
Aspectual Decomposition in the Design of a Framework

for Context-Aware User Interfaces

Montserrat Sendín, Jesús Lorés

GRIHO: HCI research group

University of Lleida, 69, Jaume II St., 25001- Lleida, SPAIN
Tel: +34 973 70 2 700 Fax: +34 973 702 702

{msendin,jesus}@eup.udl.es

Abstract. In mobile computing scenarios, information should be available

every time, everywhere. Designing these kinds of systems results in a very

complex task because of the high number of crosscutting concerns inherent to

context-aware systems that must be modeled and automatically processed. The

combination of Aspect Oriented Programming (AOP) with new metadata fa-

cilities arises as a powerful set of tools that makes possible to map the system’s

non-core concerns to aspects seamlessly. In this paper we propose some design

strategies to design a client-side generic framework for context-aware user in-

terfaces aimed at serving the mobile software community.

1   Introduction

Nowadays technology allows users to keep on moving with computing power and

network resources at hand. Computing devices are shrinking while wireless communi-

cations bandwidth keeps increasing. These changes have increasingly enabled access

to information “anytime, anywhere and by everyone”. As a result, requirements for

dynamic and real time adaptation become more and more demanding. Consequently,

the design and development of User Interfaces (henceforth UIs) that obey to changing

users’ demands has become increasingly complex. Current interactive systems for

mobile scenarios should be prepared to face up and accommodate this continuous and

diverse variability. They should be provided with adaptive capacities, able to evolve

as the real time constraints vary [9]. The aim is to provide continuous adaptation to

the UI –appearance, contents, and even functionality to be offered.

Nevertheless, the real time constraints related not only to resources -server avail-

ability, device physical restrictions-, but also others related to the user –incremental

preferences and needs-, and even to the environment –position, daylight-, are volatile

and require sophisticated adaptive capabilities that today are still challenging.

This problem is well known in the HCI (Human Computer Interaction) community

as Context-Awareness. Since it was proposed about a decade ago, many researchers

have studied this topic and built several context-aware applications. Context-aware

systems, however, have never been widely available to everyday users. It is clear that

context-awareness field is an old but rich area for research [1].



In particular, it is needed some kind of software infrastructure to support context-

aware systems. We refer to a runtime adaptive engine with capacity to detect the con-

text and react appropriately. An engine in charge of applying transparently the neces-

sary adjustments to the UI and thereby adapting to contextual changes on the fly. We

have named it implicit plasticity engine (henceforth IPE) in our previous works [7,8].

The major difficulty for building this engine is dealing with the multiplicity of real

time constraints inherently related that a context-aware interactive system must control

and process, which generally entangle each other. Concerns that obey these features

are commonly called crosscutting concerns. They even present diverse decomposition

dimensions, rebounding in a major increase of complexity. Moreover, the way to

effectively process that information is still a challenging problem for developers of

this type of systems. In [8], a reflection-based approach is presented in order to mod-

ify application’s behaviour to adapt it to changing network conditions. It allows per-

forming self-modifications of existing behaviour, making possible to separate system

and adaptation mechanisms. However, this separation of concerns is far from ideal.

We propose AOP as a way to enhance the independence not only between these two

issues, but also between the different concerns that need adaptation, obtaining thus the

suitable orthogonality to reach reusability. An aspect-based adaptation equally pro-

vides self-modifications in the UI, but also reduces coupling and enhances reusability.

For some years, our research group has been involved in a project focussed on the

cultural heritage area. We have developed different prototypes to assist the visit of an

archaeological site. At present, we are working in an upper prototype to offer higher

adaptation and extend its context-aware functionality beyond the localization issue.

We are also working in a tele-aid system for high-mountain rescue and in a personal-

ization module to be implanted in a digital newspaper archive. Our final goal is to

generate a generic framework to easily derive the suitable IPE for a particular system.

With this aim, we are determined to apply the most orthogonal design strategies to

solve the most challenging design requirements. Here we outline the approach, general

structure, design strategies and main guidelines to generate it.

2    Initial Considerations for Orthogonality

2.1 Design Requirements and General  Structure

To generate a generic framework we must obtain the following properties: transpar-

ency in adaptation and reusability to different families of systems, different needs of

context representation and different adaptation mechanisms. To reach these goals, it is

crucial that the adaptive mechanisms and the system core functionality be handled

orthogonally. Adaptive capabilities must also be isolated from each other, to avoid

conflicts and to evolve individually. As it has been exposed in our previous work [9],

we need to divide our framework into three layers. The logical layer contains the

application core functionality. The context-aware layer contains the control and mod-

eling of the real time constraints: the contextual model. This layer carries out the con-



text detection, maintaining information regarding the context for further use. Finally,

there is an intermediary layer, responsible for doing the adaptation: an aspectual

layer.

As it has been mentioned, the real time constraints constitute crosscutting con-

cerns. According to the approach presented in [7], and as it has been proposed in our

previous works [8,9], we use AOP [4] to integrate adaptation mechanisms for real

time constraints in the system operation. We model them as aspects that intercept the

operative of the core application to apply the suitable adjustments to the UI, according

to the current state of the contextual model. The aspectual layer acts as a transparent

link, reflecting the contextual model state in the UI along performance.

2.2  Why Aspects and Metadata Are a Good Combination?

A naive use of aspects, i.e. using pointcuts based on the method signature would turn

out a system-specific aspectual design. This approach would generate strong coupling

between the logical and aspectual layers. Even if we applied the participant pattern

[5], we would be able to reduce the coupling from N-to-1 to a minor dependency, but

it is still far from ideal. We need to capture join points in a generic manner.

We propose to use a metadata-based signature to capture the required join points.

These join points will be the methods in the core application that carry just a simple

metadata annotation expressly supplied. We propose this approach as the most suit-

able to reach two opposed goals: minimizing the impact –need of recoding- in the core

system, and minimizing coupling with the system, gaining that way reusability.

At the moment this combination of programming techniques is currently available

in the Java world. Particularly, the J2SE 5.0 version brings a new metadata facility

allowing a powerful combination of metadata and AOP, mutually beneficial. As AOP

language we have chosen AspectJ. It provides the so-called metadata-based pointcuts.

3 Putting Aspects and Metadata to Work

To illustrate the design option we propose for the aspectual layer, we have chosen a

concern typically found in context-aware applications: the localization concern. We

will refer to it as the Localization aspect (a metadata-based aspect). Suppose the

underlying core application encapsulated in a unique class: the coreApplication

class. Every method needing localization management would be supplied by a Local-

izable type annotation. The Localization aspect, thus, would define a pointcut to

capture all the methods in classes that carry this kind of annotation. See figure 1.

Fig. 1. Localization aspect diagram

    @Localizable

method1(): void

. . .

     <<class>>
coreApplication

<<injects>> <<aspect>>

Localization

pointcut LocalizedOps():

@annotation (Localizable)



Listing 1 shows a sketch of the aspect that would define the management and ad-

aptation mechanism related to the localization concern in a particular system.

1 public aspect Localization {

2 boolean LocationChanged() {. . .}

3 – other method definitions

4 public pointcut LocalizedOps():execution(@Localizable

5 * coreApplication.*(..));

6 public pointcut LocalizedWholly(coreApplication core)

7 :if (LocationChanged())

8 && target(core);

9 Object around(): LocalizedOps() { -- the associated advice }

10 Object around(coreApplication core)): LocalizedWholly(core){

11 try {

12 loc=EnvironmentModel.getLocation();

13 String st=adaptView(loc); mountView(st); proceed(st);

14 } catch (Exception ex) {. . .}  } }

Listing 1. Localization aspect code

Localization aspect listed above defines two pointcuts. Pointcut Local-

izedOps (lines 4-5) is the one that captures the execution of any method of the core

class carrying the Localizable annotation. Pointcut LocalizedWholly (lines 6-8) is a

conditional check pointcut. It captures any join point occurring after the condition

expressed in LocationChanged() method
1
 (line 2) evaluates to true. The aim is

to automatically display the presentation corresponding to the user’s location every

time the user moves from zone to zone. Thus, the corresponding advice (lines 10-14)

adapts the view before displaying it. Finally, it leaves the system code to proceed

normally. Listing 2 shows a sketch for the core class.
public class coreApplication {

  @Localizable

   public void method1() {. . .}

  @Localizable

   public void method2() {. . .} . . .}

Listing 2. The coreApplication class with annotations

The impact in classes is limited only to metadata attached to program elements.

However, it is quite common that most of the methods in a class need to carry an an-

notation. Further, many systems require various annotations, leading to many annota-

tions per method, a phenomenon known as annotation clutter [6]. That can be im-

proved doing a refactoring step, using a special kind of aspect called annotator aspect

[6]. Its goal is to encapsulate the annotations to be supplied in the core system. Listing

3 shows the annotator aspect for the coreApplication class.
public aspect coreAppAnnotator {
   declare annotation: public

       coreApplication.*(..):@Localizable;   }}

Listing 3.  Localizable annotations for CoreApplication

With the annotator aspect approach, the only “glue” to attach the adaptation

mechanisms to the base system is reduced to a declarative section, which is encapsu-

lated in an annotator aspect. If we embedded this annotator aspect in each class,

                                                          
1
 Inside this method, the aspect could check the state of data members expressly introduced by the aspect

in the underlying classes. The use of the if pointcut improves the option of using the pointcut method.



following the participant pattern, as shown in [6], classes would require recoding. A

better option is to extract annotator aspects from classes, joining them in the aspec-

tual layer. Besides, it makes more sense to define a only annotator aspect for the core

system that one per class. Figure 2 depicts a sketch of an IPE for a simple application.

The EnvironmentalModel component stores for further use the environmental factors.

Fig. 2. IPE for a simple application

The main idea around the customization concern is to make user’s customization

features evolving. To undertake this issue we need a different treatment because the

input, which needs to be incrementally stored, is not received from sensors. It comes

from the execution of the application. That implies that the aspectual layer acts not

only as an adaptive means, but also as a listener from the events and actions occurred

in the core system. It must capture information about the user’s preferences and inter-

ests, providing feedback to the dynamic user model: the EvolutiveProfileModel. This

aim is assigned to the ProfileCatcher aspect. Then, the ProfileAdapter

intercepts the core application in order to adapt the UI, according to this user model.

To solve interaction of aspects phenomenon we can appeal to aspect precedence.

context-aware layer

aspectual layer

GPS

sensors

connection

logical layer

Provides transpar-

ent adaptation to the

base functionality

<<aspect>>

Localization

pointcut LocalizedOps():

@annot (Localizable)

coreApplication

method1(): void

 method2(): void

<<aspect>>

ProfileCatcher

pointcut CatcherOps():

@annot (ProfileCatching)

<<aspect>>

ProfileAdapter

pointcut AdaptiveOps():

@annot (ProfileAdaptive)

EnvironmentModel

getLocation(): Location

currentLocation: Location

EvolutiveProfileModel

     add (p:Preference): void

remove (p:Preference): void

update (p:Preference): void

userPreferences: Preferences

<<uses>>

<<injects>>
<<injects>>

<<injects>>

<<uses>>

<<aspect>>

coreAppAnnotator

declare annotations

<<uses>><<uses>>

<<annotates>>

<<uses>>

<<uses>>



4 Further Guidelines towards Abstraction

In the line of designing a generic and flexible framework to different issues, we can

make the following considerations according to each issue.

Adaptation mechanisms. In the aspect definition in Listing 1, we can note some

system-dependencies that considerably limit orthogonality and reusability. To offer

flexibility in adaptation mechanisms, we can appeal to aspect hierarchy with abstract

aspects at the top. Shall we outline some refactoring steps to surpass dependencies.

In particular, the system dependency in line 5 could be solved simply including the

wildcard also in the class name. Despite of the core application is composed by a set

of classes, this pointcut would only affect classes carrying the Localizable annotation.

However, it is not always so trivial. We might need to be more selective in the

weaving stage –e.g. treating the localization concern only in one class, in spite of

annotations have been spread through classes. Another example of specialisation

could be requiring another pointcut type, instead of the “execution” one. Both cases

would need to redefine the associated pointcut in sub-aspects.

Using aspect hierarchy, we can design an abstract aspect, and then choose between

the following options: define abstract pointcuts –the case just referred-, leave the sub-

aspect to define new pointcuts, refactor advices, or any combination of them.

• In the first case, sub-aspects extend abstract aspects specializing their pointcuts.

• Regarding the dependency in lines 6, 8 and 10, we need the second solution: to

define a new pointcut, to also encapsulate the associated advice in the sub-aspect.

• On many situations, it is not necessary to define the complete advice in the sub-

aspect, but only a method that encapsulates some special needs. Then, we can use

advice refactoring. Sub-aspects would only redefine that method. In general, this

strategy is particularly appropriate when the advice contains some variabilities

from application to application. However, it could also be considered for different

localization management in the same application. For example, in the second ad-

vice from Listing 1 (lines 10-14), instead of adapting the view (line 13), we could

require for some classes to send a remote query to receive the view from a server.

In this case, we would only need to refactor the adaptView method.

That is a smart way to specialize the code corresponding to the adaptation mecha-

nisms. In particular, this idea corresponds to the Template advice idiom [3].

Of course, it can be used other types of refactoring, other types of emerging AOP-

specific patterns and idioms to make good designed AspectJ applications [3]. For

example, a common situation is when you have different aspects, which depict re-

dundant code inside the application. We can use the composite pointcut idiom [2].

Domains of application. It is possible to deploy libraries of aspects. Thus, each par-

ticular application -even each particular use- is able to establish the set of concerns it

needs to manage. That will determine which aspects need to be charged in memory.

For example, in an archeological site it is required to consider the daylight constraint

to adjust the UI. However, if we want to adapt this framework to an indoors museum

guide, this concern is useless. Incidentally, in the tele-aid system another kind of con-

cerns are required, such as the altitude and ascent speed, in order to assist high-

mountain rescues. We could build an aspect package related to mountain conditions.



Contextual needs. Equally, we need to adapt the context-aware layer to the aspectual

one, in order to map aspects with data stored in the contextual model. This is the rea-

son why it is essential to obtain flexibility also in the context-aware layer. Flexibility

in the contextual representation can also be obtained by means of classes hierarchy in

the components contained in the context-aware layer.

5   Conclusions

Self-adaptive context-aware applications are exposed to a world where real time

constraints change continuously. The design of these systems is prone to mismatching.

An aspectual layer in the adaptive framework is essential to reach a better separa-

tion of concerns for these kinds of applications. However, how attaching this layer to

the base application is determinant to obtain the decoupling between layers we pursue.

We present a metadata-based aspectual decomposition approach. We have proven that

it causes the minimum impact over the base application obtaining, at the same time, a

system-independent adaptation mechanism. Incidentally, arranging and deploying an

appropriate hierarchical library of aspects would contribute to the flexibility and ex-

tensibility we pursue to adapt the framework to different domains of application.

Acknowledgements. This work is partially funded by the Spanish Ministry of Science

and Technology, grants TIN2004-08000-C03-03.

References

1. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Re-

port TR2000-381. Computer Science Department, Dartmouth College, Hanover (2000)

2. Hanenberg, S., Costanza, P.: Connecting Aspects in AspectJ: Strategies vs. Patterns. 1rst

Worshop on Aspects, Components, and Patterns for Infrastructure Software (2002)

3. Hanenberg, S., Schmidmeier, A.: Idioms for Building Software Frameworks in AspectJ.

2nd Worshop on Aspects, Components, and Patterns for Infrastructure Software (2003)

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. Irwin, J.:

Aspect-Oriented Programming. In: M. Aksit and S. Matsuoka (eds.): 11th ECOOP’97.

Lecture Notes in Computer Science, Vol. 1241 (1997) 220-242

5. Laddad, R.: AspectJ in action. Practical Aspect-Oriented Programming. Manning Publica-

tions (2003)

6. Laddad, R.: AOP and Metadata: a perfect match. IBM DeveloperWorks (2005)

7. Mesquita, C., Barbosa, S.D. J., De Lucena, C.J.P.: Towards the identification of concerns

in personalization mechanisms via scenarios. Proc. of Workshop on Early Aspects (2002)

8. Periquet, A.I., Lin, E.: Mobility Reflection: Exploiting Mobility-Awareness in Applications

by Reflecting on Distributed Object Collaborations. Technical Report 97-CSE-6, Southern

Methodist University (1997)

9. Sendín, M., Lorés, J.: Local Support to Plastic User Interfaces: an Orthogonal Approach.

Selection of HCI related papers of Interacción 2004. Springer-Verlag (2005) in press


