
Desarrollo de Software Orientado a Aspectos, DSOA 2006 
Asociado a XV Jornadas de Ingeniería del Software y Bases de Datos 

J. Araújo, J. Hernández, E. Navarro y M. Pinto (Eds) 
Sitges (Barcelona), Octubre - 2006 

 
 

CONTRASTING ASPECTUAL DECOMPOSITIONS WITH OBJECT-
ORIENTED DESIGNS IN CONTEXT-AWARE MOBILE 

APPLICATIONS 

Montserrat Sendín and Jordi Viladrich  

GRIHO: HCI research lab 
 Superior Polytechnic School  

University of Lleida  
69, Jaume II St., 25001- Lleida, SPAIN  

e-mail: msendin@eps.udl.es, web: http://griho.udl.es/  
 
 

Key words: Context-awareness, metadata annotation, adaptation mechanisms 

Abstract. Designing context-aware systems results in a complex task because of the high 
number of crosscutting concerns inherent to this kind of systems that must be considered and 
processed, as well as mobile devices constraints. It is essential to follow the most orthogonal 
approach to provide the necessary pluggability to cope with different contextual needs and 
adaptation mechanisms. Our solution consists of providing context-awareness to already 
existing not context-aware mobile solutions in a non-invasive way, using a combination of 
Aspect Oriented Programming (AOP) and metadata techniques. We pursue minimal-coupling 
and minimal system-dependent solutions in order to build the generic framework for context-
awareness we are working on. We present the design developed for a particular case study in 
a mobile scenario. By providing three versions of the same application, we compare an 
aspectual version with a pure object-oriented and a patterned one, evaluating some measures 
related to the code size, a critical factor in the deployment of mobile applications.  
 
1. INTRODUCTION 
Current interactive systems for mobile scenarios should be prepared to face up and 
accommodate the continuous and diverse variability inherent to mobility, in which the 
environmental constraints play a key role. We are referring to the well-known Context-
Awareness problemi [1], proposed about a decade ago. To tackle context-awareness it is 
needed some kind of software infrastructure to provide proactive adaptive capacities, able to 
evolve as the contextual constraints vary [6]. We refer to a runtime adaptive engine with 
capacity to detect the context and react appropriately, adapting the underlying system on the 
fly. We call these kind of engines Implicit Plasticity Engines (IPEs henceforth) [5, 6]. 

                                                 
i Capacity of triggering automatic adaptations caused by changes in the application context. 



Montserrat Sendín y Jordi Viladrich 

 

According to our approach [6], these engines consist of a software architecture divided into 
three layers: (1) the logical layer (the business code); (2) the context-aware layer, (the 
contextual model and sensor controllers) and (3) the aspectual layer (adaptive mechanisms). 
The major difficulty for building these engines is dealing with the multiplicity of contextual 
concerns to control and process, which entangle each other. The way to effectively process 
that information is still a challenging problem for developers of this type of systems. We use a 
combination of AOP and metadata techniques, which provides a level of orthogonality so 
high that allows conceiving the different contextual concerns as easily pluggable components, 
reducing the context-awareness problem to a simple pluggabilityii mechanism.  
In this paper we focus on a case study and we present some design and implementation details 
of an IPE built to provide a common mobile application with context-awareness. We prove 
that the IPE is integrated with the business code in a seamlessly way. We compare the 
aspectual version for this engine with a pure object-oriented one and a patterned solution 
using GoF, bringing some experimental results according to the extension of the source code 
and the size of the deliverable code. We have chosen these parameters because the bytecode 
size is a critical factor in mobile applications, to the extent of being determinant in the 
deployment in real mobile appliances. The reasons why we have chosen these 
implementations are: (1) demonstrate that contextual concerns are crosscutting concerns; (2) 
measure how the contextual concern evaluated scatters with the business code and the effects 
in the code size in object-oriented solutions; (3) contrast if a patterned version reduces or not 
significantly these problems, with the aim of definitively demonstrating that an aspectual 
version is the best design solution for mobile context-aware applications.  
Finally, following with our goal of building a generic framework to derive particular IPEs (we 
call it Implicit Plasticity Framework –IPF-), we present the AOP-specific idioms we consider 
beneficial to be adopted to configure the IPF [5], on the way of learning from experience.  

2. TECHNICAL APPROACH: ASPECTS AND METADATA COMBINATION 

As it is well-known, one of the main new language constructions introduced by AOP is the 
joinpoint, which defines an interception point in the execution flow. If we base the 
definition of these points on a simple method signature, we will turn our aspectual design 
into a system-specific high-coupled one. This would be to the detriment of reusability.  
To capture joinpoints in a generic manner we use the metadata-based signature. It consists 
of capturing as joinpoints the methods in the core application that carry just a simple 
metadata annotation expressly supplied. Thus, associating annotations strategically in 
methods and classes needing contextual management and defining joinpoints based in 
these annotations, we manage to avoid knowing about the business code details. However, 
the impact in classes can be overwhelming -a phenomenon known as annotation clutter 
[4]. This inconvenient is solved using a special kind of aspect called annotator aspect [4]. 
Its goal is to encapsulate and extract the annotations to be supplied in the core system, 
relieving so the latter from having to embed expressly these annotations.  

                                                 
ii Facility to generate different versions of the same application depending on changing contextual needs. 



Montserrat Sendín y Jordi Viladrich 

 

With this strategy, the only “glue” to attach the adaptation mechanisms to the base system 
is reduced to a declarative section that gathers all the required annotations for the business 
code (the annotator aspect). Definitively, the logical layer does not need recoding at all. 
This approach allows reaching two opposed goals: removing the impact in the core 
system, and minimizing coupling between the aspectual and the logical layer. This 
contributes to gaining reusability and to obtain system-independent designs. As a result, 
we can say that this approach is not invasive. At the moment this combination of 
programming techniques is available in the Java world (J2ME and AspectJ5.  

3. DESIGNING AN IPE FOR A CASE STUDY 

3.1. Our Case Study: the NewsReader 

The main goal of this application is to extend the media to deliver daily news from a local 
digital newspaper provider to a considerable sector of people, through the mobile phone.  
The main functionalities for this application are the downloading, management and 
storage of the set of news that match the particular needs of the final user.  
In order to provide this application with context-awareness support, we have chosen a 
universal contextual concern: the brightness, thinking in mobile and changing scenarios. The 
aim is dynamically adapting the screen brightness to different external daylight levels 
whereas reading news on the move.  

3.2. Design and Implementation Details 

First of all, as we need to adapt the brightness level to each user interaction (commands 
and widgets events), the methods that need brightness management are specifically the 
commandAction and the itemStateChanged methods of the NewsReaderMIDlet main 
class. So, annotations (Lightable in Listing 1) have to be supplied to these methods to 
guarantee an appropriate brightness level when the user interacts with the application. Listing 
1 shows the annotator aspect, which associates, encapsulates and extracts these annotations.  

 public aspect NewsReaderAnnotator { 
    declare annotation: public 

 NewsReaderMIDlet.commandAction(..):@Lightable; 
 NewsReaderMIDlet.itemStateChanged(..):@Lightable;} 

 
Listing 1. Lightable annotations for the NewsReaderMIDlet class 

 
The aspect that treats the concern implemented is called Brightness aspect -a 
metadata-based aspect. Listing 2 shows a sketch that defines the management and 
adaptation mechanism related to our case study. Let us explain it with some detail.  
Following the metadata-based signature approach, there is a pointcut referring the Lightable 
annotation (LightedOps; line 4) that captures methods supplied with this annotation. The 
corresponding advice (line 9) is responsible for capturing a new sensor reading and 
processing the updating. The BrightMonitor class models the brightness sensor controller. 
In order to assure a periodic monitoring of the daylight sensor and so contribute to 



Montserrat Sendín y Jordi Viladrich 

 

proactivity, we use a thread (BrightnessThread). It starts running at the beginning of 
execution. This is the goal of the LaunchingMonitor pointcut, intercepting the midlet 
constructor (line 5). Changes detected by this thread are expressed as another joinpoint by 
the set designator (pointcut LightedWholly; lines 6-8). The corresponding advice (lines 
12-13) is in charge of doing the appropriate adjustment in the screen brightness, according 
to the current external daylight. DeviceControl is a class from the Nokia UI APIiii (line 
13). 
 
1 public aspect Brightness { 
2  private static BrightMonitor BrightContler = new BrightMonitor; 
3  private static int prevBness = 0; 
4 pointcut LightedOps(): execution(@Lightable * *.*(..)); 
5  pointcut LaunchingMonitor(): execution(* NewsReaderMIDlet());  
6  pointcut LightedWholly(int curBness): 
7    set (private int BrightContler.lvlBrightness) && 

args(curBness)  
8    && if ((curBness>prevBness+THRES)||(prevBness<curBness-

THRES)); 
9  before(): LightedOps() { BrightContler.updateBness(); } 
10  before(): LaunchingMonitor() { 
11    Thread t = new BrightnessThread(); t.start();  } 
12  after(int curBness): LightedWholly(curBness) { 
13    DeviceControl.setLights(0,curBness); prevBness = curBness;  }} 
 

Listing 2. Brightness aspect code 
 

Figure 1 depicts a sketch of the IPE described for our case study.  
 

 

Figure 1. IPE described for the NewsReader application 

 

                                                 
iii forum.nokia.com/java. In particular, the DeviceControl is a class from the com.nokia.mid.ui packet. 



Montserrat Sendín y Jordi Viladrich 

 

In the code in Listing 2 we still can detect some dependences and particular features that need 
to be removed to obtain a generic version of the aspect. Let us to see them: 
• the name of the main class –NewsReaderMIDlet- in line 5. As the dependence is only 

localized in the joinpoint definition, we apply the abstract pointcut idiom [3].  
• the reference to the particular class of the Nokia UI API (the class DeviceControl in 

line 13) makes this code runnable only on Nokia devices and emulators, ruining our 
purpose of genericity. As the device variability is in the advice, we apply the template 
advice idiom [2], encapsulating the special feature in specialized methods.  

• the conditional check pointcut in line 8. To abstract the code from this condition we 
apply the pointcut method idiom [3], encapsulating the decisions in a boolean method. 

4. COMPARATIVE STUDY 

4.1. Analysis goals, method and approach  

In order to evaluate the impact of aspects in context-aware applications for constrained 
devices, we have developed three different brightness-aware versions for the same non 
brightness-aware application, the J2ME news reader above presented. These versions are: 
(a) the pure aspectual version proposed in the previous section (Aspectual version 
henceforth); (b) a pure object-oriented version –without any design pattern- (OOriented 
version); (c) another object-oriented version using the Observer and the Singleton patterns 
(Patterned version). The three versions present identical behaviours.  
As mentioned previously, the metrics we have used to compare and analyse the three 
approaches are: (1) the bytecode size (the size of the jar version to be distributed in mobile 
phones) and (2) the number of lines of source code, paying special attention in which ones 
entangle the business code or either conform new classes in order to evaluate the impact in 
the business code. We also compare other quality considerations. 

4.2. Experimental results 

As it was expected, in the Patterned and OOriented versions the brightness concern is 
scattered throughout the code, tangling core functionalities. As expected, that is more 
relevant in the OOriented version. Trying to measure this, we have collected the size of 
the source code destined to the brightness concern, taking into account both the new 
package and the code scattered along the rest of the application to reach the behaviour 
pursued. These results are presented in Table 1. To help in the comparison, we also show 
these measures for the original application. 



Montserrat Sendín y Jordi Viladrich 

 

 
 Original 

version 
(a)    

Aspectual 
(b) 

OOriented 
(c)     

Patterned 
Total source code 5429 5746 5806 5783 

brightness package ― 317 264 279 
scattered code lines ― 0 113 75 
% of scattered code ― 0 35,3 21,1 

Nº of affected classes ― 0 20 19 

Table 1. Comparative in the extension of the source code and tangling effects among versions 

 
The second and third rows refer to parts of the code added for the new non-core 
functionality (neat and scattered respectively). The fourth row is the percentage of 
scattered code in relation to the wholly new code. The fifth row presents the number of 
classes coupled with the BrightMonitor class. Regarding the aspectual version, we can 
see that any class in the logical layer has been affected with the addition of the new 
functionality. There is no dependence –no coupling- due to all the management of the 
brightness concern is encapsulated in the context-aware layer (the brightness package) and 
in the aspectual layer (the annotator aspect and the Brightness aspect).   
According to the other metric analysed (the bytecode size), the results obtained are not 
favourable to the aspectual version. As we refer to the bytecode size, the weaving step is 
already applied by the compiler. We can see it is very inefficient, because for the shorter 
programs (the aspectual), the bytecode size is superior. That happens because the AspectJ 
compiler instruments the java code in order to provide some reflection capabilities, 
generating new and bigger classes. In particular, Aspectual version shows to be 51% 
bigger than Patterned and OOriented versions.  
Apart from that, in the aspectual version we have to also link de AspectJrt (the AspectJ 
runtime jar), necessary to make the deliverable code runnable. That results in a 
considerable increase in the final bytecode size, as it is shown in table 2. To make the 
interpretation clearer, we present the size of the bytecode both compressed and 
decompressed, and also the size of the libraries required. The most interested rows are the 
first and the sixth ones. The latter presents the source code uncompressed, once the 
weaving is completed. All the values are in Kbytes. 



Montserrat Sendín y Jordi Viladrich 

 

 
 Original 

version 
(a)    

Aspectual 
(b)    

OOriented 
(c)     

Patterned 
compressed bytecode 124 258 132 132 
uncompres. bytecode 219 481 234 234 

resources 7,7 7,7 7,7 7,7 
kxml lib 66,7 66,7 66,7 66,7 
AspectJrt ― 204 ― ― 

uncomp. source code 144 205 160 159 

Table 2. Comparative in the bytecode size among versions 

As it is shown, only the AspectJrt takes up 204 Kbytes uncompressed. It has been 
announced that a version specific for J2ME has to be delivered in short.  
Finally, we want to point that the comparative study has been made considering a unique 
context concern. It is important to notice that the lack of flexibility and the consequent 
problems in maintainability and so on can be extraordinarily incremented if we need to 
incorporate other types of contextual concerns in the same application, or if simply the 
contextual needs vary. That is this way, even for the Patterned version, because despite of 
using patterns, it becomes more difficult to isolate each contextual concern and to 
understand the code when the number of such concerns increases. However, in the 
Aspectual version, it is an easy operation consisting of weaving the selected aspects.  
 

6. CONCLUSIONS 

We present a metadata-based aspectual decomposition approach to provide seamlessly non 
context-aware systems with context-aware capacities. We prove that it causes no impact over 
the base application obtaining, at the same time, system-independent adaptation mechanisms, 
resulting in a non-invasive technique. Definitively, AOP is the better approach for our 
purpose. In particular, the patterned version analysed does not improves significantly 
regarding the object-oriented one. Furthermore, the reusability and extensibility problems 
make worse. Incidentally, the approach presented allows producing low resource-consuming 
components, suitable for compact devices and the pervasive design field, as proposed in [7]. 
From data obtained, we conclude that the burden on bytecode size while using aspects is not 
in our power. We will wait for a specific J2ME version. However, the aspectual version 
shrinks the source code. Independently, the aspectual version gains in other added values such 
as reusability, ortoghonality, pluggability, maintainability, essential for good designs. 

ACKNOWLEDGMENTS 
Work partially funded by Spanish Ministry of Science and Technology, grants TIN2004-08000-C03. 



Montserrat Sendín y Jordi Viladrich 

 

REFERENCES 

[1] G. Chen and D. Kotz, A survey of context-aware mobile computing research, 
Technical Report TR2000-381, Computer Science Dep., Dartmouth College (2000). 

[2] S. Hanenberg and A. Schmidmeier, “Idioms for Building Software Frameworks in 
AspectJ”, 2nd Workshop on ACP4IS (2003). 

[3] S. Hanenberg, R. Unland and A. Schmidmeier, "AspectJ Idioms for Aspect-Oriented 
Software Construction", Proc. of the EuroPlop'03, Irsee, Germany, (June 2003). 

[4] R. Laddad, AOP and Metadata: a perfect match. IBM DeveloperWorks, (2005). 
[5] M. Sendín and J. Lorés, “Towards the Design of a Client-Side Framework for Plastic 

UIs using Aspects”, 1rst Intern. Works. on Plastic Services for Mobile Devices (2005).  
[6] M. Sendín and J. Lorés, J., “Plasticity in Mobile Devices: a Dichotomic and Semantic 

View”, Workshop Engineering Adaptive Web, supptd. by AH 2004, pp. 58-67, (2004).  
[7] M. Sendín, “Implicit Plasticity Framework: a Client-Side Generic Framework for 

Context-Awareness”, Proc. of the I Intern. Conf. on Ubiquitous Computing (2006). 


