
Supporting ARINC 653-based Dynamic Reconfiguration

Víctor López-Jaquero, Francisco Montero,
Elena Navarro

Computing Systems Department
University of Castilla-La Mancha

Albacete, Spain
{ victor, fmontero, enavarro }@dsi.uclm.es

Antonio Esparcia, José Antonio Catalán
Eurocopter España

EADS Group
Albacete, Spain

{Antonio.Esparcia,
Jose-Antonio.Catalan}@eurocopter.com

Abstract— As the software for avionics becomes more complex,
the challenge to provide the required reliability and safety
mechanisms becomes also more complex. Embracing the ARINC
650 and 653 standards to provide a means to embark several
systems into a single hardware cabinet opens the door to the
development of even more elaborated software avionics systems,
by overcoming the space constraints once found in this kind of
system. Nevertheless, ARINC 653 exhibits also some limitations
regarding fault redundancy management, especially when handling
redundant applications with spares that back up other applications.
In this paper, a framework to support fault tolerance and
reconfiguration in avionics systems under the umbrella of ARINC
653 standard is described. This paper represents part of the results
of the research projects carried out during the last two years by
Eurocopter España in collaboration with the University of Castilla-
La Mancha.

Keywords- Integrated Modular Avionic architecture, fault-
tolerance, reconfiguration, redundancy, RTOS, APplication
Executive, voting algorithm.

I. INTRODUCTION

The tendency towards more complex avionics systems in all
kinds of aircraft is likely to continue for the predictable
future, as digital electronics continue to become more
powerful and cost-effective. As system complexity increases,
the challenge of achieving the necessary reliability for safety
critical systems becomes much more difficult, mainly
because system failures will be more common as the number
of components increases. The aerospace avionics domain is
not exempt from this tendency, as the definition of guidelines,
standards, etc for the specification of avionic systems
demonstrates. ARINC 650 [2] is one of the most well-known
of these standards and describes how avionic systems can be
developed applying an Integrated Modular Avionic (IMA)
architecture. IMA promotes a specific decomposition of
avionic systems in order to deal properly with their inherent
complexity.

The avionic systems have in the specification of fault
tolerance mechanisms one of their most important and
demanding tasks, because of the high constraints they have
to satisfy. The exploitation of system reconfiguration results
in a potential solution to improve the fault tolerance of these
systems. Reconfiguration is the capability to adapt system
functionally to the changing external or internal conditions of
its environment [18]. By providing avionic systems with
these facilities they can reconfigure at runtime when some
components, either hardware or software, fail. They are well-

suited for reconfiguration, because at their core they are
naturally-partitioned and they include low-cost processing
units that can be commanded to carry out the most
appropriate function at runtime.

However, despite the inherent advantages of exploiting
reconfiguration in avionic systems, the ARINC 653 standard
[3], which belongs to the series ARINC 650 and provides
guidelines for dealing with safety critical issues, does not
offer any recommendations about how to incorporate
reconfiguration mechanisms into IMA architectures. It is in
this context where we present our proposal: an architecture
for supporting reconfiguration in avionics systems and
services based on the ARINC 653 standard. This proposal
covers part of the most relevant outcomes of the industrial
project carried out in collaboration with and supported by
Eurocopter Spain, part of the EADS group.

The basic idea of the proposal presented is to use an
intermediary layer, named Redundancy and Reconfiguration
Management Layer (RRML), located between the Real-Time
Operating System (RTOS) and the APplication EXecutive
(APEX) layer. This intermediary layer is in charge of
triggering and applying the reconfiguration mechanisms
whenever a fault is detected. Therefore, by using this
intermediary layer a reconfigurable method has been
integrated into IMA.

This paper is organized as follows. Section II describes
the application domain, that is, avionics architectures,
reviewing their evolution from federated to IMA
architectures. Section III identifies and introduces the related
work. Section IV describes our proposal, how to add ARINC
653-based reconfiguration capabilities to avionics systems.
Finally, Section V presents our conclusions.

II. APLICATION DOMAIN: AVIONICS ARCHITECTURES

One of the most important artifacts during the
development of avionics systems is the specification of its
architecture because it helps to manage properly the inherent
complexity of this kind of system. One of the initial
proposals for its specification was the exploitation of
Federated Architectures. They are based on a set of
distributed equipments, in which each one is mainly in
charge of performing one function and its own physical
interfaces. Therefore, Federated Avionics Architectures (FAA)
make use of distributed avionics functions that are packaged
as self-contained units [24]. One of the most interesting
advantages this architecture provides is that each function is

2012 Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture

978-0-7695-4827-2/12 $26.00 © 2012 IEEE

DOI 10.1109/WICSA-ECSA.212.9

11

isolated from the others, acting this separation as a natural
fault propagation barrier. However, this architecture entails
that a set of different computer systems have to be assembled
in the aircraft which consume cost, weight and power. In
order to face this drawback, during the last years, there has
been an evolution in the aerospace avionics domain [8], from
FAA to Integrated Modular Avionics (IMA). IMA [6] uses a
high-integrity, partitioned environment that hosts multiple
avionics functions of different criticalities on a shared
computing platform. This provides evident advantages in
terms of weight and power, since computing resources can
be used more efficiently [14]. NH90 [11] or Airbus A380 [1]
are examples of commercial aircrafts that use the IMA
architecture.

Figure 1 depicts an example of the main elements that
comprise the IMA architecture:

� Partitions are the smallest executable units in the
system. Under the IMA architecture, each processor
can host multiple partitions in which applications
can be executed using the resources assigned. They
are independent in execution and memory
management according to ARINC 653 standard [3].
A partition is the sole owner of its resources, such as
memory segments, I/O devices, and processor time
slots. The applications running in different partitions
cannot interfere with each other. To facilitate
communications between applications, several
channels can be assigned the partitions, but they are
established at design time.

� Module is a component that contains at least
processing resources and memory. A set of partitions
are executed in a module. A module is a set
(hardware and software) which provides one or more
types of services, which can be used by one or more
systems e.g. a processor module may provide
processing capability for one or more systems. IMA
module must be configured and loaded to reach the
expected behaviour.

� Cabinet is a physical package containing one or
more IMA components or modules that provides
mechanical structure, partial protection from
environmental effects (shielding) and cooling
facilities.

The IMA architecture is described and documented in a
series of standards called ARINC 650 [2]. ARINC standards,
developed and adopted by the Engineering Standards for
Avionics and Cabin Systems committee, deliver substantial
benefits to airlines and aviation industry by promoting
competition, providing inter-changeability, and reducing life-
cycle costs for avionics and cabin systems. Among these
standards, it is worth noting the Avionics Application
Standard Software Interface (ARINC 653, [3]), usually
applied by Eurocopter. This standard provides the guidelines
for specifying the interface between the application software
(partition in Figure 1) and the safety-critical avionics real-
time operating system (RTOS in Figure 1) of an aircraft
computer. Aside from aerospace and defense, where ARINC
653 separation standards are well-defined, most industries
lack a unified approach for functional safety. In this sense,
two major IMA goals to be highlighted are system
reconfiguration, and incremental integration of new
functionalities into a pre-existing system. This has been one
of the main reasons that have led to the development of this
work.

III. RELATED WORK

As aforementioned, during the last years the space and
aeronautic industries are paying special attention to IMA
systems because of the advantages that modularity could
bring to the development of avionics applications, especially
in terms of interoperability, flexibility and software
reusability. The ultimate objective of IMA is to produce a
reconfigurable system.

Figure 1. Example of Integrated Modular Avionics System

RTOSRTTOSTO

RTOSRTTOSTO RTOSRTTOSTO RTOSRTTOSTO

CCDL

sensor 1

actuator 1

sensor 2

actuator 2

Sensor 3

actuator 3

Bus 1 Bus 2

Bus 3

Cabinet

Module

Partition

12

As was stated in section II, the ARINC 653 standard
encourages the distribution of behavior (user functions)
among partitions. Communications between partitions are set
through the use of APplication EXecutive (APEX) channels
which link statically a source partition with a target one.
Though partitioning is expected to enhance reusability,
portability and scalability, lots of interconnections tend to
reduce all these capabilities. The main reason is that it
would be less likely that a partition can work without the
support of others (that is, the partitions would be strongly
coupled), so that the system would act as it were monolithic.
Moreover, fault tolerance mechanisms, such as
reconfiguration, cannot be implemented since there is no
way to avoid this strict structure at runtime.

Some related work has been done with the purpose of
solving the weaknesses derived from the ARINC 653
standard, so that fault tolerance mechanisms, such as
dynamic software reconfiguration, could be implemented.
Among them, the SCAlable & ReconfigurabLe Electronics
plaTforms and Tools project (SCARLETT, [20]) project tries
to define, validate and demonstrate a new generation of on-
board electronics platforms to answer to future aerospace
challenges. The project is based on a shared analysis made
by the European Aerospace Community, which has
identified the need to undertake research leading to a new
generation of IMA, defining a scalable, adaptable,
reconfigurable fault-tolerant driven and secure avionics
platform, namely Distributed Modular Electronics (DME).
By implementing the innovations in the DME concept,
SCARLETT will progress the state-of-the-art beyond the
current IMA1G (IMA first generation) in the following
areas:

� Scalability, portability and adaptability.
� Fault tolerance and reconfiguration capabilities.
� Minimize the number of types of standardized

electronic modules.
� Support a full range of avionics function.

Another interesting alternative has been presented by
Younis and He [24]. They describe an approach for the
integration of redundancy management services into an
IMA-based system. A proprietary scheme is used for time
and space partitioning instead of the ARINC 653 standard
with the APEX API. The authors use the MAFT architecture
[15] and the X-33 vehicle management computers [7] as the
starting point for the system architecture. The authors
implement a software version of a Reconfiguration
Management System (RMS) that runs on the same processor
as the user applications. The software version of the RMS
implements clock synchronization and voting of data
mechanisms. However, these systems use a custom hardware
board to implement the redundancy management system.

Black and Fletcher [5] discuss the usage of the IMA
architecture with ARINC 653 for the avionics systems on
spacecraft and booster vehicles. These authors propose using
a master/shadow approach (or master/shadow/shadow) in
each IMA cabinet. In other words, an N-Modular
Redundancy (NMR, [21]) architecture with cross channel
voting would not be required thanks to the use of a lock-step

processors architecture. Details are not provided on how the
shadow channels would take over as master. Also, it seems
that the master and shadows would operate asynchronously,
but details are not provided on how divergence between the
channels could be prevented.

Lee et al. [16] discuss methods and tools for scheduling
user application partitions and I/O processing within a single
IMA cabinet that uses a shared backplane. The used IMA
cabinet contains several modules and each module may
contain one or more processors. All processors use an
ARINC 653 compliant RTOS. The ARINC 653 two-level
scheduling method is used on each processor, i.e. partitions
are scheduled and then processes within a partition are
scheduled. Authors present how user partitions can be
scheduled along with the I/0 processing required between the
modules within an IMA cabinet. However, no details about
fault tolerance are provided in this work.

Another alternative is the Generic Avionics Scalable
Computing Architecture (GASCA, [23]). It uses a system
prototype with some functionality for fault tolerance. Each
module consists of a VME (VersaModular Eurocard bus)
chassis with several PowerPC boards. Every board within a
VME chassis is also connected to all other processing boards
using an SCI link. Although the API used by the applications
is based on the ARINC 653, it has been modified and
extended. Authors do not provide details of whether POSIX
based RTOS supports true robust partitioning. Moreover,
there is no mention of how synchronization and voting is
performed.

Ferguson et al. [12] propose a common system software
framework that uses the Real Time Publish/Subscribe
protocol for framework-to-framework communication in
order to extend ARINC 653. The authors show how such a
framework would be well-suited for the Constellation
program system-of-systems approach where vehicles can be
reconfigured (e.g. by docking in orbit). However, fault
tolerance mechanisms have been not explicitly addressed.

Conmy [10] presented a high level failure analysis of
IMA. This analysis was based on six basic functions required
by other systems using the IMA platform. This analysis
revealed many derived requirements for the IMA platform
including the need for further refinement of the health
management system specification.

The main difference of the proposal presented in this
paper, regarding the previous alternative works, is that we
rely on an ARINC 653 compliant RTOS and the APEX API
in order to implement a fault detection, isolation and
recovery function. Thus, we support the integration of
critical user application partitions on the same processor.
Another difference illustrated in our work is that it also
enables user applications, which require fault tolerant
services, to use the APEX API defined by the ARINC 653
standard.

IV. AN INFRASTRUCTURE TO SUPPORT ARINC 653-
BASED DYNAMIC RECONFIGURATION

One of the first decisions made for developing this
infrastructure was to define the system architecture to be
used. An N-modular redundancy architecture (NMR) was

13

selected because of its use of efficient real-time techniques to
detect errors. The proposed IMA architecture consists of n
redundant modules, one for each IMA platform, that operate
simultaneously either in synch or not. For example, in Figure
1 there are three redundant modules interconnected by means
of CCDL. The proposed architecture has the following
features:

� The NMR architecture should have an odd number
of redundant modules greater than 2, although it will
work also using an even number of modules.

� The NMR architecture will work in synchronous
mode, that is, all the redundant modules will share a
common clock, since this is a requirement for most
error detection techniques. Although real-time
synchronizing algorithms can be more or less
complex, it will save many efforts in other tasks,
such as real-time error detection and reconfiguration
strategies. The use of a synchronous mode makes
also mandatory using a distributed real-time clock
synchronizing algorithm.

� Since an NMR architecture is used, a dedicated
Cross Channel Data Link (CCDL) to connect the
replicated modules is required. Moreover, this
CCDL is necessary to execute the distributed real-
time clock synchronizing algorithm and to carry out
error detection tasks (among other things). This
CCDL can be developed by using either dedicated
point-to-point connections or bus connections. The
latter is the most widely used in avionics and, thus,
the selected alternative for our architecture. In an
avionics system, the data bus connects the different
modules (or channels), sensors, actuators and other
avionics subsystems to the N redundant modules. It
is a completely independent bus from the CCDLs
which links channels together. One important design
decision is the topology of this data bus. The
selection of the method used to connect flight control
sensors and actuators to the redundant modules is a
crucial decision. In this solution, a channelized data
bus is used, where a set of sensors and actuators is
only connected to one module using a single data
bus (see Figure 1). This single data bus is usually
referred to as a string. The advantage of this design
is simplicity and isolation, since one string cannot
interfere or damage another string. However, a
disadvantage is that the loss of the computer module
means that the entire string is lost, including all the
sensors and actuators attached to that module.
Therefore, critical sensors and actuators must be
replicated in several strings.

Each single module of the used IMA architecture has its
own internal architecture as Figure 2 illustrates. Both the
hardware board and the hardware interface switching layers
provide the underlying physical means to run the
applications. These hardware layers are managed by a RTOS
compliant with ARINC 653 standard. The communication
between the applications running in the partitions and the
RTOS are provided by the APplication EXecutive (APEX)

layer, which decouples the applications of the specific
RTOS. This API is also specified in the ARINC 653
standard. As observed, the different components proposed
for redundancy and reconfiguration management have been
grouped into the Redundancy and Reconfiguration
Management Layer. These components are the following:

� Error detection. This component is in charge of
feeding the redundancy and reconfiguration
management processes. It is further described in
section IV.A.

� Communication mediator. This component helps to
manipulate the decoupling of the applications. It is
presented in section IV.B.

� Real Time Routing Table (RTRT). This element has
been defined to facilitate the implementation of the
communication mediator. It is described in section
IV.C.

� Reconfigurator. This component implements the
reconfiguration actions. It is illustrated in section
IV.D.

� Clock synchronization. Many algorithms applicable
to this problem can be found in the literature, for
instance the one proposed by Connell [9]. A
variation of the synchronizing algorithm proposed in
[22] can be used. The implementation of this kind of
algorithms is a low-level task, closely coupled with
the underlying hardware. Therefore, choosing the
most appropriate synchronizing algorithm should be
delayed until the hardware platform is chosen.

Figure 2. Single module architecture

One-way communication Two-way communication

14

In the following sections, these components are discussed
in depth.

A. Error detection
This component triggers the redundancy and

reconfiguration management processes when it detects errors
in the data acquired from the sensors, in the data sent to the
actuators or in the processes running in the partitions. The
errors in these processes are detected by using the health
monitoring facilities provided by the ARINC 653 RTOSes
(see Figure 2), which is described in section IV.A.1). Both
the errors in the incoming data from sensors and the
outgoing data to actuators are detected by using a custom
voting algorithm that is detailed in section IV.A.2).

The error detection component, as responsible for the
management of the redundancy process, also has to handle
the replicated modules. Therefore, it is mandatory that it
implements a mechanism to detect when a module is no
longer available and to mark both that module and its related
partitions as unavailable. This mechanism can be carried out
by means of two tactics:

� Ideally, the health monitor provided by the ARINC
653 compliant RTOS of the available modules
would report to the Redundancy and
Reconfiguration Management Layer (RRML)
whether the module they are connected to failed or
not. Then, the RRML would carry out the necessary
actions to tackle this anomalous situation. For
instance, depending on the number of available
modules the voting algorithm detailed in section
IV.A.2) will be adapted.

� IsAlive protocol. Although the previous one is the
ideal way of reporting problems in a module, a
critical error can arise, preventing the health monitor
from reporting an error to the RRML. Therefore, a
second mechanism to detect this kind of problems is
supported: the isAlive protocol. The RRML of each
module sends a message to the RRML of each other
module it is connected to every IsAliveTime time
units. If no reply is received from a module then that
module is assumed to be unavailable.

For redundancy and reconfiguration management it is
also necessary to detect when an error happens in a partition.
Two mechanisms are used for this purpose:

� Voting timeout. Every time a partition
requires/submits data, a voting process is run. The
voting process for each module receives the value
each other module proposes as the correct one. If any
module does not submit its proposal for the voting in
time, then the source/target partition (depending on
whether it is an input or output operation,
respectively) is considered to be down and therefore
unavailable.

� Any critical error detected by the health monitor,
either at the process level or partition level, will be
reported to the RRML of its module, and the
partition will be considered as unavailable,
triggering reconfiguration actions.

1) Using health monitor facilities for error detection
The health monitor plays an important role for the

redundancy and reconfiguration support presented in this
work. It is in charge of capturing any exception in the
processes running in a partition and reporting to the RRML
with the error information that will drive the redundancy and
reconfiguration process. Any exception, such as, insufficient
memory, numeric error or unavailable ports, at the partition
level will also supply the RRML with the information
required to carry out reconfiguration actions.

As Figure 2 shows, and following the ARINC 653
guidelines, the implementation of the health monitor
provided by the different RTOSes supports some extension
mechanisms. The ARINC 653 standard attaches user defined
handlers to the events in order to handle the different
exceptions that can arise when running the applications in
the partitions. The standard also allow for defining new
events. The error information provided by the health monitor
will be redirected to the RRML by attaching user defined
handlers to health monitor notifications. By forwarding
exceptions to RRML, the error control mechanism is
centralized and fully integrated with redundancy and
reconfiguration management.

2) Voting algorithm
The voting algorithm hereafter proposed is based on the

classical voting algorithms found in the literature, such as
[17]. Nevertheless, the voting process has been adapted to
make it more flexible and powerful. The voting algorithm
takes as input the values that each redundant partition from
the different modules wants to acquire from a sensor or send
to an actuator and carries out a voting process to guess what
value is the correct one. This value will be then delivered to
all the target ports for its processing. The voting algorithm is
executed concurrently in all the modules.

In the classic voting algorithms, the number of redundant
modules must be odd to avoid reaching a tie vote.
Nevertheless, in the proposed algorithm this limitation has
been overcome by introducing the concept of partition trust.
A partition trust describes the level of trust the voting
process has on a specific partition. At system startup, all the
partitions have the same partition trust value and they are
marked as trusted. When a value from a partition gets into
the voting algorithm and it is wrong (it is different from the
consensus value obtained after applying the voting
algorithm), this partition trust value will be decreased. If a
partition reaches a threshold (trust threshold) that partition
will be left out of any further voting, and marked as not
trusted. A partition marked as not trusted will be still
monitored. Even if a partition is not trusted, its values will be
still compared with the consensus value reached by using the
values provided by the trusted partitions. If the values
provided by the not trusted partitions match the consensus
value then their partition trust value will be increased to
reflect the fact that the partition seems to be working
properly again. When the partition trust reaches the back-to-
life threshold, the partition is marked again as trusted. A
partition that is rebooted will be marked as trusted and its
partition trust value will be set to the default value. A

15

partition that becomes Unavailable is automatically marked
also as not trusted. If a module is rebooted, all its
Unavailable partitions will be marked as trusted again and
their trust value set to the default one. If the partition trust
value of a not trusted partition drops below the failure
threshold then that partition will be marked as Failing and
will not be monitored anymore. If this Failing partition is not
rebootable then it will reach the Unavailable state. This
aforementioned behaviour is illustrated in Figure 3.

Figure 3. State diagram for partition object

Therefore, the actual voting process consists of a simple
comparison to find out what value was voted by most of the
involved partitions. Nevertheless, this voting is modified
depending on whether the number of trusted partitions is odd
or even:

� If the number of trusted partitions is odd (and greater
than one) a regular voting process is made as
aforementioned.

� Otherwise, if the number of partitions is even (and
greater than two) the vote for each partition will be
weighted according to its partition trust value, if a tie
vote is reached. Thus, those partitions with a higher
partition trust value will have a stronger position in
the voting process. If even after the weighted vote
the tie lasts, the value of the partition numbered with
the lowest id will be chosen.

� Finally, if the number of trusted partitions is two,
then a partition will play the master role and the
other one the slave role. The master partition will be
that with a higher partition trust value. If both
partitions have the same trust value, the value for the
partition numbered with the lowest id will be
selected.

If the number of available partitions becomes one then no
redundancy is possible, so that the remaining partition will
be always treated as trusted and the values it provides to the
voting process will always be considered correct.

B. Communication mediator
The ACR Specification [19] defines two important

concepts widely used in IMA: time and space partitioning
(TSP). TSP therefore ensures each partition uninterrupted
access to common resources and non-interference during
their assigned time periods. In this proposal, we coin a new
concept: communication partitioning.

Space partitioning means that the memory of a partition
is protected. No application can access memory out of the
scope of its own partition. In this model, applications
running in an IMA partition must not be able to deprive each
other of shared application resources or those provided by
the RTOS kernel. This is usually achieved by using different
virtual memory contexts enforced by the processor’s memory
management unit (MMU). These contexts are referred to as
partitions in ARINC 653. Each partition contains an
application with its own heap for dynamic memory
allocation and a stack for the application’s processes (the
ARINC 653 term for a context of execution).

Time partitioning means that only one application at a
time has access to system resources, including the processor;
therefore, only one application is executing at one point in
time –there is no competition for system resources between
partitioned applications. This ensures that one application
cannot use the processor for longer than planned, avoiding
the detriment of the other applications. ARINC 653
addresses this problem by defining an implementation that
uses a partition-based scheduling. The ARINC scheduler
allocates a time slot for each partition to be run depending on
its specific needs. Within its time slot, a partition may use its
own scheduling policy, but when it is over, the ARINC
scheduler forces a context switch to the next partition in the
schedule.

IMA design and implementation encourages the
distribution of behaviour among partitions. Such distribution
can result in an application structure with many connections
between applications. In the worst scenario, every
application ends up knowing about every each other.
Although partitioning a system into many applications
generally enhances reusability, proliferating interconnections
tend to reduce it again. Lots of interconnections make it less
likely that an application can work without the support of
others –the system acts as it was monolithic. Moreover, often
there are dependencies between the applications of the IMA
partitions. For example, an application gets data from others
applications in other partition. All these situations make
difficult to change or reconfigure the system’s behaviour in
any significant way, since behaviour is distributed among
many applications and partitions.

We can avoid these problems by encapsulating this
collective behaviour in a separate component, namely
communication mediator (see Figure 4). A mediator is
responsible for controlling and coordinating the interactions
of a group of applications, serving as an intermediary that

Unavailable Trusted

Not Trusted

Failing

Available

do: monitoring()

do: monitoring()
voting ()

[trust > back_to_life_threshold]error
[trust<trust threshold]

error
[trust < failure threshold]

unrecoverable
error

reboot

reboot
[isRebootable]

16

keeps applications in the group from referring to each other
explicitly. Thus, the partitions only know the mediator,
thereby reducing the number of interconnections. It is
inspired on Mediator design pattern [13].

Figure 4. Communication partitioning by using a mediator element

In our proposal several participants are identified (see
Figure 4):

� A Mediator: This element defines an interface for
communicating with Colleague objects.

� Colleagues (Partitions): they send and receive
requests from a mediator object. The mediator
implements the cooperative behaviour by routing
requests between the appropriate partitions. In our
proposal: (i) each colleague (partition) knows its
mediator object; (ii) each colleague communicates
with its mediator whenever it has to communicate
with another colleague.

The use of the mediator is recommended whenever any
of these situations happen:

� A set of partitions communicate in well-defined, but
complex ways. The resulting interdependencies are
unstructured and difficult to understand.

� Reusing a partition is difficult because it refers to
and communicates with many other partitions

� A behaviour that is distributed between several
partitions should be customizable.

The introduction of the communication mediator
component provides our proposal with several advantages:

� The mediator encapsulates a behaviour that
otherwise would be distributed among several
partitions. Changing this behaviour requires only
changing the mediator component, so that partitions
(and its applications) can be directly reused.

� The mediator promotes a loose coupling between
partitions. We can change and reuse both the
partitions and the mediator independently.

� The mediator simplifies the communication
protocols. A mediator replaces many-to-many
interactions with one-to-many interactions between
the mediator and its colleagues. One-to-many
relationships are easier to understand, maintain and
extend.

� The mediator abstracts away how the partitions
cooperate. A mediator promotes that partitions focus
on their own behaviour, which can help to clarify
how partitions work in a system.

Finally, a possible drawback of this proposal is that it
promotes a centralized control. The mediator pattern also
shifts from complexity of interaction to complexity in the
mediator. Because a mediator encapsulates protocols, it can
become more complex than any individual colleague making
difficult its maintenance.

C. Real Time Routing Table
In order to implement the communication mediator

described in section IV.B, a Real-Time Routing Table
(RTRT) has been also included in the design of the
Redundancy and Reconfiguration Layer to facilitate the
decoupling of the communications (see Figure 2). A mirror
RTRT is available in each module. Therefore, they must be
kept updated by the system. To do so, a protocol has been
implemented to report any change detected in the availability
of the resources and their location.

Since the routing must be carried out in real time, the
RTRT includes each source and target of every
communication that an application does. The source and
target columns contain a unique port identifier, composed of
the module where the source and target partition are hosted,
the name of the target and source partition and the name of
the target and source port. Furthermore, the routing table also
includes an up-to-date view of the partitions available in the
system and their state (including the spare partitions). This
information is required whenever a decision has to be made
related to the rerouting of communications or the reallocation
of partitions. Therefore, for each partition, the RTRT stores
the module where it is and its state (see Figure 7). For the
spare partitions, the RTRT also stores the identifier of the
partitions they are spare of.

In the solution proposed, applications must only use
pseudo-ports, otherwise applications would not be using
redundancy and reconfiguration facilities. Pseudo-port are a
special kind of port in the ARINC 653 standard that support
the implementation of the communications by using a
custom driver. Thus, we can intercept communications
between partitions, sensors and actuators to forward them to
the RRML components for the fault-tolerant mechanisms to
be applied.

As only those data received from sensors or sent to
actuators from the partitions are used for the voting process,
the RTRT is used for the communication of the partitions
with the sensors and actuators as described in the following.
When a partition reads data from a sensor, the following
steps are carried out to perform the communication (see
Figure 5):
1. The sensor will be mapped to a RRML source port.

Whenever data are received in this pseudo-port, they
will be communicated to the error detection component.
The error detection component will then use the
incoming data from the RRML source port (and the data
provided by the other redundant modules, received via

g

17

the CCDL) to carry out the voting algorithm described
in section IV.A.2).

2. Once the voting has been carried out, the consensus
value will be delivered to the communication mediator
component (see step 2 in Figure 5).

3. Finally, the communication mediator will route the
value to the target partition by using the paths specified
in the RTRT.

Figure 5. Input communication data flow

When a partition wants to send some information to an
actuator the following process will be carried out:
1. A RRML source port will be used to write the data.

These data will be used in conjunction with the data
provided by the redundant modules to carry out the
voting algorithm (see section IV.A.2)).

2. Once the voting has been carried out, the consensus
value will be delivered to the communication mediator
component (see step 2 in Figure 6).

3. The communication mediator will route the message to
the appropriate target RRML output partition by using
the paths specified in the RTRT, so it is delivered to the
right actuator (see step 3 in Figure 6).

Figure 6. Output communication data flow

Whenever a partition wants to communicate with another
partition no voting is required. Nevertheless, the data sent
must arrive to the communication mediator to be rerouted to

the right target partition, since a partition can be reallocated
due to reconfiguration policies.

D. Reconfigurator
This component is in charge of taking the required

actions to reconfigure the system whenever the error
detection component, described in section I.A, reports an
anomalous situation. Therefore, this component implements
the reconfiguration algorithms that are the key element in
any reconfiguration schema. Nevertheless, the effectiveness
of these algorithms is purely dependent on the system
information available at the moment of failure in real time.
Making the right decisions in reconfiguration requires as
much information from the current status of the partitions
and modules as possible. Furthermore, this information
should be always updated.

It is worth noting that not every partition can be
reconfigured, since reallocating a partition requires resuming
the state of the partition. Therefore, only stateless partitions
have been considered in the proposed reallocation strategy.

Deciding what partition can be reallocated requires of
run-time information that describes the features of the
partitions, such as whether they are stateless or not.
Moreover, the storage of these features must be extensible,
since adding more reconfiguration strategies will surely
require of extra features in the partition model. Bearing these
ideas in mind, the partition model shown in Figure 7 has
been described. As can be observed, a partition can be
defined as rebootable, active, spare, and available (the trust
value was already explained in section IV.A.2)). A
rebootable partition can be reallocated, since it can be
rebooted regardless of its state. An active partition will be a
running partition. A spare partition will be created at startup,
but it will not become active until a reconfiguration is
required because of the detection of an unrecoverable error
in the partition is it spare of. A partition is available when it
is not in an unrecoverable error situation, such as when a
module crashes. In this last scenario, none of its partitions
will be available.

Figure 7. A model of partition

Moreover, in this work three kinds of partitions have
been considered:

� Non-critical partitions. These partitions have no
spare partitions and the system keeps running even if
any of these partitions fail.

� Critical partitions. These partitions contain critical
applications mirrored in different partitions in

g p g

18

different modules. A critical partition can have one
or many spare partitions.

� System partitions. These partitions contain
applications related to the RRML.

Taking into account these kinds of partitions, the
following actions have been defined in the reconfiguration
strategy supported by this work:
1. Voting algorithm-based reconfiguration. As described

in section IV.A.2), the voting algorithm determines that
the reconfiguration will be carried out according to the
number of partitions involved in a voting and the trust
values of those partitions. The voting algorithm-based
reconfiguration is supported by the Error detection
component (see Figure 2).

2. Partition reallocation. A partition will be reallocated
whether any of the following situations happens:
(i) A critical partition becomes unavailable

(partition.isAvailable=false).
(ii) A partition trust value drops under failure threshold.
For a partition to be reallocated, an available spare
partition must exist. Moreover, a rerouting of the
communication (see section IV.C) must also be carried
out. Non-critical and system partitions cannot be
reallocated, since they do not have a spare partition.
Therefore, their functionality will be lost in case of
error.

3. Reroute communications. The rerouting of the
communications is only applied when a partition
reallocation happens. This reconfiguration action will
update the RTRT to reflect the new location of the
reallocated partition. This activity is supported by the
reconfigurator component (see Figure 2).

4. Reboot partition. Rebooting a partition is considered
under the following situations:
(iii) If either an error is detected in a system partition or

it becomes unavailable
(partition.isAvailable=false), that partition will be
rebooted, since system partitions have no spare;

(iv) If either a non-critical partition becomes unavailable
or it has an internal failure, and it is rebootable
(partition.isRebootable=true), then this partition
will be rebooted, since non-critical partitions have
no spare. The only mean to detect a failure in a non-
critical partition is by using the health monitor,
since this kind of partition does not take part in the
redundancy mechanism (voting process).

(v) If either a critical partition becomes unavailable
(partition.isAvailable=false) or if the partition trust
drops under failure threshold, it will be reallocated
in a spare partition in the same or a different
module. But, if no spare is left, the only solution
available will be to reboot the partition, if it is
rebootable (partition.isRebootable=true). If the
partition is reallocated in a different module then
the sensors/actuators it was using must be available
in the new host module (or made available via
communication rerouting).

V. CONCLUSIONS AND FURTHER WORK

This paper aims at covering two paramount topics in
avionics: fault tolerance and reconfiguration. Fault tolerance
can be achieved in many different ways, being the most
usual those that include some kind of redundancy.

Since current avionics developments tend to embrace
ARINC 653 standard, it is important to discuss how fault
tolerance can be managed when considering this standard.

The framework presented in this paper contributes in two
topics closely related, namely fault tolerance and
redundancy. The devised communication mechanism
supports the distribution of the redundant mirrors of the most
important partitions, which include the applications, in the
same module, or event in separate ones. It is achieved by
supporting communications decoupling. This decoupling is
achieved by providing an intermediary layer (RRML) that
enables rerouting the communications to the currently active
redundant mirror application.

An error detection mechanism based on the concept of
trust value is also presented. This mechanism will detect
faulty partitions and prevent them from delivering wrong
data to other partitions. Moreover, this algorithm also helps
in deciding what reconfiguration actions to take.

Furthermore, a custom voting algorithm is presented that
takes into account the trust value for the partitions to make
the decision of what is the correct value. This algorithm
takes as input the values that every redundant mirror would
like to send, and it guesses what value among them is the
most trustworthy.

Lastly, the reconfiguration actions supported when an
error is detected are described, thus providing the means to
deal with faulty partitions.

Some tests have been conducted aimed at assessing the
overhead in the communications caused by the fault-
tolerance mechanisms proposed in this work. The results
show that there is no significant overhead derived from the
implementation of the solution designed. According to these
results it seems like the scalability of the solution is not an
issue. Nevertheless, additional testing is required to actually
conclude that the solution is fully scalable.

To sum up, this paper presents a framework intended to
improve the fault tolerance of avionics systems designed
following the ARINC 653 standard, and to provide these
systems with support for reconfiguration, that is usually
constrained by the hardwired communications between
partitions. It is worth noting that the solutions have been
designed for reconfiguration in avionics systems, having this
domain high hardware and software constraints. These
constraints are imposed by the real-time operating system
making it an especially challenging scenario, far from
regular architecture. Many of the aspects shown here could
be also applied to any distributed architecture with fault-
tolerance requirements. For instance, the way partitions are
handled and the voting algorithm could be extrapolated to
web services.

19

ACKNOWLEDGMENT

This work has been mainly supported by Eurocopter
España Corporation in Albacete in the context of the
industrial projects UCTR100230 and UCTR090213 carried
out during the last three years. This work has been also
partially supported by the grant TIN2008-06596-C02-01
from the Spanish Government Department of Science and
Innovation and also by the grant PEII09-0054-9581 from the
Junta de Comunidades de Castilla-La Mancha.

REFERENCES

[1] Airbus, Airbus A380,
http://www.airbus.com/aircraftfamilies/passengeraircraft/a380family/
a380-800/, last access 08/03/2012.

[2] ARINC Specification 650, July 1995, Aeronautical Radio, Inc.,
https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=19, last
access 08/03/2012.

[3] ARINC Specification 653 P1-2, December 2005, Aeronautical Radio,
Inc.,
https://www.arinc.com/cf/store/catalog_detail.cfm?item_id=1072, last
access 08/03/2012.

[4] T. V. Batista, A. Joolia, G. Coulson, “Managing Dynamic
Reconfiguration in Component-Based Systems”, 2nd European
Workshop on Software Architecture (EWSA 2005): 1-17.

[5] R. Black and M. Fletcher, “Next Generation Space Avionics: Layered
System Implementation,“ IEEE Aerospace and Electronic Systems
Magazine, vol. 20, no. 12, pp. 9 – 14, Dec. 2005.

[6] R. J. Bluff, “Integrated modular avionics: system modelling,”
Microprocessors and Microsystems vol. 23, pp. 435–448, 1999.

[7] L. P. Bolduc, “X-33 Redundancy Management System,” IEEE
Aerospace and Electronic Systems Magazine, vol. 16, no. 5, pp.23 –
28, May 2001.

[8] M., Di Natale, A.L., Sangiovanni-Vincentelli, “Moving From
Federated to Integrated Architectures in Automotive: The Role of
Standards, Methods and Tools”, Proc. of the IEEE, vol.98, no.4,
pp.603-620, April 2010.

[9] B. A. O’Connell, “Achieving fault tolerance via robust partitioning
and N-modular redundancy”, Master of Science in aeronautics and
astronautics. Massachusetts Institute of Technology, 2007.

[10] P. Conmy, J. A. McDermid, “High Level Failure Analysis for
Integrated Modular Avionics”, SCS 2001: 13-22.

[11] Eurocopter, NH90,
http://www.eurocopter.com/site/en/ref/Overview_177-884.html, last
access 08/03/2012.

[12] R. C. Ferguson, B. L. Peterson, and H. C. Thompson, “System
Software Framework for System of Systems Avionics,” Proc. 24th
Digital Avionics Systems Conference (DASC), IEEE, pp. 8A1/1 –
8A1/10, 2005.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley,
1995.

[14] C. Hofmeister, J M. Purtilo, “Dynamic Reconfiguration in Distributed
Systems: Adapting Software Modules for Replacement”, 13th
International Conference on Distributed Computing Systems
(ICDCS) 1993: 101-110.

[15] R. M. Keichafer, et al., “The MAFT Architecture for Distributed
Fault Tolerance,” IEEE Transactions on Computers, vol. 37, no. 4,
pp. 398 - 404, April 1988.

[16] Y.-H. Lee, D. Kim, M. Younis, J., “Scheduling Tool and Algorithm
for Integrated Modular Avionics Systems,” Proc. 19th Digital
Avionics Systems Conference (DASC), IEEE, pp. 1C2/1 – 1C2/8,
2000.

[17] N. Littlestone and M. Warmuth, “Weighted Majority Algorithm”.
IEEE Symposium on Foundations of Computer Science, pp. 256-261,
1989.

[18] J. Moore, 2001, “Advanced Distributed Architectures,” in The
Avionics Handbook, C. Spitzer, ed., Boca Raton, FL, CRC Press, pp.
33-1 - 33-13.

[19] M. Nicholson, “Health monitoring for Reconfigurable Integrated
Control Systems”, Department of Computer Science, University of
York. 2005

[20] RTCA, DO-255, “Requirements Specification for Avionics Computer
Resource (ACR).” www.rtca.org, last access 06/02/2012.

[21] SCARLETT project, “SCAlable & ReconfigurabLe Electronics
plaTforms and Tools”, http://www.scarlettproject.eu/, last access
08/03/2012.

[22] M. L., Shooman, “Reliability of Computer Systems and Networks:
Fault Tolerance, Analysis and Design,” Willey, 2002.

[23] T. K. Srikanth, S. Toueg, “Optimal clock synchronization”, Journal of
the ACM 34 (3), pp. 626-645. 1987, doi: 10.1145/28869.28876.

[24] J. C. N. Ventura and J. A. S. Neves, “Generic Avionics Scalable
Computing Architecture,” Proc. Data Systems in Aerospace
(DASIA), 1999.

[25] C. B. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics”, Proc. 26th Digital
Avionics Syst. Conf., Oct. 2007.

[26] M. F. Younis and B. He, “Integrating Redundancy Management and
Real-time Services for Ultra Reliable Control Systems,” Honeywell
International Inc., Columbia, Maryland. 2001.

20

