
Solving the Mapping Problem in User Interface Design
by Seamless Integration in IDEALXML

Francisco Montero†‡, Víctor López-Jaquero†‡, Jean Vanderdonckt‡, Pascual
González†, María Lozano†

† Laboratory on User Interaction & Software Engineering (LoUISE)
University of Castilla-La Mancha, 02071 Albacete, Spain

{ fmontero | victor | pgonzalez | mlozano }@info-ab.uclm.es

‡ Belgian Laboratory of Computer-Human Interaction (BCHI)
Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

{ montero | lopez | vanderdonckt}@isys.ucl.ac.be

Abstract. The mapping problem has been defined as the way to map
models involved throughout the development life cycle of user interfaces.
Model-based design of user interfaces has followed a long tradition of
establishing models and maintaining mappings between them. This paper
introduces a formal definition of potential mappings between models with its
corresponding syntax so as to create a uniform and integrated framework for
adding, removing, and modifying mappings throughout the development life
cycle. For the first time, the mappings can be established from any source
model to any target model, one or many, in the same formalism. Those models
include task, domain, presentation, dialog, and context of use, which is itself
decomposed into user, platform, and environment. IDEALXML consists of a
Java application allowing the designer to edit any model at any time, and any
element of any model, but also to establish a set of mappings, either manually
or automatically based on a mapping model.

1 Introduction

One of the existing approaches in development of software consist in establishing a
model of the future software to be developed and to produce code from this model.
This approach is the cornerstone of the Model-Driven Architecture (MDA) [3] and
largely contrasts with traditional approaches where the software is directly coded
without any model nor specifications. The development of the User Interface (UI),
one component of the software, does not escape from this observation [16]. Typically,
A UI model is referred to as a set of concepts, a representation structure and a series
of primitives and terms that can be used to explicitly capture knowledge about the UI
and its related interactive application using appropriate abstractions [33].

Models provide abstractions of a physical system that allow engineers to reason
about that system by ignoring extraneous details while focusing on relevant ones [22].
The models can be developed as a precursor to implementing the physical system, or
they may be derived from an existing system or a system in development as an aid to

understanding its behavior. The most recent innovations have focused on notations
and tools that allow users to express systems perspectives of value to software
architects and developers in ways that are readily mapped into the programming
language code that can be compiled for a particular operating system platform. The
current state of this practice employs the Unified Modeling Language (UML) [15, 26]
as the primary modeling notation. However, despite UML Use Cases, Activity
Diagrams and other notations can effectively capture functional requirements or
specify detailed behaviors, UML does not specifically support the modeling of user
interfaces aspects [19]. So, last generation of model-based approaches to user
interface design agree on the importance of task models.[18, 20]

In this paper, we present an initial pattern-based general solution to the mapping
problem in model-based interface development. The main function of a model-based
interface development system (MB-UIDE) is to provide the software tools that allow
developers to construct user interfaces by means of creating and refining an interface
model [23]. The success of MB-UIDE systems has been limited. On one hand, there
are systems that can generate specific-type interfaces with a high degree of
automation. On the other hand, none of the knowledge based approaches for interface
generation used by model-based systems is applicable beyond its intended narrow
target domain nor can they be generalized to other targets [1, 2, 4, 14, 24]. In our
proposal knowledge in form of patterns is used in the development process to help the
developer in the model process. We are working in three directions methodologies [8,
22, 29], languages [25, 27, 31] and tools to support both

The structure of the paper is as follows, first section is dealt with related works
and then User Interface extensible Markup Language (UsiXML) [13] and IDEALXML
environment are presented using an example. Models of a MB-UIDE are introduced
using this example, and screenshots of IDEALXML are shown related with the same
example. We finish the paper remarking the conclusions.

2 Related Works

To uniformly present work related to the mapping problem [9, 11, 23], we will select
some significant and representative efforts made in already existing environments
supporting model-based approach and present them according to a same framework
that represents the various levels and models where a UI development process may
appear.

Puerta [23, 24] presented a general framework to solve the mapping problem in
model-based interface development systems. They identified the nature of the
mapping problem as one of bridging levels of abstraction in an interface model. By
explicitly representing mappings in an interface model, by providing tools that allow
developers to set and inspect the mapping, and by affording developers knowledge-
based approaches to prune the design space of potential mappings. MOBI-D [23], the
interface development environment, deals with only a few of the interesting mapping
situations in any user interface design. MOBI-D provides a decision-support tool
called TIMM for the abstract-to-concrete mappings.

The Mastermind Dialog Language (MDL) [28] is a deterministic notation for
expressing task hierarchies and the binding of task and presentation models. MDL has

a syntax for specifying task models and additional features for binding tasks with
presentations.. The high-level syntax of MDL is a collection of module declarations.
MDL defines three categories of module, each of which represents a different
technique for defining a process. In a task, a process is defined as a hierarchy of user
tasks, the leaves of which denote actions. In an extern, a process is defined implicitly
as a continuously available collection available collection of anonymous actions.
Finally, in a binding, a process is defined as the coordination of one task and one or
more externs.

Teallach [12] uses mapping rules in several places in its architecture to allow
mappings between the various models. For example, a set of mapping rules exist
between the task model and its abstract presentation model counterpart. In addition to
these mappings, an additional set of rules exist between the abstract and concrete
presentation models. These mapping rules take into consideration the information
captured in the user model, to provide the intended users of the system with a
generated interface suitable to their requirements.

Vampire [7] enables designers to manually establish relationships between parts or
whole of Uis drawn in a UI builder and a task model presented in a lateral window. In
this way it is more easy to understand how each task is presented by which UI
components, such as windows, dialog boxes and how leaf nodes of such tasks are
mapped onto widgets. However, the relationships remain manual without any further
exploittiation in the rest of the development life cycle

The next section introduces a language and a tool: UsiXML [13] and IDEALXML
using an example. Patterns [21] are used when we want to write models using
IDEALXML. A pattern is an abstraction of a doublet, triplet, or other small grouping
of entities that is likely to be helpful again and again in MB-UIDE. An entity is any
element that we use in building a model, for instance if we want to model a domain,
we will use class diagram and in this context patterns consist of classes, attributes and
methods, but if we want to model a use case, we will have tasks and relationships
between them. Patterns can be gathered using UsiXML. Patterns are found by trial-
and-error and by observation [5]. By building many user interfaces models and by
observing many applications of the lowest-level building blocks and the mappings
established between them, one can find patterns. With such patterns, as Alexander
observed, the things which seem like elements dissolve, and we are able to use a
higher-level building block for modeling (task, domain, abstract UI or mapping).

As we can see in this section we have not an integrated method or tool to address
the mapping problem or to use experience gathered using patterns in general in a way
that is uniform and rigorous. This work tries to give a step forward in this sense.

3 UsiXML and IDEALXML Environment

MB-UIDEs [8, 22, 29] seek to describe the functionality of a user interface using a
collection of declarative models. In such a context, constructing a user interface
involves building and linking a collection of models. So, model-based approach to UI
design and implementation provides multiple, separate models of different facets of
the UI. This approach is complicated by the multi-model binding problem, which
concerns how a designer is able to bind behavior that is described in another model.

Many user interface description languages have been introduced so far that address
different aspects of a User Interface. This proliferation results in many XML-
compliant dialects that are not largely used and that do not allow interoperatibility
between tools that have been developed around the UIDL.

IDEALXML is a tool to support UsiXML[13], like GrafiXML or VisiXML.
UsiXML consists of a User Interface Description Language allowing designers to
apply a multi-directional development of user interfaces at multiple levels on
independence, and not only device independence. IDEALXML consists of a Java
application allowing the designer to edit any model and element of any model at any
time where experience, using patterns, can be used. But also to establish a set of
mappings, either manually or automatically based on a mapping model.

In order to develop a UI using UsiXML and IDEALXML environment we follow
these steps: (1) requirements analysis, (2) editing the task model, (3) editing the
domain model, (4) identification of patterns in the domain model according to the task
model, (5) derivation of an AUI by application of patterns and generalization of
relevant mappings, (6) from the AUI, retrieve a pattern CUI thanks to transformation
by patterns, (8) repeat this until all parts of the task model are gone and, finally, (9)
assemble the code generated by GrafiXML

Our example will be a typical page in many website. A page where an user can
ask one or several catalogs filling a form where that user provides his/her name,
address, email and reference of his/her preferences of information. Baring these steps
in mind, in UsiXML are considered different models.

A task model describes the various tasks to be carried out by a user in interaction
with an interactive system. A version of ConcurTaskTrees (CTT) [20] has been
selected to represent user’s tasks along with their logical and temporal ordering.
IDEALXML provides tools to specify UsiXML in a graphical way. In Fig. 1 we can
see tasks and relationships between those tasks.

Fig. 1. Toolbox associated with task model tab

Using a CTT notation and IDEALXML we can specify our use case (Fig. 2): we have
abstract tasks () (AskCatalog, SendRequest) these tasks consists of several actions
related with interactive tasks () that involve an active interaction of the user with
the system (e.g. selecting, edition, etc.) and system tasks () are actions that are
performed by the system (e.g. validation, send, etc.). Relationships are established
between tasks for instance parallelism () where T1 is interleaved with T2 (T1 and
T2 are tasks) or enabling () where T1 has to be finished in order to initiate T2 and
T2 is synchronized with T1 on some piece of data.

By building many task models and by observing many applications of the lowest-
level building block and the relationships established between them, We can find
patterns. Many patterns [30, 32, 34] can be modeled using UsiXML language and
edited using IDEALXML. So, patterns that we can see in [34] (Web design patterns
section) such as login, registering, simple search, advanced Search, breadcrumbs,

Main navigation, etc. can have associated a UsiXML description. In general, any
pattern related with a task can be modeled using CTT notation and UsiXML. Many of
these patterns have associated a user interface too, this aspect will be treated in
abstract UI model. Tasks are mapped with domain elements (attributes and methods)
following manipulate relationships.

Fig. 2. Task model editor using a variant of CTT notation

A domain model describes the real-world concepts, and their interactions as
understood by users and the operation that are possible on these concepts. Domain
model concepts are classes, attributes, methods and domain relationships (Fig. 3).
IDEALXML environment allows describing class diagrams.

In our example, we have three entities (Fig. 3): Visitant, Order and Catalog. In
these classes we have attributes and methods. Attributes enable a description of a
particular feature of a class and methods are presences which are called either by
objects of the domain or by user interface components.

The development of domain model can be supported by using patterns. Patterns
for business object modeling [7, 17] are not the same as design patterns which aim to
increase reuse and framework pluggability. Business patterns, also known as analysis
patterns [10], focus on creating an object model that clearly communicates the
business requirements. The key to modeling business processes is not to focus on the
steps of the process, but to instead focus on the people, places, things and events
involved in the process. So, Nicola [17], for instance, gathered twelve collaboration
patterns that are used for developing domain models [17], examples of these patterns
are: actor-role, outerPlace-place, item-specificItem, assembly-part, container-content,
role-transaction, etc. In the example, role-transaction and specificItem-transaction
patterns was used.

Fig. 3. Domain model editor in IDEALXML

An Abstract User Interface (AUI) model is a user interface model that represents a
canonical expression of the renderings and manipulation of the domain concepts and
functions in a way that is as independent as possible from modalities and computing
platform specificities. An AUI is populated by Abstract Interaction Objects and
Abstract user interface relationships. Abstract Interaction Objects (AIO) may be of
two types: Abstract Individual Components (AIC) and Abstract Containers (AC). An
Abstract Individual Component is an abstraction that allows the description of
interaction objects in a way that is independent of the modality in which it will be
rendered in the physical world. An AIC may be composed of multiple facets. Each
facet describes a particular function an AIC may endorse in the physical world.

Four main facets are identified (Fig. 4): An input facet describes the input action
supported by an AIC, an output facet describes what data may be presented to the user
by an AIC, a navigation facet describes the possible container transition a particular
AIC may enable, and, finally, a control facet describes the links between an AIC and
system functions, i.e., methods from the domain model when existing. An AC is an
entity allowing a logical grouping of other abstract containers or abstract individual
components. AC are said to support the execution of a set of logically/semantically
connected tasks. They are called presentations units in [33]. AIC and AC may be
reified at the concrete level, into one or more graphical containers like windows
dialog boxes, layout boxes or time slots in the case of auditory user interfaces. In this
model is possible to establish relationships, an important relationships is Dialog
control relationship. This relationship allows a specification of a flow of control
between the abstract interaction objects and can be derived from task model
relationships.

In a similar way, like other models, patterns can be used here to build abstract UI.
Many patterns that can be found in the literature and in websites can be described
using UsiXML and edited in IDEALXML, and these drafts using abstract components
are mapped with task following isExecutedIn mappings.

In Fig. 5, we can see a container with two components, one of them is associated
with catalogs and the other with the user information. The second component has
several facets because these facets are related with an entity, in other case each
component normally has one facet.

Fig. 4. Contextual menu in
abstract UI model editor

Fig. 5. Containers, components, facets and abstract

UI models

A mapping model is a well-known issue in transformation driven development of
UI [23]. Rather than proposing a collection of unrelated models and model elements,
our proposal provides a designer with a set of pre-defined relationships allowing a
mapping of elements from heterogeneous models and viewpoints. This may be useful,
for instance, for enabling the derivation of the system architecture, for traceability in
the development cycle, for addressing context sensitive issues, for dialog control
issues, for improving the preciseness of model derivation heuristics. Several
relationships may be defined (Table 1) to explicit the relationships between the
domain model and the UI models:

Relationship Description
observes Is a mapping defined between an interaction object and a

domain model (attribute or method)
updates It is a mapping defined between an interaction object and a

domain model concept (an attribute)
isReifiedBy Indicates that a concrete object is the reification of an abstract

one through a reification transformation
isAbstracteInto Indicates that an abstract object is the reification of a concrete

one through an abstraction transformation
manipulates Maps a task to a domain concept. It may be an attribute, a set

of attributes, a class, or a set of classes
isExecutedIn Maps a task to an interaction object allowing its execution
hasContext Maps any model element to one or several context of use

Table 1. Mappings in UsiXML

Puerta, [23] identified different kinds of mappings. Some of them are considered

in the selected notations used for specifying models. For instance, CTT notation, is
used in our proposal because it includes relationships between tasks where task-dialog
mappings are gathered. Analogously, presentation-dialog mappings are included in

the Abstract UI notation where dialog control relationships allow a specification of a
flow of control between the abstract interaction objects.

IDEALXML, considering these mappings (Table 1), can handle the mapping
problem between models thanks to the UsiXML language that serves as a uniform
language between heterogeneous models (Fig. 6). Users can select elements (attribute,
method, task or AIO) and define mappings between them. In IDEALXML we can
define observes, updates, manipulates and isExecutedIn. Other mappings
(isAbstractedInto, isReifiedBy and hasContext) will be considered when integration
between IDEALXML and GrafiXML is done.

A Concrete User Interface (CUI) model is a UI model allowing a specification of
an appearance and behavior of a UI with elements that can be perceived by users. A
CUI model is composed of Concrete Interaction Objects (CIO) and concrete
relationships. Concrete interaction objects and relationships are further refined into
graphical objects and relationships and auditory objects and relationships. A CIO is
defined as an entity that users can perceive and/or manipulate. Dialog control defined
in Abstract IU model allows a specification of a flow of control between the concrete
interaction objects. The philosophy of our proposal is shown in the next page (Fig. 8).
We have experience (patterns) [7, 17, 30, 32, 34], it is gathered and documented using
UsiXML and it is used in IDEALXML in user interface development process following
a MB-UIDE.

Editing a concrete UI in UsiXML directly can be considered as a tedious task, for
this reason a specific editor called GrafiXML [13] has been developed to face the
development of CUI models. Associated with each element in domain, task, abstract
UI or concrete UI we have information that finally is gathered in a declarative way
using UsiXML. In different specifications may be useful to adapt it to different
categories of users or different environments. In this moment different
transformations are possible: from task and domain to task and domain, from abstract
UI to abstract UI and from concrete UI to concrete UI. It may be done using
TransformiXML [13] (tool under development). The basic flow of task with this tool
is the following a user chooses an input file containing models to transform, generated
using IDEALXML or GrafiXML. Patterns are a good source of inspiration for atomic
transformation techniques because most patterns are based on a combination of
several simpler techniques. That’s why patterns aren’t always easy to understand in
depth.

Furthermore of IDEALXML, two tools allow to obtain a graphical rendering from a
CUI specification. GrafiXML is equipped with an export module that allows a
generation XHTML code and Java Swing objects. TransformiXML allows an
interpretation of a CUI specification directly in flash. In this case a CUI may be
assimilated to the final user interface. (Fig. 7).

Fig. 6. Mapping model in IDEALXML

Fig. 7. Final UI with Java

Swing objects

4 Conclusion

The related work section emphasizes that so far no integrated method or tool
exists to address the mapping problem in general in a way that is both uniform and
rigorous. In this paper, we present an integrated environment tool IDEALXML that can
handle the mapping problem (Fig. 8) using UsiXML language. IDEALXML enables to
specify in a WYSIWYG manner the task model, the domain model, the task model,
the abstract user interface model and the mapping model.

The task model is based on the CTT notation introduced by [20]. The domain
model is represented with a class diagram. The abstract UI model has the form of a
hierarchical structure of embedded boxes whose leaves are abstract individual
components and their facets. Mapping model establishes relationships between
models, it is useful for enabling the derivation of the system architecture and for
traceability in the development cycle. This paper integrates of all traditional models:
task, domain, abstract UI, mapping, concrete and final into one single environment
with their respective editing environment. This integration allows to establish
mappings in a logical way (rather than being implicitly coded in the tools). These
mappings can then be exploited manually thanks to a pattern-based approach or
automatically thanks to a transformation engine (TransformiXML). In this way, we
can achieve some continuity, some seamlessness through the development life cycle.

Acknowledgments

This work is partly supported the Spanish PBC-03-003 and CICYT TIN2004-08000-
C03-01 grants. Also, we gratefully acknowledge the support of the SIMILAR network
of excellence (http://www.similar.cc), the European research task force creating HCI
similar to human-human communication of the European Sixth Framework Program.

Fig. 8. IdealXML environment: experience and mapping problem

References

1. Ali, M.F., Pérez-Quiñones M.A., Abrams M. Building Multi-Platform User
Interfaces with UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User
Interfaces: Engineering and Application Framework. John Wiley and Sons,
New York 2003

2. Berti, S., Mori, G., Paternò, F., Santoro, C. A Transformation-Based
Environment for Designing Multi-Device Interactive Applications. Proc. of 9th
Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, January 13-16,
2004). 2004, 352–353.

3. Brown, A. An introduction to model driven architecture. Part I: MDA and
today’s systems. IBM. 2004

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and
Vanderdonckt, J. A Unifying Reference Framework for Multi-Target User
Interfaces. Interacting with Computers 15, 3 2003, 289–308.

5. Coad, P. Object-oriented patterns. Communications of the ACM. Sep. 1992
6. Coad, P., North, D., Mayfield, M. Object Models: Strategies, Patterns and

Applications. Prentice Hall, 1997
7. Eisentein, J., Rich, C. Agents and GUIs from task models. In proceedings of 7th

ACM Conference on Intewlligent User Interfaces IUI 2002. ACM Press. New
York, 2002

8. Eisenstein, J., Vanderdonckt, J., Puerta, A. Applying model-based techniques to
the development of Uis for Mobile Computers. Proceedings IUI´01:
International Conference on Intelligent User Interfaces. ACM Press. 2001

9. Elnaffar, S., Graham, N. Semi-automated linking of user interface design
artifacts. In Proceedings of CADUI, 1999.

10. Fowler, M., Analysis Patterns: Reusable Object Models. Addison-Wesley. 1996
11. Fowler, R. Direct Mapping and User Interface. Technology of Object-Oriented

Languages and Systems. IEEE Computer 1999
12. Griffiths, T., Barclay, P., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D.,

Cooper, R., Goble, C., and Pinheiro da Silva, P. Teallach: a Model-based User
Interface Development Environment for Object Databases. Interacting with
Computers 14, 1 2001.

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L. and López-Jaquero,
V., USIXML: a Language Supporting Multi-Path Development of User
Interfaces. Proc. of 9th IFIP EHCI 2004

14. López-Jaquero, V., Montero, F., Molina, J.P., Fernández -Caballero, A. and
González, P. Model-Based Design of Adaptive User Interfaces through
Connectors. Proc. of 10th Int. DSV-IS’2003. 2003, 245–257.

15. Markopoulos, P., Marijnissen, P. UML as a representation for Interaction
Design. Proceedings OZCHI 2000, 240-249.

16. Myers, B., Hudson, S., Paush, R. Past, Present and Future of user interface
software tools. ACM Transactions on Computer-Human Interaction (TOCHI).
2000

17. Nicola, J, Mayfield, M., Abney M. Streamlined Object Modeling. Prentice Hall.

2002
18. Paris, C., Lu, S., Vander Linden, K. Environments for the Construction and Use

of task models. In The Handbook of Task Analysis, D. Diaper and N. Stanton
(eds), 2003, chapter 23, pages 467-482.

19. Paternò, F. ConcurTaskTrees and UML: how to marry them?.
http://giove.cnuce.cnr.it/Guitare/ Document/ConcurTaskTrees_and_UML-
new.htm

20. Paternò, F. Model-based design and evaluation of interactive application.
Springer-Verlag. 1999

21. Pescio, C. Principles Versus Patterns. IEEE Computer. September, 1997.
22. Puerta, A.R. A Model-based Interface Development Environment. IEEE

Software 14, 4. 1997, 40–47.
23. Puerta, A.R. and Eisenstein, J. Towards a General Computational Framework

for Model-Based Interface Development Systems. Knowledge-based Systems
1999

24. Puerta, A.R. and Eisenstein, J. Towards a General Computational Framework
for Model-Based Interface Development Systems. Proc. of the 4th ACM Conf.
on Intelligent User Interfaces IUI’99 1999

25. Puerta, A.R. and Eisenstein, J. XIML: A Multiple User Interface Representation
Framework for Industry. John Wiley & Sons, New York 2003.

26. Rumbaugh, J., Jacobson, I., Booch, G. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999

27. Souchon, N. and Vanderdonckt, J. A Review of XML-Compliant User Interface
Description Languages. Proc. of 10th Int. DSV-IS’2003. 2003, 377–391.

28. Stirewalt, R.E.K. and Rugaber, S. The Model-Composition Problem in User-
Interface Generation. Automated Software Eng. 7, April 2000, 101–124.

29. Szekely, P., Sukaviriya, P., Castells, J., Muthukumarasamy and Salcher, E.
Declarative Interface Models for User Interface Construction Tools: The
MASTERMIND Appproach. Proc. of 6th IFIP EHCI’95 1996

30. Tidwell, J. UI Patterns and Techniques. http://www.mit.edu/~jtidwell/
31. Trætteberg, H., Molina, P.J., Nunes, N.J. Making Model-Based UI Design

Practical: Usable and Open Methods and Tools, Proc. of IUI’2004 (Funchal,
January 13-16, 2004). ACM Press, New York. 2004

32. Van Duyne, D., Landay, J., Hong, J. The design of sites: patterns, principles
and proceses for crafting a customer-centered web experience. Addison-
Wesley, 2002

33. Vanderdonckt, J. and Bodart, F. Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection. Proc. of the ACM INTERCHI'93. ACM
Press, New York 1993, 424–42

34. Welie, M., Patterns in interaction design. http://www.welie.com

