
Aspect Oriented Programming and Composition

Filters: A Conceptual Comparative Study

Abdel Hakim Hannousse, Djamel Meslati, Hayette Merouani

 LRI Laboratory, Badji Mokhtar University of Annaba, BP 12, Annaba, Algeria, 23000

hannousse_a_hakim@yahoo.fr

Abstract. The Object Oriented Model has some limitations that recent

approaches known as Advanced Separation of Concerns ASOC try to eliminate.

Today, there are many ASOC approaches and their comparison is increasingly

considered as an important issue. Unfortunately, few works are dedicated to the

comparison and the assessment of these approaches. In this paper, we present

an assessment of two ASOC approaches: Composition Filters (CF) and Aspect

Oriented Programming (AOP) through a conceptual comparative study. To

achieve this goal, we have performed a translation of the first one to the other.

Our work consists of testing the two approaches by confronting their concepts.

The translation carried out, proved its efficiency to be helpful and our

conclusions show that the mapping of concepts is not straightforward or one-to-

one. To make our approach significant, we have implemented the CoAspectJ

preprocessor that accomplishes our mapping model automatically to validate

our rules.

1 Introduction

Some of recurrent problems captured in object oriented software design are code

tangling and code scattering problems. These both problems affect the development

process of the application in different manners: bad traceability, lack productivity,

weak code reusability and quality and difficult application evolution. To avoid these

problems, several techniques are being researched that attempt to increase the

expressiveness of the OO paradigm. Such techniques are known as Advanced

Separation Of Concerns (ASOC).

Currently, a large amount of literature is devoted to three advanced separation of

concerns: Kiczales Aspect Oriented Programming (AOP) [12], Composition Filters

(CF) [1], and Multi-dimensional separation of concerns [20]. All these approaches

aim to providing better concepts and mechanisms to make sure that different concerns

are represented by different modules in a program. Unfortunately, their philosophies

are different from others and their concepts used are not similar. In front of this

diversity, software community hopes to unify concerns modularization and increase

software reuse, evolution and maintainability in a standard manner [25].

In order to contribute for achieving this goal we have undertaken a conceptual

comparative study. Our idea consists of using AOP as a pivot approach to which we

compare the other approaches through mapping concepts. This choice is due to the

fact that AOP has now reached a certain maturity and a lot of developers and

programmers are using it [9, 22, 23]. The work presented here is limited to a

conceptual comparison of the AOP and the CF approaches.

The remainder of this paper is organized as follows: Section 2 and 3 describe the

main concepts of AOP and CF respectively in which based our comparative study.

Section 4 shows how AOP concepts are mapped into CF. Section 5 and 6 present our

results obtained from the mapping section. Section 7 discusses related work and

section 8 summarizes our work.

2 Aspects Oriented Programming

Aspect Oriented Programming or AOP in short considers that the code of a given

software system contains a functional concerns and a non-functional concerns. The

functional concerns are concerns of system that achieves basic functionalities of the

application. Non functional concerns represent each other concerns that crosscut basic

functionalities. In the object-oriented approach, concerns are scattered throughout the

source code, what creates an entanglement [12]. So, the vision motivating AOP is that

one could provide independent specifications for each concern or aspect and then

weave them together to build the resulting system.

AspectJ is a general-purpose AOP extension to Java language. It allows the

definition of concerns that are called aspects. A weaver applies aspect definitions over

source code (Java classes) and creates the woven version, also interpreted by the Java

Virtual Machine (JVM). AspectJ extends the Java language with five new concepts:

Aspects, Join points, Pointcuts, Advices and Inter-type members’ declaration or

introductions:

1. Aspects: An aspect is an entity that looks like a class but model a concern that

crosscut several object classes. Aspects are defined one by one. Several aspects can

exist in the same software system.

2. Join points: Are well-defined places in the structure or execution flow of a

program where additional behavior is attached and they constitute basic code

breaking points where aspect can get involved. Those points are basically: object

instantiations, method invocations or executions, field setters and getters, exception

handlers, etc.

3. Pointcuts: They are particular forms of predicates that use Boolean operators and

specific primitives to pick out join points and dynamic contextual information.

4. Advices/actions: The specified events can be caught, and actions can be applied to

take care of them. Those actions are called advices. They are method-like

mechanisms used to declare that a certain code should execute at each of the join

point in a pointcut. So, the code of advice runs at every join point picked out by its

pointcut. Exactly how the code runs depends on the kind of advice. AspectJ

supports three kinds of advice. The kind of advice determines how it interacts with

the join points which defined over. Thus, AspectJ divides advices into that which

runs before its join points, that which runs after its join points, and that which runs

in place of (or "around") its join points.

5. Introductions: It enables the specification of static crosscutting of the functional

code by adding members to classes or by specifying what a class extends or

implements. So, desired code can be added to existing applications at the level of

class definitions, such as, methods, instance variables and inheritance structure.

To understand the philosophy of this implementation model we can imagine a system

during its execution where the system is picked up at each moment. The concern

specification materialized by one or more aspects can interfere at observable points of

the execution such as: getting or setting an instance variable, calling or executing a

method, throwing an exception, etc. These points also called join points. Interfering a

concern consists of executing its appropriate specification materialized by one or

more advices.

3 Composition Filters Approach

A fundamental design decision of the CF model is to distinguish two kinds of

abstractions: (class-like) concerns and filters. Briefly, a concern is the unit for

defining the primary behavior, while filters are used to extend or enhance concerns so

that (crosscutting) propriety can be represented more effectively. So, CF adds a

wrapping layer called interface to the conventional object model that intercepts

incoming and outgoing messages. The main components of the interface layer are:

1. Internal objects: They are objects whose methods are used to compose the

behavior of the CF object. Messages received by a CF object can be delegated to

the internal objects instead of the kernel object. Internal objects are encapsulated in

the CF object and do not exist beyond its existence.

2. External objects: They are almost like internal objects. However, they are

supposed to exist on their own and their references are passed on to the constructor

of the CF class during the instantiation. These references are assigned to the CF

instance variables.

3. Methods: The interface declares all methods available to other objects.

4. Conditions: Conditions are specific methods that inform about the state of the

kernel. They do not have parameters and do not affect the state of the kernel.

5. Input filters: A set of declarative specifications that intercept the incoming

messages.

6. Output filters: A set of declarative specifications that intercept the outgoing

messages.

We must denote here, that filters are declared in ordered sets. So, a call entering to

a CF object is first reified then passed along the filter set until it’s discarded or

dispatched. The existence of many filter types makes this approach more significant.

Each filter interface can materialize a concern, where more than one concern can

affect the software system, thus, more than one filter interface can be applied to the

same object but in ordered set.

In order to add crosscutting concerns (i.e. methods, conditions and filters) to the

one or more objects, the composition filters model provides the superimposition

mechanism. Superimposition is expressed by a superimposition specification, which

specifies how and when the concerns crosscut each other.

4 The Concepts Mapping

The idea behind the mapping consists of answering to the question: For each given

specification of one of the approaches, what is the corresponding specification in the

other? In our work, we try to identify the correspondence between both AOP and CF

approaches.

A system in CF approach corresponds to a set of units each one consists of a class

extended by interface specification. Let CFU be a CF unit:

 CFU = <K, I> where:

 K: the kernel part.

 I: the corresponding interface

 K = <M, IV> where:

 M: public methods set

 IV: instance variables set.

 I = < F, Externals, Internals, MC, SP > where

 F: is filter set,

 Externals: is a set of instance variables containing references of external

objects,

 Internals: is a set of instance variables containing references of internal

objects,

 MC: is a set of conditions and methods

 SP: is the superimposition specification

The counterpart of CFU in AOP is < K, A> where:

K: is a like K in CFU that represents a set of classes they implement the

functional pat of a system. It contains the same set of methods and

instance variables in CFU.

A: a set of aspects that represent the non-functional part.

Since I materializes several concern parts, its translation will be composed of

several aspects “A”: An aspect for each filter. The interface aspect is used to

introduce Externals, Internals found in I to the kernel. Each public method in I has an

empty implementation body in the interface aspect, since the corresponding calls will

be picked out by aspects and delegated to internals or externals. Internals and

externals classes themselves remain unchanged.

So, we can represent A formally by:

A = <IA, FA> where:

IA: represents an aspect contains declarations of internals, externals,

instance variables and an introduction of empty methods correspond

to public methods contained in internals and externals.

FA=<AA, CA> where:

AA: is a set of abstract aspects each one contains a specification of

semantic of one filter type, so, they number is the number of filter

type in CF model.

CA: is a set of a concrete aspects each one must inherit from the equivalent

filter type (one of AA set), so, each CA element match a filter in the

F.

aspect Interface {
kernel.Internals = new Internals();
kernel.Externals;
public type kernel.publicMethod(..) {}

}

Each predefined abstract aspect implements one filter type, so, it contains two

predefined methods: accept and reject methods each one implement the accepting and

the rejecting actions of the filter type respectively.

abstract aspect Filter_filterType {
public void accept() { // accepting action }
public void reject() { // rejection action }

}

aspect idFilteri extends Filter_filterType {
pointcut

idFilteri_accept():if(ConditionPart)&&if(MatchingPart)
before() : idFilteri_accept() {
 accept();
}
before() : !idFilteri_accept(){
 reject();
}

}

Each filter element (FE) has a corresponding filter_accept pointcut in our mapping

model. This pointcut is divided into two parts condition part and matching part, the

first one is used to evaluate the condition part; so, it’s translated using a user-defined

primitive pointcuts that contain the same expression of the corresponding condition

part. In case where the condition part includes a specification of a pseudo variable we

use the reflection level of the corresponding software to determine it. The second part

contains the specification correspondent to the matching part of the filter element.

This later is translated using the reflection level specified by a specific method match

in the predefined matching aspect.

The following table presents the summary of our mapping model of the two

approaches based in their main concepts.

Table 1. Our mapping model used to the assessment of AOP and CF

Aspect Oriented Programming Composition Filters

Functional code

The Kernel part of the CF object model

Non-functional code Interface part of the CF object model

Aspect Filter

Aspect name Filter name

Abstract aspect Filter Type

Pointcut Filter element

Condition pointcut Condition part of filters

Pointcut specification Matching part

Aspects precedence Filters order in the filter interface part

Advice Filter Semantic (i.e. acceptance and rejection)

Weaving specification Superimposition specification

Private members Encapsulation of objects

5 Some Challenging

Some challenging have encountered during the mapping stage, most of them due to

the CF semantic of messages processing:

1. Passing messages through filters and evaluating the filter elements is done in a

specific order corresponding to their declaration in CF model: Up-down for filter

set and from left to right for filter elements.

2. In case of a final decision made by a filter corresponding to a message, the

remaining elements in the same filter and the followed filters won’t be considered

for the current message.

To reflect the first point, we specify the dominance between aspects. The aspect

corresponding to the first filter will dominate the aspect corresponding to the second

that will dominate the aspect corresponding to the third and so on. The filter elements

order is enforced by declaring the corresponding advices in the same order of the

filter elements.

To reflect the second point, it is necessary to inhibit advices and aspects

corresponding to the remaining filter elements and filters. To attain this purpose, we

have added a Boolean instance variable initially evaluated to true, this instance must

be evaluated first, if it’s evaluated to true and the current message accepts the

condition part and matches the matching part then the instance must be enforced by

assigning it the false value to inhibit the handling of the current message by the

followed filter elements in the same aspect and in the other, then it apply their

corresponding advices. In addition, the last filter element must evaluate the Boolean

instance value to true to initialize the system.

6 Assessments and Comparison

The originality of our work resides in putting the approaches in a test stage by

confronting their concepts together. The translation carried out, proved its efficiency

to be helpful and allowed us to determine the main features, differences and

insufficiencies of approaches. We present them in what follows with some practical

results.

6.1 Main Features

Aspect Oriented Programming aims to separating a system to concerns which

represent either functional or a non functional parts. Therefore, we can characterize

each part independently and their mutual interactions using the two approaches.

Features of the functional part: The CF like AOP allows expressing their functional

part in terms of conventional object model and preserving its independency from the

non-functional part.

Features of the non-functional part: CF describes its non functional part using a

simple declarative style with a clear semantics by specifying filter interfaces. That

makes CF more independent from every existing paradigm such as Object Oriented

Programming; however, that increases the expressiveness of the approach. In contrast,

AOP implementation model uses a specific mechanism that is strongly oriented

toward the paradigm used in the functional part and that makes the code more

expressive and easy to understand.

Features of interactions between functional and the non-functional parts: The

functional part is that generates states and events that trigger the concerns. AOP is

provided with a wealthy join points model that allows expressing various concerns in

different ways. In opposite, the CF interaction is no more than messages intercepting.

So, the interaction part is richer in AOP than in CF model: It is possible to wrap

interesting points within methods such as variable sets and gets and then intercept

calls to these methods in AOP. Unfortunately, this cannot be done without altering the

functional code classes in CF.

Interactions between the functional and the non functional part signify that the first

one must be altered by the second; the interaction mechanism can be expressed in

terms of behavior substitution and behavior extending:

Behavior substitution: It means that substituting a behavior by another that may

belong to another object. In this case, we use the term delegation. The CF expresses

this concept directly by providing the substitution part in the filter elements

specification. AOP provides around advice to freely control calls: resuming or

substituting them.

Behavior extending: Consist in adding pieces of code to the original in a given point

of the execution. AOP allows additions by the three kinds of advices. In the CF, the

addition can take place by either by intercepting a call and using the filter Meta, that

can be used to substitute the called method by a method of an internal object that adds

the necessary behavior and resumes the original call, or by using selectors and

methods parts used in the superimposition specification.

The (Un) pluggability of the non functional part: The (un)pluggability of the non

functional part is one of the important features that must be considered in many real

applications at runtime. The AOP approach with all its implementation models is

statically based approach, where activating or deactivating some concerns must be

done in statically mode (at compile time), whereas, the CF approach presents the

advantage that it can be used at runtime such as Sina/ST model or compiletime such

as ComposeJ or ConcernJ model. So, the CF is more practiced than the AOP

approach.

6.2 Practical Results

Currently, we have achieved a CoAspectJ preprocessor that accepts as input CF

programs specified in ConcernJ and translates them in corresponding ASPECTJ

programs. The present version does not operate any optimization but allows us to

show that our translation rules are correct. Notice that those practical limitations did

not have negative influence on our work since our focus is on the conceptual

comparison. In some practical examples used with our preprocessor, we noticed that

the concerns generated code has a longer size and is more difficult to understand than

the original code.

7 Related Work

Because AOP and CF are new paradigms, compared to OOP, and since they are

continually evolving, only a limited amount of research work is devoted to the

assessment in general and the performance issues in particular. In the same time, this

type of research work is necessary to guide the evolution of the two approaches

towards promising issues. We classify current works in three groups:

1. Assessment through practical use [26, 18]. In this type of work, the objective is to

get a subjective assessment of concepts when used by programmers and/or

quantifying efforts and time necessary to implement an AOP application through

case studies.

2. Assessment through implementation of particular applications like design patterns,

exception handling, distribution, etc [8, 9, 16, 17, 19, 22]. Here the purpose is to

show how well emerging AOP approaches tackle subtle problems.

3. Implementation works. This covers works dedicated to the implementation of AOP

concepts and weaving techniques [10, 21].

Our work is complementary to all these works. Since one cannot expect to find out

significant insufficiencies while using emerging approaches in situations foreseen by

their authors, implementing AOP languages using these approaches becomes an

interesting issue and a challenging task. That is what makes our work original.

8 Conclusions

The mapping between AOP and CF approaches shows its efficiency. The conclusion

derived from this comparison shows that, even though each approach does not

constitute a ‘killer application’ for the other, neither subsumes the other. Indeed,

beyond the common features we noted differences and insufficiencies. Differences

preclude a straightforward and one-to-one mapping, whereas insufficiencies lead to a

translation where concerns generated code is tangled. For this last point, we put the

stress on the fact that the two approaches lack a suitable control of concerns needed to

enforce each other semantics. To improve the concern control in the CF, we proposed

a solution consisting of introducing sequences of substitution and a certain handling

of parameters. Moreover, we noticed that the translation of the whole AOP in CF is

not possible without altering functional code classes. It is the case for example of

accessing classes’ private members and picking out variables access and assignment

join points.

Perspectives of this work are numerous and aim to contributing to the emergence

of the unified concern modeling approach. Concepts mapping with other Advanced

Separation of Concerns such as multidimensional separation of concerns and

Adaptive Programming approach is considered one of our interest.

References

1. Aksit M., Tekinerdogan B., Aspect-Oriented Programming Using Composition Filters,

ECOOP'98 Workshop Reader, Springer Verlag, pp. 435, July 1998.
http://trese.cs.utwente.nl/composition_filters/

2. Aksit M., Tekinerdogan B., Solving the Modeling Problems of Object-Oriented Languages

by Composing Multiple Aspects Using Composition Filters, AOP'98 workshop position

paper, 1998. http://trese.cs.utwente.nl/composition_filters/

3. Aksit M., Bergmans L., Software Evolution Problems in Case of Inheritance and

Aggregation Based Reuse, Tutorial of the Trese Group, http://trese.cs.utwente.nl

4. Bennett K.H., Rajlich V.T., Software Maintenance and Evolution: A Roadmap, in Anthony

Finkelstein (Ed.), The Future of Software Engineering, ACM Press 2000, pp. 73-87

5. Bergmans L., Aksit M., Composing Crosscutting Concerns Using Composition Filters,

Communications of the ACM, Vol. 44, No. 10, pp. 51-57, October 2001.

6. Bergmans L., The Composition Filters Object Model, Dept. of Computer Science,

University of Twente, 1994. http://trese.cs.utwente.nl/composition_filters/

7. Glandrup M., Extending C++ using the concepts of Composition Filters, MSc. thesis, Dept. of

Computer Science, University of Twente, 1995. http://trese.cs.utwente.nl/composition_filters/

8. Gray Jeff, et al, Handling Crosscutting Constraints in Domain-Specific Modeling, CACM,

vol. 44, no. 10, pp 87-93, October 2001

9. Hannemann J., Kiczales G., Design Pattern Implementations in JAVA and ASPECTJ. In Proc. of

OOPSLA, ACM, (2002).

10. Hilsdale E., Hugunin J., Advice Weaving in ASPECTJ. Submitted to the 3rd International

Conference on Aspect-Oriented Software Development (AOSD). April 2004.
http://www.cs.indiana.edu/~ehilsdal/cv.2004-aosd-adviceweaving.pdf

11. HYPER/J web site: http://www.research.ibm.com/hyperspace/

12. Kiczales G. et al., Aspect Oriented Programming. In Proc. of European Conference on

Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science Vol. 1241,

pp. 220-242, 1997. http://eclipse.org/ASPECTJ

13. Kiczales G. et al, An Overview of ASPECTJ In Proc. of ECOOP, Springer-Verlag (2001).

14. Koopmans P., On the design and realization of the Sina compiler, MSc. thesis, Dept. of Computer

Science, Univ. of Twente, 1995.

15. Lehman M. M., Ramil, J.F., Rules and Tools for Software Evolution Planning and

Management. Annals of Software Engineering 11(1): 15-44 (2001)

16. Lippert M., Lopes C.V., A study on Exception Detection and Handling Using Aspect-Oriented

Programming, Proceedings of the 22nd international conference on Software engineering, Limerick,

Ireland, ACM Press, pp. 418 – 427, 2000

17. Mendhekar A., et al., RG: A Case Study for Aspect-Oriented Programming, Xerox PARC,

Palo Alto, CA. Technical report SPL97-009 P9710044, February, 1997.

18. Murphy G. C. et al, Evaluating emerging software development technologies: Lessons

learned from assessing aspect-oriented programming, IEEE Transactions on Software

Engineering, pp. 438-455, July/August 1999.

19. Natsuko N., Tomoji K., Implementing Design Patterns Using Advanced Separation of

Concerns, workshop on Advanced Separation of Concerns in Object Oriented Systems,

OOPSLA 2001

20. Ossher H., Tarr P., Multi-Dimensional Separation of Concerns using Hyperspaces. IBM

Research Report 21452, April, 1999.

21. Popovici A. et al, Just-In-Time Aspects: Efficient Dynamic Weaving for JAVA, Proc. 2nd Intl

Conf. Aspect-Oriented Software Development, March 2003.

22. Rajeev R. et al, A distributed concurrent system with ASPECTJ, ACM SIGAPP Applied

Computing Review, Vol. 9 Issue 2, July 2001

23. Rashid A. Weaving Aspects in a Persistent Environment. ACM SIGPLAN Notices. Volume

37,No, pp. 36-44, 2002

24. Tarr P. et al, N degrees of separation: Multi-dimensional separation of concerns. In Proc. of

the 21st International Conference on Software Engineering, pp. 107-119, 1999.

25. Walker D. et al, A theory of aspects, Proc. of the eighth ACM SIGPLAN international conference

on Functional programming, Volume 38 Issue 9, August 2003

26. Walker R. et al, An Initial Assessment of Aspect-Oriented Programming. Proc. of the 21st

International Conference on Software Engineering, pp. 120-130, 1999.

27. Wichman J. C., The Development of a Preprocessor to Facilitate Composition Filters in the JAVA

Language, MSc. thesis, Dept. of Computer Science, University of Twente, 1999.
http://trese.cs.utwente.nl/composition_filters

