hybrid learning on Hail�nder data.
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A Extended Test Results
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)300 -21.222 -21.306 463 -21.22 -21.305 -0.543 0 0 1032.9531 -21.138 -21.231 670 -21.096 -21.196 -0.262 0.002 0.002 951.1780 -21.081 -21.19 858 -21.032 -21.161 -0.1 0.002 0.001 983.2780 -21.104 -21.207 487 -21.097 -21.21 0.376 0 0 959.9906 -20.967 -21.112 1301 -20.964 -21.111 -0.436 0 0 1018.81041 -20.973 -21.12 1163 -20.95 -21.106 -0.117 0.001 0.001 961.51296 -20.886 -21.068 1638 -20.879 -21.075 -0.264 0 0 1010.81458 -20.87 -21.074 1559 -20.856 -21.077 -0.069 0.001 0 1026.21602 -20.92 -21.1 1697 -20.873 -21.09 -0.059 0.002 0 1005.72772 -20.842 -21.059 3550 -20.758 -21.092 -0.281 0.004 -0.002 1028.53276 -20.876 -21.062 3048 -20.732 -21.077 0.07 0.007 -0.001 1040.74128 -20.806 -21.061 7473 -20.676 -21.14 -0.81 0.006 -0.004 1035.35220 -20.687 -21.051 9074 -20.564 -21.166 -0.738 0.006 -0.005 1121.16264 -20.627 -21.053 9714 -20.554 -21.12 -0.551 0.004 -0.003 1080.819116 -20.486 -21.111 14794 -20.447 -21.336 0.226 0.002 -0.011 1345.6Table A.10. Summary of hybrid learning on NB10 data.

BN Best PDG Relative Di�eren
e Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)179 -20.172 -20.17 224 -20.151 -20.155 -0.251 0.001 0.001 1028.3275 -20.065 -20.09 403 -20.064 -20.088 -0.465 0 0 981.8280 -20.078 -20.102 388 -20.062 -20.097 -0.386 0.001 0 944.3391 -20.045 -20.077 580 -20.033 -20.073 -0.483 0.001 0 998.3555 -20.013 -20.056 1184 -19.987 -20.048 -1.133 0.001 0 998.4661 -19.995 -20.039 1387 -19.972 -20.031 -1.098 0.001 0 1009.1661 -20.001 -20.041 1373 -19.967 -20.032 -1.077 0.002 0 990.4934 -19.958 -20.027 1045 -19.938 -20.025 -0.119 0.001 0 1016.11000 -19.903 -20.01 1402 -19.903 -20.012 -0.402 0 0 990.11018 -19.93 -20.009 1236 -19.925 -20.012 -0.214 0 0 1017.71296 -19.895 -20.013 1425 -19.889 -20.01 -0.1 0 0 1012.12868 -19.88 -20.01 4771 -19.779 -20.044 -0.664 0.005 -0.002 1071.84320 -19.819 -19.991 4193 -19.81 -20.083 0.029 0 -0.005 1062.55952 -19.758 -20.004 7655 -19.605 -20.137 -0.286 0.008 -0.007 1078.76840 -19.618 -20.038 6662 -19.597 -20.093 0.026 0.001 -0.003 1065.9Table A.11. Summary of hybrid learning on NB20 data.
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A.4 Detailed Results from Hybrid Learning
BN Best PDG Relative Di�eren
e Time

sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)42 -16.229 -16.256 46 -16.229 -16.256 -0.095 0 0 1677.188 -15.345 -15.361 110 -15.33 -15.343 -0.25 0.001 0.001 681.8103 -15.263 -15.274 114 -15.256 -15.276 -0.107 0 0 1131.9130 -15.154 -15.16 123 -15.153 -15.167 0.054 0 0 1091142 -15.157 -15.158 148 -15.129 -15.135 -0.042 0.002 0.002 1059.9219 -14.991 -14.998 211 -14.991 -14.991 0.037 0 0 1056.2231 -14.97 -14.977 263 -14.969 -14.968 -0.139 0 0.001 1001.8261 -14.953 -14.968 258 -14.952 -14.961 0.011 0 0 1018.3375 -14.901 -14.925 418 -14.9 -14.921 -0.115 0 0 955.3657 -14.872 -14.913 577 -14.865 -14.908 0.122 0 0 956.51080 -14.837 -14.903 607 -14.833 -14.909 0.438 0 0 973.92958 -14.8 -14.913 1188 -14.789 -14.958 0.598 0.001 -0.003 993.916065 -14.735 -14.989 10741 -14.701 -15.348 0.331 0.002 -0.024 1169.899387 -14.518 -15.351 19509 -14.325 -16.329 0.804 0.013 -0.064 1937.9135108 -14.617 -15.252 11169 -14.272 -17.672 0.917 0.024 -0.159 2148.3205578 -14.433 -15.626 14358 -14.17 -16.664 0.93 0.018 -0.066 2127.4271188 -14.636 -16.092 9885 -14.169 -16.718 0.964 0.032 -0.039 2240.7944784 -14.485 -16.309 11956 -13.35 -20.409 0.987 0.078 -0.251 5996.7Table A.12. Summary of hybrid learning on Rnd15 data.

BN Best PDG Relative Di�eren
e Time
sizeeff L(DA) L(DB) ES L(DA) L(DB) sizeeff L(DA) L(DB) (se
onds)51 -20.977 -20.991 56 -20.977 -20.991 -0.098 0 0 2861.4159 -18.837 -18.813 186 -18.791 -18.771 -0.17 0.002 0.002 1878.1203 -18.646 -18.629 238 -18.565 -18.543 -0.172 0.004 0.005 1736224 -18.58 -18.57 233 -18.515 -18.505 -0.04 0.003 0.004 1799.9674 -18.079 -18.129 669 -18.077 -18.134 0.007 0 0 1691.8772 -18.076 -18.131 627 -18.076 -18.136 0.188 0 0 1579.64332 -18.047 -18.136 1968 -18.014 -18.221 0.546 0.002 -0.005 1694.925488 -18.009 -18.156 11956 -17.969 -18.622 0.531 0.002 -0.026 1935.248564 -17.94 -18.241 12302 -17.912 -18.834 0.747 0.002 -0.033 2410131328 -17.76 -18.505 20418 -17.709 -20.074 0.845 0.003 -0.085 3272.9289008 -17.607 -18.772 31620 -17.164 -22.148 0.891 0.025 -0.18 4444727056 -17.529 -19.678 26614 -16.649 -26.175 0.963 0.05 -0.33 9434.2Table A.13. Summary of hybrid learning on Rnd20 data.

177





Appendix B
On Expe
tation when Sampling

with Repla
ement

Let S be a set of N distin
t elements. Consider the experiment of sampling from S withrepla
ement, and let R be the size of a sample with repla
ement. De�ne the random variable
X on the sample spa
e of the NR di�erent possible sequen
es of su
h samples:

X(R) : Number of distin
t elements in a sample of size R. (B.1)Let new(K) be true if the K'th element drawn is an obje
t not drawn before, and falseotherwise. We 
an de�ne X(R) re
ursively as:
X(R) = X(R−1) + 1(new(R)), (B.2)where 1(·) is the indi
ator fun
tion, here assuming value 1 when the R'th draw results insampling an element we have not sampled before, and 0 otherwise.Theorem B.1The expe
ted value of X(R) is:
E[X(R)] =

R
∑

i=1

(

N − 1

N

)(i−1) (B.3)
Proof: We will prove the theorem by indu
tion in R.For R = 1 we only draw a single whi
h will trivially always be distin
t from every otherelement drawn, and E[X(R)] = 1 from (B.3).Assume (B.3) holds for R− 1. For R we 
an then write the expe
tation as:

E[X(R)] = E[X(R−1)] + E[1(new(R))]. (B.4)By the indu
tion hypothesis E[X(R−1)] is given by eq. (B.3), so we need to show that:
E[1(new(R))] =

(

N − 1

N

)R−1

. (B.5)
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B On Expe
tation when Sampling with Repla
ement
Let distin
t(k, l) be true if k distin
t elements have been sampled in the �rst l draws and falseotherwise. We 
an then derive an expression for E[1(new(n))].

E[1(new(R))] = P (new(R))

=
R−1
∑

k=1

P (new(R)|distin
t(k,R− 1)) · P (distin
t(k,R− 1))

=
R−1
∑

k=1

N − k

N
· P (distin
t(k,R− 1))

=
R−1
∑

k=1

P (distin
t(k,R− 1))−
R−1
∑

k=1

k

N
P (distin
t(k,R− 1))

= 1−
1

N
E[X(R−1)]

= 1−
1

N

R−1
∑

i=1

(

N − 1

N

)i−1

= 1−
1

N

R−1
∑

i=1

(N − 1)i−1

NR−2
NR−i−1

= 1−
1

NR−1

R−1
∑

i=1

(N − 1)i−1NR−i−1

=
1

NR−1

(

NR−1 −
R−1
∑

i=1

(N − 1)i−1NR−i−1

)

From this it is 
lear that to show relation (B.5), it is su�
ient to show that:
NR−1 −

R−1
∑

i=1

(N − 1)i−1NR−i−1 = (N − 1)R−1 (B.6)
We show (B.6) by indu
tion in R. For R = 1 (B.6) is satis�ed. Assume (B.6) is satis�ed for
R− 1, for R we then get:

NR−1 −
R−1
∑

i=1

(N − 1)i−1NR−i−1 = NR−1 −NR−2 −
R−1
∑

i=2

(N − 1)i−1NR−i−1

= NR−1 −NR−2 −
R−2
∑

i=1

(N − 1)iNR−i−2

= (N − 1)

(

NR−1 −NR−2

N − 1
−

R−2
∑

i=1

(N − 1)i−1NR−i−2

)

= (N − 1)

(

NR−2(N − 1)

(N − 1)
−

R−2
∑

i=1

(N − 1)i−1NR−i−2

)

= (N − 1)R−1
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The last equation is valid by the indu
tion hypothesis and (B.6) is therefore true for all R,whi
h then 
on
ludes our proof for theorem B.1.
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Appendix C
Dansk Resumé

Dette resumé er en direkte oversættelse af nærværende afhandling med den danske titel OmLærring Uden Opsyn af Probabilistiske Gra�ske Modeller.Probabilistiske gra�ske modeller (PGM'er) er et matematisk begrebsramme til repræsen-tation af fælles sandsynligheds fordelinger over en mængde tilfældige variable (Cowell et al.,1999; Jensen, 2001; Lauritzen, 1996; Pearl, 1988). PGM'er er blevet en standard tilgang tilrepræsentation og håndtering af usikkerhed i Kunstig Intelligens. Også i de relaterede områdersom Mønster Genkendelse og Maskine Læring har PGM'er modtaget megen opmærksomhedog er blevet andvendt su

esfuldt i talrige domæner (Bishop, 2006; Mit
hell, 1997; Duda et al.,2001).Når PGM'er bliver indlært fra data (til forskel fra manuelt konstrueret), bruges der ens
oringsfunktion til at vurdere kvaliteten af modeller og derved diskriminere mellem alterna-tiver. Indlærings pro
eduren vælger så fra de alternative modeller den model der er optimalmht. s
oringsfunktionen. Typiske s
oringsfunktioner kombinerer en gevinst for præ
ision meden straf for kompleksitet i en vægtet sum. Generelt kalder vi sådanne s
oreringsfunktioner forstra�ede sandsynligheds s
oringsfunktioner, og de antager følgende simple form:
S(M,D) = λ · L(D|M)− (1− λ) · size(M), (C.1)for PGM M , data D, sandsyndlighed L, og en afvejnings koe�
ient 0 < λ < 1. Typisk vil an-tallet af forskellige alternative modeller være alt for stort til at kunne foretage en udtømmendesøgning, og studier har vist at mange instan
er af lærings opgaver for PGM'er er NP-svære(Chi
kering et al., 2004; Chi
kering, 1996). Følgelig er det passende og ofte nødvendigt ipraksis at anvende heuristiske pro
edure.Studiet som rapporteres i denne afhandling har været fokusret på aspekter af indlæringaf PGM'er fra data. I det følgende vil vi kort diskutere de problemer vi behandler samt deløsninger vi foreslår.

En af de mest populære typer PGM'er er den Bayesianske Netværks (BN) model (Pearl,1988; Jensen, 2001). Indlæring af BN modeller har været genstand for megen opmærksomhedog både mere og mindre opløftende resultater er fundet. Mens det er blevet bevist at problemet183



C Dansk Resumé
at lære BN modeller som optimere (C.1) er et NP-svært problem (Chi
kering et al., 2004), erdet samtidig blevet vist at pro
edure der genskaber den optimale BN model ofte er brugbarefor mange relevante domæner (for eksempel SGS algoritmen (Spirtes et al., 2000) og GESalgoritmen (Chi
kering and Meek, 2002; Meek, 1997)). Disse lærringspro
edure støtter sigimidlertid til den stærke antagelse omkring en data genererende pro
es der udviser relationeraf uafhængighed mellem de observerede variable som kan indkodes i den orienterede ikke
ykliske gra�ske (eng. dire
ted a
y
li
 graph eller DAG) struktur i en BN model, mao. enpro
es der er DAG-troværdig. Denne antagelse er ofte urealistisk i anvendelser i den virkeligeverden (dvs. ikke syntetisk konstruerede eksempler), og kvaliteten af de lærte modeller kanvære meget afhængig af hvorvidt denne antagelse er tilfredsstillet. Derfor kan den praktiskeanvendelighed af sådanne pro
edure være begrænset.I denne afhandling foreslår vi en simpel generalisering af en grådig søge pro
edure. Ved gen-eraliseringed introdu
eres en parameter der muliggør en afvejning af grådighed for tilfældighedi beslutnings strategien der guider søgningen. Ved at anvende �ere genstarter sammen meden stokastisk beslutnings strategi opretholder algoritmen den teoretiske optimalitet fra dengrådige søgning, og tilmed muliggør dette en bredere afsøgning af søgerummet. Dette vil blivevigtigt når den stærke antagelse af DAG-troværdighed bliver brudt. I sådanne tilfælde kandeterministisk søgning som grådig søgning vise sig at lede til en sub-optimal model mens enmultipel genstartet stokastisk søgning vil identi�
ere �ere lokalt optimale modeller.

I de �este anvendelseområder er en af hovedopgaverne for PGM'er at være en repræsenta-tion som tillader e�ektive opdatering af marginale betingede sandsynligheder (eng. belief up-dating). Ved opdatering af marginale betingede sandsynligheder forstås pro
essen at beregnealle marginale sandsynligheder for alle variable betinget af observationer af en delmængdeaf variable. For BN modeller er dette problem NP-svært (Cooper, 1987).Ofte er det dogmuligt at �nde BN modeller som både udviser en håndterbare beregnelighed og stadig har entilstrækkelig præ
is repræsentation. På den anden side kan der nemt konstrueres eksemplerhvor enhver model som er mindre kompleks en den maksimalt komplekse model ikke vil værei stand til at repræsentere fordelingen præ
ist (Jaeger, 2004; Beygelzimer and Rish, 2003).Sådanne udfordrene eksempler konstrueres typisk ved at de�nere fordelinger som indeholderkontekst-spe
i�kke (u)afhængigheds (eng. 
ontext-spe
i�
 (in)dependen
e eller CSI) relationer.Eksistensen af CSI relationer som ikke er repræsenterbare af en BN model har motiveret ud-viklingen af udvidelser til den originale BN model som e�ektivt kan repræsentere sådannefordelinger. Eksempler herpå er Baysian Multinets (BM) af Geiger and He
kerman (1996),Mixtures of Bayesian Networks (MBN) af Thiesson et al. (1997) og Re
ursive Bayesian Multi-nets (RBM) af Peña et al. (2002). Disse er alle variationer af den fælgende fælles arkitektur:en kontekst er de�neret af en distingiveret variabel eller mængde af distingiverede variable, ogbetinget på konteksten eksistere der så en BN model over de resterende variable. I MBN'erer konteksten de�neret ved en ikke observeret latent variabel, og i RBM'er er konteksten de-�neret ved en mængde observerede variable. Algoritmer for generelt at udføre probabilistiskeslutninger (som opdatering af tro) i disse modeller kan drage fordel af CSI relationer indkodet184



af modellen , men i sidste ende eksistere det generelle problem mht. beregning i BN modellerstadig.I denne afhandling foreslår vi en pro
edure til læring af Probabilistike Beslutnings Graf(eng. Probabilisti
 De
ision Graph eller PDG) modeller. PDG sproget er en tilføjelse til denvoksende mængde af PGM repræsentations sprog til diskrete fælles sandsynligheds fordelinger(Jaeger, 2004). PDG'er tilbyder både en naturlig tilgang til indkodning af en vis klasse af CSIrelationer mellem de observerede variable og tilbyder også e�ektiv beregning. En særdelesindbydende egenskab ved PDG sproget er at repræsentations strukturen også udgør en primærstuktut til e�ektiv beregning af generel opdatering af marginale betingede sandsyndligheder.Dette er vigtigt for lærringspro
edure når de lærte modeller senere skal bruges til sådanneopdateringer. I et sådant s
enario kan vi umiddelbart adskille modeller mht. beregnelighedskompleksitet ud fra den givne repræsentation. For mange andre relevante PGM sprog er detikke trivielt at udlede et meningsfuldt mål for kompleksitet af beregnelighed - i særdelesheder dette tilfældet for BN modeller hvor bestemmelse af beregningskompleksitet involvere etNP-komplet optimerings problem (Arnborg et al., 1987).
Det er ofte nødvendigt at antage at data er komplet i den forstand at der ikke forekommerlatente (ikke observerede) variable der påvirker de observerede variable gennem ikke trivielleinteraktioner. Dette er dog ofte en meget stærk antagelse og kan være inkonsistent med dengenerelle forståelse af domænet som domæne eksperter måtte have. Eksistensen af sådannelatente variable kan give en data genererende pro
es som udviser en mængde relationer afuafhængighed som ikke kan repræsenteres i DAG strukturen af BN modeller. Den ekspli
ittegenskabelse af sådanne latente variable er en ambitiøs opgave. Ikke desto mindre har mangestudier i den seneste tid efterfulgt en løsning til problemer forbundet med læring af latentevariable både i en generel DAG struktureret BN model (Elidan, 2004) og også med fo
us påhierarkiske (træ) strukturer (Kar£iauskas, 2005). En træ-struktureret BN model som mod-ellere alle observerede variable som betinget uafhængige givet tilstanden af en enkelt latentvariabel (normalt benævnt en Naiv Bayes (NB) model), er blevet studeret omfattende til prob-abilistisk blød klynge-inddeling (eng. 
lustering) af datapunkter (Duda et al., 2001). Sådannemodeller kan dog også nemt og naturligt anvendes til generel beregning af probabilistiskeslutninger. Et forholdsvist nyt studie sammelignede BN of NB modeller og resultaterne faldtud til NB sprogets fordel mht. beregnings kompleksitet og præ
isionen af repræsentationen(Lowd and Domingos, 2005).I denne afhandling udfører vi en komparativ analyse af forskellige PGM sprog, deres evnetil e�ektivt og præ
ist at repræsentere en tilnærmelse af en given sandsynlighedsfordeling ogvores evne til at lære sådanne modeller fra en endelig database. Sådanne analyser er ikkenye, og we tilføjer derfor blot vores resultater til resultater fra tilsvarende analyser foretageti tidligere studier så som den komparative analyse af empiriske målinger af e�ektivitet ogpræ
ision af BN og NB modeller af Lowd and Domingos (2005) og det mere teoretiske studieaf udvalget af forskellige tilnærmelser som er mulige i BN modeller af Beygelzimer and Rish(2003). I vores analyse anvender vi først som analytisk værktøj SL-kurver. SL-kurver viser enkarakteristik af et sprog ved at plotte e�ektivitet og præ
ision af modeller fra sproget. Som185



C Dansk Resumé
et mål for e�ektivitet bruger vi beregningskompleksitet hvilket er en teoretisk kvantitet, mensvi for præ
ision bruger sandsyndligheden for den observerede database under antagelse af atden givne model genererede databasen. Dernæst udfører vi en empirisk analyse af e�ektivitetved brug af en af de bedste implementationer til beregning af probabilistiske slutninger. Viinkluderer her også en sammenligning af empiriske målinger af præsision ved et gennemsnitover tilfældigt genererede forespørgsler. Vi inkludere PDG'er i vores komparative analyse, dersom sagt er et forholdsvist nyt PGM sprog.Endelig, som et i nogen grad separat spor, foreslår vi en algoritme til konstruktion af enPDG model fra et klike træ (eng. Clique Tree eller CT) repræsentation af fordelingen. Vikombinerer BN lærring og PDG lærring ved at konstruere en CT repræsentation of fordelingenrepræsenteret af BN modellen, og oversætter så denne CT repræsentation til en ækvivalentPDG model som så bliver udsat for optimerings operationer der kan give en repræsentationsom er konkurren
edygtig med den originale BN model. Vi benævner denne tilgang �hybridlærring� af PDG modeller da den kombinere en lært BN model og dennes CT repræsentationmed lærring af en optimeret PDG repræsentation.
C.1 Oversigt over Afhandlingen

I Kapitel 2 giver vi en introduktion til relevant baggrunds materiale og notationelle kon-ventioner der bliver brugt i den resterende del af afhandlingen. Kapitel 3 introdu
ere formeltde PGM repræsentations sprog som vi vil undersøge i den senere analyse. Vi inkludere endiskussion af beregnings kompleksitet af generelle probabilistiske forespørgsler ved for hvertsprog at præsentere pro
edure til udførsel af eksakt opdatering af alle marginale sandsyn-ligheder betinget på observationer. I Kapitel 4, foreslår vi pro
edure til lærring af modellerfra data for hvert af de tidligere præsenterede PGM sprog. Kapitel 5 indeholder en beskrivelseaf eksperimenter omkring lærring af PGM'er fra data, og vi udfører båden en teoretisk og em-pirisk komparativ analyse af PGM sprogene mht. de foreslåede lærrings pro
edure. Yderligereindeholder Kapitel 5 en analyse af hybrid lærring af PDG modeller. Endelig, i Kapitel 6 op-sumere vi de vigtige observationer som blev gjort gennem den komparative analyse, og vidiskutere hvilke konklusioner der kan drages på baggrund af det studie som rapporteres idenne afhandling.
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