
Towards a Cost-Effective Interconnection

Network Architecture with QoS and Congestion
Management Support�

A. Mart́ınez1, P.J. Garćıa1, F.J. Alfaro1, J.L. Sánchez1, J. Flich2,
F.J. Quiles1, and J. Duato2

1 Departamento de Sistemas Informáticos, Escuela Politécnica Superior
Universidad de Castilla-La Mancha, 02071 - Albacete, Spain

{alejandro, pgarcia, falfaro, jsanchez, paco}@dsi.uclm.es
2 Dept. de Informática de Sistemas y Computadores, Facultad de Informáica

Universidad Politécnica de Valencia, 46071 - Valencia, Spain
{jflich, jduato}@disca.upv.es

Abstract. Congestion management and quality of service (QoS) pro-
vision are two important issues in current network design. The most
popular techniques proposed for both issues require the existence of spe-
cific resources in the interconnection network, usually a high number of
separate queues at switch ports. Therefore, the implementation of these
techniques is expensive or even infeasible. However, two novel, efficient,
and cost-effective techniques for provision of QoS and for congestion man-
agement have been proposed recently. In this paper, we combine those
techniques to build a single interconnection network architecture, pro-
viding an excellent performance while reducing the number of required
resources.

1 Introduction

High-speed interconnection networks have become a major issue on the design
of several computing and communication systems, including systems for parallel
computing since they provide the low-latency and high-performance demanded
by parallel applications. Unfortunately, the network is also becoming the most
expensive and power consuming part of these systems.

On the other hand, networks have been traditionally overdimensioned in order
to avoid high link utilization, but currently this is an expensive practice. There-
fore, new and clever solutions for the problems related to high link utilization
are needed.

One of these problems is network congestion. If not managed, congestion
dramatically degrades network performance because it leads to blocked packets1

� This work was partly supported by the Spanish CICYT under grant TIC2003-08154-
C06, by Junta de Comunidades de Castilla-La Mancha under grant PBC-05-005, by
the Spanish State Secretariat of Education and Universities under FPU grant, and
by UPV under Grant 20040937.

1 We are considering lossless networks like InfiniBand, Quadrics, or Myrinet.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 884–895, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards a Cost-Effective Interconnection Network Architecture 885

that prevent the advance of other packets stored in the same queue, even if they
are requesting free resources further ahead. Moreover, a high utilization of the
links may also degrade the performance observed by the users, which leads to
the necessity of techniques to provide the traffic with quality of service (QoS).
In this case, it is necessary to avoid interferences from best-effort traffic, which
only demands a “deliver when possible” service, and guarantee that traffic with
strict requirements is properly served.

Many techniques have been proposed both for provision of QoS and for conges-
tion management. Unfortunately, most of them rely on the use of a considerable
number of queues at the switches. For instance, the use of virtual output queues
has been proposed for handling congestion, but it requires as many queues per
switch port as end-points in the network. This increases switch cost due to the
silicon area required for implementing such number of buffers.

Regarding QoS provision, the use of virtual channels (VCs) is a common so-
lution, but, although current interconnect standards propose 16 or even more
VCs, most commercial components do not offer so many VCs because it is too
expensive in terms of silicon area. In fact, the trend followed nowadays by in-
terconnect manufacturers in their new products is to increase the number of
switch ports instead of increasing the number of VCs per port [1]. Note that
for high-speed, single-chip switches, proposals requiring many queues could be
considered if external DRAM is available for implementing the buffers. However,
in this case, the low latencies demanded by QoS-requiring traffic could not be
provided.

Recently, two novel, efficient, and cost-effective techniques both for provision
of QoS and for congestion management have been proposed. The first one [2]
consists in a full QoS support with only two VCs. The RECN [3,4] congestion
management strategy is the second one. The implementation of both proposals
requires a very small number of queues per port, while they offer the same
effectiveness as other more silicon-requiring techniques.

In this paper, we study in detail how these two techniques can be combined
to form a single architecture that uses a reduced number of queues per port.
We also show the performance achieved by the resulting switch architecture in
comparison with the performance reached by more expensive solutions.

The rest of this paper is structured as follows. In Section 2, we review the
techniques proposed for congestion management and, in particular, the RECN
mechanism. Next, in Section 3 we review the proposals for QoS support in inter-
connection networks and specially the proposal that uses only two VCs. Section 4
presents the proposed interconnection network architecture, whose performance
evaluation is presented in Section 5. Finally, in Section 6 some conclusions are
drawn.

2 Dealing with Congestion in Interconnection Networks

The risk of congestion in interconnection networks is a well-known problem,
and many strategies have been proposed to deal with it. The simplest of those

886 A. Mart́ınez et al.

strategies are the network overdimensioning and the dropping of packets in con-
gestion situations. However, none of them are suitable for modern interconnec-
tion networks: Overdimensioning the network implies a high cost and power
consumption, while the dropping of packets implies packet retransmission that
increases packet latency, so current interconnection networks are usually lossless.

Other more elaborated techniques have been specifically proposed for avoid-
ing or eliminating congestion. For instance, proactive strategies are based on
reserving network resources for each data transmission, requiring a traffic plan-
ification based on network status [5]. However, this status information is not
always available, and the resource reservation procedure introduces significant
overhead. On the other hand, reactive congestion management is based on no-
tifying congestion to the sources contributing to its formation, in order to cease
or reduce the traffic injection from those sources [6]. Unfortunately, these solu-
tions are not quite efficient due to the delay between congestion detection and
notification.

Other congestion management strategies focus on eliminating the main neg-
ative effect of congestion: The head-of-line (HOL) blocking. This phenomenon
happens when a blocked packet at the head of a FIFO queue prevents the ad-
vance of other packets at the same queue, even if those packets require avail-
able resources. This effect may degrade network performance dramatically, since
data flows not contributing to congestion may advance at the same speed than
congested flows. In fact, an effective HOL blocking elimination would turn con-
gestion harmless. In that sense, many HOL blocking elimination strategies have
been proposed: virtual output queues (VOQs) [7], dynamically allocated multi-
queues (DAMQs) [8], congestion buffers [9], etc. Most of these techniques rely on
allocating different buffers for storing separately packets belonging to different
flows.

In general, traditional HOL blocking elimination techniques are scalable or
efficient, but not scalable and efficient at the same time. For instance, the use
of VOQs at network level requires as many queues at each port as end-points
in the network, being so an effective but not scalable technique. A variation of
VOQ uses as many queues at each port as output ports in a switch [10]. So, this
technique is scalable, but it does not eliminate completely HOL blocking, only
the switch’s internal HOL-blocking.

Recently, a new HOL blocking elimination technique has been proposed:
RECN [3,4]. RECN eliminates HOL blocking in a scalable and efficient way.

2.1 RECN Description

RECN (Regional Explicit Congestion Notification)[3] is a congestion manage-
ment strategy that focuses on eliminating HOL blocking. In order to achieve it,
RECN detects congestion and dynamically allocates separate buffers for each
congested flow, assuming that packets from non-congested flows can be mixed
in the same buffer without producing significant HOL blocking. Therefore, max-
imum performance is achieved even in the presence of congestion.

Towards a Cost-Effective Interconnection Network Architecture 887

RECN requires the use of some source deterministic routing in order to address
a particular network point from any other point in the network. In fact, RECN
has been designed for PCI Express Advanced Switching (AS) [11], a technology
that uses source routing2. AS packet headers include a turnpool made up of
31 bits, which contains all the turns (offset from the input port to the output
port) for every switch in a route. Thus, a switch, by inspecting the appropriate
turnpool bits, can know in advance if a packet that is coming through one of its
input ports will pass through a particular network point.

In order to separate congested and non-congested flows, RECN adds a set
of additional queues (set aside queues, SAQs) to the standard queue at ev-
ery input and output port of a switch. While standard queues will store non-
congested packets, SAQs are dynamically allocated and used to store packets
passing through a congested point. Every set of SAQs is controlled by means of
a CAM (Content Addressable Memory). Every CAM line contains information
required for identifying a congested point and for managing the associated SAQ.

Whenever an input or output standard queue receives a packet and fills over
a given threshold, RECN detects congestion3. Then, a congestion notification is
sent upstream to the packet sender port (an input port of the same switch or
an output port of an upstream switch). These notifications include the turnpool
required to reach the congested point from the notified port. Upon reception of
a notification, a port allocates a new SAQ and fills the corresponding CAM line
with the received turnpool. Since that moment, every packet received in this port
will be stored in the allocated SAQ if it will pass through the associated congested
point (this can be deduced from the packet turnpool). As non-congested packets
are stored in different queues (the standard ones), congested packets cannot
cause HOL blocking.

Furthermore, if any SAQ becomes congested, another notification will be sent
upstream, and the receiving port should allocate a new SAQ. This procedure
can be repeated until the notifications reach the sources. Therefore, there will be
SAQs for storing congested packets at every point where otherwise these packets
could produce HOL blocking. Moreover, congested packets cannot fill the port
memory completely as RECN uses a SAQ-specific Xon/Xoff flow control.

RECN also detects congestion vanishment at any point, in such a way that
the SAQs assigned to this point can be deallocated and later re-allocated for
new congested points. This allows RECN to eliminate HOL blocking while using
a reduced number of SAQs. Further details about RECN can be found in [3,4].

3 QoS Support in Interconnection Networks

During the last decade, several switch architectures with QoS support have been
proposed. Among the most recent proposals are the industry standards Infini-
2 However, note that RECN could be applied on any network technology if it allows

the use of source deterministic routing.
3 Actually, in order to detect at input ports which output port is congested, RECN

divides each standard queue into several small detection queues [4].

888 A. Mart́ınez et al.

Band and PCI Express Advanced Switching (AS). The InfiniBand standard [12]
considers up to 16 VCs, while the AS specification [11] incorporates up to 20
VCs (16 unicast, 4 multicast). However, the implementation of such number
of VCs would require a significant fraction of silicon area and it would make
packet processing a time-consuming task. Consequently, as far as we know, no
implementation of these standards includes the full number of proposed VCs.

Several proposals have been presented in order to reduce the hardware re-
quired for QoS provision, some of them using only two VCs. For instance, the
Avici TSR [7] is able to segregate premium traffic from regular traffic. However,
it is limited to this classification and cannot consider more categories. Also, the
architecture proposed in [13] maps multiple priority levels onto two queues. How-
ever, this proposal is aimed at a single-stage router based on a single buffered
crossbar with small buffers at the crosspoints that are split into two VCs.

In contrast, the technique proposed in [2] uses two VCs while being simpler
and more generic, as it is shown in the next section.

3.1 Full QoS Support with 2 VCs

The key idea of the proposal explained in [2], is quite simple: Assuming that the
links are not oversubscribed, all the traffic flows through the switches seamlessly.
Therefore, it is possible to use only two VCs at the switch ports. One of these
VCs is used for QoS packets and the other one for best-effort packets. In [2], a
connection admission control (CAC) is used to guarantee that QoS traffic will
not oversubscribe the links.

Another cornerstone of this proposal is to reuse at the switches the scheduling
decisions taken at the network interfaces regarding the injection of traffic from the
different classes. Specifically, it is assumed that packets are ordered at network
interfaces according to a static priority criterion. In this way, every packet would
be stamped with a priority (or service) level (typically, 8 or 16 levels). This is
necessary because packets arriving at the switches come in the order specified by
the interfaces, and the switch must merge these packet flows at the output ports.
The ordering established at network interfaces does not need to be changed at
any switch in the path because queuing delays for QoS traffic will be short.

Although it is assumed that QoS traffic does not oversubscribe any link, no
assumption is made about best-effort traffic. However, network interfaces are
still able to assign the available bandwidth (the fraction not consumed by QoS
traffic) to best-effort traffic in the configured proportions. In this way, switches
can still take into account the modest QoS requirements of this kind of traffic.
Obviously, this is a coarse-grain QoS provision.

Note that this proposal does not aim at achieving a higher performance but,
instead, at drastically reducing buffer requirements while reaching the same lev-
els of performance and behavior as systems with many more VCs. In this way,
an effective QoS support could be implemented at an affordable cost.

Note also that some aspects of this proposal could be simplified or improved
if it is combined with the RECN strategy. For instance, instead of the CAC ap-
plied to QoS traffic in [2], the RECN mechanism could detect if some traffic flows

Towards a Cost-Effective Interconnection Network Architecture 889

start producing congestion, and immediately segregate these flows from the non-
congested ones. Moreover, regarding best-effort traffic, RECN can make impor-
tant contributions. Specifically, it can guarantee the maximum throughput for
best-effort traffic, avoiding also that congested flows affect non-congested traffic.

As RECN also requires a reduced number of resources, the combination of
both techniques would allow to provide effective QoS support and congestion
management at a low cost in terms of silicon area. The architecture we propose
for combining both techniques is explained in the following section.

4 Proposed Interconnection Network Architecture

Our proposal consists in a interconnection network architecture able to sup-
port QoS and to cope with congestion while requiring reduced resources. The
strategies we propose affect both network interfaces and switches.

(a) Switch organization (b) Input port organization

Fig. 1. Proposed architecture

Figure 1 (a) shows a logical view of the switch organization, which consists in a
combination of input and output buffering. Note that all the switch components
are intended to be implemented in a single chip. This is necessary in order to
offer the low cut-through latencies demanded by current parallel applications.

The innovations of our proposal are in the port design. The organization of
an input port can be seen at Figure 1 (b). There are only two VCs: VC 0 is
intended for QoS traffic, while VC 1 is intended for best-effort traffic. As can be
seen, each VC is further divided into 16 queues. The first 8 queues of each VC
are the detection queues, so each queue corresponds to each switch output port.
The next 8 queues of each VC are the SAQs, where congested traffic is stored.

We include an additional field in the CAM lines used for managing the SAQs:
The service level (SL). This new field will be used, in addition to the turnpool,
for assigning a SAQ to a specific point and to a specific SL. Therefore:

– When a standard queue reaches the detection threshold, the corresponding
congestion notification includes now, in addition to the turnpool, the SL of
the packet responsible of the detection.

– Each allocated SAQ contains traffic of a single SL.
– A single turnpool may be replicated for several SAQs, with different SLs.

890 A. Mart́ınez et al.

So, the congestion detection process is slightly different than in RECN without
QoS support. As a detection queue may reserve several SAQs (each for a different
SL), a bit mask is required to control which SLs have reserved a SAQ.

The output ports of the switch replicate the structure of the inputs, with two
main differences. There is no need to decode the messages and detection queues
refer to the outputs of the next switch. The network interface design would be
very similar to this, although, in this case, a VC exists for each SL.

The scheduling at the switches goes as follows. There is a strict precedence
of VC 0 (QoS traffic) over VC 1 (best-effort traffic): As long as there are ready
packets of VC 0, no one from VC 1 is eligible. Among the queues inside each VC,
a simple round-robin algorithm is applied. Note that RECN ensures that none of
the SAQs will occupy all the buffer space and, therefore, this simple scheduling
is sufficient.

The area requirements study for this design is based on the process detailed at
[14]. We do not have yet a detailed Verilog switch design, but we can obtain good
estimations by considering the area consumption of each individual component.

Table 1. Area consumption by components

Module Area 0.18 µm Area 0.13 µm

Buffers (32 × 16Kbytes) 64 mm2 32 mm2

Crossbar and datapath 10 mm2 5 mm2

Scheduler 5 mm2 3 mm2

Total 79 mm2 40 mm2

In Table 1, the aforementioned estimations can be found. The memory area
consumptions are taken from memory datasheets [15]. The number of buffers in
the switch comes from 8 ports × 2 VCs × input and output. Keep in mind that
at the placement and routing phase of the design process, the wiring introduced
could increase these figures. Therefore, this design would take 100-150 mm2

using 180 nanometers technology.

5 Performance Evaluation

We have evaluated the proposed architecture by means of simulations. In this
section, we will detail the simulated scenarios and we will offer results showing
the behavior of our proposal in comparison with the one of traditional switches.

5.1 Simulated Architecture

We have supposed a workload of 8 SLs, with decreasing priority, such that SL
0 has the highest priority and SL 7 has the lowest. We have also assumed that
SLs from 0 to 3 are QoS-requiring traffic, and share the same VC in the two-
VC architecture. Moreover, we also suppose that SLs from 4 to 7 are best-effort
traffic, and share the other VC in the two-VC scheme.

Towards a Cost-Effective Interconnection Network Architecture 891

We have run simulations for three architectures. First, we have tested the
performance of the ideal architecture, using VOQ at the network level combined
with a VC per SL (VOQ Net). Also, we have tested a more realistic architecture,
using VOQ at the switch level and as many VCs as SLs (VOQ Switch). Finally,
our proposed architecture, combining the use of only 2 VCs at the switches with
the use of RECN (RECN 2 VCs).

The network used in the tests is a folded (bidirectional) butterfly multi-stage
interconnection network (MIN) with 128 ports (3 stages). We have chosen a MIN
because it is a usual topology for computer clusters and IP routers. However, our
proposal is valid for any other network topology, including direct networks. Other
assumptions are based on the AS specifications [11]. For instance, maximum
packet size is 2 Kbytes and link bandwidth is 8 Gb/s. Another assumption is
the use of source routing, since it is needed by RECN.

The VOQ Switch and RECN 2 VCs architectures consider 8 ports and 32
Kbytes of buffer space per port. Note that the buffer space per VC in the RECN
2 VCs case is bigger than in the VOQ Switch case in a factor of 4. Also note that
the scheduler considers 64 queues per port in the VOQ Switch design (8 VCs ×
8 VOQs), while in the RECN 2 VCs case 32 queues (8+8 from each VC) are
considered. For the sake of clarity, we do not consider in this study the saving
in silicon area and the gain in scheduler speed due to these facts.

The VOQ Net architecture assumes a space of 2 maximum size packets per
VC. This is the minimum required to assure a full throughput under a full
load between two ports (one packet size plus a round-trip time, rounded to full
packets). In a 128 end-points network, it requires 128 × 8 VCs × 4 Kbytes =
4 Mbytes per port of buffering. It is clearly too much for a single chip, and it
should be implemented in external DRAM, but in that case the cut-through
latency of the switch would be much higher. Nevertheless, in order to provide a
reference of the ideal performance, we have not considered this additional delay
in the VOQ Net simulations.

5.2 Traffic Model

In all the tests we have used self-similar traffic. This traffic is composed of bursts
of packets heading to the same destination. The packets’ sizes are governed by
a Pareto distribution, as recommended in [16]. In this way, many small size
packets are generated, with an occasional large size packet. The periods between
bursts are modelled with a Poisson distribution and the distribution of the bursts
destinations is uniform. If the burst size is long, there is a lot of temporal and
spatial locality and should show worst-case behavior because at a given moment,
many packets are grouped going to the same destination. Regarding burst length,
we have used a long one of 30 Kbytes for the four best-effort classes and a shorter
one of 5 Kbytes for the QoS classes.

5.3 Simulation Results

We have considered two traditional QoS metrics in the performance evaluation:
Throughput and latency. Packet loss is not considered because no packets are

892 A. Mart́ınez et al.

dropped due to the use of credit-based flow control. However, note that inappro-
priate results of latency may lead to dropped packets at the application level.
For this reason, we also consider maximum latency.

We first analyze the results for the best-effort traffic classes, which are more
likely to suffer from congestion. Figure 2 shows the global throughput of the
network for the unregulated traffic. It can be seen that our RECN 2 VCs pro-
posal, from an input load of 80% on, offers a 25% improvement over the VOQ
Switch architecture and only losses a 5% from the ideal, infeasible VOQ Net
architecture.

Figure 3 depicts the detailed throughput results for each one of the best-
effort classes (SLs 4 to 7). While our proposal offers results very close to those

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

T
h
ro

u
g
h
p
u
t

(%
)

Offered load

Fig. 2. Global throughput results for best-effort SLs

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

T
h
ro

u
g
h
p
u
t

(%
)

Offered load

(a) SL 4

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

T
h
ro

u
g
h
p
u
t

(%
)

Offered load

(b) SL 5

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

T
h
ro

u
g
h
p
u
t

(%
)

Offered load

(c) SL 6

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

T
h
ro

u
g
h
p
u
t

(%
)

Offered load

(d) SL 7

Fig. 3. Detailed throughput results for best-effort SLs

Towards a Cost-Effective Interconnection Network Architecture 893

 0
 20
 40
 60
 80

 100
 120
 140

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

A
v
er

a
g
e

la
te

n
cy

(µ
s)

Offered load

 0
 20
 40
 60
 80

 100
 120
 140

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

A
v
er

a
g
e

la
te

n
cy

(µ
s)

Offered load

 0
 20
 40
 60
 80

 100
 120
 140

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

A
v
er

a
g
e

la
te

n
cy

(µ
s)

Offered load

 0
 20
 40
 60
 80

 100
 120
 140

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

A
v
er

a
g
e

la
te

n
cy

(µ
s)

Offered load

Fig. 4. Average latency results for QoS SLs

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

M
a
x
im

u
m

la
te

n
cy

(µ
s)

Offered load

(a) SL 0

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

M
a
x
im

u
m

la
te

n
cy

(µ
s)

Offered load

(b) SL 1

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

M
a
x
im

u
m

la
te

n
cy

(µ
s)

Offered load

(c) SL 2

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

VOQ Net
VOQ Switch

RECN 2 VCs

M
a
x
im

u
m

la
te

n
cy

(µ
s)

Offered load

(d) SL 3

Fig. 5. Maximum latency results for QoS SLs

894 A. Mart́ınez et al.

of the ideal architecture, VOQ Switch offers a very poor performance for SLs
6 and 7.

The next part of the evaluation deals with the QoS traffic. In this case, the
three architectures offer 100% throughput for QoS traffic (not shown). Figure 4
shows the interesting average latency results for the QoS SLs. Note that these
results are very similar for all the architectures. Although our proposal offers
slightly worse results for the SL 0, the SL 3 benefits from the RECN technique.
Almost identical results have been obtained for maximum latency (Figure 5).
Due to space constraints maximum jitter results are not shown, but are also
similar to those of latency.

These results show that QoS-requiring flows get the performance they need
when using our architecture, although they are sharing a single VC. Therefore,
our proposal is able to offer QoS support at the same level as a proposal that
doubles the required number of queues (VOQ Switch) and even at the same
level as an ideal and expensive architecture (VOQ Net). Moreover, in the case
of heavy congestion in the QoS SLs, the VOQ Switch case will suffer strong
degradation while the RECN mechanism included in our architecture would
solve the problem.

6 Conclusions

Due to cost and power consumption constraints, current high-speed interconnec-
tion networks cannot be overdimensioned. Therefore, some solutions are needed
in order to handle the problems related to high link utilization. In particular,
both QoS support and congestion management techniques have become essen-
tial for achieving good network performance. However, most of the techniques
proposed for both issues require too many resources for being implemented.

In this paper we propose a new network architecture able to face the chal-
lenges of congestion management and, at the same time, QoS provision, while
being more cost-effective than other proposals. Our proposal is based on the
combination of two novel techniques that provide congestion control and QoS
support while requiring a reduced number of resources.

According to the results presented in this paper, we can conclude that our
proposal can provide an adequate QoS while properly dealing with congestion.
We provide advanced techniques for the buffer management, which allow a good
performance under heavy and unbalanced load, while still providing appropriate
QoS levels. Since all this is achieved with a reduced number of resources, this
architecture would also reduce network cost.

References

1. Minkenberg, C., Abel, F., Gusat, M., Luijten, R.P., Denzel, W.: Current issues
in packet switch design. In: ACM SIGCOMM Computer Communication Review.
(2003)

Towards a Cost-Effective Interconnection Network Architecture 895

2. Mart́ınez, A., Alfaro, F.J., Sánchez, J.L., Duato, J.: Providing full QoS support
in clusters using only two VCs at the switches. In: Proceedings of the 12th Inter-
national Conference on High Performance Computing (HiPC). (2005) Available at
http://www.i3a.uclm.es/documentos/2/congresos/Congreso2 134 HiPC05.pdf.

3. Duato, J., Johnson, I., Flich, J., Naven, F., Garćıa, P., Nachiondo, T.: A new
scalable and cost-effective congestion management strategy for lossless multistage
interconnection networks. In: Proceedings of the 11th Symposium on High Perfor-
mance Computer Architecture (HPCA). (2005)

4. Garćıa, P., Flich, J., Duato, J., Johnson, I., Quiles, F., Naven, F.: Dynamic evo-
lution of congestion trees: Analysis and impact on switch architecture. Lecture
Notes in Computer Science (HiPEAC 2005) 3793 (2005) 266–285

5. Wang, M., Siegel, H.J., Nichols, M.A., Abraham, S.: Using a multipath network for
reducing the effects of hot spots. IEEE Transactions on Parallel and Distributed
Systems 6 (1995) 252–268

6. Thottetodi, M., Lebeck, A., Mukherjee, S.: Self-tuned congestion control for mul-
tiprocessor networks. In: Proc. of 7th. Int. Symp. on High Performance Computer
Architecture. (2001)

7. Dally, W., Carvey, P., Dennison, L.: Architecture of the Avici terabit switch/router.
In: Proceedings of the 6th Symposium on Hot Interconnects. (1998)

8. Tamir, Y., Frazier, G.: Dynamically-allocated multi-queue buffers for vlsi commu-
nication switches. IEEE Transactions on Computers 41 (1992)

9. Smai, A., Thorelli, L.: Global reactive congestion control in multicomputer net-
works. In: Proc. 5th Int. Conference on High Performance Computing. (1998)

10. Anderson, T., Owicki, S., Saxe, J., Thacker, C.: High-speed switch scheduling for
local-area networks. ACM Transactions on Computer Systems 11 (1993) 319–352

11. Advanced Switching Interconnect Special Interest Group: Advanced Switching
Core Architecture Specification. Revision 1.1. (2005)

12. InfiniBand Trade Association: InfiniBand architecture specification volume 1. Re-
lease 1.0. (2000)

13. Chrysos, N., Katevenis, M.: Multiple priorities in a two-lane buffered crossbar. In:
Proceedings of the IEEE Globecom 2004 Conference. (2004)

14. Simos, D.: Design of a 32x32 variable-packet-size buffered crossbar switch chip.
Technical Report FORTH-ICS/TR-339, Inst. of Computer Science, FORTH (2004)
http://archvlsi.ics.forth.gr/bufxbar/.

15. Virtual Silicon Technology, Inc.: eSi-RAM/2Ptm Two-port register file SRAM.
Data Sheet (2004)

16. Jain, R.: The art of computer system performance analysis: techniques for experi-
mental design, measurement, simulation and modeling. John Wiley and Sons, Inc.
(1991)

http://www.i3a.uclm.es/documentos/2/congresos/Congreso2_134_HiPC05.pdf
http://archvlsi.ics.forth.gr/bufxbar/

	Introduction
	Dealing with Congestion in Interconnection Networks
	RECN Description

	QoS Support in Interconnection Networks
	Full QoS Support with 2 VCs

	Proposed Interconnection Network Architecture
	Performance Evaluation
	Simulated Architecture
	Traffic Model
	Simulation Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

