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Abstract

We present DIEGO 2.0, a new improved version of our tool DIEGO. Given a
WS-CDL choreography, it automatically extracts a set of WS-BPEL web services
such that, if these services interact with each other, they necessarily produce the
behavior defined in the choreography even if the natural projection does not work.
This is achieved by introducing some control messages which make services coor-
dinate as expected. The main improvement with respect to the previous version is
the number of these messages has been dramatically reduced. We formally define
the new derivation, prove its correctness, and empirically compare the efficiency
of new and former derivation algorithms. We also introduce other improvements
of the new tool version, such as the testing engine.

1 Introduction
The definition of a web service-oriented system involves two complementary views:
Orchestration and choreography. The orchestration concerns the internal behavior of a
web service in terms of invocations to other services. It is supported, e.g., by WS-BPEL
(Web Services Business Process Execution Language), which is considered the de-facto
standard language for describing the workflow of a web service. On the other hand,
the choreography concerns the observable interaction among web services. It can be
defined, e.g., by using WS-CDL (Web Services Choreography Description Language).
Thus, the collaborative behavior, described by the choreography, should be the result
of the interaction of the individual behaviors of each involved party, which are defined
via the orchestration.

In this paper, we present DIEGO 2.0, a new version of our tool for DerIving
chorEoGraphy-cOnforming web service systems. Given a choreography defined in (a
subset of) WS-CDL, DIEGO automatically extracts a set of services defined in WS-
BPEL such that the interaction of these services necessarily leads to the behavior de-
fined by the choreography. Although DIEGO transforms WS-CDL into WS-BPEL, it
internally works with an modification of finite state machines (FSMs). First, DIEGO
transforms the WS-CDL choreography into a variant of FSM where involved services
are explicitly identified. Next it extracts, from this FSM-based model, services defined
by means of a different kind of FSMs variant where input buffers are used to support
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asynchronous communications. Finally, these FSM extensions are transformed into
WS-BPEL. In our model, the WS-CDL constructions represented are interaction, se-
quence, and while, leaving as future work the inclusion of other constructions such as
the parallel operator and the workunits.1
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Figure 1: Example of a natural projection.

The main problem arisen in the derivation of services from a choreography is the
fact that the natural projection does not necessarily produce a set of services conform-
ing to the choreography. In the natural projection (see Figure 1), the structure of states
and transitions of the choreography (Chor) is directly copied into derived services
(X,Y, Z). Therefore, if the choreography has a transition from state s1 to s2 where
service X sends message a to service Y , then the derived service X has a transition
from s1 to s2 where it sends a to Y , the derived service Y has a transition from s1
to s2 where it receives a from X , and all the rest of derived services (not involved in
this choreography step) have a null transition from s1 to s2, i.e. they change their state
doing nothing (Z in Figure 1). It is known that this straightforward derivation scheme
produces sets of derived services that could not behave as defined by the choreography.
On the one hand, derived services could tackle non-determinism in an inconsistent way
when running together. In a choreography state where several transitions (choices) are
available, each service could follow a different path, thus leading to inconsistent sub-
sequent states in each service. On the other hand, services which are not involved in
the current step could silently evolve to some subsequent state and send messages as
required by subsequent transitions before the services involved in the current step actu-
ally do, thus incorrectly overtaking them. Moreover, since the communication medium
may delay messages any arbitrarily long time, it may happen that a message m′ is sent
after message m, but m′ arrives to its destination service before m, yielding a race
condition.

In previous works [5, 6, 13], theoretical FSM-based models for defining orchestra-
tions and choreographies are presented. Some conformance relations to decide whether
a set of services necessarily produces the behavior defined by a choreography are pre-
sented, and derivation algorithms to automatically extract the former from the latter are
given. These algorithms tackle the problems mentioned before by adding some con-
trol messages which make services coordinate as expected by the choreography. The

1Thus, in our language model, the concurrency is the result of the parallel interaction between differ-
ent services, but each service does not contain parallel processes internally. Still, this model captures the
conceptual difficulty of the deriving services that correctly interact with each other, which is our goal.
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correctness of these algorithms with respect to these conformance relations is formally
proved.

Unfortunately, the original version of DIEGO [12] has some important limitations.
The most important one is the big number of additional messages exchanged between
services in order to make them correctly coordinate. In each choreography step, coor-
dinating messages are sent to all services in order to make them mimic the path of the
choreography being executed. However, this scheme can be modified in order to avoid
sending messages to services which are not involved in the current step. In particular,
non-involved services can be informed later about what choreography state they should
be in, only when they are involved again in the step under execution. This change com-
plicates the definition of the derivation algorithms, but strongly improves the efficiency
of derived services.

Besides, the new version allows users to systematically analyze any alternative
derivation algorithm. After introducing the new algorithm, the tool automatically
tests the system of derived services by randomly applying the language operational
semantics (i.e. it randomly chooses the execution path among all available execu-
tion paths) and compares the observations with those permitted by the choreogra-
phy under different conformance requirements: Sending (that is, with respect to mo-
ments when messages are sent), processing (w.r.t. moments when messages are pro-
cessed), and synchronization (both). Moreover, in order to improve the observabil-
ity of derived systems, they can be executed either step by step or immediately upon
termination (or upon some point), and simulations are exported to text files. The
main advantage of using DIEGO is that web service designers can rapidly obtain ex-
ecutable prototypes from a choreography definition, which may help them to debug
the system in early stages of the development process or even serve as executable
skeletons for constructing the implementations from them. DIEGO 2.0 is available
at http://www.dsi.uclm.es/retics/diego/.

The rest of the paper is organized as follows. Below, we review some related
works. In Section 3 we formally define our centralized and decentralized derivation
algorithms. In Section 4 we report experiments where we compare the performance of
services derived by our enhanced algorithms with the performance of previous deriva-
tion algorithms finishing the paper with some conclusions and future work. Proofs are
presented in the appendixes.

2 Related Work
In this section we briefly compare our proposal with some works related to ours. We
classify related proposals into two main groups: Works describing transformations
which have been implemented but not formally defined and verified, and proposals
based upon rigorous transformations, generally using some kind of formal model.

Regarding implemented transformations, one of the most widely spread proposals
in the community is the work proposed by Mendling and Hafner [10]. In this work,
authors propose a transformation between the different elements of WS-CDL into WS-
BPEL. Furthermore, a prototype is implemented as a proof of concept of the proposal.
The main disadvantage of this work is that authors do not provide any mechanism to
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verify either the correction of the generated stubs or when the generated services be-
have as intended in the choreography. This is a common lack in tools and prototypes
providing similar transformations, typically due to the fact that they are not formally
defined. An example of this is found in the proposal by Khadka et al [7], where au-
thors describe the transformation from WS-CDL into WS-BPEL by using the ATLAS
transformation Language.

Next we consider other proposals based upon formally descriptions. Most of ap-
proaches in the literature study the conditions that are necessary to make the natural
projection work, i.e. to make naturally projected services necessarily work as defined
in the choreography. On the contrary, we consider that the previous problems can be
fixed if appropriate control messages are added to make services correctly coordinate.
Thus, we consider that all choreographies are realizable indeed. In [11], Zongyan et al.
identify and face the problems appearing when deriving an implementable projection
from a choreography. Authors define the concept of restricted natural choreography,
which must fulfill two structural conditions, and show that this kind of choreography
is easily implementable. A new concept, the dominant role of a choice, is proposed for
dealing with projection in non-restricted choreographies. At each non-deterministic
choice, this dominant role is the one that makes the decision.

Salaün and Bultan [14] formalize choreographies by means of asynchronous com-
munication with process algebra. However, no solution for non-deterministic choices
is provided and no correctness proof is presented. In contrast, authors enhance the pro-
posal by introducing a tool offering the possibility to use bounded buffers and reason
about them. Van der Aalst et al. [16] present an approach for formalizing compliance
and refinement notions, which are applied to service systems specified using Open
Workflow Nets (a type of Petri Nets) where the communication is asynchronous. A
similar approach is followed by Caires and Vieira [3]. They define a formal framework
called conversation types and present techniques to ensure progress of systems involv-
ing several interleaved conversations/sessions. Bravetti and Zavattaro [2] compare sys-
tems of orchestrations and choreographies by means of a testing relation. Systems are
represented by using a process algebraic notation, and operational semantics for this
language are defined as LTS.

In [9], Lucchi and Mazzara provide a formalization of conformance with π-calculus.
By means of automata, Baldoni et al. [1] define a conformance notion that checks
whether the interoperability is guaranteed. Moreover, Decker et al. [4] show how
the Business Process Modeling Notation (BPMN) and the Business Process Execu-
tion Language (BPEL) can be used during choreography design. In another work [15],
Van der Aalst et al. also focus on conformance by comparing the observed behavior
with some predefined model.

Lanese et al. in [8] developed a very detailed and broad study to compare these
kind of systems. Their objective is bridging the gap between the WS-CDL and BPEL
languages by formally defining them and then finding out the features systems should
have to be equivalent if the natural projection is used. This work is based on the idea
of well formed conditions, which depend on the properties one wants to preserve in
each case. Table 1 presents a comparison of the relations proposed by this work and
FSM-based conformance relations given in [13].

Let us note that most of the previous works are only theoretical. On the contrary, in
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synchr. asynchr. send. vs proc. full vs partial send + proc disjoint immediate vs delayed
Our work X X X X X X X

Lanese et al. X X X X X X X

Table 1: Comparison between Lanese et al. work and our work.

this paper we apply previous theoretical FSM-based models and develop new (formally
proved) derivation algorithms to improve a tool that automatically transforms WS-CDL
choreographies into WS-BPEL orchestrations.

There are some tools that formally define either WS-CDL or WS-BPEL such as
WS-Engineer2, XFD-DEVS3, WSMod, WSAT, WS-VERIFY, PI4SOA. They focus on
the analysis of the models obtained from the formalization process, but they are not
concerned about the kind of transformations given in our proposal.

3 Deriving Conforming Services
In this section we present our optimized centralized and decentralized derivation al-
gorithms. The algorithms are defined by using some auxiliary notions from previous
works [5, 6, 13]. Due to the lack of space, we focus here on formally presenting the
new algorithms and informally sketching the rest of necessary notions.

In order to illustrate the application of the proposed notions to a system, we present
a small case study that will guide the presentation of some concepts and will serve as
the basis for the definition of examples. This case study is a typical purchase process
that uses Internet as a business context for a transaction. There are three actors in this
example: a customer, a seller, and a supplier. The purchase works as follows: “A
customer wants to buy a product by using Internet. There are several sellers that offer
different products in web-pages servers. The customer contacts a seller in order to
buy the desired product. The seller checks the stock and contacts a supplier. Finally,
the supplier delivers the product to the customer.” The behavior of each participant is
defined as follows:

• Customer: It contacts the seller to buy a product. After consulting the product
list, it can either order a product or do nothing. If the customer decides to buy
a product, then it must send the seller the information about the product and the
payment method. After the payment is done, it waits to receive the product from
a supplier.

• Seller: It receives the customer order and the payment method. The seller checks
if there is enough stock to deliver the order and sends an acceptance notification
to the customer. If there is stock to deliver the order, then it contacts a supplier
to deliver the product.

• Supplier: It gathers the order and the customer information in order to deliver
the product to the customer.

2Available at: http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
3Available at: http://duniptechnologies.com/research/xfddevs/
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Let us introduce the main notions of the formal framework:
FSM-based model for the choreography: The choreography model focuses on rep-

resenting the interaction of services as a whole. It is defined as a tuple (S,M, ID, sin, T )
where S denotes the set of states, M is the set of messages, ID is the set of service
identifiers, sin ∈ S is the initial state, and T is the set of transitions. A transition
t ∈ T is a tuple (s,m, snd, adr, s′) where s, s′ ∈ S are the initial and final states,
respectively, m ∈ M is the message, and snd, adr ∈ ID are the sender and the
addressee of the message, respectively. A transition (s,m, snd, adr, s′) is also de-

noted by s
m/(snd→adr)−−−−−−−−−−−−→ s′. Each choreography transition denotes a message ac-

tion where some service sends a message to another one. The actual configuration
of a choreography consists just in the current state of its FSM model. In Figure 2a,
the choreography C of our Internet purchase process is shown, and it is defined as
(S2a,M2a, ID2a, s0, T2a) where S2a = {s0, s1, . . .}, M2a = {iProd, lProd, . . .},
ID2a = {WS1,WS2,WS3}, s0 is the initial state and T2a = {(s0, iProd,WS1,WS2, s1), (s1, lP rod,WS2,WS1, s2), . . .}.
In the example, WS1 is the customer, WS2 represents the seller, and WS3 the sup-
plier.

(a) FSM of the choreography C for the online purchase process. (b) Decentralized derived FSM of the supplier (WS3).

Figure 2: FSMs automatically generated with DIEGO.

FSM-based model for the orchestration: The behavior of a web service in terms of
its interaction with other web services is represented by a finite state machine (id, S, I,O, sin, T )
where id ∈ ID is the identifier of the service and ID is the set of service identifiers,
S is the set of states, I is the set of input messages, O is the set of output messages,
sin ∈ S is the initial state, and T is the set of transitions. Each transition t ∈ T is a tuple
(s, i, snd, o, adr, s′) where s, s′ ∈ S are the initial and final states respectively, i ∈ I
is the message that must be received to trigger the transition, snd ∈ ID is the required
sender of i, o ∈ O is the output message which is sent if the transition is taken, and
adr ∈ ID is the addressee of o. A transition (s, i, snd, o, adr, s′) is also denoted by

s
(snd,i)/(adr,o)−−−−−−−−−−−−→ s′. Each service is endowed with an input buffer to store messages

received but not yet processed, so this transition is triggered if there is a message i from
snd in the service input buffer. The actual configuration of an orchestration consists of
two elements: its current state and the contents of its input buffer. Transitions can also
be triggered without consuming any input (i.e. proactively) or without producing any
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output. This is denoted in our formalism by using a null (−−,−−) input/output sym-
bol, respectively. In Figure 2b, a web service definition for the supplier is shown, and it
is defined as (WS3, S2b, I2b, O2b, s0iampassive, T2b) where WS3 is the name of the
orchestration, S2b = {s0iampassive, s7ichoose9, . . .}, I2b = {takemychoice8ats6,
P ickOrder, . . .}, O2b = {youcanchooseats7, DeliverOrder, . . .}, s0iampassive
is the initial state, and T2b = {(s0iampassive, takemychoice8ats6,WS2, null, null, s6takingchoice8fromWS2ats6),
(s6takingchoice8fromWS2ats6, P ickOrder,WS2, youcanchooseats7,WS3, s7iampassive), . . .}.
In fact, this is the supplier service definition automatically extracted from the choreog-
raphy by our decentralized service derivation algorithm, which will be presented later.

In both models, traces (i.e. sequences of events that can be produced by systems)
are represented in a similar way, i.e., each event is denoted by a message, a sender,
and an addressee (snd,m, adr). However, in the orchestration model, events may
refer to either the moments when messages are sent or the moments when messages
are processed by their corresponding receivers (both moments differ because we con-
sider an asynchronous environment). The operational semantics, which defines how
orchestrations and choreographies evolve step-by-step, is given in [5, 13]. In partic-
ular, the semantics given in [13], assumed in this paper, allows each message to be
delayed in the communication medium for any arbitrarily long time. Based on the
traces of choreographies and orchestrations, formal relations (conformance relations)
are defined to determine whether a system of orchestrations necessarily produces the
behavior required by a choreography. Several relations are given. On the one hand, the
conformance of the system of services may be established in terms of sending actions
(confs), processing actions (confp) or both (conf). On the other hand, systems of
services may be required to be able to perform all non-deterministic paths defined in
the choreography (the superscript f is added to the relation symbol), or only at least one
of them (without superscript). As a result, the conformance relations confs, confp,
conf, conff

s , conf
f
p , conf

f , as well as their corresponding prime counterparts (i.e.
conf′s, . . . , where control messages are ignored), are defined formally in [5, 13].

As commented previously, the problems of the natural projection (inconsistent non-
deterministic choices and race conditions), cannot be solved unless we introduce some
additional control messages to be in charge of coordinating services as required by the
choreography. In this way, systems conforming to the choreography (up to original
choreography messages, i.e. ignoring additional control messages) can be derived.
Two optimized derivation methods, centralized and decentralized, are now presented.
First, an auxiliary notion is introduced.

Definition 3.1 Let C = (S,M, ID, s1, T ) be a choreography. Let s
m1/(a1→b1),...,mn/(an→bn)−−−−−−−−−−−−−−−−−−−−−−−→

s′ be a shorthand for ∃ s1, . . . , sn−1 : s
m1/(a1→b1)−−−−−−−−−−→ s1 ∈ T, s1

m2/(a2→b2)−−−−−−−−−−→
s2 ∈ T, . . . , sn−1

mn/(an→bn)−−−−−−−−−−→ s′ ∈ T . For all state s ∈ S and id ∈ ID,
upToSnd(C, s, id) is defined as{
s′
∣∣∣ ((s

m1/(a1→b1),...,mn/(an→bn)−−−−−−−−−−−−−−−−−−−−−−−→ s′ ∧ a1, b1, . . . , an, bn 6= id) ∨ s = s′) ∧ s′
mn+1/(id→bn+1)−−−−−−−−−−−−−−→ s′′ ∈ T

}
representing the set of choreography states s′ we can reach from state s in such a way
that the service id acts as sender in s′ but does not participate in the intermediate

7



transitions from s to s′ either as sender or as receiver. And upToRcv(C, s, id) is
defined as{
s′
∣∣∣ ((s

m1/(a1→b1),...,mn/(an→bn)−−−−−−−−−−−−−−−−−−−−−−−→ s′ ∧ a1, b1, . . . , an, bn 6= id) ∨ s = s′) ∧ s′
mn+1/(an+1→id)−−−−−−−−−−−−−−→ s′′ ∈ T

}
representing the set of choreography states s′ we can reach from state s in such a way
that the service id acts as receiver in s′ but does not participate in the intermediate
transitions from s to s′ either as sender or as receiver. ut

Next we define our new derivation algorithms to extract service orchestrations from
choreographies. First we define the centralized derivation method. A centralized solu-
tion may look counter-intuitive to model web services, but there are specific systems
where a centralized solution is needed since some decisions depend on a unique ser-
vice. For example, multiplayer online games are played via a centralized game server,
and centralized peer-to-peer systems are based on a central server which is used for
indexing functions and bootstrap the entire system. In the centralized derivation, all
services are naturally projected from the choreography, but some projected transitions
are deleted whereas others are added. Any sequence of inactive (null) transitions in
the projection which ends with an effective transition (i.e. a sending or a reception) is
replaced by a single transition doing only the effective action, allowing the service to
skip all pointless transitions during its idle period. A new service, called orchestrator,
is added to decide the path in each non-deterministic choice of the choreography. It
propagates its decisions to the services involved in the selected transition and makes
services not overtake each other. This is achieved by making the orchestrator and the
rest of services exchange some control messages. In order to avoid a wrong process-
ing ordering of messages in different choreography steps, the orchestrator blocks those
services trying to go further than the orchestrator itself. It is worth noting that, since
null projected transitions are deleted in the rest of services, the orchestrator must be
able to coordinate services that became idle at different previous choreography states.
This complicates the algorithm definition but strongly improves the system efficiency,
as we will illustrate in Section 4.

Definition 3.2 Let C = (S,M, ID, s1, T ) be a choreography machine with ID =
{id1, . . . , idn} and S = {s1, . . . , sl}. For all s ∈ S and id ∈ ID, let Ts,id =

{s m/(id→adr)−−−−−−−−−−→ s′ | ∃ adr,m, s′ : s m/(id→adr)−−−−−−−−−−→ s′ ∈ T}. For all 1 ≤ j ≤ |Ts,id|,
let ts,id,j denote the j-th transition of Ts,id according to some arbitrary ordering cri-
terium.

For all 1 ≤ i ≤ n, the controlled service for C and idi, denoted controlled(C, idi),
is a serviceMi = (idi, S

′
i, I
′
i, O
′
i,s

1
iampassive, Ti), where S′i, I

′
i, O
′
i consist of all states,

inputs, and outputs appearing in transitions described next and, for all sq ∈ S, the fol-
lowing transitions are in Ti:

• For all sr ∈ S such that sq ∈ upToRcv(C, sr, idi) (i.e. there is a path from sr

to sq where idi does nothing, but idi may receive a message at sq) and for all t =

sq
m/(snd→idi)−−−−−−−−−−→ s′q ∈ T (i.e. for all transitions where idi is the receiver at sq) we

have the following transitions, where we assume t = tsq,snd,j :
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(i) sriampassive
t1−−→ sqtakingchoicejofsndatsq

where t1 = (orc, takechoicejofsndatsq )/(null, null)
(the orchestrator tells idi that idi will be the receiver at this state, as well as the
choice it must take).

(ii) sqtakingchoicejofsndatsq
t2−−→ s′qiampassive where t2 = (snd, m)/(orc, received)

(idi receives the message and tells the orchestrator that it can initiate next transi-
tion).

• If |Tsq,idi
| ≥ 1 (that is, idi is a service that sends a message at, at least, one tran-

sition leaving the choreography state sq) then, for all 1 ≤ j ≤ |Tsq,idi
|, we have the

following transitions, where we assume tsq,idi,j = sq
m/(idi→adr)−−−−−−−−−−→ s′q:

(i) For all sr ∈ S such that sq ∈ upToSnd(C, sr, idi) we have the transition
sriampassive

t3−−→ s′qiampassive where t3 = (orc, takeyourchoicejatsq )/(adr,m)
(the orchestrator tells the service that its j-th sending transition will be taken and
the service sends the message of that transition).

The orchestrator of C, denoted by orchestrator(C), is a serviceO = (orc, S′, I ′, O′,
s1, T ′), where S′, I ′, O′ consist of all states, inputs, and outputs appearing in transi-
tions described next and, for all sq ∈ S, snd ∈ ID, and 1 ≤ j ≤ |Tsq,snd| we have the

following transitions in T ′, where we assume tsq,snd,j = sq
m/(snd→rcv)−−−−−−−−−−−−→ s′q:

• sq t4−−→ sqstartingchoicejofsnd
where t4 = (null, null)/ (snd, takeyourchoicejatsq )

(the orchestrator tells the sender that one of its transitions will be taken, as well as
which one).

• sqstartingchoicejofsnd

t5−−→ sqtakingchoicejofsnd
where t5 = (null, null)/(rcv, takechoicejofsndatsq )

(the orchestrator tells the receiver that one of the transitions of snd will be taken, as
well as which one).

• sqtakingchoicejofsnd

t6−−→ s′q where t6 = (rcv, received)/(null, null) (the orches-
trator receives the acknowledgement from the receiver and the choreography transi-
tion is finished).

ut

Theorem 3.3 Let C=(S,M, ID, sin, T ) be a choreography with ID={id1, . . . , idn}.
Let S = (controlled(C, id1),
. . . , controlled(C, idn), orchestrator(C)). For all conformance relationships
confx ∈ {conf′s,conf′p, conf′,conff

s
′, conff

p
′, conff′} we have S confx C.

ut

Let us introduce the decentralized derivation algorithm. In this algorithm, the co-
ordination responsibility is distributed among the participants. This approach is more
realistic in cases where we cannot assume the existence of an almost omniscient or-
chestrator owning the relevant information to decide (as we need to assume in the
centralized derivation). Again, services are derived by a natural projection, although
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sequences of idle transitions ending with an active transition are replaced by the latter
transition, and some control messages between the services themselves (not with any
orchestrator) are added. For each choreography state having several outgoing transi-
tions, we assume that services being able to send a message are ordered according to
any arbitrary criterion. The first service chooses between (a) taking one of the tran-
sitions it may trigger at the current state, or (b) refusing to do so and delegating the
transition election to the next potentially-deciding service. In case (b), the next ser-
vice also chooses either (a) or (b), and so on until the last deciding service, which, if
reached, must choose (a). When a service in the sequence chooses (a), it tells its choice
to the receiver of its message and next sends the message. When the receiver gets it, it
sends a message to the first deciding service of the new choreography state, meaning
that the decision-making process of that new state may begin. Figure 2b shows the
derived orchestration of the supplier for the online purchase process. Notice that this
machine is generated automatically by DIEGO and is depicted by using the system
viewer implemented in the tool. Due to the lack of space, we do not present the rest of
derived services of the case study, but they can be easily extracted by using the tool, as
this choreography example is included in the files included in the downloadable version
of the application (..\DIEGO2.0\Other_Choreographies\chorFig6.xml).

Definition 3.4 Let C = (S,M, ID, s1, T ) be a choreography machine with ID =
{id1, . . . , idn} and S = {s1, . . . , sl}. For all s ∈ S and id ∈ ID, let Ts,id =

{s m/(id→adr)−−−−−−−−−−→ s′ | ∃ adr,m, s′ : s m/(id→adr)−−−−−−−−−−→ s′ ∈ T}. For all 1 ≤ j ≤ |Ts,id|,
let ts,id,j denote the j-th transition of Ts,id according to some arbitrary ordering cri-
terium.

For all s ∈ S, let [αs
1, . . . , α

s
hs
] denote any arbitrarily-ordered sequence of all iden-

tifiers in id ∈ ID such that |Ts,id| ≥ 1.
For all 1 ≤ i ≤ n, the decentralized service for C and idi, denoted decentral(C, idi),

is a service Mi = (idi, S
′
i, I
′
i, O
′
i, sin, Ti), where S′i, I

′
i, O
′
i consist of all states, inputs,

and outputs appearing in transitions described next and, for all sq ∈ S, the following
transitions are in Ti:

• For all sr ∈ S such that sq ∈ upToRcv(C, sr, idi) (i.e. there is a path from sr

to sq where idi does nothing, but idi may receive a message at sq) and for all t =

sq
m/(snd→idi)−−−−−−−−−−→ s′q ∈ T (i.e. for all transitions where idi is the receiver at sq) we

have the following transitions, where we assume t = tsq,snd,j :

(i) sriampassive
t7−−→ sqtakingchoicejofsnd

where t7 = (snd, takemychoicejatsq )/(null, null)
(the service choosing at this state tells idi that idi will be the receiver at this state).

(ii) If there exists at least one transition leaving s′q in T then we also have the tran-
sition sqtakingchoicejofsnd

t8−−→ s′qiampassive where t8 = (snd,m)/(αs′q

1 , youcan-
chooseats′q ) (idi receives the message and tells the first sender of the new state
that it can initiate the decision-making of the next state).

Else, sqtakingchoicejofsnd

(snd,m)/(null,null)−−−−−−−−−−−−−−−→ s′qiampassive.
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• If we have idi = αsq

k such that 1 ≤ k ≤ hsq (that is, idi is a service that sends a
message at, at least, one transition leaving the choreography state sq) then we have
the following additional transitions, where we assume (idi)

− = αsq

k−1 and (idi)
+ =

αsq

k+1:

(a) Take the appropriate choice:

(a.1) If idi is the first service deciding at sq , i.e. idi = αsq

1 : Let J = {b | ∃ s′,m, a :

s′
m/(a→b)−−−−−−−→ sq ∈ T}. For all sr ∈ S such that sq ∈ upToSnd(C, sr, idi) and

for all b ∈ J we have sriampassive
t9−−→ sqicanchoose where t9 = (b, youcanchooseatsq )/(null, null)

(the receiver of the previous choreography transition tells idi that it can start the
decision-making of choreography state sq).

(a.2) Else: For all sr ∈ S such that sq ∈ upToSnd(C, sr, idi) we have the transition
sriampassive

t10−−→ sqicanchoose where t10 = ((idi)
−, youcanchooseatsq )/(null,

null) (the previous service which can decide at the current state tells idi and it
will not, so idi can).

(b) If idi is not the last service deciding at sq , i.e. idi 6= αsq

hsq
: We have the transition

sqicanchoose
t11−−→ sqiampassive where t11 = (null, null)/((idi)

+, youcanchooseatsq )
(idi refuses to choose and tells the next service that it can choose)

(c) For all 1 ≤ j ≤ |Tsq,idi
| we have the following transitions, where we assume

tsq,idi,j = sq
m/(idi→adr)−−−−−−−−−−→ s′q .

(c.1) sqicanchoose
t12−−→ sqichoosej where t12 = (null, null)/ (adr, takemychoicejatsq )

(idi chooses its j-th transition and informs the receiver of that transition about
it).

(c.2) sqichoosej
(null,null)/(adr,m)−−−−−−−−−−−−−−−→ s′qiampassive (idi sends the message required by

the choreography and moves to a passive state).

Besides, if idi = αs1

1 then sin = s1icanchoose else sin = s1iampassive. ut

Theorem 3.5 Let C=(S,M, ID, sin, T ) be a choreography with ID={id1, . . . , idn}.
Let S = (decentral(C, id1), . . . , decentral(C, idn)). For all confx ∈ {conf′s,conf′p,
conf′, conff

s
′, conff

p
′, conff′} we have S confx C. ut

4 Experiments
In this section we compare the performance of our centralized and decentralized deriva-
tions, as well as them with derivations implemented in the former DIEGO version (de-
fined in [13]), in terms of the number of messages exchanged among the services.
We compare them by using several choreographies where the number of involved
web services differs or the choreography depth (i.e. the depth of the tree denoting
the choreography form) varies. The tool DIEGO 2.0, as well as all choreographies
mentioned in experiments described here and other related material, are available at
http://www.dsi.uclm.es/retics/diego/.
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Experiments performed with the automatic testing functionality of DIEGO 2.0
show that new algorithms suppress a high amount of unnecessary control messages
between the services, yielding a very efficient derivation. Decreasing the message
traffic is very important in order to reduce the network congestion. We empirically ob-
serve that, in former algorithms, most of avoidable control messages in the derivation
algorithms are sent to services that are not involved in the current choreography step
indeed. On the contrary, in the optimized algorithms, for each service, any sequence of
consecutive null transitions, departing at state s, and followed by a non-null transition
reaching state s′, is replaced by a single transition from s to s′. These transitions make
the service immediately advance a different number of choreography steps, depending
on its current state. Thus, services must be informed of the transition to be taken at
each time, and also of what choreography state this transition belongs to.

Let us introduce our choreography examples. In choreography cExp1_2ws, only
two services participate in a single branching point. In choreography cExp1_3ws,
cExp1_2ws is modified by adding a new participant service, yielding a choreography
where three web services participate in a single choice point. By changing the number
of participant services in cExp1_2ws we create the rest of the choreographies used in
the experiments, where 4, 5, . . . , 10 web services are involved (these choreographies
are called cExp1_4ws, cExp1_5ws, . . . , cExp1_10ws). We compare the number of
messages exchanged among the services by using our tool DIEGO 2.0, in particular,
the web services simulator included in it. The results are shown in Table 2. The first
column of Table 2, called Version, shows the algorithm version, 1.0 (former version) or
2.0 (optimized version); column Choreography shows the name of the choreography
used in the experiment; column Msgs Centr. shows the number of messages exchanged
between the services when running the simulation using the centralized derivation; fi-
nally, column Msgs Decentr. shows the number of messages exchanged between the
services when running the simulation using the decentralized derivation.Regarding to
the column Msgs Decentr., sometimes an interval appears. This means that the deriva-
tion version under consideration needed different numbers of messages in different
executions. Notice that the choreography non-determinism is simulated by making
random choices in the simulator, so the number of messages upon termination may
vary depending on the path chosen. Using the results obtained, we have characterized
(in the last two lines of Table 2) the number of messages exchanged with respect to
the number of web services involved in a choreography branch (p) or the choreography
depth (q).

The results illustrate that the number of messages exchanged in the former versions
of the centralized and decentralized derivation algorithms grows linearly with the num-
ber of services involved in the choice point of the choreography, whereas the number
of messages exchanged in the optimized versions remains constant in the centralized
version and in the lowest bounds of the decentralized version. So, if the number of web
services increases, the number of messages exchanged is not affected in the centralized
case. Furthermore, if we include more branches leaving the same choice state and the
number of web services being able to send increases, then the number of messages
required for communication increases linearly in the upper bounds in the decentralized
version since they have to agree on which one will act. However, this does not affect
the centralized version because the orchestrator makes the decision in a single step,
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Version Choreography Msgs Centr. Msgs Decentr. Choreography Msgs Centr. Msgs Decentr.
1.0 cExp1_2ws 11 8-9 cExp2_d=3 18 18
2.0 cExp1_2ws 6 4-6 cExp2_d=3 12 9
1.0 cExp1_3ws 16 11-13 cExp2_d=4 27 27
2.0 cExp1_3ws 6 4-8 cExp2_d=4 18 14
1.0 cExp1_4ws 21 14-17 cExp2_d=5 36 36
2.0 cExp1_4ws 6 4-10 cExp2_d=5 24 19
1.0 cExp1_5ws 26 17-21 cExp2_d=6 45 45
2.0 cExp1_5ws 6 4-12 cExp2_d=6 30 24
1.0 cExp1_6ws 31 20-25 cExp2_d=7 54 54
2.0 cExp1_6ws 6 4-14 cExp2_d=7 36 29
1.0 cExp1_7ws 36 23-29 cExp2_d=8 63 63
2.0 cExp1_7ws 6 4-16 cExp2_d=8 42 34
1.0 cExp1_8ws 41 26-33 cExp2_d=9 72 72
2.0 cExp1_8ws 6 4-18 cExp2_d=9 48 39
1.0 cExp1_9ws 46 29-37 cExp2_d=10 81 81
2.0 cExp1_9ws 6 4-20 cExp2_d=10 54 44
1.0 cExp1_10ws 51 32-41 cExp2_d=11 90 90
2.0 cExp1_10ws 6 4-22 cExp2_d=11 60 49
1.0 cExp1_pws 5*p+1 3*p+2 , 4*p+1 cExp2_d=q 9*(q-1) 9*(q-1)
2.0 cExp1_pws 6 4 , 2*(p+1) cExp2_d=q 6*(q-1) 5*q-6

Table 2: Comparison between centralized and decentralized derivation methods for
algorithm version 1.0 or 2.0.

without consulting the rest of services.
In our second experiment, we use choreographies where only two web services

are involved and we modify the depth of the tree representing the choreography. Thus,
cExp2_d = 3 is a choreography with two branches and depth 3, choreography cExp2_d =
4 is similar to the previous one but with depth 4, and so on up to cExp2_d = 11 with
depth 11. Results are also presented in Table 2. As we can observe, in both versions,
the number of messages increases linearly with the depth of the choreography. How-
ever the number of messages in the optimized version is lower, and it also grows more
slowly. This difference would be greater in choreographies with higher number of in-
volved services, because more unnecessary messages would be avoided in optimized
derivations. The single branching point of choreographies involves a single service so,
for each choreography, all executions of the optimized decentralized derivation require
a constant number of messages.

5 Conclusions
In this paper we have introduced a new version of our services derivation tool, DIEGO.
To the best of our knowledge, DIEGO is the only tool that derives correct sets of WS-
BPEL services from WS-CDL choreographies even in cases where the natural pro-
jection does not work, without requiring any well-formedness conditions, and in an
integrated way not requiring any human interaction in the derivation. The new version
described in this paper, DIEGO 2.0, provides algorithms that are more efficient, and
it incorporates additional features such as testing of derived services, which automati-
cally compares the behavior of the derived services with the corresponding choreogra-
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phy. Besides, we have formally defined the new derivation algorithms and proved their
correctness.

As future work, we plan to enrich our formal FSM-based choreography and orches-
tration languages with variables and temporal conditions. Moreover, we are planning to
extend our operational semantics with the parallel operator and with WS-CDL worku-
nits to model conditional behavior. We will also design new derivation algorithms for
these new enhanced models and implement them in DIEGO.
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Appendix A: Proof of Theorem 3.3
Let us recall that, as mentioned in the bulk of the paper, the formal definitions of
conformance relations conf′s, conf

′
p,conf

′, conff
s
′,conff

p
′,conff′ can be found

in [13].
Let us analyze step by step the behavior of the system S, checking that (a) all the

behaviors it can produce, regardless of whether we take sending or processing events,
can be produced by C (which would show that the relations conf′s,conf

′
p,conf

′ hold
between S and C); and (b) that all behaviors allowed by C can be produced indeed by
S (which would imply that we also have the relations conff

s
′,conff

p
′,conff′). Next

we analyze how the system executes each choreography transition, following some
transition available at some state of the choreography. We distinguish the following

moments in the simulation of the choreography transition t = sq
m/(snd→adr)−−−−−−−−−−−−→ s′q ,

where we consider t = tsq,snd,j :

(1) Initially, the orchestrator orc is at state sq , service snd is at some state sriampassive

such that sq ∈ upToSnd(C, sr,
snd), and service adr is at some state spiampassive such that we have sq ∈
upToRcv(C, sp, adr). Besides, the input buffers of all services are empty, and
the input buffer of the orchestrator is empty too. Moreover, we also have D = ∅.

(2) From moment (1), the system will eventually reach a configuration where the or-
chestrator sends a message takeyourchoicejofsndatsq to service snd. This oc-

curs when the orchestrator chooses to trigger transition t = sq
m/(snd→adr)−−−−−−−−−−−−→

s′q (let us note that the orchestrator does not need any message from any other
service to take this transition). Let moment (2) denote the execution point where
this has just happened. Since the message has just been sent, we have D =
{(orc, takeyourchoicejatsq , snd)}. The input buffers of all services are empty,
the orchestrator is currently at state sqstartingchoicejofsnd

, and all the rest of ser-
vices (including snd) are at their same states as in moment (1).

(3) From moment (2), the system will eventually reach a configuration where the
service snd receives the message takeyourchoicejatsq at its input buffer, and
next snd takes the (only) transition this message allows to trigger from its state
sriampassive (let us note that, by the construction of the services, service snd is
ready, at state sriampassive, to receive a message takeyourchoicejatsf for all
state sf ∈ upToSnd(C, sr, snd)). Let moment (3) denote the moment where
that transition has just been taken. Due to the construction of services from C,
when snd takes this transition, it sends the message denoted by the choreography
at its current state (that is, it sends m to adr). So, (snd,m, adr) ∈ D. Note that
orc and adr might have evolved from moment (2) to moment (3). In particular,
orc might have already sent a message takechoicejofsndatsq to adr (so, orc
would be at state sqtakingchoicejofsnd

instead of sqstartingchoicejofsnd
) and adr

might have already received that message at its input buffer and processed it (so
it would be at state sqtakingchoicejofsndatsq

instead of spiampassive).
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(4) From moment (3), regardless of whether services orc and adr have already
evolved as explained at the end of the previous item or not, the system will
eventually execute the adr transition where adr receives message m from snd
and, at the same transition, it sends message received to orc. Let moment
(4) denote this moment. At this point, both snd and adr will be at a state
s′qiampassive, representing that these services are now passive at the state s′q

reached in the choreography by taking the selected choreography transition. Be-
sides, D = {(adr, received, orc)}.

(5) From moment (4), the orchestrator will eventually receive the message received
from adr and reach state s′q . Let moment (5) be this moment. At this point, both
snd and adr are a state s′qiampassive and the rest of services are at the same states
they were at moment (1). Besides, we have D = ∅ and the input buffers of all
services are empty.

At moment (5), the system fulfills the same conditions as in moment (1) regarding
input buffers and the state of the set D, though services orc, snd, and adr are at states
s′q , s′qiampassive, and s′qiampassive, respectively. It is easy to prove, by induction over the
number of choreography transitions taken, that after executing any number of choreog-
raphy transitions and reaching moment (5), the system will necessarily reach moments
(2), (3), (4), and (5) as described above for the next choreography transition, which
proves property (a) stated at the beginning of this proof. Note that choreography mes-
sages are sent at (3) and processed at (4), and moments (3) of different choreography
transitions (respectively, moments (4)) cannot be mixed up. Moreover, the system can
evolve to take a new choreography transition for any choreography transition that can
be taken from the previous choreography state, which proves property (b) too. Thus,
the system of services performs all transitions defined by the choreography. There-
fore, the system of services conforms to the choreography with respect to all proposed
relations.

Appendix B: Proof of Theorem 3.5
Again, we analyze step by step the behavior of the system S, checking that (a) all
the sequences of events it can produce, regardless of whether we take sending or pro-
cessing events, can be produced by C (so conf′s, conf

′
p,conf

′ hold between S and
C); and (b) all behaviors allowed by C can be produced indeed by S (so we also have
conff

s
′,conff

p
′,conff′). As we did before, we analyze how the system executes each

choreography transition, following some transition available at some state of the chore-
ography. We distinguish the following moments in the simulation of the choreography

transition t = sq
m/(snd→adr)−−−−−−−−−−−−→ s′q , where we consider t = tsq,snd,j :

(1) Initially, the first service with the capability of choosing at the current choreogra-
phy state, that is αsq

1 , is at state sqicanchoose. For any other service idwith that ca-
pability, i.e. id ∈ {αsq

2 , . . . , α
sq

hsq
}, id is at some state sriampassive such that sq ∈

upToSnd(C, sr, id). Let us note that snd ∈ {αsq

1 , . . . , α
sq

hsq
}. Besides, service

adr is at some state spiampassive such that we have sq ∈ upToRcv(C, sp, adr).
The input buffers of all services are empty. Moreover, we also have D = ∅.
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(2) From moment (1), the system will eventually reach a configuration where ser-
vice snd receives the message youcanchooseatsq from the previous service in
the decision-making sequence, which makes snd reach state sqicanchoose. Let
moment (2) denote the moment where this just has happened. All services be-
ing before snd in the decision-making sequence have already received the same
message from the service before them, so they have moved to state sqicanchoose.
However, next they have refused to choose, passing the youcanchooseatsq mes-
sage to the next service and reaching state sqiampassive. The rest of services are
at the same states as in moment (1). The input buffers of all services are empty
and we have D = ∅ again.

(3) From moment (2), the system will eventually reach a configuration where the
service snd sends a message takemychoicejatsq to adr and next it sends m
to the same service. Let moment (3) denote this execution point. Service snd
is at state s′qiampassive and we have (snd,m, adr) ∈ D. Besides, the service
adr might have already processed message takemychoicejatsq from snd, or it
might have not. If it has, then service adr will be at state sqtakingchoicejofsnd

(instead of spiampassive) and we would have D = {(snd,m, adr)} (instead of
D = {(snd, takemychoicejatsq , adr), (snd, m, adr)}).

(4) From moment (3), regardless of whether service adr has already evolved as ex-
plained at the end of the previous item or not, the system will eventually reach a
configuration where service adr processes messagem from snd. Let moment (4)
denote this point. When adr processes message m, it reaches state s′qiampassive

and sends message youcanchooseats′q to the service beginning the decision-
making sequence of the new state, that is αs′q

1 . Thus, we have D = {(adr, you-
canchooseats′q , α

s′q

1 )}. Besides, the input buffers of all services are empty.

At moment (4), the system fulfills the same conditions as in moment (1) regarding
input buffers and the state of the set D, though services snd, and adr are at states
s′qiampassive, and s′qiampassive, respectively, and the only message stored in D allows to
begin the decision-making sequence of the next choreography state s′q . Besides, all ser-
vices being before snd in the decision-making sequence of sq are at state sqimpassive,
as they were at moment (1) indeed. Again it is easy to prove, by induction over the
number of choreography transitions taken, that after executing any number of choreog-
raphy transitions and reaching moment (4), the system will necessarily reach moments
(2), (3), and (4), as described above for the next choreography transition, which proves
property (a) stated at the beginning of this proof. Note that choreography messages are
sent at (3) and processed at (4), and moments (3) of different choreography transitions
(respectively, moments (4)) cannot be mixed up. Moreover, the system can evolve to
take a new choreography transition for any choreography transition that can be taken
from the previous choreography state, which proves property (b) too. Thus, the system
of services performs all transitions defined by the choreography. Therefore, the system
of services conforms to the choreography with respect to all proposed relations.
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