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Abstract— As the software for avionics becomes more complex, 
the challenge to provide the required reliability and safety 
mechanisms becomes also more complex. Embracing the ARINC 
650 and 653 standards to provide a means to embark several 
systems into a single hardware cabinet opens the door to the 
development of even more elaborated software avionics systems, 
by overcoming the space constraints once found in this kind of 
system. Nevertheless, ARINC 653 exhibits also some limitations 
regarding fault redundancy management, especially when handling 
redundant applications with spares that back up other applications. 
In this paper, a framework to support fault tolerance and 
reconfiguration in avionics systems under the umbrella of ARINC 
653 standard is described. This paper represents part of the results 
of the research projects carried out during the last two years by
Eurocopter España in collaboration with the University of Castilla-
La Mancha.

Keywords- Integrated Modular Avionic architecture, fault-
tolerance, reconfiguration, redundancy, RTOS, APplication 
Executive, voting algorithm.  

I. INTRODUCTION

The tendency towards more complex avionics systems in all 
kinds of aircraft is likely to continue for the predictable 
future, as digital electronics continue to become more 
powerful and cost-effective. As system complexity increases, 
the challenge of achieving the necessary reliability for safety 
critical systems becomes much more difficult, mainly 
because system failures will be more common as the number 
of components increases. The aerospace avionics domain is 
not exempt from this tendency, as the definition of guidelines, 
standards, etc for the specification of avionic systems 
demonstrates. ARINC 650 [2] is one of the most well-known 
of these standards and describes how avionic systems can be 
developed applying an Integrated Modular Avionic (IMA) 
architecture. IMA promotes a specific decomposition of 
avionic systems in order to deal properly with their inherent 
complexity.

The avionic systems have in the specification of fault 
tolerance mechanisms one of their most important and 
demanding tasks, because of the high constraints they have 
to satisfy. The exploitation of system reconfiguration results 
in a potential solution to improve the fault tolerance of these 
systems. Reconfiguration is the capability to adapt system 
functionally to the changing external or internal conditions of 
its environment [18]. By providing avionic systems with 
these facilities they can reconfigure at runtime when some 
components, either hardware or software, fail. They are well-

suited for reconfiguration, because at their core they are 
naturally-partitioned and they include low-cost processing 
units that can be commanded to carry out the most 
appropriate function at runtime.

However, despite the inherent advantages of exploiting 
reconfiguration in avionic systems, the ARINC 653 standard 
[3], which belongs to the series ARINC 650 and provides 
guidelines for dealing with safety critical issues, does not 
offer any recommendations about how to incorporate 
reconfiguration mechanisms into IMA architectures. It is in 
this context where we present our proposal: an architecture 
for supporting reconfiguration in avionics systems and 
services based on the ARINC 653 standard. This proposal 
covers part of the most relevant outcomes of the industrial 
project carried out in collaboration with and supported by 
Eurocopter Spain, part of the EADS group.

The basic idea of the proposal presented is to use an 
intermediary layer, named Redundancy and Reconfiguration 
Management Layer (RRML), located between the Real-Time 
Operating System (RTOS) and the APplication EXecutive 
(APEX) layer. This intermediary layer is in charge of 
triggering and applying the reconfiguration mechanisms 
whenever a fault is detected. Therefore, by using this 
intermediary layer a reconfigurable method has been 
integrated into IMA.

This paper is organized as follows. Section II describes 
the application domain, that is, avionics architectures, 
reviewing their evolution from federated to IMA 
architectures. Section III identifies and introduces the related 
work. Section IV describes our proposal, how to add ARINC 
653-based reconfiguration capabilities to avionics systems. 
Finally, Section V presents our conclusions.

II. APLICATION DOMAIN: AVIONICS ARCHITECTURES

One of the most important artifacts during the 
development of avionics systems is the specification of its 
architecture because it helps to manage properly the inherent 
complexity of this kind of system. One of the initial 
proposals for its specification was the exploitation of 
Federated Architectures. They are based on a set of 
distributed equipments, in which each one is mainly in 
charge of performing one function and its own physical 
interfaces. Therefore, Federated Avionics Architectures (FAA) 
make use of distributed avionics functions that are packaged 
as self-contained units [24]. One of the most interesting
advantages this architecture provides is that each function is 
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isolated from the others, acting this separation as a natural 
fault propagation barrier. However, this architecture entails 
that a set of different computer systems have to be assembled 
in the aircraft which consume cost, weight and power. In 
order to face this drawback, during the last years, there has 
been an evolution in the aerospace avionics domain [8], from 
FAA to Integrated Modular Avionics (IMA). IMA [6] uses a
high-integrity, partitioned environment that hosts multiple 
avionics functions of different criticalities on a shared 
computing platform. This provides evident advantages in 
terms of weight and power, since computing resources can 
be used more efficiently [14]. NH90 [11] or Airbus A380 [1]
are examples of commercial aircrafts that use the IMA 
architecture.

Figure 1 depicts an example of the main elements that 
comprise the IMA architecture:

� Partitions are the smallest executable units in the 
system. Under the IMA architecture, each processor 
can host multiple partitions in which applications 
can be executed using the resources assigned. They 
are independent in execution and memory 
management according to ARINC 653 standard [3].
A partition is the sole owner of its resources, such as 
memory segments, I/O devices, and processor time 
slots. The applications running in different partitions 
cannot interfere with each other. To facilitate 
communications between applications, several 
channels can be assigned the partitions, but they are 
established at design time.

� Module is a component that contains at least 
processing resources and memory. A set of partitions 
are executed in a module. A module is a set 
(hardware and software) which provides one or more 
types of services, which can be used by one or more 
systems e.g. a processor module may provide 
processing capability for one or more systems. IMA
module must be configured and loaded to reach the 
expected behaviour.

� Cabinet is a physical package containing one or 
more IMA components or modules that provides 
mechanical structure, partial protection from 
environmental effects (shielding) and cooling 
facilities.

The IMA architecture is described and documented in a
series of standards called ARINC 650 [2]. ARINC standards, 
developed and adopted by the Engineering Standards for 
Avionics and Cabin Systems committee, deliver substantial 
benefits to airlines and aviation industry by promoting 
competition, providing inter-changeability, and reducing life-
cycle costs for avionics and cabin systems. Among these 
standards, it is worth noting the Avionics Application 
Standard Software Interface (ARINC 653, [3]), usually
applied by Eurocopter. This standard provides the guidelines 
for specifying the interface between the application software 
(partition in Figure 1) and the safety-critical avionics real-
time operating system (RTOS in Figure 1) of an aircraft
computer. Aside from aerospace and defense, where ARINC 
653 separation standards are well-defined, most industries 
lack a unified approach for functional safety. In this sense, 
two major IMA goals to be highlighted are system 
reconfiguration, and incremental integration of new 
functionalities into a pre-existing system. This has been one 
of the main reasons that have led to the development of this 
work.

III. RELATED WORK

As aforementioned, during the last years the space and 
aeronautic industries are paying special attention to IMA 
systems because of the advantages that modularity could 
bring to the development of avionics applications, especially 
in terms of interoperability, flexibility and software 
reusability. The ultimate objective of IMA is to produce a 
reconfigurable system.

Figure 1. Example of Integrated Modular Avionics System
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As was stated in section II, the ARINC 653 standard 
encourages the distribution of behavior (user functions) 
among partitions. Communications between partitions are set 
through the use of APplication EXecutive (APEX) channels 
which link statically a source partition with a target one. 
Though partitioning is expected to enhance reusability, 
portability and scalability, lots of interconnections tend to 
reduce all these capabilities. The main reason is that it 
would be less likely that a partition can work without the 
support of others (that is, the partitions would be strongly 
coupled), so that the system would act as it were monolithic. 
Moreover, fault tolerance mechanisms, such as 
reconfiguration, cannot be implemented since there is no 
way to avoid this strict structure at runtime.

Some related work has been done with the purpose of 
solving the weaknesses derived from the ARINC 653 
standard, so that fault tolerance mechanisms, such as 
dynamic software reconfiguration, could be implemented. 
Among them, the SCAlable & ReconfigurabLe Electronics 
plaTforms and Tools project (SCARLETT, [20]) project tries 
to define, validate and demonstrate a new generation of on-
board electronics platforms to answer to future aerospace 
challenges. The project is based on a shared analysis made 
by the European Aerospace Community, which has 
identified the need to undertake research leading to a new 
generation of IMA, defining a scalable, adaptable, 
reconfigurable fault-tolerant driven and secure avionics 
platform, namely Distributed Modular Electronics (DME).
By implementing the innovations in the DME concept, 
SCARLETT will progress the state-of-the-art beyond the 
current IMA1G (IMA first generation) in the following 
areas: 

� Scalability, portability and adaptability.
� Fault tolerance and reconfiguration capabilities.
� Minimize the number of types of standardized 

electronic modules.
� Support a full range of avionics function.

Another interesting alternative has been presented by 
Younis and He [24]. They describe an approach for the 
integration of redundancy management services into an 
IMA-based system. A proprietary scheme is used for time 
and space partitioning instead of the ARINC 653 standard 
with the APEX API. The authors use the MAFT architecture
[15] and the X-33 vehicle management computers [7] as the 
starting point for the system architecture. The authors 
implement a software version of a Reconfiguration 
Management System (RMS) that runs on the same processor 
as the user applications. The software version of the RMS 
implements clock synchronization and voting of data
mechanisms. However, these systems use a custom hardware 
board to implement the redundancy management system.

Black and Fletcher [5] discuss the usage of the IMA
architecture with ARINC 653 for the avionics systems on 
spacecraft and booster vehicles. These authors propose using 
a master/shadow approach (or master/shadow/shadow) in 
each IMA cabinet. In other words, an N-Modular 
Redundancy (NMR, [21]) architecture with cross channel 
voting would not be required thanks to the use of a lock-step 

processors architecture. Details are not provided on how the 
shadow channels would take over as master. Also, it seems
that the master and shadows would operate asynchronously,
but details are not provided on how divergence between the 
channels could be prevented.

Lee et al. [16] discuss methods and tools for scheduling 
user application partitions and I/O processing within a single 
IMA cabinet that uses a shared backplane. The used IMA 
cabinet contains several modules and each module may 
contain one or more processors. All processors use an 
ARINC 653 compliant RTOS. The ARINC 653 two-level 
scheduling method is used on each processor, i.e. partitions 
are scheduled and then processes within a partition are 
scheduled. Authors present how user partitions can be 
scheduled along with the I/0 processing required between the 
modules within an IMA cabinet. However, no details about 
fault tolerance are provided in this work.

Another alternative is the Generic Avionics Scalable 
Computing Architecture (GASCA, [23]). It uses a system 
prototype with some functionality for fault tolerance. Each 
module consists of a VME (VersaModular Eurocard bus)
chassis with several PowerPC boards. Every board within a
VME chassis is also connected to all other processing boards 
using an SCI link. Although the API used by the applications 
is based on the ARINC 653, it has been modified and 
extended. Authors do not provide details of whether POSIX 
based RTOS supports true robust partitioning. Moreover, 
there is no mention of how synchronization and voting is 
performed.

Ferguson et al. [12] propose a common system software 
framework that uses the Real Time Publish/Subscribe 
protocol for framework-to-framework communication in 
order to extend ARINC 653. The authors show how such a 
framework would be well-suited for the Constellation 
program system-of-systems approach where vehicles can be 
reconfigured (e.g. by docking in orbit). However, fault 
tolerance mechanisms have been not explicitly addressed.

Conmy [10] presented a high level failure analysis of 
IMA. This analysis was based on six basic functions required 
by other systems using the IMA platform. This analysis 
revealed many derived requirements for the IMA platform 
including the need for further refinement of the health 
management system specification.

The main difference of the proposal presented in this 
paper, regarding the previous alternative works, is that we
rely on an ARINC 653 compliant RTOS and the APEX API 
in order to implement a fault detection, isolation and 
recovery function. Thus, we support the integration of
critical user application partitions on the same processor.
Another difference illustrated in our work is that it also 
enables user applications, which require fault tolerant 
services, to use the APEX API defined by the ARINC 653 
standard.

IV. AN INFRASTRUCTURE TO SUPPORT ARINC 653-
BASED DYNAMIC RECONFIGURATION

One of the first decisions made for developing this 
infrastructure was to define the system architecture to be 
used. An N-modular redundancy architecture (NMR) was 
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selected because of its use of efficient real-time techniques to 
detect errors. The proposed IMA architecture consists of n 
redundant modules, one for each IMA platform, that operate 
simultaneously either in synch or not. For example, in Figure 
1 there are three redundant modules interconnected by means 
of CCDL. The proposed architecture has the following 
features:

� The NMR architecture should have an odd number 
of redundant modules greater than 2, although it will 
work also using an even number of modules. 

� The NMR architecture will work in synchronous 
mode, that is, all the redundant modules will share a 
common clock, since this is a requirement for most 
error detection techniques. Although real-time 
synchronizing algorithms can be more or less 
complex, it will save many efforts in other tasks, 
such as real-time error detection and reconfiguration 
strategies.  The use of a synchronous mode makes 
also mandatory using a distributed real-time clock 
synchronizing algorithm. 

� Since an NMR architecture is used, a dedicated 
Cross Channel Data Link (CCDL) to connect the 
replicated modules is required. Moreover, this 
CCDL is necessary to execute the distributed real-
time clock synchronizing algorithm and to carry out 
error detection tasks (among other things). This 
CCDL can be developed by using either dedicated 
point-to-point connections or bus connections. The 
latter is the most widely used in avionics and, thus, 
the selected alternative for our architecture. In an 
avionics system, the data bus connects the different 
modules (or channels), sensors, actuators and other 
avionics subsystems to the N redundant modules. It 
is a completely independent bus from the CCDLs 
which links channels together. One important design 
decision is the topology of this data bus. The
selection of the method used to connect flight control 
sensors and actuators to the redundant modules is a 
crucial decision. In this solution, a channelized data 
bus is used, where a set of sensors and actuators is 
only connected to one module using a single data 
bus (see Figure 1). This single data bus is usually 
referred to as a string. The advantage of this design 
is simplicity and isolation, since one string cannot 
interfere or damage another string. However, a 
disadvantage is that the loss of the computer module
means that the entire string is lost, including all the 
sensors and actuators attached to that module. 
Therefore, critical sensors and actuators must be 
replicated in several strings.

Each single module of the used IMA architecture has its 
own internal architecture as Figure 2 illustrates. Both the 
hardware board and the hardware interface switching layers 
provide the underlying physical means to run the 
applications. These hardware layers are managed by a RTOS 
compliant with ARINC 653 standard. The communication 
between the applications running in the partitions and the 
RTOS are provided by the APplication EXecutive (APEX)

layer, which decouples the applications of the specific 
RTOS. This API is also specified in the ARINC 653 
standard. As observed, the different components proposed 
for redundancy and reconfiguration management have been 
grouped into the Redundancy and Reconfiguration 
Management Layer. These components are the following:

� Error detection. This component is in charge of 
feeding the redundancy and reconfiguration 
management processes.  It is further described in
section IV.A.

� Communication mediator. This component helps to 
manipulate the decoupling of the applications. It is 
presented in section IV.B.

� Real Time Routing Table (RTRT). This element has 
been defined to facilitate the implementation of the 
communication mediator. It is described in section 
IV.C.

� Reconfigurator. This component implements the 
reconfiguration actions. It is illustrated in section 
IV.D.

� Clock synchronization. Many algorithms applicable 
to this problem can be found in the literature, for 
instance the one proposed by Connell [9]. A 
variation of the synchronizing algorithm proposed in 
[22] can be used. The implementation of this kind of 
algorithms is a low-level task, closely coupled with 
the underlying hardware. Therefore, choosing the 
most appropriate synchronizing algorithm should be 
delayed until the hardware platform is chosen.

            
Figure 2. Single module architecture
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In the following sections, these components are discussed 
in depth.

A. Error detection
This component triggers the redundancy and 

reconfiguration management processes when it detects errors
in the data acquired from the sensors, in the data sent to the 
actuators or in the processes running in the partitions. The 
errors in these processes are detected by using the health 
monitoring facilities provided by the ARINC 653 RTOSes 
(see Figure 2), which is described in section IV.A.1). Both 
the errors in the incoming data from sensors and the 
outgoing data to actuators are detected by using a custom 
voting algorithm that is detailed in section IV.A.2).

The error detection component, as responsible for the 
management of the redundancy process, also has to handle 
the replicated modules. Therefore, it is mandatory that it 
implements a mechanism to detect when a module is no 
longer available and to mark both that module and its related 
partitions as unavailable. This mechanism can be carried out 
by means of two tactics:

� Ideally, the health monitor provided by the ARINC 
653 compliant RTOS of the available modules 
would report to the Redundancy and 
Reconfiguration Management Layer (RRML)
whether the module they are connected to failed or 
not. Then, the RRML would carry out the necessary 
actions to tackle this anomalous situation. For 
instance, depending on the number of available 
modules the voting algorithm detailed in section 
IV.A.2) will be adapted.

� IsAlive protocol. Although the previous one is the 
ideal way of reporting problems in a module, a 
critical error can arise, preventing the health monitor 
from reporting an error to the RRML. Therefore, a 
second mechanism to detect this kind of problems is 
supported: the isAlive protocol. The RRML of each 
module sends a message to the RRML of each other 
module it is connected to every IsAliveTime time 
units. If no reply is received from a module then that 
module is assumed to be unavailable. 

For redundancy and reconfiguration management it is 
also necessary to detect when an error happens in a partition.  
Two mechanisms are used for this purpose:

� Voting timeout. Every time a partition 
requires/submits data, a voting process is run. The 
voting process for each module receives the value 
each other module proposes as the correct one. If any 
module does not submit its proposal for the voting in 
time, then the source/target partition (depending on 
whether it is an input or output operation, 
respectively) is considered to be down and therefore 
unavailable.

� Any critical error detected by the health monitor, 
either at the process level or partition level, will be 
reported to the RRML of its module, and the 
partition will be considered as unavailable, 
triggering reconfiguration actions.

1) Using health monitor facilities for error detection
The health monitor plays an important role for the 

redundancy and reconfiguration support presented in this 
work. It is in charge of capturing any exception in the
processes running in a partition and reporting to the RRML 
with the error information that will drive the redundancy and 
reconfiguration process. Any exception, such as, insufficient 
memory, numeric error or unavailable ports, at the partition 
level will also supply the RRML with the information 
required to carry out reconfiguration actions.

As Figure 2 shows, and following the ARINC 653 
guidelines, the implementation of the health monitor 
provided by the different RTOSes supports some extension 
mechanisms. The ARINC 653 standard attaches user defined 
handlers to the events in order to handle the different 
exceptions that can arise when running the applications in 
the partitions. The standard also allow for defining new 
events. The error information provided by the health monitor 
will be redirected to the RRML by attaching user defined 
handlers to health monitor notifications. By forwarding 
exceptions to RRML, the error control mechanism is 
centralized and fully integrated with redundancy and 
reconfiguration management.

2) Voting algorithm
The voting algorithm hereafter proposed is based on the 

classical voting algorithms found in the literature, such as 
[17]. Nevertheless, the voting process has been adapted to 
make it more flexible and powerful. The voting algorithm 
takes as input the values that each redundant partition from 
the different modules wants to acquire from a sensor or send 
to an actuator and carries out a voting process to guess what 
value is the correct one. This value will be then delivered to 
all the target ports for its processing. The voting algorithm is 
executed concurrently in all the modules.

In the classic voting algorithms, the number of redundant 
modules must be odd to avoid reaching a tie vote. 
Nevertheless, in the proposed algorithm this limitation has 
been overcome by introducing the concept of partition trust.
A partition trust describes the level of trust the voting 
process has on a specific partition. At system startup, all the 
partitions have the same partition trust value and they are 
marked as trusted. When a value from a partition gets into 
the voting algorithm and it is wrong (it is different from the 
consensus value obtained after applying the voting 
algorithm), this partition trust value will be decreased. If a 
partition reaches a threshold (trust threshold) that partition 
will be left out of any further voting, and marked as not 
trusted. A partition marked as not trusted will be still 
monitored. Even if a partition is not trusted, its values will be 
still compared with the consensus value reached by using the 
values provided by the trusted partitions. If the values 
provided by the not trusted partitions match the consensus 
value then their partition trust value will be increased to 
reflect the fact that the partition seems to be working 
properly again. When the partition trust reaches the back-to-
life threshold, the partition is marked again as trusted. A 
partition that is rebooted will be marked as trusted and its 
partition trust value will be set to the default value. A 
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partition that becomes Unavailable is automatically marked 
also as not trusted. If a module is rebooted, all its 
Unavailable partitions will be marked as trusted again and 
their trust value set to the default one. If the partition trust 
value of a not trusted partition drops below the failure 
threshold then that partition will be marked as Failing and 
will not be monitored anymore. If this Failing partition is not 
rebootable then it will reach the Unavailable state. This
aforementioned behaviour is illustrated in Figure 3.

Figure 3. State diagram for partition object

Therefore, the actual voting process consists of a simple 
comparison to find out what value was voted by most of the 
involved partitions. Nevertheless, this voting is modified 
depending on whether the number of trusted partitions is odd 
or even:

� If the number of trusted partitions is odd (and greater 
than one) a regular voting process is made as 
aforementioned. 

� Otherwise, if the number of partitions is even (and 
greater than two) the vote for each partition will be 
weighted according to its partition trust value, if a tie 
vote is reached. Thus, those partitions with a higher 
partition trust value will have a stronger position in 
the voting process. If even after the weighted vote 
the tie lasts, the value of the partition numbered with 
the lowest id will be chosen.

� Finally, if the number of trusted partitions is two, 
then a partition will play the master role and the 
other one the slave role. The master partition will be 
that with a higher partition trust value. If both 
partitions have the same trust value, the value for the 
partition numbered with the lowest id will be 
selected.

If the number of available partitions becomes one then no
redundancy is possible, so that the remaining partition will 
be always treated as trusted and the values it provides to the 
voting process will always be considered correct.

B. Communication mediator
The ACR Specification [19] defines two important 

concepts widely used in IMA: time and space partitioning
(TSP). TSP therefore ensures each partition uninterrupted 
access to common resources and non-interference during 
their assigned time periods. In this proposal, we coin a new 
concept: communication partitioning. 

Space partitioning means that the memory of a partition 
is protected. No application can access memory out of the 
scope of its own partition. In this model, applications 
running in an IMA partition must not be able to deprive each 
other of shared application resources or those provided by 
the RTOS kernel. This is usually achieved by using different 
virtual memory contexts enforced by the processor’s memory 
management unit (MMU). These contexts are referred to as 
partitions in ARINC 653. Each partition contains an 
application with its own heap for dynamic memory 
allocation and a stack for the application’s processes (the 
ARINC 653 term for a context of execution).

Time partitioning means that only one application at a 
time has access to system resources, including the processor; 
therefore, only one application is executing at one point in 
time –there is no competition for system resources between 
partitioned applications. This ensures that one application 
cannot use the processor for longer than planned, avoiding 
the detriment of the other applications. ARINC 653 
addresses this problem by defining an implementation that 
uses a partition-based scheduling. The ARINC scheduler 
allocates a time slot for each partition to be run depending on 
its specific needs. Within its time slot, a partition may use its 
own scheduling policy, but when it is over, the ARINC 
scheduler forces a context switch to the next partition in the 
schedule. 

IMA design and implementation encourages the 
distribution of behaviour among partitions. Such distribution 
can result in an application structure with many connections 
between applications. In the worst scenario, every 
application ends up knowing about every each other.
Although partitioning a system into many applications 
generally enhances reusability, proliferating interconnections 
tend to reduce it again. Lots of interconnections make it less 
likely that an application can work without the support of 
others –the system acts as it was monolithic. Moreover, often
there are dependencies between the applications of the IMA 
partitions. For example, an application gets data from others 
applications in other partition. All these situations make 
difficult to change or reconfigure the system’s behaviour in 
any significant way, since behaviour is distributed among 
many applications and partitions. 

We can avoid these problems by encapsulating this 
collective behaviour in a separate component, namely 
communication mediator (see Figure 4). A mediator is 
responsible for controlling and coordinating the interactions 
of a group of applications, serving as an intermediary that 

Unavailable Trusted
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Failing

Available

do: monitoring()

do: monitoring()
voting ()

[trust > back_to_life_threshold]error 
[trust<trust threshold]
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keeps applications in the group from referring to each other 
explicitly. Thus, the partitions only know the mediator, 
thereby reducing the number of interconnections. It is 
inspired on Mediator design pattern [13].

Figure 4. Communication partitioning by using a mediator element

In our proposal several participants are identified (see 
Figure 4): 

� A Mediator: This element defines an interface for 
communicating with Colleague objects.

� Colleagues (Partitions): they send and receive 
requests from a mediator object. The mediator 
implements the cooperative behaviour by routing 
requests between the appropriate partitions. In our 
proposal: (i) each colleague (partition) knows its 
mediator object; (ii) each colleague communicates 
with its mediator whenever it has to communicate 
with another colleague.

The use of the mediator is recommended whenever any 
of these situations happen:

� A set of partitions communicate in well-defined, but 
complex ways. The resulting interdependencies are 
unstructured and difficult to understand.

� Reusing a partition is difficult because it refers to 
and communicates with many other partitions

� A behaviour that is distributed between several 
partitions should be customizable.

The introduction of the communication mediator 
component provides our proposal with several advantages: 

� The mediator encapsulates a behaviour that 
otherwise would be distributed among several 
partitions. Changing this behaviour requires only 
changing the mediator component, so that partitions 
(and its applications) can be directly reused.

� The mediator promotes a loose coupling between 
partitions. We can change and reuse both the 
partitions and the mediator independently.

� The mediator simplifies the communication 
protocols. A mediator replaces many-to-many 
interactions with one-to-many interactions between 
the mediator and its colleagues. One-to-many 
relationships are easier to understand, maintain and 
extend.

� The mediator abstracts away how the partitions 
cooperate. A mediator promotes that partitions focus 
on their own behaviour, which can help to clarify 
how partitions work in a system.

Finally, a possible drawback of this proposal is that it 
promotes a centralized control. The mediator pattern also 
shifts from complexity of interaction to complexity in the 
mediator. Because a mediator encapsulates protocols, it can 
become more complex than any individual colleague making
difficult its maintenance.

C. Real Time Routing Table
In order to implement the communication mediator 

described in section IV.B, a Real-Time Routing Table
(RTRT) has been also included in the design of the 
Redundancy and Reconfiguration Layer to facilitate the 
decoupling of the communications (see Figure 2). A mirror 
RTRT is available in each module. Therefore, they must be 
kept updated by the system. To do so, a protocol has been 
implemented to report any change detected in the availability 
of the resources and their location.

Since the routing must be carried out in real time, the 
RTRT includes each source and target of every 
communication that an application does. The source and 
target columns contain a unique port identifier, composed of 
the module where the source and target partition are hosted, 
the name of the target and source partition and the name of 
the target and source port. Furthermore, the routing table also 
includes an up-to-date view of the partitions available in the 
system and their state (including the spare partitions). This 
information is required whenever a decision has to be made 
related to the rerouting of communications or the reallocation 
of partitions. Therefore, for each partition, the RTRT stores 
the module where it is and its state (see Figure 7). For the
spare partitions, the RTRT also stores the identifier of the
partitions they are spare of.

In the solution proposed, applications must only use 
pseudo-ports, otherwise applications would not be using 
redundancy and reconfiguration facilities. Pseudo-port are a 
special kind of port in the ARINC 653 standard that support 
the implementation of the communications by using a 
custom driver. Thus, we can intercept communications 
between partitions, sensors and actuators to forward them to 
the RRML components for the fault-tolerant mechanisms to 
be applied.

As only those data received from sensors or sent to 
actuators from the partitions are used for the voting process, 
the RTRT is used for the communication of the partitions 
with the sensors and actuators as described in the following. 
When a partition reads data from a sensor, the following 
steps are carried out to perform the communication (see 
Figure 5): 
1. The sensor will be mapped to a RRML source port. 

Whenever data are received in this pseudo-port, they
will be communicated to the error detection component. 
The error detection component will then use the 
incoming data from the RRML source port (and the data 
provided by the other redundant modules, received via 
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the CCDL) to carry out the voting algorithm described 
in section IV.A.2). 

2. Once the voting has been carried out, the consensus 
value will be delivered to the communication mediator 
component (see step 2 in Figure 5). 

3. Finally, the communication mediator will route the 
value to the target partition by using the paths specified 
in the RTRT.

Figure 5. Input communication data flow

When a partition wants to send some information to an 
actuator the following process will be carried out:
1. A RRML source port will be used to write the data. 

These data will be used in conjunction with the data 
provided by the redundant modules to carry out the 
voting algorithm (see section IV.A.2)). 

2. Once the voting has been carried out, the consensus 
value will be delivered to the communication mediator 
component (see step 2 in Figure 6). 

3. The communication mediator will route the message to 
the appropriate target RRML output partition by using 
the paths specified in the RTRT, so it is delivered to the 
right actuator (see step 3 in Figure 6).

Figure 6. Output communication data flow

Whenever a partition wants to communicate with another 
partition no voting is required. Nevertheless, the data sent 
must arrive to the communication mediator to be rerouted to 

the right target partition, since a partition can be reallocated 
due to reconfiguration policies.

D. Reconfigurator
This component is in charge of taking the required 

actions to reconfigure the system whenever the error 
detection component, described in section I.A, reports an 
anomalous situation. Therefore, this component implements 
the reconfiguration algorithms that are the key element in 
any reconfiguration schema. Nevertheless, the effectiveness 
of these algorithms is purely dependent on the system 
information available at the moment of failure in real time.
Making the right decisions in reconfiguration requires as 
much information from the current status of the partitions 
and modules as possible. Furthermore, this information 
should be always updated.

It is worth noting that not every partition can be 
reconfigured, since reallocating a partition requires resuming 
the state of the partition. Therefore, only stateless partitions 
have been considered in the proposed reallocation strategy.

Deciding what partition can be reallocated requires of 
run-time information that describes the features of the 
partitions, such as whether they are stateless or not. 
Moreover, the storage of these features must be extensible, 
since adding more reconfiguration strategies will surely 
require of extra features in the partition model. Bearing these 
ideas in mind, the partition model shown in Figure 7 has 
been described. As can be observed, a partition can be 
defined as rebootable, active, spare, and available (the trust 
value was already explained in section IV.A.2)). A 
rebootable partition can be reallocated, since it can be 
rebooted regardless of its state. An active partition will be a 
running partition. A spare partition will be created at startup, 
but it will not become active until a reconfiguration is 
required because of the detection of an unrecoverable error 
in the partition is it spare of. A partition is available when it 
is not in an unrecoverable error situation, such as when a
module crashes. In this last scenario, none of its partitions 
will be available. 

Figure 7. A model of partition

Moreover, in this work three kinds of partitions have 
been considered:

� Non-critical partitions. These partitions have no 
spare partitions and the system keeps running even if 
any of these partitions fail.

� Critical partitions. These partitions contain critical 
applications mirrored in different partitions in 
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different modules. A critical partition can have one 
or many spare partitions.

� System partitions. These partitions contain 
applications related to the RRML.

Taking into account these kinds of partitions, the 
following actions have been defined in the reconfiguration 
strategy supported by this work:
1. Voting algorithm-based reconfiguration. As described 

in section IV.A.2), the voting algorithm determines that 
the reconfiguration will be carried out according to the 
number of partitions involved in a voting and the trust 
values of those partitions. The voting algorithm-based
reconfiguration is supported by the Error detection
component (see Figure 2).

2. Partition reallocation. A partition will be reallocated 
whether any of the following situations happens: 
(i) A critical partition becomes unavailable 

(partition.isAvailable=false).
(ii) A partition trust value drops under failure threshold.
For a partition to be reallocated, an available spare 
partition must exist. Moreover, a rerouting of the 
communication (see section IV.C) must also be carried 
out. Non-critical and system partitions cannot be 
reallocated, since they do not have a spare partition.
Therefore, their functionality will be lost in case of 
error.

3. Reroute communications. The rerouting of the 
communications is only applied when a partition 
reallocation happens. This reconfiguration action will 
update the RTRT to reflect the new location of the 
reallocated partition. This activity is supported by the 
reconfigurator component (see Figure 2).

4. Reboot partition. Rebooting a partition is considered 
under the following situations:
(iii) If either an error is detected in a system partition or 

it becomes unavailable 
(partition.isAvailable=false), that partition will be 
rebooted, since system partitions have no spare;

(iv) If either a non-critical partition becomes unavailable 
or it has an internal failure, and it is rebootable 
(partition.isRebootable=true), then this partition 
will be rebooted, since non-critical partitions have 
no spare. The only mean to detect a failure in a non-
critical partition is by using the health monitor, 
since this kind of partition does not take part in the 
redundancy mechanism (voting process).

(v) If either a critical partition becomes unavailable 
(partition.isAvailable=false) or if the partition trust 
drops under failure threshold, it will be reallocated 
in a spare partition in the same or a different 
module. But, if no spare is left, the only solution 
available will be to reboot the partition, if it is 
rebootable (partition.isRebootable=true). If the 
partition is reallocated in a different module then 
the sensors/actuators it was using must be available 
in the new host module (or made available via 
communication rerouting). 

V. CONCLUSIONS AND FURTHER WORK

This paper aims at covering two paramount topics in
avionics: fault tolerance and reconfiguration. Fault tolerance 
can be achieved in many different ways, being the most 
usual those that include some kind of redundancy.

Since current avionics developments tend to embrace 
ARINC 653 standard, it is important to discuss how fault 
tolerance can be managed when considering this standard. 

The framework presented in this paper contributes in two
topics closely related, namely fault tolerance and 
redundancy. The devised communication mechanism 
supports the distribution of the redundant mirrors of the most 
important partitions, which include the applications, in the 
same module, or event in separate ones. It is achieved by 
supporting communications decoupling. This decoupling is 
achieved by providing an intermediary layer (RRML) that 
enables rerouting the communications to the currently active 
redundant mirror application.

An error detection mechanism based on the concept of 
trust value is also presented. This mechanism will detect 
faulty partitions and prevent them from delivering wrong 
data to other partitions. Moreover, this algorithm also helps 
in deciding what reconfiguration actions to take.

Furthermore, a custom voting algorithm is presented that 
takes into account the trust value for the partitions to make 
the decision of what is the correct value. This algorithm 
takes as input the values that every redundant mirror would 
like to send, and it guesses what value among them is the 
most trustworthy.

Lastly, the reconfiguration actions supported when an 
error is detected are described, thus providing the means to 
deal with faulty partitions.

Some tests have been conducted aimed at assessing the 
overhead in the communications caused by the fault-
tolerance mechanisms proposed in this work. The results 
show that there is no significant overhead derived from the 
implementation of the solution designed. According to these 
results it seems like the scalability of the solution is not an 
issue. Nevertheless, additional testing is required to actually 
conclude that the solution is fully scalable.

To sum up, this paper presents a framework intended to
improve the fault tolerance of avionics systems designed 
following the ARINC 653 standard, and to provide these 
systems with support for reconfiguration, that is usually 
constrained by the hardwired communications between 
partitions. It is worth noting that the solutions have been 
designed for reconfiguration in avionics systems, having this 
domain high hardware and software constraints. These
constraints are imposed by the real-time operating system 
making it an especially challenging scenario, far from 
regular architecture. Many of the aspects shown here could 
be also applied to any distributed architecture with fault-
tolerance requirements. For instance, the way partitions are 
handled and the voting algorithm could be extrapolated to 
web services.
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