
Analysis of Different Approaches for Storing GML
Documents

J. E. Córcoles
Secc. Tecnología de la Información
Universidad de Castilla-La Mancha

Campus Universitario
s/n.02071.Albacete. Spain
+34967599200 ext 2412

corcoles@idr-ab.uclm.es

P.González
Dpt. Informática

Universidad de Castilla-La Mancha
Campus Universitario

s/n.02071.Albacete. Spain
+34967599200 ext 2457

pgonzalez@info-ab.uclm.es

ABSTRACT
The fact that GML is an XML encoding allows it to be queried.
In order to query a GML document we have designed a query
language over GML/XML enriched with spatial operators. This
query language has an underlying data model and algebra that
supplies the semantics of the query language. In order to use this
query language, it is necessary to find an implementation that
allows us to exploit all its features, storing GML documents
efficiently. The general aim of this paper is to study the
behaviour of different alternatives over XML documents
(alphanumeric data) applied to store and query GML documents
(alphanumeric and spatial data). The alternatives selected use
relational schemas to store GML documents because they use a
complete set of data management services (including concurrency
control, crash recovery, scalability, etc) and benefit from the
highly optimised relational query processor. Three approaches
have been used: LegoDB, a structure-mapping approach, and two
simple model-mapping approaches, Monet over Relational
database and XParent. We focus on the effectiveness of storage
models in terms of query processing. A performance study is
conducted using three data sets and the experimental results are
given.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – performance evaluation (efficiency and effectiveness).

General Terms
Performance, Design, Languages.

Keywords
GML, Spatial Queries.

1. INTRODUCTION
The Geographical Markup Language (GML) is an XML
encoding for the transport and storage of spatial/geographic
information, including both spatial features and non-spatial
features [1]. The mechanisms and syntax that GML uses to
encode spatial information in XML are defined in the
specification of OpenGIS [2]. OGC manages consensus processes
that result in interoperability between diverse geoprocessing
systems. Therefore, GML proposes a standard format to
represent the spatial information with XML.

The fact that GML is an XML encoding allows it to be queried.
In order to query a GML document we have developed a query
language over GML/XML enriched with spatial operators [3].
This query language has an underlying data model and algebra
that supplies the semantics of the query language [4]. However,
to use this query language, it is necessary to find an
implementation that allows us to exploit all its features.

In order to implement our query language, efficient storage of
GML documents is necessary. The general aim of this paper is to
study different alternatives to store and query GML documents.
In order to do this, we have used well-known approaches to the
querying of XML documents (with only alphanumeric data) to
apply to GML documents.  In this paper we show that this is not
a trivial problem because, due to the resources required to query
and store spatial elements, all approaches that obtain good
results with alphanumeric operators do not obtain good results
when combined with spatial operators. On the other hand, not all
alternatives are valid if they are applied to GML.

Many approaches to store and retrieve XML documents have
been carried out in previous studies. On the one hand, there are
several database management systems to store XML documents
which have been developed, like [5]. On the other, there are
several approaches based on the Relational model or Object-
Oriented model. When XML documents are stored in off-the-
shelf database management systems, the problem of storage
model design for storing XML data becomes a database schema
design problem. In [6], the authors categorise such database
schemas into two categories: structure-mapping approach and
model-mapping approach. In the former the design of the
database schema is based on the understanding of DTD
(Document Type Descriptor) or XML Schema that describes the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GIS’02 November 8-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-591-2/02/0011… $5.00.



structure of XML documents. Examples include
[7][8][9][10][11]. In the latter a fixed database schema is used to
store any XML documents without the assistance of XML
Schema (DTD), such as [12][6][13][14][15]. Again, commercial
database proposes particular alternatives to store XML
documents, such as [16][17][18].

In this paper, we tend to use approaches based on relational
databases to store GML documents. In this way, we can use a
complete set of data management services (including concurrency
control, crash recovery, scalability, etc) and benefit from the
highly optimised relational query processor. In addition, RDBMS
allows us to store spatial objects according to the possibilities
offered in [19]. The disadvantage of our approach is that the
relational databases have been built to support structured data
and the requirements of processing XML data (semi-structured)
are vastly different from the requirements for the processing of
traditional data.

The paper is organised as follows: Section 2 briefly introduces
three existing approaches with a brief discussion; some results of
our performance studies are presented in Section 3 and 4; and
Section 5 covers conclusions and future projects.

2. THREE EXISTING APPROACHES
Among all the alternatives to store XML document mentioned
above, three approaches have been selected to carry out the
study: (1) LegoDB [7] inspired in the solution proposed by
Shanmugasundaram et al. [11] (structure-mapping approach),
(2) Monet [14] and (3) XParent [12] (model-mapping approach).
These approaches have been selected because they possess five
important features:

(i) they obtain good performances over XML documents with
alphanumeric data (no spatial data).

(ii) they support or could be updated easily to store spatial
information: an efficient storage  of spatial information offers  us
chance to create a spatial index for each set of spatial objects in
our document (which is not a trivial solution if we are speaking
about storing XML).

(iii) the storage of spatial objects in line with the possibilities
offered in [OGC99] must be supported. Due to the characteristics
of many of the above-mentioned approaches, this possibility is
not allowed for all existing approaches.

(iv) to allow all features of our spatial query language [4]

(v) not to depend on a particular RDBMS to implement this
approach.

XRel [6] is not included in this study because although it has the
second feature, in comparison with XParent, XRel obtains a
lower performance [12]. The Edges approach [15] is not included
because it stores all values in the same column and so needs to
make a type coercion in order to compare value with type
difference in the query. For this reason (absence of second
feature), the Edges approach is not a good solution in our case .
The commercial solutions, e.g. Oracle [16], DB2 [18] do not
satisfy some requirements mentioned above: storing GML
documents in LOBs does not allow the spatial information to be
indexed correctly (it is necessary to retrieve spatial information

efficiently [20]) and, the absence of a definitive standard to
define these alternatives makes it impossible to use Object-
Relational/Relational storage without depending on a commercial
database.

2.1 XParent. 3º Approach
LegoDb and Monet have not been modified to support spatial
objects, but XParent needs to be modified. In this section, we
show this modification.

XParent [12] is a four table database schema, LabelPath,
DataPath, Element and Data as follows.

LabelPath (ID; Len, Path)  ; DataPath (Pid,Cid) ; Element (PathID,
Did, Ordinal) ; Data (PathId, Did, Ordinal, Value)

In the Data table all values are stored as text, e.g. XParent
converts the values of different types (integer, string, real,… ) in
values of type string. We have eliminated this limitation storing
the spatial objects in different tables. In this way, the simple
values continue being stored in the Data table, and the complex
objects (spatial objects) are stored in other table (the number of
tables equals the number of distinct label-paths with spatial
objects, like Monet). Thus, we could store different spatial
objects (state boundaryBy, parcel extendof, … ) in different
tables with different spatial index. The structure of the new table
is equal to the Data table, but the type of the Value column
depends on the type of the spatial object that will be stored.

3. A PERFORMANCE STUDY
In this section, in order to assess what is the best approach to
query efficiently GML documents, experimental studies have
been conducted. Unlike previous studies that emphasise
converting XML documents to/from the database schema and
translation of queries into SQL queries, in this section, we focus
on the effectiveness of storage models in terms of query
processing. All the experiments were conducted on an 800Mhz
PC with 128Mb RAM, 30Gb hard disk with operative system
Windows NT.4.0 Server SP6. The RDBMS used was Oracle
8.1.5 which we selected because it allows the storage of spatial
objects and the application of spatial operators over them.
Oracle’s Spatial object-relational model was used
(SDO_GEOMETRY object) [17] for simplicity. However, as
mentioned above, the Oracle’s relational model or another
RDBMS may be used.

We carried out our experiments using our own benchmark and
data sets. We did not use other existing benchmarks for XML
documents, like [21][22] because these benchmarks are oriented
to work with XML documents (only alphanumeric data) and the
retrieval and application of spatial objects was not contemplated.
In the same way, we used our own data set, because the data sets
(DBLP Bibliography, Bosak Shakespeare collection, etc) used in
the majority of related works have only alphanumeric data.
However, we used the features needed by a benchmark for XML,
detailed by [23]. On the other hand, our experiments were aimed
at studying the performance of these approaches (LegoDB,
Monet and XParent) in the execution of spatial queries and
retrieval of spatial and alphanumeric data. Other features,
(reconstruction of documents, loading of documents in the model,
etc) were not included in this experiment because these problems



have been thoroughly studied in each model, independently of
the spatial data.

Three different size of the data set are used, namely D1 (7.1 Mb
aprox. 5000 rectangular parcels), D2 (15.4 Mb aprox 10000
rectangular parcels) and D3 (30 Mb aprox. 20000 rectangular
parcels) The data size of D2 is double that of D1 and the data
size of D3  double that of D2.

For this test, the same tables as shown in Section 2 have been
created. For each approach, indexes on relational tables were
also properly built to improve query processing as follows:

-In XParent, we created indexes as proposed in [12]. In the new
relations for the storage of spatial objects (added in our
modification) we have used the same indexes (B*-tree) for the
attributes Pathid, Ordinal and Did as in the Data relations. In
the Value attributes we have built indexes for the spatial
attributes (Hybrid [17]).

-In LegoDB the attributes: TState(state_id), Tcitymember
(Citymember_id),TBlock(block_Id), TBlockmember(
blockmember _id),TParcel (parcel_id), TArquitet (arquitect_id)
are primary key TCitymember(parent_state_id),
TBlock(parent_Citymember_id),
TBlockmember(parent_block_id), TParcel (parent_blockmember
_id), TArquitet (Parent_parece_id) are foreign key. The Spatial
Attributes TState(BoundaryBy), TBlock(BoundaryBy,Extendof)
and TParcel (extendof) have been also indexed with Hybrid
indexing.

-In Monet, we created indexes (B*-tree) on source, target, id and
value attributes to speed up the joins for each table. The Spatial
attributes (value) have also been  indexed with Hybrid indexing.

3.1 Comparative Study
In this Section, we study the three approaches mentioned above.
In order to analysis implementation alternatives for a query
spatial language over XML, we have focused our attention on
two important problems:

1. Since we are dealing with an XML query language, a very
large number of joins are necessary. It is one of the more
important performance problems in the relational implementation
of these query languages [24].

2. Storing and querying spatial data require a larger amount of
resources than storing and querying alphanumeric data [25].

For these reasons, our work concentrates upon how a RDBMS
can retrieve queries, which include these features. First, a set of
queries is used to study the behaviour of these approaches,
involving only alphanumeric data (these approaches have not
been directly compared before). In addition, the user may only
wish to query alphanumeric data of a GML document. Secondly,
a set of queries with spatial and alphanumeric operators is used.
The queries are listed in table 1 (following page):

Q1-Q10 are queries with only alphanumeric operators. Q1-Q3
queries with different length path are shown with 1 attribute in
select clause and 1 attribute in where clause. Q4 and Q5 show
queries with 3 attributes (1 in Select and 2 in Where) and 4
attributes (2 in Select  and 2 in Where) respectively. In Monet
and XParent approaches, the addition of new attributes force us
to include new relations (more joins) in the equivalent SQL. In

Q6-Q8 joins between attributes have been added. Q6 use 1 joins
and 1 condition, Q7 uses only one joins and Q8 uses three join
links to OR operator. Q9 and Q10 are queries with grouping. Q7
is grouped by 1 attribute and Q8 is grouped by 2 attributes.

The elapsed query times for these queries (with D1data set) are
shown in Figure 1. In Table 2, the number of joins necessary in
each approach is shown. For LegoDB the number of joins has a
limit (5), but in the other approaches, it depends on the number
of attributes participating in the query. In any case, the
comparison between the joins for each approach is only
approximate, as the size of relations joined varies in each
approach.

Table 2: Number of joins in each SQL queries
LegoDB (LDB) ; Monet (Mon);Xparent (XPt)

Query LDB Mon XPt Query LDB Mon XPt

Q1 0 1 5 Q11 0 2 5

Q2 2 3 7 Q12 4 7 9

Q3 5 6 10 Q13 5 9 12

Q4 5 6 13 Q14 3+1 10+1 21+1

Q5 5 8 16 Q15 5 11 19

Q6 3+1 7+1 15+1 Q16 5 14 29

Q7 5+1 7+1 13+1 Q17 2+1 7+1 10+1

Q8 5+3 10+3 23+3 Q18 3+2 10+2 21+2

Q9 5 8 16 Q19 5+2 16+2 32+2

Q10 5 7 13

Figure 1: Elapsed query time (Q1-Q9)



Figure 2: Elapsed query time (Q11-Q19)

For queries that only contain short simple paths, such as Q1 and
Q2 XParent obtains the best elapsed times. However, as the
complexity of the query increases, the XParent elapsed time also
increases (in Q5-Q6 it obtains the worst elapsed time). In
general, Monet obtains the best results from Q1-Q6. Although
LegoDB uses fewer joins that Monet, the size of relations that is
joined is higher in LegoDB. When the queries have joins, Q7-
Q8, XParent obtains worse elapsed time  (non-viable with
respect to the other approaches). In this case, Monet also
registers a higher elapsed time than LegoDB. In queries with
grouping (Q9-Q10) XParent registers a higher elapsed time and
Monet obtains a worse elapsed time than LegoDB. In general, in
complex queries, XParent obtains the worst results in our test.

Q11-Q20 are queries with spatial operators, some of which have
spatial and alphanumeric operators. These queries have been
built varying the number of joins. In this way, we are able to
study the elapsed times in relation to the two problems
mentioned above. Q11-Q13 queries with different length path
and different spatial operators (spatial analysis) are shown. Q14-
Q19 are queries with a higher number of joins (Table 2).
Operators that support spatial analysis and joins between
alphanumeric attributes are included in Q14. Q15-Q16 window
query is used (all objects that lie within a window). In Q15 there
is one none equi-join [17] and in Q16 there are three none equi-
joins. In Q17-Q19 spatial joins are used. In addition these are

combined with joins between alphanumeric attributes (Q18) and
Analysis operators and none equi-joins in (Q19). Figure 2 shows
the query elapsed times. LegoDB and Monet outperform the
modification of XParent for all queries. In addition these elapsed
times are non- viable with respect to the other approaches. On
the other hand, LegoDB outperforms Monet for all queries
except Q11 (simple path). In Q14, LegoDB significantly
outperforms Monet (up to 11 times faster). Queries with a high
number of joins with window queries (Q15,Q16) and spatial
joins (Q18,Q19) obtain worse results in Monet than in LegoDB.

As a conclusion, Monet with alphanumeric operators obtains
better elapsed times than LegoDB i.e., in order to obtain a good
performance querying spatial XML documents, it is preferable to
increase the size of relations (LegoDB), and to reduce the
number of joins between relations (Monet). A high number of
joins and spatial operators require many resources to obtain a
good performance. However, when only alphanumeric data are
queried (with no joins and with no group by clause), the best
option is to reduce the size of relations and increase the joins. In
the modification of XParent a good performance is obtained only
when simple alphanumeric queries are run.

4. SCALABILITY TEST
Due to the bad results obtained by the modification of XParent,
in this section we only investigate the scalability of LegoDB in
comparison with Monet using D1, D2 and D3 data set detailed
above. The queries used in the study are a selection that gather
the most important features mentioned above: Q5, Q8, Q10, Q12,
Q13, Q17, Q18, Q19.

Figure 3 shows the elapsed time ratios for LegoDb and Monet
grouped by items of two, where the x-axis shows the data size for
D1 (7.1 Mb), D2 (15.4 Mb) and D3 (30 Mb). The elapsed query
times ratios are defined as follows. Assuming the elapsed time of
a query using D1 is treated as scale ta, and the elapsed time of
the same query is tb, using either D2 or D3, the elapsed time
ratio is tb/ta.

Table 1: Studied queries



The good elapsed times of Monet  in simple alphanumeric
queries  are corroborated with a large data set (D3). An example
is Q5 and Q8 in Figure 3 (a), but in queries with grouping,
LegoDB obtains the best results (Q10 in Figure 3 (b)). In spatial
queries, with a large data set (D3), Monet has better scalability
than LegoDB in complex queries (Q13, Q17, Q18, Q19), but
LegoDB obtains the best ratio in the simple query Q12. Note that
the difference is very significant in Q17 and Q19.  In the medium
data set (D2) both approaches are more similar. Even here, Q17
and Q18 obtains a better ratio in LegoDB than in Monet. This
fact is related to the number of joins and the size of the table
joined. Both parameters determine the best performance with
large data sets.

As a conclusion, several joins between small tables (Monet)
obtain better scalability than few joins with large tables
(LegoDB) when a very large data set is used. Even so, in our
experiments, LegoDB also obtains better elapsed time in spatial
queries using D3 (this comparative is not included for reason of
space).

(a)

(b)



(c)

(d)

Figure 3: Scalability Test: LegoDB vs Monet

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied three storage models for the
implementation of a query language over GML. These
alternatives are well-known storage models for XML documents
over the RDBMS. We have used alternatives based on RDBMS
because they have efficient storage and retrieval techniques and
can make use of various indexing mechanisms to evaluate a
query. In order to store complex objects (spatial objects) a
modification of XParent has been carried out. Modification of the
models Monet and LegoDB was not necessary

The experiments show that the inclusion of spatial operators
influences the performance of these approaches. The
performance obtained with only alphanumeric operators varies
greatly when we include spatial operators. We can therefore infer
that the modification of XParent is not a good solution for spatial
queries. Monet has a good scalability in comparison with
LegoDb, but the elapsed times are a good deal worse than
LegoDB including GML documents with 30 Mb. In addition, the
number of joins in Monet depends on the length of the path and
the number of paths involved in the query. This limitation makes
Monet a good solution to query spatial data, in shallow
documents and in queries with few attributes involved (two
features not guaranteed in GML). LegoDB considerably reduces

the number of joins and obtains a limit regardless of the
attributes involved in the query. According to the results
obtained, the best approach for the storage and retrieval of GML
documents with our query language is LegoDB. In addition, the
solution of LegoDb applied in this study is the simplest to
implement of all these offered by LegoDB. We could use the
cost-based XML-to-relational mapping engine (LegoDB [7]) to
obtain the best distribution of relations for each application.  On
the other hand, we think the fact that LegoDB is a structure-
mapping approach makes this solution more natural to store
GML, because the XMLSchema (DTD) of a GML document has
to be known.

Future work foresees, the study of different mapping models
offered by LegoDB, to obtain a common pattern --if such exists--
for most applications of GML documents. We will also study the
general size of the data set in which Monet and LegoDB
converge (section 4.2). At the same time, we intend to look at the
development of a Web environment to allow spatial distributed
queries on the Web.

6. REFERENCES
[1] OpenGis Consortium. Specifications.

http://www.opengis.org/techno/specs.htm.1999

[2] OpenGIS Consortium. Geography Markup Language
(GML) v2.0. Document Number: 01-029.
Http://www.opengis.net/gml/01-029/GML2.html. 2001.

[3] J. Córcoles and P. González. A spatial query language
over XML documents. Fifth IASTED International
Conference on Software Engineering and Applications
(SEA). pp.1-6. 2001

[4] J. Córcoles and P. González. A Specification of a Spatial
Query Language over GML. ACM-GIS 2001. 9th ACM
International Symposium on Advances in Geographic
Information Systems. 2001

[5] J. McHugh, S. Abiteboul, R. Goldman, D. Quass and J.
Widom. Lore: A database management system for
semistructured data. SIGMOD Record, 26(3) pp. 54-66.
1997

[6] M. Yoshikawa and T. Amagasa. XRel: A path-based
approach to storage and retrieval of XML documents using
relational databases. ACM Transactions on Internet
Technology, 1(1). 2001

[7] P. Bohannon, J. Freire, P. Roy and J. Simeon. From XML
Schema to Relations: A Cost-Based Approach to XML
Storage. 18th International Conference on Data
Engineering (ICDE2002). 2002.

[8] G. Kappel, E. Kapsammer, S. Raush.Schott and W.
Retschitzegger. X-ray – towards integrating xml and
relational database systems. In proccedings of
International Conference on Conceptual Modeling. 2000.

[9] D. Lee and W. Chu. Contraints-preserving transformation
from xml document type definition to relational schema.
In proceeding of the International Conference on
Conceptual Modeling, pp 323-338. 2000

[10] M. Klettke and H. Meyer. Managing XML documents in



Object-Relational databases. Workshop on the Web and
Databases (WebDB). 2000.

[11] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, and J.Naughton. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. In Proc. of the Int’l. Conf. On Very Large
Data Bases, pages 3002-314. 1999.

[12] H. Jiang, H. Lu, W. Wang and J. Xu Yu. Path
Materialization Revisted: An efficient Storage Model for
XML Data. 2nd Austrlian Institute of Computer ethics
Confrence (AICE2000). Canberra. Australia. 2002.

[13] C. Kanne and G. Moerkotte. Efficient storage of XML
data. In proceedings of the international conference on
Data engineering. 2000.

[14] A. R. Schmidt, M. L. Kersten, M. A. Windhouwer, and F.
Waas. Efficient Relational Storage and Retrieval of XML
Documents. Workshop on the Web and Databases
(WebDB). 2000.

[15] D. Florescu and D. Kossmann. Storing and Querying
XML Data Using an RDBMS. Data Engineering Bulletin,
22(3), 1999.

[16] S. Banerjee, V. Krishnamurthy, M.. Krishnaprasad and R.
Murthy. Oracle8i —  The XML Enabled Data
Management System. In: IEEE ICDE. 2000.

[17] Oracle9i Database Documentation.
http://otn.oracle.com:80/docs/products/oracle9i/content.ht
ml. 2002.

[18] J. M. Cheng, J. Xu, "XML and DB2". In: IEEE
ICDE..2000.

[19] Open GIS Consortium, Inc. OpenGIS: Simple Features
Specification For SQL Revision 1.1 OpenGIS 99-049
Release. 1999.

[20] H. Samet. Applications of spatial data structures.
Computer Graphics, Image processing and GIS. Addison –
Wesley. 1990.

[21] U. Nambiar, Z. Lacroix, S. Bressan, M. Li Lee and Y. Li.
XML Benchmarks put to the test. 3rd International
Conference on Information Integration and Web-based
Applications and Services (IIWAS). 2001.

[22] A.R. Schmdit, F. Waas, M. Kerste, D. Florescu, I.
Manolescu, M. Carey and R. Busse. The XML Benchmark
Project. Technical Reports INS-R0103. 2001.

[23] A.R. Schmdit, F. Waas, M. Kerste, D. Florescu, M. Carey,
I. Manolescu and R. Busse. Why and How to Benchmark
XML Databases. SIGMOD Record. nº3 vol. 30. 2001.

[24] S. Abiteboul, P. Buneman and D. Suciu. Data on the Web.
From Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers. 2000.

[25] P. Rigaux, M. Scholl and A. Voisard. Spatial Databases
with Application to GIS. Morgan Kaufmann Publishers.
2002.


