A centralized and a decentralized method to automatically derive
choreography-conforming web service systems

Ismael Rodrigu€z Gregorio Dia2*, Pablo Raban&] Jose Antonio Mate€o

aDept. Sistemas Informaticos y Computacion, Universidash@aotense de Madrid, 28040, Madrid, Spain.
bUniversidad de Castilla-La Mancha, Escuela Superior deefrigra Informatica, 02071, Albacete, Spain.
CUniversidad de Castilla-La Mancha, Instituto de Investigam en Informatica, 02071, Albacete, Spain.

Abstract

We present a formal model to represent orchestrations asr@afyraphies and we define several
conformancesemantic relations allowing to detect whether a set of aithton models, rep-
resenting some web services, leads to the overall comntionisedescribed in a choreography.
Given this formal model, we develop automatic methods tivdex set of web services from a
given choreography, in such a way that the system consisfitigese services necessarily con-
forms to the choreography. These methods enable the cofistrwof conforming systems of
services even in cases where projecting the choreographgath service would lead to a non-
conforming system. This issue is addressed by adding sommtmessages that make services
interact as required by the choreography. Two differenivddon methods are presented. In the
centralizedmethod, a new service is responsible of managing these@uklitontrol messages.
In the decentralizednethod, the responsibility of handling these messagesishiited among
all services.

Keywords: Automatic Web service composition, formal specificatioejvgervice
choreography.

1. Introduction

Web services related technologies are a set of middleweheddogies for supporting§ervice-
Oriented Computing23]. The definition of a web service-oriented system ineshtwo com-
plementary views:Orchestrationand choreography The orchestration concerns thgernal
behavior of a web service in terms of invocations to othevises. It is supported, e.g., by
WS-BPEL [2] Web Services Business Process Execution Languadéch is a language for
describing the web service behavior (workflow) in terms & tomposition of other web ser-
vices. On the other hand, the choreography concernshiervableinteraction among web
services. It can be defined, e.g., by using WS-CDL [39¢ Services Choreography Descrip-
tion Languagg Roughly speaking, the relation between orchestratiehciioreography can be

UResearch partially supported by projects TIN2009-14302-Q1 and PEII09-0232-7745.
*Corresponding author
Email addresses: sr odri g@i p. ucm es (Ismael Rodriguezgr egori o. di az@icl m es (Gregorio
Diaz),pr abanal @ di . ucm es (Pablo Rabanal},mat eo@lsi . ucl m es (Jose Antonio Mateo)

Preprint submitted to Elsevier December 27, 2011

Figure 1: Example of natural projection.

stated as follows: The collaborative behavior, descrihetthé choreography, should be the result
of the interaction of the individual behaviors of each iweal party, which are defined via the
orchestration. Let us note that the communication amongcesr is asynchronous. However,
choreographies do not capture the type of communicatidmriy the communication flow.

In this paper we present some formal frameworks to automltiderive web services (in
particular, their orchestration definition) from a giverookography, in such a way that the con-
current behavior of these derived services necessaitjormsto the choreography.

The main problem arisen in the derivation of services froth@eography is the fact that the
natural projectiondoes not necessarily produce a set of services conformisglioreography.
We can easily observe this problem in the example depictédgare 1. The formalism used
here will be fully defined in Section 2, but we can familiarmarselves with the notation now.
The system on the tojg;hor, represents a choreography. It defines the required concation
flow among three services, Y, andZ. For instance, the first transition denotes that the message
a is sent by servic&X to serviceY'. In addition, machines, Y, andZ shown at the bottom of
the figure are services derived from the choreography bytijrprojecting it into each involved
service. In order to enable asynchronous communicationgomsider that each service is en-
dowed with a buffer to store incoming messages. In the figgaeh service transition is labeled
by a tag(S1,m1)/(S2, m2) stating that if the service has a messagefrom S1 stored in its
buffer then it can send a message to S2. Let us note that servicel, Y andZ are structural
copies of the choreography. In particular, each servicesitian is labeled with a communication
action feadinga message from its buffer and/sendinga message to another service) where
this action is directly taken from the corresponding chgraphy transition. If the service does
not read or send any message in the corresponding choréggrapsition then we write a null

2

action(——, ——) in the service transition.

This example illustrates two problems we are facing in thigtext. On the one hand, services
could take non-deterministic choices of the choreograpteynon-consistent way. For instance,
let us note that, in our example, the choreography can tatigptssible paths (its left branch or
its right branch) depending on the action taken by ser¥igsendingb to Z or sending: to 7,
respectively). In both branches, servicesends messages # but neitherY” nor Z contacts
X afterwards to inform it about the action taken By SinceY andZ communicate, they will
follow the same branch. However, sinde does not need to have any specific message in its
buffer to take any of its two available transitions (both lateeled with(——, ——)/(——, ——)),

X could follow theoppositebranch as the one followed By and Z.

On the other hand, we may hagausalityandrace problems, that is, services can evolve
to a successor state by overtaking the rest of services iohtbeeography, or a sent message
can be delayed in such a way that a message from a succegsavsttakes it, respectively.
Coming back to our example, the causality problem is obskifyéor instance, after servic&
selects the proper branch, this service makes progrese taghtransitiorbeforeserviceY has
taken any of its two available actions. This may happen iddeause servic& just sends
messages and it does not need any message in its buffer t@ ¢wats final state. This violates
the choreography requirement th&itmust send its message ordfter Y has already sent its
own message. Regarding the other type of problem, the raobtem, let us replace the first
choreography transition (wher€ sends: to Y') by two transitions, from the same origin to the
same destination, whet® sends eitheb or c to Y, respectively. The natural projection would
project these two choreography transitions into the firgt tansitions of serviceX', Y, and
Z (in Z, both transitions would be null because they do not invélye If X sendsh andnext
it sendsc to Y, Y could receive them the other way around due to a long delayiofthe
communication medium. The¥i would consume, in itdirst transition, the message it should
take in thethird one, and the other way around.

In this paper we will present two methods to derivaparectset of services from a choreogra-
phy. The first derivation method solves the previous problbgnadding amrchestratorservice,
which is a kind of director that is responsible of coordingtservices and controlling the sys-
tem workflow. An alternative method derivingdecentralizedsystem, without orchestrator, is
presented too. This version varies from the centralizedioiiee sense that it is not necessary
to introduce a new “almost-omniscient” orchestrator serthat would be feasible only in some
concrete systems. On the contrary, in the decentralizddraythedecision makings shared by
all services. In general, this situation is more realisécduse web services are independent and
do not share all their internal information.

In order to fix the meaning afonformancen this context, we define several semantic rela-
tions such that, given the orchestration of some web sendod a choreography defining how
these web services should interact, they decide whethantéraction of these web services nec-
essarily leads to the required observable behavior. Theoge relations allow to assess services
either in terms of the times when messagessarg or in terms of the times when messages are
processedy their destination services (that is, when destinatiovices actually take them from
their input buffers to trigger some transition). Models ofttestrations and choreographies are
constructed by means of two different formal languages.guages explicitly consider charac-
teristics such as service identifiers, specific senderstaddes, message buffers for representing
asynchronouzommunications, or message types. Besides, two semainttegbretations of
asynchrony are considered: One where messages are imefgdtated in input buffers of their
corresponding addressees (so, the order in which messagesra is preserved in input buffers

3

of destination services), and another one where there rbiggatlelaybetween the sending and
the reception of each message in the input buffer of the addee(so messages can be mixed up
in destination input buffers). Centralized and decergealiderivation algorithms are presented
for both interpretations.

This paper makes the following contributions:

e We provide a formal model, based finite state machine§~SMs), for defining chore-
ographies and orchestrations in an asynchronous envirgnme

e We propose a set of conformance relations allowing to compgstems of orchestration
services and choreographies in different cases: (a) cemsgisending times, processing
times, or both; (b) considering all choreography sequences®me of them; and (c) as-
suming that messages can be mixed up due to unpredictablgsdelthe communicating
medium or not.

e We develop centralized and decentralized derivation élgos allowing to extract, from
any choreography (regardless of whether it is nicely definedad}, ra set of services
such that these services will necessarily produce the l@haquired by each proposed
conformance relation. Besides, proofs of the correctnesese algorithms are given.

These contributions help to face several problems relatethé web service infrastruc-
ture. For instance, derivation algorithms allow to autdozdlly extract early prototypes of
web services systems from choreographies, and next we eahese models/prototypes to for-
mally/empirically analyze their properties. Moreoversérvice orchestrations do not have to be
automatically derived but agiven then the proposed conformance relations between oraekestr
tions and choreographies also allow developers to selecdbquate service that accomplishes
the behavior of certain role, thus aiding web service disgpvasks. In fact, according to our
conformance relations, the correctness of a service fovengthoreography depends on the
behavior of the rest of services under consideration, sma &f global web service discovery
criterion is implicitly enabled by the conformance relatio Models defined in our modeling
languages can be used to analyze the properties of systesesvides, such as stuck-freedom
and other problems derived from the concurrent executiorceonformance relations allow us
to check that a system of services conforms to a choreograghlgave that, if the choreography
is stuck-free, then the relation holds only if the systemoisa®, so conformance relations im-
plicitly allow to check the stuck-freedom. Moreover, theidation methods given in the paper
guarantee that derived systems are stuck-free as long esrtesponding choreographies are so.
Besides, by analyzing the order of exchanged messages veturhnwhether the information is
ready when required, which concerns correlation and cosgigm issues.

Next we introduce the structure of this paper. The formal ehtaldefine orchestrations and
choreographies is given in Section 2. The model given ingbion assumes that, when a ser-
vice sends a message, it is immediately stored in the indteroof destination service. Next,
the conformance relations between orchestrations anaegaphies are defined in Section 3,
where a collection of examples of different nature and cexipf is given to show the subtle
differences between these relationships. Section 4 intreslthe centralized and decentralized
methods to derive choreography-compliant sets of serviseslternative operational semantics,
where messages that have already been sent can be delagesithefy are stored in the input
buffers of their addressees, is presented in Section 5. @iheadized and decentralized deriva-
tion methods are adapted to this case, and their correctimeles the new semantics is shown.

4

Section 6 presents a discussion about features beyondrtemtoodel which will be addressed
in future works. The related work is presented and compaiigid eur proposal in Section 7.
Finally, we state the conclusions in Section 8. Proofs ailtegre given in the appendix.

2. Formal model

In this section we present our languages to define modelscbestrations and choreogra-
phies. Some preliminary notation is presented next.

Definition 2.1. Given a typeA anday, . ..,a, € A with n > 0, we denote byay,...,a,] the

list of elementsiy, . .., a, of A. We denote the empty list by].
Given two listsoc = [aq,...,a,] @ando’ = [by,...,b,] of elements of typed and some
a € A, we considevr - a = [a1,...,an,al ando - o' = [a1,...,an,b1,. .., byl

Given a set of listd,, a path-closureof L is any subseV C L such that for alb € V we
have that:

(a) eitheroc =[] oro =o' - a for somes’ with ¢’ € V; and
(b) there do not exist’, 0" € V such thatr - a = ¢’ ando - b = ¢” with a # b.

We say that a path-closufé of L is completein L if it is maximalin L, that is, if there does
not exist a path-closurg’ C L such thafl” c V. The set of all complete path-closuresiofs
denoted byConp(L). O

Intuitively, a complete path-closure is a set consisting haximal) sequence as well as all
of its prefixes.

2.0.1. Web service orchestration model with variables
2.1. Web service orchestration model

Both our orchestration model and our choreography moddldwiappropriate variants of
the notion offinite state machiné=SM). Let us note that our conformance relations to compare
orchestrations and choreographies will be based on thedfindnformance relations typically
appearing in formal testing techniques, where implemanmtatare compared with specifica-
tions [26, 28, 10, 31, 30]. Since FSMs and FSM-variant moHale been extensively used in
this kind of frameworks as underlying models, adopting kil of model will ease the adap-
tation of testing conformance notions to our model. Systefnservices will be modelled as
systems of a suitable variant of FSMs, while choreographkit$e modelled by a more direct
variant of FSM. The gap between these customized modelsarietnel of WS-BPEL and WS-
CDL, respectively, is not big in conceptual terms, so thel{ eanstitute a suitable (simplified)
model of both languages.

We present our model of web serviorchestration The internal behavior of a web service
in terms of its interaction with other web services is reprgsd by dinite state machinehere,
at each state, the machine can receive an inpund produce an outputas response before
moving to a new stat&’. Moreover, each transition explicitly defines which seeviaust send:

A sender identifiesnd is attached to the transition denoting that, i sent by servicend, then

the transition can be triggered. We assume that all webceare identified by a given identifier

belonging to a set D. Moreover, transitions also denote thédresse®f the outputo, which

is denoted by an identifierdr. Let us note that web services receive messages asynclsipnou
5

This is represented in the model by consideringrgnut bufferwhere all inputs received and not
processed yet are cumulated. Each input has attached tht#iateof the sender of the input.
A patrtition of the set of possible inputs will be explicitly provided,da@ach set of the partition
will denote atype of inputs If a service transition requires receiving an inputhose type ig,
then we will check if the first message of typappearing in the input buffer isindeed. If it is
so (the predicatavai | abl e given in the next definition will be used later to check thtegn
we will be able to consume the input from the input buffer aadcetthe transition.

Definition 2.2. Given a set of service identifiers denoted b¥, a servicefor ID is a tuple
(id, S, 1,0, s;n, T, 1) whereid € ID is the identifier of the service§ is the set of stated, is
the set of inputsQ is the set of outputss;,, € S is the initial state " is the set of transitions,
andv is a partition ofi, i.e. we hanUpewP = I and for allp, p’ € 1) we havepNp’ = (). Each
transitiont € T is a tuple(s, i, snd, o, adr, s’) wheres, s’ € S are the initial and final states
respectively; € I is an input,snd € ID is the required sender 6f o € O is an output, and

adr € ID is the addressee of where we requirend # adr. A transition(s, ¢, snd, o, adr, s’)

is also denoted by M

Given a serviceM = (id, S,I,0, s, T,%), aninput bufferfor the serviceM is a list
[(id1,41), ..., (idk,ix)] whereidy, ... ,id € ID andiy, ..., i € I. A configurationof M is a
pairc = (s,b) wheres € S is a state ofM/ andb is an input buffer ford/. The set of all input
buffers is denoted bf8. Theinitial configurationof M is (s, []).

Let us suppose that, given a set 2/ denotes the powerset @. Let us consider that
b = [(idy,i1), ..., (idk,ix)] € B with k > 0is an input bufferjd € ID, i € I, andS € 2L.
The predicateavai | abl e(b,id, ¢, S) holds iff, for somel < j < k, we have(id;,i;) =
(id,i) and there do not exist < j, id" € ID, andi € S, such that(id;,i;) = (id',).
We also consider nsert (b,id,i) = b - (id,i). Finally, we consider enove(b,id,i) =
[(idh il), ey (idjfl, Z'jfl), (Z'dj+1, ij+1>, ey (de, Zk)], provided thatj € N is the minimum
value such thaf € [1..k], id = id;, andi = i;. O

s’

Let us note that, alternatively, we may think about messgpest just as a way to have
different input buffers, one for each type. In fact, the hatiaof services is the same if this
alternative view is adopted. If a service requires a messaffm a given type € 1 to take
a given transition from the current state, then it will beeatd do it only if the first message of
the buffer storing messages of typés m indeed. Since message types can be defined by any
partition of the inputs set, this model captures, in paléiguhe case where a single input buffer
is used: This is the case where a single message type (emdpedinessages) is considered. On
the other hand, it also allows us to consider that each kindexsage has its own input buffer:
This is done by considering that each type has a single messag

Next we compose services into systems of services.

Definition 2.3. LetID:{idl, ce ,idp}. Foralll <ji<p, Ieth = (idj, Sj, Ij, Oj, Sjins Tj, ¢])
be a service fof D. Then,S = (M, ..., M,) is asystem of servicdsr ID.

For all1 < j < p, let¢; be a configuration of\f;. We say that = (ci,...,¢,) is a
configurationof S. Let ¢, ...,c, be the initial configurations of/y, ..., M,, respectively.
Then,(c}, ..., c,) is theinitial configurationof S. O

We formally define how systenevolve i.e. how a service of the system triggers a transition
and how this affects other services in the system. Outpugsrefces will be considered as inputs

6

of the services these outputs are sent to. Besides, we eorsgpecial case of input/output that
will be used to denote aull communication. If the input of a transition isull then we are
denoting that the service can take this transition withoaiting for any previous message from
any other service, that is, we denotpraactiveaction of the service. Similarly, aull output
denotes that no message is sent to other service after tikéngorresponding transition. In
both cases, the sender and the addressee of the transdionedgvant, respectively, so in these
cases they will also be denoted byrall symbol. A system evolution will be denoted by a
tuple (¢, snd, i, proc, o, adr, ¢') wherec and¢’ are the initial and the final configuration of the
system, respectively, is the input processed in the evolutianjs the output sent as result of
the evolutionproc is the service whose transition is taken in the evolutien] is the sender of
1, andadr is the addressee of There are two reasons why an evolution can be produced: (a)
a service proactively initiates a transition, that is, asiion whose input il is taken; and
(b) a service triggers a transition because there is anadlaimessage in its input buffer labeled
by the sender identifier and the input required by the treomsitin both cases (a) and (b), there
are two possibilities regarding whether a new output is eenbt: (1) if the transition denotes a
null output then no other input buffer is modified; (2) otherwise, if the transition denotes an
output different fromnull, then this output is stored in the buffer of the addressee agpat By
considering any combination of either (a) or (b) with eitf®Er or (2), four kinds of evolutions
arise indeed.

Definition 2.4. Let ID = {idy,...,id,} be a set of service identifiers asd= (M, ..., M,)
be asystem of serviceer I.D where for alll < j < p each servicell; is defined byM; =
(idj, Sj,1;,0j5,5j.n,Tj, ;). Lete = (c1,...,cp) be a configuration of where for alll <
Jj < pwe havec; = (s;,b;).

An evolutionof S from the configuratior is a tuple(c, snd, i, proc, o, adr, ') wherei €
I U...U I, U{null} is the input of the evolutiory € O1 U... U O, U {null} is the output of
the evolution,c’ = ((s1,b7),- .-, (s, b)) is the new configuration af, andsnd, proc, adr €
ID U {null} are the sender, the processor, and the addressee of théavalespectively. All
these elements must be defined according to one of the folipetioices:

(a) (evolution activated by some service by its&élfr somel < j < p, let us suppose

55 (dlnulD/(@dr0), g1 ¢ T;. Then,s; = s andb; = b;. Besides,snd = null,

proc = id;, adr = adr’, i = null, 0 = o',

(b) (evolution activated by processing a message from the inpffiér of some servicejor

ind',i')/(adr’ o' :
somel < j < p, let us suppose that; (ond) ladr o) o o T; and the predicate

avai | abl e(b;, snd’, ', r) holds, where- is the only set belonging t; such that’ € r.
Then, s, = s" andb’ = renove(b;,snd’,i’). Besides,snd = snd’, proc = idy,
adr =adr',i =1,0=0;
where, both in (a) and (b), the new configurations of the resérvices are defined according to
one of the following choices:

(1) (no message is sent to another servi€e)dr’ = null or o’ = null thenforalll < g <p
with ¢ # j we haves] = s, andb = b,.

(2) (a message is sent to another serviGaherwise, letid, = adr’ for somel < g < p.

Then, we have = s, andb; = i nsert (by,id;,0'). Besides, for all < ¢ < p with

q # j andq # g we haves; = s, andb;, 7: bg.

(*,*)/(B,em.it) exit

@ Client Server Chor A— B.
(A, request)/

(B, response) (= =)/ (A, response)
/(= =) (B, request) response request
B — A A — B

@ .
(A, exit)/(—, —)

Figure 2: A client/server orchestration (left and cented a choreography specification (right).

O

Let us note that the previous operational semantics intigliassume that, when a message
is sent, it is immediately stored in the input buffer of thestifeation service, so messages are
stored in the same order as they are sent and they cannot bd opx Though this kind of order
preservation might be feasible in some cases indeed (eegurttierlying networking protocol
could undertake the responsibility of reordering messagesome lower abstraction level, as
it happens, for instance, in live video streaming), thismigot be feasible in other cases. In
Section 5 we will present an alternative framework whers iinot assumed.

Figure 2 (left and center) shows a simple client/server estriation specification where the
client (A) sends requests to the server (B) and the servponels to them, until the client notifies
that it leaves the system. Initial states are denoted by bldaircle node, anduil inputs and
outputs are denoted by the dash symbol.

As we will see later, the conformance of a system of servichestrations with respect to
a choreography will be assessed in terms of the behavioretbf thachines. We extract the
behaviors of systems of services as follows: Given any sempief consecutive evolutions of
the system from its initial configuration, we take the seqaeaf inputs and outputs labeling
each evolution and we remove allill elements from this sequence. The extracted sequence
(calledtrace) represents theffectivebehavior of the original sequence. We distinguish two
kinds of traces. Asending tracds a sequence of outputs ordered as theysamtby their
corresponding senders. gkocessing tracés a sequence of inputs ordered as theymoeessed
by the services which receive them, that is, they are ordesdidey are taken from the input buffer
of each addressee service to trigger some of its transit®oih traces attach some information
to explicitly denote the services involved in each operatio

Definition 2.5. Let S be a systemg¢; be the initial configuration o, and the set of tuples
(c1,sndy, i1, procy, 01, adry, ca), (c2,snds, s, procs, 0s,adry, cs), ..., (Ck, sndg, ig, procg,
o, adr, cp+1) bek consecutive evolutions d.

Leta; < ... < a, denote all indexes of non-null outputs in the previous segegi.e. we
havej € {a1,...,a,}iff 0; # null. Then,[(procg,,0q4,,adrq,), ..., (proca,., 0q,,adrg,)]
is asending traceof S. In addition, if there do not existnd’, ', proc’, o', adr’, ¢’ such that
(ckt1,8nd i, proc’, o ,adr’, ') is an evolution ofS then we also say thétproc,, , 04, , adr,,),
..., (proca,,04,,adr,,), st op] is a sending trace af. The set of all sending traces &fis
denoted bysndTr aces(S).

Leta; < ... < a, denote all indexes of non-null inputs in the previous seqagne. we
havej € {a1,...,a,} iff i; # null. Then,[(sndq,,ia,,procq,), ..., (sndq, %, ,Proc,,)]

8

is aprocessing tracef S. In addition, if there do not existnd’, ', proc’, o', adr’, ¢’ such that
(ckt1,snd i, proc, o ,adr’,) is an evolution ofS then we also say thtsnd,, , iq, , proca,),
..oy (sndg, ,iq,,proc,,), St op] is a processing trace &f. The set of all processing traces®f
is denoted byr cTr aces(S). O

2.2. Choreography model

Next we introduce our formalism to represent choreograph@ontrarily to systems of or-
chestrations, this formalism focuses on representingiieeaction of services as a whole. Thus
a single machine, instead of the composition of several mashis considered. Each chore-
ography transition denotesmessage actiowhere some service sends a message to another
service.

Definition 2.6. A choreography machiné is a tupleC = (S, M, ID, s;,,T) whereS denotes
the set of states)! is the set of messageED is the set of service identifiers;,, € S is the
initial state, and’" is the set of transitions. A transitigre T is a tuple(s, m, snd, adr, s') where
s, s’ € S are the initial and final states, respectivelyc M is the message, anthd, adr € ID

are the sender and the addressee of the message, respegtivaehsition(s, m, snd, adr, s’) is

m/(snd—adr) ,
also denoted by s’

A configurationof C is any states € S. An evolutionof C from the configuratiors € S is

any transition(s, m, snd, adr, s') € T from states. Theinitial configurationof C is s;,,. O

Coming back to our previous example, Figure 2 (right) depicthoreographg’ between
servicesd and B, that is, the client and the server. The transitions of threography actually
denote the same evolutions we can find in a system of servicesisting of servicegl and B.

As we did before for systems of services, next we identifydbguences of messages that
can be produced by a choreography machine.

Definition 2.7. Let ¢, be the initial configuration of a choreography machihe_et the tuples
(c1,m1,sndy,adry,ca), ..., (cg, my,sndg,adry,cp41) bek > 0 consecutive evolutions of
C. We say that = [(sndy, m1,adry),. .., (sndg, mg,adry)] is atrace of C. In addition, if
there do not existn’, snd’, adr’, ¢’ such that(cy.1,m’, snd’, adr’, ¢’) is an evolution o’ then
we also say tha(sndy, m1, adry),. .., (sndg, my,adry), st op] is a trace ofC. The set of all
traces ofC is denoted by r aces(C). O

3. Conformance relations

Now we are provided with all the required formal machinerydt&fine ourconformance
relations between systems of orchestrations and choreographies. iNwnsider a semantic
relation inspired in theonformance testingelation given in [33, 34]. This notion is devoted to
check whether aimplementatiomeets the requirements imposed kspacification In our case,
we will check whether the behavior of a system of orchestnagiervices meets the requirement
given by the choreography.

However, there are some important differences betweendtiemproposed in [33, 34] and
the notion considered here. Contrarily to those works, #felior of orchestrations and chore-
ographies will not be compared in terms of their possiblereattions with an external entity
(i.e. user, observer, external application, etc) but imgeof what both models can/cannot do

9

by their own, because both models are considereddaaed worlds Let us also note that non-
determinism allows a choreography to provide multipled/alays to perform the operations it
defines. Consequently, we consider that a system of oreltiestiservices conforms to a chore-
ography if it performsne or moreof these valid ways. For each of these valid ways, care must
be taken not to allow the system of servicesnmompletelyperform it, i.e. to finish in an inter-
mediate state — provided that the choreography does nat dlkither. In order to check these
requirements, only complete path-closures will be considiésee Definition 2.1). Moreover, the
set of complete path-closures of the system of servicegjisined to be non-empty because the
system is required to provide at leaste (complete) way to perform the requirement given by
the choreography. Alternatively, we also consider anotékation where the system of services
is required to perfornall execution ways defined by the choreography. This alteraibtion
will be calledfull conformance

There are more differences between the conformance nelatif83, 34] and our approach.
Let us recall that we consider asynchronous communicationsr framework. Thus, the mo-
ment when a message is sent does not necessarily coincidéheimoment when this message
is taken by the receiver from its input buffer and is procdsda fact, we can define a chore-
ography in such a way that defined communications refer keeethe former kind of events or
the latter (i.e., instants where messages are sent, onfastdnere messages are processed by
their receivers, respectively). Thus, we consider two waywhich a system of services may
conform to a choreography: with respect to sending tracebwéth respect to processing traces.
A similar distinction was proposed in [25], as it is commehire Section 7. The case where both
conformance notions simultaneously hold is also identified

Definition 3.1. Let S be a system of services adde a choreography machine.

We say thatS conforms toC with respect to sending actiondenoted byS conf ; C, if
either we have tha@t c Conp(sndTraces(S)) C Conp(traces(C)) or we have tha) =
Conp(sndTraces(S)) = Conp(traces(C)).

We say thats fully conforms taC with respect to sending actiongenoted byS conf / C, if
Conp(sndTraces(S)) = Conp(traces(C)).

We say thatS conforms toC with respect to processing actigndenoted byS conf , C,
if we have either thaf) c Conp(prcTraces(S)) C Conp(traces(C)) or we have that
() = Comp(pr cTraces(S)) = Conmp(t races(C)).

We say thatS fully conforms taC with respect to processing actigrdenoted byS conf I{ C,
if Comp(pr cTraces(S)) = Conp(traces(C)).

We say thatS conforms taC, denoted byS conf C, if S conf , C andS conf , C.

We say thatS fully conforms taC, denoted byS conf / C, if S conf / C andS conf / C.

O

3.1. Using the conformance relations: Examples

In this section we illustrate the use of the conformanceimaia given in Definition 3.1 with
several simple examples. A small case study introducingre mlaborated system will be given
in the next section.

Intuitively, a complete path-closure (see Definition 24 aiset consisting of a (maximal)
sequence as well as all of its prefixes. Let us note that thgekinelement of dinite com-
plete path-closure of traces necessarily finishes wittsth@p symbol. For the sake of clarity,
from now on a complete path-closure will be referred justtBylongest element not including

10

o2 B @ Blg

(mr)l (1,a)/ (1,6) ()

2.2 (=) (=) (4a)
A 4
° ° e o o o

((_5’1;;/(1 by/ (1,a)/ oy |82

b) (1, A (=) =) | ()

=)) @b) “a) 2

\ 4 A 4
° L ° o

@0

b a
G-y 9->10 =)
(9.b) @ 10%% (1(2,mgg)
(-
(10a) Y

® 9»10
[] (9,a)

°
: ack)l
' 9-510 059 |)
v v

(=)
Be5e° g Mo g)
@@) 24

<

) | e
(178 (=-) (7a) (=)
gé-—); (21,a)/
a)
° ° ° ° v
° °
21,b)/
(15a)/ (163)/ a a §22g§ ((-.,..;
) 15> 17 16->17 7
\
[} []

@@

(25 a

27
@

24 ~>25

250 @@
(24a/ (=)
(-
]
)/V/\ /
)/ (24, b)/ (24, c)/
(25 b) (25 c) (..,.) (.,.))
®

L=<

b
b
(3 a)/ a 3» 3—>4 a
) 173 32 1—>2
\ v \

) (25 by Y5 o /\
26.0) (-,) 25->26/ \25->26)
)/

24 %251 lz4 —>25 (25

o8 Ty o

3>4

[] [] e ©
b b b
1—>2 3>4
1=>2 3>4 354
\ 4 \4
° i °
o2 @
(11,msg)/ (=) (14,msg?)/
(11,ack) (13,msg!) (=)
[J [[J

oz

2 o
a
((2_1,3% Xf_lf‘g’ e
\4
[] []

)
(21,b) (21,c)/ b
(==1-) (=) 21—>22
(21,0) \
(=))) °
* e ®
(24',a)/
(=)

(--,-->/l
(25',a)
[}

(25 dy Ys',e)/ (===-) / X——,--)/
)/ \) @6b) \(@260)

ﬂﬁ
B~
o<

Figure 3: Orchestrations and choreographies.

11

the st op symbol. For instance, the complete path-clos{iré [(1,a,2)], [(1,a,2), (1,b,2)],
[(1,a,2),(1,b,2), st op]} will be referred just by[(1,a,2),(1,b,2)] (and we will say that
[(1,a,2),(1,b,2)] is acomplete trace Following a similar idea, atinfinite complete path-
closure{[|, [(a1,b1,c1)], [(a1,b1,c1), (az,b2,c2)], [(a1,b1,c1), (a2, b2, ¢2), (as, bs,cs)], ...}
will be referred by the infinite lisi(ay, b1, ¢1), (a2, b2, ¢2), (a3, b3, c3), . .]

Figure 3 presents several orchestration services andajrayghies. For all depicted services
we will assume that each input belongs to a different typedis. LetS; be a system of orches-
tration services consisting of serviceand2. We check whethe$; conforms to choreographies
5 and6. If we consider theconf relation, then we observe th& conforms to both and
6. This is because the only possible complete sending trade of [(1, a, 2), (1, b, 2)], which
is included in the set of complete tracessafwhich is{[(1, a,2), (1,0, 2)],[(1,b,2), (1, a, 2)]})
and6 ({[(1,q,2),(1,b,2)]}). Concerningfull conformance, we have that fully conforms to
6 with respect to sending traces, but notttoRegarding processing traces, let us note fhat
can generate the complete processing trdes, 2), (1,b,2)] and[(1, b, 2), (1, a, 2)] (note that,
aftera and b are received in the input buffer of servi@e service2 can process them in any
order). Both complete processing traces are included is¢hef complete traces &f but not
in the corresponding set 6f which only includeg(1, a,2), (1,b,2)]. Thus, if eitherconf , or
conf ;f are considered, thesy conforms to5, but not to6.

Let .S, be the system consisting of servideand4, and let us compare it with choreographies
7 and8. In this case, we have the opposite result as before. Incpéatj if processing traces
are considered, thefl, conforms to both choreographies fiifll conformance is considered, it
only conforms tog). However,S; does not conform t8 when sending traces are considered,
regardless of whether full conformance is considered arlrettus note thaf, can perform the
sending trace§(3, a,4), (3,b,4)] and[(3,b,4), (3, a,4)]. However, the sets of complete traces
of choreographie® ands are{[(3, a, 4), (3,b,4)],[(3,b,4), (3,a,4)]} and{[(3, a,4), (3,b,4)]},
respectively. Thus, iEonf , or conf / are considered, thest, conforms to choreography but
not to choreographg.

Next, letS; be the system consisting of serviceand10. We compares; with choreogra-
phies1l and12. The set of complete sending traces%fis equal to{[(9, a, 10), (10,5, 9)],
[(10,b,9), (9,a,10)]}, while the set of complete processing tracesofs {[(9, a, 10)]}. On the
one hand, the only complete trace of choreographis [(9, a, 10)], s0.S5 conforms tol1 only
if processing traces are considered (with respect to dotif , andconf). On the other hand,
choreographyl2 can produce botf(9, a, 10), (10,b,9)] and[(10,b,9), (9, a, 10)]. Since only
complete traces are consideré&g,conforms tol2 only if sending traces are regarded (according
to bothconf , andconf /).

Despite of the fact that only asynchronous communicatioesansidered in our framework,
a kind of synchronous communications can be trivially defiiredeed. Let us consider the
systemS, consisting of servicesl and12. After 11 sends messagesg to 12, servicell will
be blocked untill2 performs its unique transition and sends messageback to11. So, a
synchronous communication betwethand 12 is actually expressed by this trivial structure.
A syntactic sugar to denote a synchronous communicati@nthis is implicitly proposed in
pictures of service$3 and14, which are intended to be equivalentd and 12, respectively.
In particular, we denote a synchronous communication orsaggsnsg by using new symbols
msg? andmsg!.

Let us recall that the suitability of an orchestration seevio fulfill a given choreography
depends on the behavior of the rest of involved servicesusebnsider that tiavel agencyser-
vice requires that either thar companyservice or thénotel service (or both) provide a transfer

12

to take the client from the airport to the hotel. A hotel pding a transfer iggoodregardless
of whether the air company provides a transfer as well or Hotvever, a hotel not providing a
transfer is valid for the travel agenopnly if the air company does provide the transfer. Chore-
ography18 denotes the requirement that either the air company (repted by servicé5) or
the hotel (servicd6) must provide the travel agency (servit® with a message standing
for “we provide you with a transfer serviceln fact, we consider two possible air companies,
represented by servicés and15’. Servicel5 provides servicé7 with a transfer service, while
15’ does not (it does nothing). Similarly, servicEsand 16’ represent two hotels, where only
16 provides the travel agency with a transfer. Most combimetiof, on one hand, eithéi or

15’ and, on the other hand, eith&é or 16/, allow 17 to satisfy choreographys with respect

to (non-full) sending and processing conformance. In facly combiningl5’ with 16’ fails to
meet both non-full conformance relations. Thus, eitheatheompany or the hotel must provide
the transfer. If full conformance is required, then the ordlid combination of air company and
hotel consists in taking5 and16, respectively.

We show that systems of orchestrations are requiramiopleteall started sequences, that
is, they are required not to finish a started sequence umtithioreography explicitly allows it.
Let us consider orchestration servicds 22, and22’, as well as choreograpi®. Let S5 be a
system consisting of service$ and22. The sequencf?21, a,22), (21, b, 22)] is both the only
complete sending trace and the only complete processiog thS;. Thus, S5 conforms to
choreography3 with respect to both kinds of traces. Let us substitute tHimitien of service
22 by that given for service2’, and letS}, be the resulting system. The set of complete sending
traces ofS! is the same aS;, s0.5; also conforms t@3 with respect to sending traces. However,
the set of complete processing tracesséfis {[(21, a, 22), (21,0, 22')],[(21, a,22’)]} because
22’ could take its right path and get stuck after receivingnore formally,[(21, a,22’), st op]
is a processing trace 6f). Since[(21, a, 22')] is not acompleteprocessing trace &3, S{ does
not conform ta23 with respect to processing traces.

Finally, we consider a case where there @faite complete traces in systems due to the
presence of loops. Let us revisit the orchestrations andtbeeography previously depicted in
Figure 2, and le§S be the composition oft and B. The infinite set of complete traces of chore-
ographyC' isT = {0, 01,09,03,...}, whereo is the infinite concatenation of the subsequence
a = [(A, request, B), (B, response, A)], thatis,c = a-«a-«-..., and for alli € N we have
o; = ()t - (4, exit, B). In fact, the infinite set of complete sending and processiaces of
S is T as well, so we have tha conforms toC' with respect to all relationsonf ,, conf ,
conf, conf/, conf/, andconf /.

3.2. Case study: Purchase Process

In order to illustrate the application of the proposed nudito a more elaborated system, in
this section we present a small case study. This is a typir@hase process that uses Internet
as a husiness context for a transaction. There are threesaitthis example: a customer, a
seller, and a carrier. The purchase works as folloi#scustomer wants to buy a product by
using Internet. There are several sellers that offer difféproducts in web-pages servers. The
customer contacts a seller in order to buy the desired praduibe seller checks the stock and
contacts a carrier. Finally, the carrier delivers the prodiuto the customer”

Figures 4 and 5 depict the orchestration of the three actgresented in this purchase pro-
cess, that is, the customer, the seller, and the carrierb&havior of each participant is defined
as follows:

13

@ Carrier

/ (—)/ (2,1Prod)/
® ° .
(2,iProd) (2,bProd)
(2, PickOrder)/
(2, Stock)/(4, iPayment) (1, DeliverOrder)

(2, Receipt)/

(_7 _)

Figure 4: Client and Carrier orchestration specifications.

(1, Nothing)/(—, —)

@ Seller

(1,iProd)/(1,1Prod)

1,bProduct)/(1, NoStock

(= =)/ (1,bProduct)/
(3, PickOrder) (1, Stock)

(1,iPayment)/(1, Receipt)

Figure 5: Seller orchestration specification.

NoStock

Nothing

°
1—=2 2—=1 1—2
Deliver@Qrder Stock
3—1 21
PickOrder Receipt iPayment

2—3 2—=1 1—2

Figure 6: The choreography specification.

14

sq1 | [(1,iProduct,2), (2,IProduct,1), (1,Nothing,2)]
sqe | [(1,iProduct,2), (2,/Product,1), (1,bProduct),
(2,NoStock,1)]
sqs | [(1,iProduct,2), (2,IProduct,1), (1,bProduct),
(2,Stock,1), (1,iPayment,2), (2,Receipt,1),
(2,PickOrder,3), (3,DeliverOrder,1)]

Table 1: Some sequences of choreography
e Customer: It contacts the seller to buy a product. After atimgy the product list, it can
either order a product or do nothing. If the customer dectdesuy a product, then it
must send the seller the information about the product amg@alyment method. After the
payment, it waits to receive the product from a carrier.

e Seller: It receives the customer order and the payment rdefhloe seller checks if there
is enough stock to deliver the order and sends an acceptatifieation to the customer.
If there is stock to deliver the order, then it contacts aieato deliver the product.

e Carrier: It picks up the order and the customer informatioorder to deliver the product
to the customer.

Figure 6 shows the choreography of this Internet purchaseegs. Once the three services
and the choreography specification are defined, we use tlierotance relations given in Defi-
nition 3.1 to check if the composition of the proposed orttati®n services satisfies the chore-
ography.

Let us consider a systeth= (1, 2, 3), wherel, 2, and3 represent the client service, the seller
service, and the carrier service, respectively.@ be the choreography machine depicted in Fig-
ure 6, and letqy, sq2, sq3 be the three sequences depicted in Table 1. For all compéetest of
C, o is an infinite concatenation of these subsequences, thatisy; - as - as-ay-. .. where for
all i € N we havew,; € {sq1, sqa, sqs}. Itis easy to see that any complete sending or processing
traces’ of S must also be an infinite concatenation of subsequesigesgs, sq3. Hence, for all
o’ € Conp(sndTraces(S)) U Conp(prcTraces(S)) we haves’ € Comp(traces(C)),
and thus we have botSconf ,C andSconf ,C, which impliesSconf C. Moreover, in this
case we also have that, for all € Conp(traces(C)), o € Conp(sndTraces(S)) and
o € Conp(pr cTraces(S)). Therefore, we also havgconf /C, Sconf /¢, andSconf /C.

4. Derivation of choreography-compliant sets of services

Once we are provided with appropriate notions to compasedgeirchestration models with
choreography models, we study the problem of automatickiyving orchestration services
from a given choreography, in such a way that the system stimgiof these derived services
conforms to the choreography.

Let us reconsider the possibility of deriving services bglgimg natural projection(see Fig-
ure 1) to the structure of the choreography into each inebbarvice. Each service copies the
form of states and transitions of the choreography, thowghice transitions are labeled only
by actions concerning that service. Unfortunately, as weisahe introduction, if services are
derived in this way then, in general, the resulting set ofises does not conform to the chore-
ography with respect to any of the proposed conformancemstiLet us revisit servicek, Y,

15

and Z of Figure 1, which are natural projections of choreograptyr (given in the same fig-
ure) into each service regarded in the definitiol@for. The composition ofX, Y, andZ does
not necessarily lead to the behavior required’Bhor due to the two problems we explained in
the introduction: (a) the possible inconsistency of sereicoices in non-deterministic elections;
and (b) the races risk.

In order to enable the comparison of this (wrong) derivatidth some forthcoming alterna-
tives in a single figure, service$, Y, Z, and choreographg hor are depicted again in Figure 3
under the new names of, 25, 26, and27, respectively. Let us note that,ahly messages ap-
pearing in choreograph7 are allowed in services then no alternative definitio4f25, and
26 allows to meet the requirement imposedXsy Service24 cannot decide whether it must send
b or ¢ to 25 because it cannot know the message serittip 26. We will make any choreog-
raphy realizable byddingsome control messages to the definition of services. Thessages
will allow services to know what is required at each time togarly make the next decision,
according to the choreography specification.

Next we reconsider our conformance relations under thengstson that these additional
messages are allowed indeed. That is, services are all@asshtl/receive additional messages
not included in the choreography. In order to avoid confudietween standard choreography
messages and other messages, the latter messages aredrégbie different from the former.
Regarding the definition of conformance relations, we negjtriaces inclusion/equality again,
though we remove additional messages prior to comparisgosétaces.

Definition 4.1. Let o € sndTr aces(S)U prcTr aces(S) whereS is a system of services.
The constrainof ¢ to a set of inputs and output3, denoted by @, is the result of removing
from o all elementga, m, b) with m & Q.

Let S be a system of services fdiD and letC = (S, M,ID, s;,,T) be a choreography.
Letconf , € {conf ;,conf/ conf,, conf g}. We haveS conf/ Cif S conf , C provided
that the occurrences afndTr aces(S) andpr cTr aces(S) appearing in Definition 3.1 are
replaced by set§o?|oc € sndTraces(S)} and{cM|oc € prcTraces(S)}, respectively.
Now, letconf , € {conf,conf/}. We haveS conf’ Cif S conf, C provided that the
occurrences ofonf ,, conf /, conf », conf }; appearing in the definition afonf andconf /,
given in Definition 3.1, are replaced lepnf /., conf # conf > conf ,{’, respectively. O

We revisit our previous example. Let us modify servieésand25 in such a way that, right
after 25 sendsb or ¢ to service26, service25 tells service24 whetherb or ¢ was sent. This is
done by sending to servicet a new messagé or e, respectively. Servicez4’ and25’ (also
depicted in Figure 3) are the resulting new versions of sesd4 and25, respectively. Let us
note that the system consisting#f, 25’, and26 conforms t®27 with respect to all conformance
relations introduced in the previous definition, becaukefahem ignore messagésande.

4.1. Centralized derivation method

Let us present our first method to derive a choreography-tianmipset of services from a
given choreography. Intuitively, a service derivationdzhen a simple natural projection does
not work because it does not guarantee that services wilidhe elections and the sequencing
of events defined by the choreography. In order to solve tfoblpm, next we consider an
alternative way to extract services from the choreograpétjis inspired on our previous example
(24', 25', 26). New control messages will be added to make all servicés#ddhe same choices
at each branching point of the choreography. In particulanvill introduce a new service, called

16

orchestrator which will be responsible of making all choices at chorequiry branching points,
as well as making services follow such choices. For eachk sfabf the choreography having
several outgoing transitions, the orchestrator will havesguivalent state with the same set of
outgoing transitions, which represent all the choicesiit weake. At that state, the orchestrator
will choose any of these transitions, say {h available transition. Then, the orchestrator
will take several consecutive transitionsaonouncets choice to all services. In each of these
transitions, the orchestrator will send a messageto another service, meaning that the¢h
transition leaving state; must be taken by the service. After (a) the orchestrator amees its
choice to all services; and (b) the orchestrator receivesssage; from theaddresseed; of

the choreography transition (this message denotes thatittressee has processed the message),
the orchestrator will reach a state representing the statehed in the choreography after taking
the selected transition, and the same process will be felioagain. By adding the orchestrator,
we make sure that all services take the same branch in eanthimg point of the choreography.
However, it is worth to point out that, since the only messesgpiired by the orchestrator to
continue is sent by the addressee of the choreographyticemsit a given time the orchestrator
and the services could have reached different steps of tire@braphy simulation execution (in
general, the orchestrator will be ifartherstep). There is no risk that services break the relative
order in which transitions must be taken according to theedbgraphy, because all messages
controlling transition choices are introduced in inputfbtg (as the rest of messages) and they
will belong to the saméype Thus, they will be processed in the same order as the oral@st
sent each of them. This guarantees that services will bentedigh the choreography graph by
following the orchestrator plan, in the same order as pldnheparticular, as we will see after the
next definition, a system consisting of the orchestratiashthe corresponding derived services
will conformto the choreography with respect to albnf /. relations given in Definition 4.1.
Next we will assume that the identifier of the orchestrater-is

Definition 4.2. LetC = (S, M, ID, s;,, T) be a choreography machine where the set of identi-
fiersisID = {idy,...,id,} and the set of states & = {s;,...,s;}. Foralll < i < n, the
controlled servicdor C andid;, denoteccont r ol | ed(C, id;), is a service

idi, SuU {Sijv S;j|l.,j S [11]},
M; = | MU{a;li,j € L0} MU{bs|f € [1.0]},
Sin, Ti, {{m}Im € M} U {{a;li,j € [1..1]}}
where for alls; € S the following transitions are iff;:

e Letty,..., 1, be the transitions leaving; in C. For alll < p < k we add the transition

(ore,ajp)/(null,null)

S; SjpETi.

m/(snd—adr)

e Foralll < p <k, ift, =s;
(snd’,i)/(adr’ o)

s € T is thep-th transition leavings; in

C, then we have;, ujp € T; where

(a) if snd = id; thensnd’ = i = null, adr’ = adr, o = m, andu;, = 5;
(b) else, ifadr = id; thensnd’ = snd, i = m, adr’ = o = null, andu;, = s,.

Jjp
. U,null bi
Besides, we also hawg, (el mull) /(o bs)

S;« in T;.
(c) elsesnd’ =i = adr’ = o = null andu;, = s.
17

(0,@2)/ (o,at)// \(0,a2)/
(=) (=) (=)

Figure 7: Derivation of services with orchestrator.

Theorchestratorof C, denoted byr chest r at or (C), is a service
ore, SU{s;jkli,j € [1..1),k € [1.n+1]},

O=| MU{bs|fe[L.d]},MU{aili,j € [1.1]},
Sin, To, {{m}|m € M} U {{bs}|f € [1..]}

where for alls; € S the following transitions are included if,:

e Letty,...,t; be the transitions leaving; in C. For all1 <p <k we add the transition

(null,null) /(null,null)
S; Sjpl € T,.

. d—ad . L. . .
o Foralll < p <k, ift, = s; —Londed) s, € T is thep-th transition leavings; in

(null,null)/(id;,a;p)

C andadr = idy, then for alll <4 < n we haves;,; Sjpit1€To.

We also have;, ,, 11 (adrby) (rndt mull) s €T,
O
Theorem 4.3. Let C = (S, M, ID, s;,,T) be a choreography withD = {id,...,id,}. Let
S = (controll ed(C,idy),...,control | ed(C,id,), or chestrat or (C)). For all con-
formance relationshipsonf , € {conf’, conf ;, conf’ conf J;’, conf g’, conf f’} we have
S conf , C. 0

The proof of the previous result, as well as the proofs of &st of results, are given in the
appendix. Figure 7 shows a choreograpghgs well as the services derived frarhby applying
Definition 4.2, including an orchestrator.

If we do not need to meet the conformance with respect to peiiog traces, that is, if we
only requireconf /, andconf 7, then we do not need to require that addressees of chordggrap
transitionsblock the advance of the orchestrator until they process receivessages. This
restriction was imposed just to force the processing of agessfollow the order required by the
choreography. Alternatively, if addressees did not bldekarchestrator then, for instance, the
service responsible of processing the second messageexdhetion could process it before the

18

service responsible of processing the first one does so. iEtrenorchestrator were not required
to wait for the addressees, the order in which messagesestsvould be correct as long as
the orchestrator is required to wait for teenders Actually, if we only consider conformance
with respect to sending traces then replacing the restnidf waiting for the addressees by the
restriction of waiting for the senders is a good choice imtepf efficiency. This is because, in
this case, the orchestrator will not be blocked just waiforghe message to be processed; on the
contrary, it will be able to go on even if the message has nen Ipeocessed yet. Thus, by taking
this alternative, the rate of activities the services cdnally execute irparallel is increased.

Definition 4.4. We have thatont rol | ed’ (C,id;) is defined azont rol | ed(C, id;) after
replacing cases (a) and (b) of Definition 4.2 by the folloméxgpressions:

(a) if snd = id, thensnd’ = i = null, adr’ = adr, o = m, andu;, = s;-p. Besides, we also

(null,null)/(ore,b;)
/
haves’,

S;— in T;.
(b) else, ifadr = id; thensnd’ = snd, i = m, adr’ = o = null, andu;, = s;

O

Theorem 4.5. LetC = (S, M, ID, s;,,T) be a choreography withD = {id,...,id,}. Let
S = (controlled (C,idy), ...,control | ed (C,id,), orchestrator (C)). For all
conf , € {conf’, conf /} we haveS conf , C. 0

4.2. Decentralized derivation method

In this section we introduce our decentralized method toaekia choreography-compliant
set of services from a given choreography. Let us note thageneral, the election of which
branches are taken at choreography branching points is byesksvices according to thdocal
information. Thus, the centralized solutions consideredhie previous section are adequate
only as long as we can assume that the orchestrator can dleeésformation that would make
each service take each possible choice. This might be tleeafasystems with strong security
measures, as well as some intranet systems. This might altelcase in some specific parts
of other larger service systems, which are globally deedin&d but contain locally centralized
subsystems. For instance, data base providers could Hiyloeatralized in web systems using
them, whereas subsystems such as inventory managers amémtayateways could be locally
centralized elements of e-commerce service systems. theless, most of web service systems
are mainly decentralized systems, at least at the highesdrbhy level. Therefore, we need an
alternative derivation method where we do not assume thetaadized entity could monitor all
variables affecting services elections at branching point

Let us note that we cammovethe orchestrator and distribute its responsibilities agnihre
services themselves, thus making a decentralized solufochoreography where, at all non-
deterministic points, all available choices involve theidion of a single participant (i.e. all
transition branches have the same sender) is a choreogrdpErg the decision-making is easy
to handle: At each choreography state, the decision regplityshould be given to that service,
and next all the other services should be consistent to tiwte. The problem arises when a
choreography has states where the next choice could be bglsaveralparticipants (i.e. avail-
able transition branches have different senders). Clgarthis case the natural projection does
not work, so a decision-making mechanism involving all g% that could make the choice at

19

(Aaty/ \ (Aa2)
(=) (=)

e [J []
A—>B (--,--)/l l(A,aZU/
(Aatl) -9
L ° °
(=) (Ae)
(Af) (Ab2)
°

Figure 8: Derivation of services without orchestrator.

the current state must be designed. kdie a choreography state with several outgoing transi-
tions. Instead of using an orchestrator to choose whiclsitian is taken, we do as follows: We
sort all outgoing transitions by any criterion (e.g. by tleme of the sender) and we make the
first sender choose between (a) taking any of the transitibiese it is the sender; or (b) refusing
to do so. In case (a) it will announce its choice to the reseofises, thus playing the role of the
orchestrator in this step. In case (b) it will notify its refien to choose a transition to the second
service. Then, the second service will choose either (a)in(the same way, and so on up to
the last sender, which will be forced to take one of its triamss if all previous senders refused
to do so. Let us note that, in this alternative design, a serean receive the request to take a
given branch fronseveralservices, not just from one special service (which wasthkestrator

in the centralized method). Thus, new transitions have toapefully added to services, which
complicates their design.

An example of decentralized derivation is depicted in Fég8r For the sake of simplicity,
some transitions that would be part of derived servicesrdiag to the formal derivation method
(given next, in Definition 4.6) have been omitted. ChorepbyeC represents a branching point
where there are two possibilities: eithéisends: to B, or B sendsf to A. We derive serviced
and B from C' as we have sketched above. Serviceeceives the responsibility of either taking
one of the transitions where it is the sender (there is ondyithis example) or refusing to do so.
In the former case, it tells the next service in the IB) that it will decide the transition indeed
(message?2) and next it tells all services (i.e. just) whichof its transitions it will actually take
(a21). Then, it sends to B and waits for a signal indicating th&t has processed the message
(62). In the latter case, i.e. if it refuses to choose one of &sditions, then it tells its decision to
next serviceB (message 1) and waits for the rest of services (juB) to tell it which choice it
must take. WherB does so¢11), it waits for receivingh from B and next it acknowledges the
reception(bl). The behavior ofB turns out to be dual to the behavior 4f

Let us formally present the derivation of decentralizedeys of services from choreogra-
phies. As we did in the centralized cases, two alternativecansidered: Making the system
conform to the choreography with respect to all proposedf /, conformance relations, and
making it conform only with respect to sending traces. That 4.7 and 4.9 show the correct-

20

ness of both approaches.

Definition 4.6. LetC = (S, M, ID, s*, T) be a choreography machine with = {id;, ..., id, }
andS = {s!,...,s'}. Foralls € S andid € ID, letT; ;s = {(s,m,id, adr, s')|3 adr,m, s' :
(s,m,id,adr,s") € T} andmy;q = |Tsq|. Foralll < j < mgq, lett,;q; denote the j-th
transition of7 ;4 according to some arbitrary ordering criterium.

Foralls € S, let[idi,...,id;} ,id}, ,,,...,id;] denote any arbitrary sequence of all iden-
tifiers in I.D such that the sequence preserves the condition that far €lld < hs we have
ms.ia; > 1, and for allhs +1 < d < n we havems ias = 0.

Foralll < i < n, thedecentralized serviclr C andid;, denoteddecent r al (C,id;), is
a serviceM; = (id;, S!, I, O}, sin, T5, {{i} | © € {I[}}), whereS!, I, O} consist of all states,
inputs, and outputs appearing in transitions described awed, for alls? € S, the following
transitions are if;:

(BASIC CASE)et1 < k < n be such thatd; = id;'. We assume thdtd;)~ = idj" , and

(id))t = idz‘;l. We have the following transitions ify;:

((¢d;) ™ ,idontchoose) /(null,null) q
icanchoose

(@) s?
one of its transitions)

((id;)~ tells id; that it refuses to choose

(b) Foralll <y < nsuch that we haved, € {id;",..., (id;)~} N {idi",... id; }, we

((idi) ™ ,alreadychoseny)/((id;) " ,alreadychosen,) q LN R
haves? 5 tontchoose ((1di) ™ tellsid; that

some servicg has already chosen, and; propagates the message)

(null,null)/((id;) T idontchoose) . .
() 8Ywnchoose S oniehoose (idi decides not to choose)

(null,null)/((id;) " ,alreadychosen;) q . .
8} villehoose (id; decides to choose)

(d) s

icanchoose

(e) Foralll < j < |Tsaq4,| we have the following transitions, where we assume,, ; =
(s9,m, snd, adr, s'?).

s .
q (id;," ,chosencomplete)/(adr,takemychoice;) 4 .
(€1) Siwitichoose _ Sichoose, (the last service no-
tifies that all knowid; will choose, andd; chooses itg-th transition and askadr

to take its choice)

(e 2) K (null,null)/(adr,m) q
' ichoose; zchoose;.

transition toadr).

(e.3) LetG = {g|g € [1..n],g # i,idy # adr}.
. (adr,ididit) /(null,null) X
(i) If G # 0 then we havesfchoose; fehoose; mince (i
waits for a signal fromudr indicating thatm was processed)Besides, for all
k € G we have

q _q .
ichoose ;g v, Wherev - Sichoosej B/ if k 7&

maxz(G) andv = s'? otherwise, and’ is the minimum value i7 such that
k' > k (id; asks everybody to take its choice)

(id; sends the messagedenoted by itg-th

(null,null)/(idy ,takemychoice;)

- S

21

(i) Else (that is, ifG = 0) then we have?, ~ —(drididi/mulbnuld) - gq
J
waits for a signal fronudr indicating thatn was processed, arnid; reaches the

destination state without asking anybody else).

() Forallj € [1.n]\{i} and for alll < k < |T.aq,|, We have the following transitions,
where we assumga ;q, 1 = (57, m, snd, adr, s'?).

(idj ,takemychoicey)/ (null,null) q

— 4. q
(f.1) If adr = id; then we haves}, .. 53 follow;
ands;

id;,m)/(id;,idids
ottow; (il)iy AHRE) - orq (id; takes thek-th choice ofid;, which makes
id; receive a message froid; and next acknowledge it)

(id; ,takemychoicey)/(null,null)

(f.2) Otherwise, we have!

idontchoose

k-th choice ofid;, which does not concerid;).

s'? (id; takes the

(OTHER CASES)ransitions listed in the basic case are modified in someifspeases as
follows (modifications due to different cases are accunugst

o Ifthere are transitions leavirgf in whichid; is the sender andi; is the first service doing

so, that is, ifid; = id3”, then transitions given in (a) and (b) of the basic case guiaced
(null,null) /(null,null) q
icanchoose"

by s?

o Ifthere are transitions leaving in whichid; is the sender and; is the last service doing
so, that is, ifid; = z‘d;qu, then the transitions given in (c) of the basic case is délete

e If there is no transition leaving? in which id; is the sender, that is ifl; # id;?q for all
1 < j < hga, then the transition given in (a) of the basic case is deleted

e If id; = id®’ (thatis,id; is the last service in the considered sequence of servites) in
any transition labeled by the pdifid;)~, alreadychosen,)/((id;) ", alreadychosen,,),
this pair is replaced by the paifid;) ~, alreadychosen,)/(id,, chosencomplete)). Be-
sides, in any transition labeled Wyuil, nuil)/((id;)", alreadychosen;), this pair is re-
placed by(null, null)/(id;, chosencomplete), and the transition denoted in (c) of the
basic case is deleted.

O

Theorem 4.7. Let C = (S, M, ID, s;,,T) be a choreography withD = {id,...,id,}. Let
S = (decentral (C,id,),..., decentral (C,id,)). Forallconf, € {conf, conf,
conf’,conf 7, conf /', conf 7} we havesS conf ,, C. O

Definition 4.8. We have thatlecent ral ’ (C,id;) is defined aslecent r al (C, id;) in Defini-
q (null,null) /(null,null)
ichoose;.

(null,null) /(null,null)

tion 4.6 after replacing the first transition appearing iB)é) by s

s? the transition of (e.3) (ii) by?

ichoose; min(a)’ ichoose];
(idj,m)/(null,null)

s'?, and the sec-

ond transition denoted in (f.1) by ;. , s'd. O

22

S

4
@ (C1,idontchoose)
)
1

ON
m1 -
C1—>S 1
?Canchoose S idontchoose
° --,--)/(C2,idontchoose
(

1
S iwillchoose

(S,chosencomplete)/
(S,takemychoice,)

(C3,alreadlychosen,)/

(C2,tekemychoice;)
(C2,chosgncomplete)

ichoose4 /(-

(-,--)/(S,m1)
1)

1
; s! .
mychoice) ichoose}

3 —_—
g 2%
53 o

Qo
3o g
3 8 S
< 2 =}

9 Q
o\s 3
a\e 3
o |° o
— @

&
["’_.

w0

)
3

© D ©
e co
S Q9
[=3 ISB=3
<] 33
o T o
o @S
- s<
=

(9]

1%}

e

5y

=

®

) 3

<

(¢}

=

[

5}

®

-

1 1 s) P (=)
S. foll ——)
ifollow, ifollow, » flolows (S.ididit)/(~-~) (C3,takenfiychoice;)
C1,ms1)/ s1)/ C3,ms1)/
gm inc;isén)) ipidit) 503'{:1]%“)) S [
s i ichooseq, S ichooseq3

s2
(C1,alreadychooseny)
/(C3,alreadychooseny) S

(----)/(C2,takemychoice;)

©3

adychooseny)

(C2,idontchoose)
(=) (C2,alrd

=
@
D
=
I}
Q

<
Q
=y
s}
o}
[
(o]
=]

<

S

1
s3 S idontchoose

1
S idontchoose icanchoose

icanchoose

--,--)/(C3,idontchoose

(=Y
(C3,alreadychosen,)

=)
(S,alreadychoosens;)

R

4
S iwillchoose iwillchoose

(S,chosencomplete)/

(S,chosencomplete)/
(S,takemychoice,)

(C3,takemychoige) | (S,takemychoice,)

o (C2,takemychoige,)

=)

—O

1 (C1,th i 1 (C1,tkemychoice;)
ichoose /(== ichoose4 /(=
(--,-)/(S,m2) (-,-)/(S,m3)

s s
st s! .

ichoose} ichoose}

e (=) i (=)
(Sididity(--) (C3,takenychoice;) | (Sidit/(=-) (C2takerfychoice;)
s! 1 s st

ichooseqq Sichooseyy ichooseq ichoose,

(--,--)/(C1 takemychoice,) (--,--)/(C1,takemychoice,)

Figure 9: Example of decentralized derivation.

23

Theorem 4.9. LetC = (S, M, ID, s;,,T) be a choreography withD = {id,...,id,}. Let
S = (decentral ’ (C,id,),...,decentral’ (C,id,)). Forallconf , € {conf’, conf/}
we haveS conf , C. a

In Figure 9 we show an example where the derivation presentBefinition 4.6 is applied
literally. Choreography”’hor consists of three different branches where a messaggert., or
mg) IS sent by a client servic&(l, C2, or C'3, respectively) to a server serviSe The derivation
of the service clienC2 corresponds to the general (BASIC CASE) of this definitiohgreas
C1 and(C3 are obtained by applying the first and the second items of ERIEASES), corre-
sponding to the first and the last service sending a messdge @hoice structure, respectively.
Finally, the server servicé follows the structure specified for services that do not seed-
sages. MoreoveR plays the role of last service in the service sequence. Thesast two items
of (OTHER CASES) are applied in this case.

Both the centralized and the decentralized derivationrétgos add a high number of addi-
tional messages and constrain the free advance of seracésef sake of control. Let us note
that, in this paper, our goal is not to provide the optimalisoh, that is, the solution where the
parallel advance of services is restricted as weakly astlgess the minimum number of addi-
tional control messages is added. On the contrary, our ggabviding derivation algorithms to
construct sets of services that are correct with respebetchioreography, regardless of whether
the designer of the choreography created a nice choreog@plon the contrary, it contains
some intrinsic problems. Cutting some additional messtgpsovide more optimal derivations
is out of the scope of this paper and is left as future work.

5. Derivation of services under the presence of delayed mesgges

In this section we consider an alternative semantic scefariour framework. Let us note
that, according to the operational semantics of our syst#rasrvices, given in Definition 2.4,
when a service sends a message, this message is immedtately i the input buffer of the
addressee of the message. Let us suppose that a sdrgmeds message; to serviceB, and
next it sends message,, also to service3. Since the operational semantics says that messages
are stored immediately at the destination service, it isissfble that servic® receives message
mo and next it receives message;, which would makems appear beforen; in the input
buffer of serviceB. Thus, the framework implicitly assumes one of the follogvinypothesis:
Either message delays in the communication medium are altheysame (which is unfeasible
in practice), or the network protocol implicitly managessame lower implementation layer, a
proper reordering of messages allowing to keep the ordehiolwmessages were sent by each
client. For instance, in some cases, time stamps or ordstargps can be added to messages
to enable this implicit ordering [24]. However, in some ca#@s solution might not be feasible
due to e.g. the impossibility to have a global clock.

In this section we consider an alternative scenario whehema message is sent, it is not
immediately stored at the destination service. On the aoytthe message may stay “in the
communication medium” for any arbitrarily long time. In erdto introduce this alternative
scenario, we will assume by default all definitions previgugven in Section 2, though some
of them will have to be redefined. Next, we redefine the notibeystem configuration. A
configuration of a system will depend not only on the confiaraof each service, but also
on the multiset of messages that have already been sent\igesebut have not reached their
destination yet. We will denote this multiset &Y. We consider thatid, m,id’) € D denotes

24

thatid sentm to id’, butid’ has not received it yet (s@; is not stored in the input buffer atl’
yet,m is still in the communication medium).

Definition 5.1. (Redefinition of system configuratiob®t S = (M, ..., M,) be a system of
services for/ D, where for alll < j < p we haveM; = (id;, S;,1;,0j,5;.n,Tj, ;). For
all 1 < j <p, letc; be a configuration of\/;. Let D be a multiset of triples belonging to
ID x (O1 U...UO,p) x ID. We say that = (c1,...,cp, D) is aconfigurationof S. Let
cy;-..,c, be the initial configurations aify, . .., M, respectively. Thenic,, ..., c,,0) is the
initial configurationof S. O

Next we redefine the operational semantics of systems ofcesrfor the alternative scenario.
Now, when a service sends a message, it is not inserted inpl¢ buffer of the addressee, but
it is added to the multiset of “not-yet received” messafedBesides, the operational semantics
also allows to take a tripl&d, m, id’) from D and storgid, m) at the input buffer ofd’. Thus,
the operational semantics splits any message sendingwotedparate semantic actions, thus
letting other actions happen between both.

Definition 5.2. (Redefinition of the operational semantitet ID = {ids,...,id,} be a set of
service identifiers and = (M, ..., M,) be a system of services f6D where foralll < j <p
we haveM; = (id;, S;, 1,0, Sj,in,Tj,1;). Letc = (c1,...,cp, D) be a configuration of
where for alll < j < p we havec; = (s;,b;).

An evolutionof S from the configuratiorr is a tuple(c, snd, i, proc, o, adr, ¢') wherei €
L U...UL,U{null} is the input of the evolutiory € O; U...UO, U{null} is the output of the
evolution,c’ = ((s1,b1),---, (s}, b;,), D’) is the new configuration af, andsnd, proc, adr €
ID U {null} are the sender, the processor, and the addressee of theéavalespectively. All
these elements must be defined according to one of the folipetioices:

(a) (evolution activated by some service by its&lffr somel < j < p, let us suppose

5; bt ¢ 7, Then, s, = s and¥, = b;. Besidessnd = null,

proc = id;, adr = adr’, i = null, o = o/. Moreover, ifadr’ # null thenD' =
DU (id;, o, adr’);

(b) (evolution activated by processing a message from the ibpffiér of some serviceéjor

somel < j < p, let us suppose that, Lond)/(@d), e T and the predicate

avai | abl e(b;, snd’,4’, r) holds, where- is the only set belonging"az)j suchthat’ € r.
Then, s, = s" andb’ = renove(b;,snd’,i’). Besides,snd = snd’, proc = idy,
adr = adr', i =1, 0 = o'. Moreover, ifadr’ # null thenD’ = D U (id;, 0, adr’);

(c) (evolution activated by the reception of some messagedstoréhe multiset of not-yet
received messagespr somel < j < pandl < ¢ < p, if (id.,m,id;) € D then
snd,proc,adr = null, s; = s;j, andb; = insert (b;,id.,m). Moreover,D" =
D\ (id¢, m,id;).

where, in any of these cases (a), (b), and (c), fot all ¢ < p with ¢ # j we haves; = s, and
b = b,. O
q q

Next, let us analyze the (in-)correctness of the centraléel decentralized derivation meth-
ods presented in sections 4.1 and 4.2, respectively, uhdeslternative semantics.

25

It is easy to see that the centralized version, given in Diedimi4.2, does not work under
the new semantics. In this derivation, the orchestratodsenessages;, to all services to
indicate that all services must take #h¢h available transition at statg. When the orchestrator
receives the messagg, indicating that the addresség; of the message regarded in the current
step of the choreography has processed the message, tlestombbr starts the next step of
the choreography. It makes the next election, communidtgteshoice to all services, and so
on. However, nothing guarantees that messaggdicating the choice to be followed at the
previous step will be received by servidesforemessages,, indicating the choice at the new
step. If a message;,, of the next step arrives at a service before the messgagef the previous
step, the service will take a wrong transition at the curstep.

This problem can be easily fixed by making the orchestratoeive some new messages
from all services, where these messages indicate that thesponding service has already re-
ceived the messagsg;, of the current step. If the orchestrator is forced to recail@f these
acknowledgment messages before going on to the next stapnthssages;, of the next step
will be sent by the orchestratonly aftermessages;,, of the previous step have been processed
by services. Thus, messages of each step will be necessarily processed before that step fi
ishes, that is, it will not be possible that a messaggefrom a subsequent step is received before
another message;, from a previous step. In the centralized derivation giveDéfinition 4.2,
the only service forced to send an acknowledgmignto the orchestrator was the addressee
idy of the sending. In the next redefined derivation, the orchistwill be forced to collect
these acknowledgment messages falhservices — and all services will be forced to send these
messages to the orchestrator.

Definition 5.3. We have thatont r ol | edDel ays(C, id;) is definedasont r ol | ed(C,id;)
after replacing cases (a), (b), and (c) of Definition 4.2 kg fitilowing expressiongnow, mes-
sagesh; are sent in all cases)

(@) if snd = id; thensnd’ = i = null, adr’ = adr, o = m, andu;, = sgp. Besides, we also
(null,null)/(ore,b;)

haves’,, s in T

(b) else, ifadr = id; thensnd' = snd, i = m, adr’ = o = null, andu;, = sgp Besides, we
(null,null)/(orc,b;)

also haves’;, siinT;.

(null,null)/(ore,b;)

(c) elsesnd’ =i = adr’ = o = null andu;, = s},. Besidess’,
in T;.

,
SjIS

Besides, the last term of the tuple definiagnt r ol | edDel ays(C,id;), which is equal to
{{m}|m e M} U {{ai;l|i,j € [1..[]}} inthe definition ocont r ol | ed(C, id;) of Definition 4.2,
is replaced by{{m}|m € M} U {{a;;}|i,j € [1..]]} (each message;; has its own message
type)

We have thabr chest r at or Del ays(C,id;) is defined asr chest r at or (C, id;) after
replacing the second item of the definition of such a term ifiriiteon 4.2 by the following
expressior{messages; are collected from all services, not just from the addressee

m/(snd—adr)

o Foralll <p <k, ift, =s; s; € T is thep-th transition leaving; in C,

(null,null)/(id;,ajp)

then for all1 < ¢ <n we haves;,; sjpi+1 € T,. Besides, for all

26

. id;,b; l,null
1<i<n—1wehaves;, (id,be)/ (rudl null)

(idn,bn)/(null,null)
Sjp n+n i eT,.

Sjp nti+1 € Tp. In addition, we have

a

Theorem 5.4. Let us assume that the behavior of systems of services isedefip the oper-
ational semantics given in Def. 5.2. Lét= (S, M, 1D, s;,,T) be a choreography withD =
{idy,...,id,}. LetS = (control | edDel ays(C,id;),...,control | edDel ays(C,id,),
or chestrat or Del ays(C)). For all conformance relationshipgonf , € {conf,conf
conf’, conf /. conf/ conf/} we haveS conf , C. O

If we can assume that messages are stored in input buffeteisame order as they are
sent, that is, if we can assume the old operational semagities in Definition 2.4, then the
previous solution is unnecessarily inefficient. The prasisolution forces the orchestrator to
receive acknowledgments from all services before goingagrich forces all services to reach
the current choreography step before the orchestrator gode the next step. This feature
reduces the capability of services to evolve independdmiiy the rest of services, and thus
reduces the proportion of computations that are actuatged in parallel. However, this high
level of control is not necessary if messages cannot be niged input buffers. Thus, if the old
operational semantics is assumed, then the old centralizeeation given in Definition 4.2 is a
better choice.

Now, let us analyze the correctness of the decentralizedadien, given in Definition 4.6,
under the new alternative operational semantics. Let us thatt this decentralized derivation
alreadyimposes a kind of strong control that is similar to the onecdbed in our previous re-
defined centralized derivation. In particular, let us ndiat tall services are required to know
which service will be responsible of taking the current cledieforethat service tells the rest
of services which one is its choice (see in Definition 4.6 thafore going on, the service de-
ciding must receive a messagkosencomplete from the last service of the sequence). Let
us note that this strong level of control is requiradenif messages are not mixed up in input
buffers, that is, even if our original operational semanticassumed. If the service making the
decision were not required to be sure that all services kimawit will make the choice, then
messages denoting which service decides at two consechtiveography steps could be mixed
up: The message announcing which service makes the deaistoe stepi + 1 could reach
a given services before the message announcing which service makes theateofsthe step
1 is received bys. Messages denoting which choice is taken by the servicengake choice
(takemychoice;) are sent by that service one after each other, and they@irbesere the corre-
spondingtakemychoice;; messages of the next step are sent. So, messages of thiskiseha
in the correct order (and stored in the correct order, if tldlesemantics is assumed). However,
messages denotinghich service decides (i.eidontchoose, alreadychosen,) are sent byall
services, one service after the other. Thus, the order iolwmessages of this kinaklonging
to different stepsire sent could be mixed up — unless a messageclikeencomplete blocks
the sending of these messages in the next step until the &sgage of this kind is sent in the
previous step.

The use of the messagkosencomplete does not only solve the problem for the old seman-
tics, but also for the new one. On the one hamdemychoice; messages from different steps
cannot be mixed up, because services must processg diteinychoice; messages before they
can participate in the decision about which service choosése next step, and this decision

27

must be taken before messagesemychoice; of the next step are sent. By similar reasons,
messages used to decide which service must choosélie.choose, alreadychosen,,) of dif-
ferent steps cannot be mixed up: Messages of this kind bilgrig the previous step must be
processed before the corresponding messages of the neareteent. Thus, it turns out that our
original decentralized derivation works for the new opieral semantics too.

Theorem 5.5. Let us assume that the behavior of systems of services iseddfin the opera-
tional semantics given in Definition 5.2. Lét= (S, M,ID, s;,,T) be a choreography with
ID={idy,...,id,}. LetS = (decentral (C,id;),...,decentral (C,id,)). For all con-
formance relationshipsonf , € {conf,conf’, conf’, conf ! conf 5’, conf 7} we have
S conf . C. |

6. Discussion: features beyond the current model

In this section we discuss some features of real web sersiems that are not explicitly
represented in our current model of orchestrations anceclgpaphies. Though introducing these
factors in our model is part of our future work plans, in thestion we will sketch some ways to
take some of these factors into accowithoutmodifying either the model itself or the derivation
algorithms. That s, the approaches described in thisaewatill be conservative with our models.
The modification of models to explicity manage these factaill be developed in our future
work.

Several factors affecting the behavior of real web servegstems are not explicitly repre-
sented in the model, in particular: (a) message paramatdrinternal variables of services; (b)
the effect oftime on services; (c) the possibility that the information reqdito make a deci-
sion might not be owned by the service that makes the deciaih(d) the presence of external
events. Extending the model to include factors (a) and (fires replacing our FSM-based
model by a more expressive one, sucheatended finite state machin@EFSM) ortimed au-
tomata(TA), respectively. Changing our FSM-based models by theséels will require a sim-
ilar effort as other similar language extensions develdpedher works of the literature, where
variables or time were added to previously developed singgecification languages. The ex-
tensions required to include (a) and (b), while somehowdstath will probably be cumbersome
in technical terms, so discussing them is out of the scopki®paper.

Regarding (c), that is, the possibility that the informati@quired to make each decision
might not be owned by the services that make such decisieinss Imention that the absence of
an (explicit) representation of this factor in our modeldtated to the absence of (b). If models
were endowed with internal variables and message parasnéméernal variables of services
could be used to affect the availability of transitions byalging/disabling transition guards,
and the values of these variables could be transmitted freendce to another one by sending
messages with parameters. Thus, the transmission of iaf@maffecting decisions, from the
services owning this information to the services requitimg information, could be naturally
represented by inserting, in the choreography, suitabksagges from the former to the latter.

Still, the transmission of such information can be modeteddme extent in our simpler
FSM-based model too. For instance, a given servicmay be atdifferentstates, depending
on the information we assume @svns Let us assume that this information can be either
y. Since serviced might be in a different state in each case, it can send differeessages to
services depending on whether this informatior isr y. In particular, depending on whether
service A sends anessager or y to another servicd3, different choreography states, where

28

serviceB has different available choices next, can be reached. Thesnformation owned by

A and transmitted byl to B (i.e. either message or message) can affect the set of choices
available later to servicB. Following this idea, the choreography designer can irclméssages

from servicewningthe required information to services requiring this infatian, where each

message enables different subsequent choices.

The convenience to keep a low number of states in the chapbgrcould limit in practice
the creation of bifurcations to denote the choices of sessitepending on the received informa-
tion. For instance, we may explicitly represent the valueesvby serviced (eitherx or y) by
using two different states of service or, alternatively, we coul@bstractthis information and
consider a single state i. In this case, servicd non-deterministicallgommunicates t® that
its value isz or . The non-determinism just denotes that both choicepassible In practice,
the choreography designer could be forced to introduce $eweéof abstraction in models for
the sake of model simplicity.

This limitation will be overcome when the model is moved fr&i8Ms to EFSMs in our
future work. The localization of the information and the degance on it will be explicitly
represented by means lufcal variable values and transition guards potentially depenadin
variables stored bgtherservices. Following the derivation policy proposed in théper, new
adapted algorithms will be able #mutomaticallymanage the transmission of the information
from the services where it is stored to the services whererieeded. If the choreography in-
cludes some decisions that depend on some variables thadtestored by the services that will
actually make them, the derivation algorithms will autoicelty add some new control messages
in derived services. These control messages will makeEsawning such informatiosend it
to services depending on it, before decisions are actualgenin this way, we will be consis-
tent with our derivation policy, wherall choreographies denote an interaction plan that can be
realized — provided that suitable control messages aredaddzervices.

Regarding (d), the presence of external events, let us hatetr model considers a closed
world assumption, i.e. the system of services does notiatevith any external environment and
all exchanged messages are produced by services insidgstieens Thus, there is no explicit
reference texternalevents. In order to represent arternal event sour¢eapable of produc-
ing these events, we could explicitly model it by means oftlaeoservice in the choreography.
Modeling event sources agrvicesn choreographies might be a good approach to the notion of
event source, but it might not be suitable in terms of thevdéion algorithms. The derivation
makes all services involved in each decision coordinatl eéich other, either in terms of the
orchestrator (in the centralized derivation) or in termghaf services themselves, which send
messages to each other (in the decentralized derivatiai)h@t of both choices can be applied
to anexternal event sour¢cdecause these sources areneal services and thus we canrag-
signthem to comply to a given communication protocol estabtigdyethe derivation algorithm
(in particular, an external events source will not partitépin the token-ring decision process).
An alternative possibility consists in adding a new serviggresenting aexternal event inter-
face This service receives all external events, delivers themd,coordinates itself with the rest
of services as any other service. This solution might beilfita$érom the point of view of a
centralized derivation, because the orchestrator mayrassine behavior of this external event
interface (note that this role would be consistent withntglicit omniscience). On the contrary,
it would not be an appropriate choice for the decentralizri/dtion method, because it violates
the decentralized approach.

A more natural approach to external events consists in d@eguthat events are justot
explicitly represented in the model. In fact, the existen€external events imeal services

29

motivates (part of) the non-deterministic choices of sesiin thanodel That is, a state where
a real service may take either choice A (if it receives a kihdwent) or choice B (if it receives
another kind of event, or no event at all) is modeled by theterice of two outgoing transition
where the service chooses either of these choices. Thereatake A or B is not represented in
the model due to the abstraction of the model: External evaiaty make services take different
choices inreal services, so these choicegist as different possibilities, in the corresponding
models

According to this view, an issue must still be addressed. hindecentralized derivation,
services involved in each decision have the choice to ettiler any of the choices where the
service chooses, or passing the responsibility of chodsirtige next service. In a real service,
the decision of whether the responsibility to choosing #thbe passed to the next service or not
could depend, in some cases, on #isenceof some external event that could be received by
the service or not (for instance, the servjEEssedhe decision token if it has not received the
required event to take one of its transitions yet)allfservices in the decision-making process
may pass the responsibility due to the absence of some eglgient, then the last service in the
sequence should also be given the choice to pass. Unfoetyntite derivation forces the last
service to take some of its choices if previous services havehosen yet.

If no service chooses due to the absence of the requiredhaktevents to do so, then the
decision-making should bepeatedo give all services a new chance to receive the events they
require, until some of these events is eventually receiyetth® corresponding service (so it no
longerpasseghe decision responsibility to the next service). Thatfia,diven decision-making
process depends on external events that enable/disabieesechoices, the decision-making
processes should have the capabilitydop among derived services. We have two choices to
introduce this change. On the one hand, we could modify ticertealized derivation method
to explicitly replace some decision-makisgquenceby decision-makindoops(in particular,
those decision-making processes potentially dependingeabsenceof external events). Let
us note that the introduction of loops is motivated by exdkavents, which are not represented
in our current models. Since this new derivation would befulsenly if factors beyond the
current model are considered (external events), we prefke¢p our decentralized derivation
method unmodified, and construct the new models with loopaégns a newabstraction layer
In this way, the (unmodified) decentralized derivation alfpon will still be motivated by the
sole goal of achieving correct systems in terms of the mogielasitics (where external events
are not explicitly represented), and details beyond theahwdl be treated in a different layer.

This new layer works as follows. Given a choreography, wantifie those states where
decision-making sequences should be converted into deemsiaking loops (due to the potential
absence of external events governing some services chinicesal services). Let us call these
statedoop states For each of these states, we identify the service that wioailthe last one in
the decision-making sequence, according to our derivatigorithm. Let us call these services
last servicesSimilarly, the first services in the decision-making setues will be called judfirst
services We construct aimtermediate modetefined in the same language as the choreography,
which has the same states and transitions as the choregghaiudition, for allloop statesand
their respectivdast andfirst serviceswe add a transition from the loop state to itself where
the last service sends a new control message, cedfeeht to the first service (an example is
depicted in Figure 10, where that message is calledsjustin this way, one of the choices
of the last service of each decision-making sequence dsrigieepeatingthe decision-making
sequence, thus enabling a loop. If the last service takesntw choice then we interpret, in
terms of the correspondirmgal service, that the service cannot take any of the other transi

30

C cC'

r

1 1
A—>B A—B | E—*C
2 3 2 3
C—D E—»F C—D E—»F

Figure 10: Intermediate model example.

where it is the sender due to the absence of some requirethaikézent.

By applying the (unmodified) decentralized derivation tie thtermediate modetather than
to the choreography, the required loops will be introduced Besult of the new transitions added
to the intermediate model. If we compare the systems of aesuilerived from the choreogra-
phy and the system derived from the intermediate model, éasy to check that they aret
equivalent in terms of traces of non-control messages. $.stippose that stateof the choreog-
raphy has several outgoing transitions involving difféisarvices. No trace of the choreography
finishes at state (recall that we only considexompletetraces). Consequently, if a system of
services is derived from this choreography, then no traciisfsystem finishes at Let us
construct an intermediate model, from this choreographere the possibility of looping in
s is added as explained. If a system of services is derived frmrintermediate model, then
the system will be able to produce a trace where the systechesa and loops forever. After
s is reached, this infinite trace shows only control messadegarticular, control messages
where services coordinate the decision-making procedskoeed by the new control message
repeat sent by the last service to the first service, and this peotesepeated forever. If we
remove control messages from this trace then all messaiges &f reached for the first time are
removed, and thus the remaining trace of non-control mesdishesat s. Hence, the system
of services derived from the intermediate model is not exjaiv to the system derived from the
choreography. Still, the system derived from the interraedinmodel allows us to reduce the gap
between real systems and our models (without modifying tbdehitself) by introducing the
required loops. In the next definition, we consider that testdloop-neededf a loop should be
introduced in its decision-making — according to criterid considered in the model semantics,
such as the dependance on external events. We assume théd@aneeded state has at least
two services with the capability of deciding in its decisionkimg sequence. Note that, in states
where onlyoneservice decides, no loop is needed to give all deciding sesviiew chances to
choose (in particular, this single deciding service cathnostake any of its choices, until it can
choose indeed).

Definition 6.1. LetC = (S, M, ID,s;,,T) be a choreography angf* C S be a set oloop-
needed statesTheintermediate modedf C and S*, denoted by nt er medi at e(C, S*), is a
choreography machir® = (S, M U {repeat},ID, s;,,T") where

31

s € 8* A aandb are the first and last services in th
decision-making of state, respectively, according to
the decentralized derivation a # b

repeat/(b—a)
§ ——

T7=TU

O

Definition 6.2. LetC = (S, M, ID, s;,,T) ando € Tr aces(C). Theconstrainof ¢ to a set of
message§), denoted byr?, is the result of removing from all elementga, m, b) with m & Q.
O

The following straightforward result establishes the tiefa between choreographies and
their corresponding intermediate models (provided thatskip, in traces of the intermediate
model, all addedepeat messages).

Proposition 6.3. Let C = (S, M, 1D, s;,,T) be a choreography ang* C S. We have that
Traces(C) C {oM|o € Traces(i nt er nedi at e(C, S*)). O

7. Related Work

In this section we compare our proposal with other appraacRegarding methods to de-
rive services from a given choreography, we can find soméeeatlaorks. In [29], Zongyan et
al. identify and face the problems appearing when deriviminglementable projection from
a choreography. Authors define the concept of restrictearalathoreography, which must ful-
fill two structural conditions, and show that this kind of chography is easily implementable.
Furthermore, a new concept, tdeminant roleof a choice, is proposed for dealing with pro-
jection issues in non-restricted choreographies. At eachdeterministic choice, this dominant
role is the one that actually makes the decision. The fir&mdice between this work and our
proposal is superficial and lies in the underlying model] [28es a process algebraic notation
while we use a state machine approach. However, there arénadscrucial differences. On the
one hand, the orchestration communication stylyrschronousn that work, while we consider
asynchronous communications and delays, which compsicheproblem. On the other hand,
the solution of the non-deterministic choices problem aered in [29] is based oaxplicitly
adding extra information to the choice operator by idemijythe dominant role, and this must
be given as part of the choreography specification. In paatidt is assumed that, for each non-
deterministic choice, we can always identify a dominané rtblat, by design definition, is the
one which owns the information to decide what branch the émgntation should follow. For
instance, in the only branching point appearing in choraplgy Chor (see Figure 1), the only
reasonable candidate to be the dominant role is seiideecause in this choice it is the only
service that has the opportunity to send messages to ottwizese Therefore this service is the
only one really involved in the choice. Let us suppose thatmweelify, in Chor, the label of the
transition wherel” sendsc to Z. In particular, let us assume that the service senditgZ is
notY, but X. Now there are two services involved in the choice and it ispossible to know
“a priori” which one is going to play the dominant role, so adkiof coordination between both
services must be externally imposed. Our centralized acdrdmlized approaches to derive
services from a choreography face this probknorchestration leve(not at the choreography
level) by either allowing the orchestration to make the sieci (in the centralized version) or

32

by distributing this responsibility among all the servit¢bat are actually involved in the non-
deterministic choice (in the decentralized version). Iditdn, we face the non-deterministic
choices problem and the races problem in a single integfadmdework (both problems are
treated separately in [29]), we allow to explicitly distiigh between the times when messages
are sent and the times when they are processed in our twoagh@® (this distinction is possible
because we consider asynchronous communication), andav@ercorrectness proofs of our
methods (not given in [29]).

The issue of investigating how we can design asynchronomsrzmicating processes, in
such a way that they necessarily produce some behavior cin smame configuration, has been
tackled in several ways in the literature. For instance] $2ddies the problem of designing two
asynchronous processes in such a way that their progresarargeed, whereas [17] studies the
pathological situations where we cannot define some contating processes conforming to a
given specification (due to the relevance of the problemstified in this work, the treatment of
these problems in our framework is extensively studied atetid of this section). Let us note
that, in our approach, we malegy choreography realizable lddingsome control messages
to the definition of services. These messages allow serticksow what is required at each
time to properly make the next decision, according to theebgraphy. In [32], Salaiin and
Bultan formalize choreographies by means of asynchronomsranication with process alge-
bra. However, no solution for non-deterministic choicepgrisvided and no correctness proof is
presented. In contrast, authors enhance the proposalrbdirting a tool offering the possibility
to use bounded buffers and reason about them. Van der Alkt @84 present an approach for
formalizing compliance and refinement notions, which angliad to service systems specified
using open Workflow Nets (a type of Petri Nets) where the conigation is asynchronous. Au-
thors show how the contract refinement can be performed eraimtly, and they check whether
contracts do not contain cycles. Honda et al. [22] preseeha@lization of binary session types
to multiparty sessions for-calculus. They provide a new notion of types which can diyec
abstract the intended conversation structure ammepgrties aglobal scenariosretaining an
intuitive type syntax. They also provide a consistencyecidt for a conversation structure with
respect to the protocol specification (contract), and a tipeipline for individual processes by
using aprojection A similar approach is followed in [15] by Caires and VieifBhey define a
formal framework called conversation types and presehtiigcies to ensure progress of systems
involving several interleaved conversations/sessionaveéti and Zavattaro [9] allow to compare
systems of orchestrations and choreographies by means tddfingrelation given by [6, 18].
Systems are represented by using a process algebraionotatd operational semantics for this
language are defined in terms of labeled transitions syst@mshe contrary, our framework uses
an extension dfinite state machine® define orchestrations and choreographies, and a semantic
relation based on theonformanceelation [33, 34] is used to compare both models. In addition
let us note that [9] considers the suitability of a serviced@iven choreographsegardlessof
the actual definition of the rest of services it will interadth, i.e. the service must be valid
for the considered rolby its own This eases the task of finding a suitable service fitting into
a choreography role: Since the rest of services do not halve tmnsidered, we can search for
suitable services for each rale parallel. However, let us note that sometimes this is not real-
istic. In some situations, the suitability of a service atlfjudepends on the activities provided
by the rest of services. For instance, let us revisit theetragency example presented before in
Section 3.1 (this example involved choreograpByand serviced5, 15, 16, 16’, 17 given in
Figure 3). In that example, we assumed that a travel agemeiceeequires that either the air
company service or the hotel service (or both) provide asfeario take the client from the airport

33

sync. | async. | send. vsproc.| fullvs partial | send+proc| disjoint | immediate vs delayed
Present work X v v v v X v
Laneseetal.| v v v X v v X

Table 2: Comparison between Lanese et al. work and our work.

to the hotel. A hotel providing a transfer is good regardti#fsghether the air company provides
a transfer as well or not. However, a hotel not providing agfer is valid for the travel agency
only if the air company provides the transfer. Contrarilyh our framework considers that the
suitability of a service depends on what the rest of servémtsally do, so this kind of condi-
tional dependencies is taken into account. Furthermorepregsent a method to automatically
deriveservices from a choreography in such a way that the systesisting of these services
necessarilconformsto the choreography. This contrasts with the projectiofomagiven in [9],
which does not guarantee that derived services do so. Tluepns ofthe natural projection
already discussed in the introduction, are also sufferatidynethod proposed in [9]. In order to
avoid these problems, the authors introduce some restrictin choreographies to state which
ones are properly transformed by the projection.

Other works concern the projection and conformance vatiddietween choreography and
orchestration wittsynchronousommunication. Bravetti and Zavattaro [8] propose a thedry
contracts for conformance checking. They define an effegiiecedure that can be used to verify
whether a service with a given contract can correctly plagexic role within a choreography.
Carbone et al. [16] study the description of communicatieindviors from a global point of view
of the communication and end-point behavior levels. Thregndions for proper-structured
global description and a theory for projection are devedbpBultan and Fu [12, 11] specify
web services as conversations by Finite State Machinesalgznwhether UML collaboration
diagrams are realizable or not.

In [27], Lucchi and Mazzara provide a formalization of camfiance withr-calculus. By
means of automata, Schifanella et al. [4] define a conformation that checks whether the
interoperability is guaranteed. Moreover, Decker et a] [ghow how the Business Process
Modeling Notation (BPMN) and the Business Process Exeputamguage (BPEL) can be used
during choreography design. In [37], Van der Aalst et alo &g us on conformance by compar-
ing the observed behavior recorded in logs with some pregfimodel.

Regarding the definition of conformance relations betwdssrangraphies and orchestra-
tions, there are several works related to ours. We begindimparison by considering the closest
work. In [25] Lanese et al. develop a very detailed and brdadysto compare these kind of
systems. Their objective is bridging the gap between the \W&-&hd BPEL languages by for-
mally defining them and then finding out tfeaturessystems should have to be equivalent if the
natural projection is used. This work is based on the ideaedf formed conditionswhich de-
pend on the properties one wants to preserve in each caseid€hiclearly differs from our own
objective since we do not try to discover what the conditiali@wing the equivalence between
systems are, but we define a derivation procedure able teedeirchestration of services from
anychoreography; thus, since all choreographies enable aataterivation by adding a suitable
set of new control messaged| choreographies are well-formed for us. Despite of thisediff
ence, our approach follows a similar work line regardinggheposal of conformance relations.
We both share the same idea of global and local behaviorhfeographies and orchestrations,
respectively, as well as similar asynchrony assumptions.

34

In Table 2 we present a comparison of the conformance raggooposed in both works.
The table compares the presence of different kinds of oelatiThe first four columns compare
relations in terms of (a) different types of communicatiioa.,, synchronousersusasynchronous
semantics; (b) the focus of the relation on either the timeenumessages apeoduced/senbr
when they ar@rocessedby the addressee; and (c) the consideratidimlbbehaviors or juspart
of them. Concerning the comparison of the type of commuitinat i.e. synchronous against
asynchronous, in [25] both types are considered, but inpiyer we do not explicitly consider
a synchronous communications framework. Let us note thathspnous communications can
be roughly simulated by making all messages be followed byaadatory acknowledgement
message from the addressee to the sender, which must beeckbgi the sender before it can
go on (this is illustrated in Section 3.1). Regarding segdind processing traces/behaviors, the
same idea is followed in both works, that is, in an asynchusrammmunications framework, the
time when a source generates a message differs from thatimgten addressee actually reads
it, and the conformance with the respect to each kind of masneiffers. On the other hand,
we consider not only the possibility of taking all behavior® account in the comparison, but
we also allow to consider only some of them, that is, a systeghinbe correct as long as it
implements at leasine of the paths allowed by the choreography. In the next tworoaki of
the table, we show the presence of a relation consideringlsineously sending and processing
behaviors/traces, and the disjoint conformance relatipngiven in [25]. The last column of
the table illustrates the presence, in our framework, afti@hs under two different asynchrony
assumptions: (a) the case where messages are immediatelg st input buffers of destination
services; and (b) the case where there might be a delay betWweeending and the storage of
messages in the corresponding input buffers.

There are other works based in the ideavell formed condition§l3, 14, 7]. In [13] Busi et
al. present a first version of the formal model followed ldigt anese et al. to describe relations
between choreographies and orchestration. In this wotkoasidefine the formal machinery to
describe these two kinds of systems and a conformanceorelzdised on bisimulation. Here Busi
et al. do not deal with coordination or derivation problenms[14], Busi et al. retake the same
formal machinery, but this time they include state variablene work is focused on the problem
of maintaining the data consistency among the participantise orchestration. In [7] Bravetti
et al, following their former works of Lanese et al. [25] anthigetti et al. [8], study whether it
is possible to substitute a service by another one keepitigeaproperties of the composition.

To a lesser extent, there are also some related works atam#lating choreography and
orchestration languages that use formal models: Valerb [85) define a Petri net approach that
maps a subset [36] of WS-CDL to a Petri net model for analysisgses, and Yeung [40] defines
a mapping from WS-CDL and BPEL4WS into CSP, providing a fornpalraach to verifying the
behavior of collaborating web services.

Finally, we compare our proposal with works in the domain@hemunication systems and
reactive systems in general that address similar problemisise related formalizations. In [1]
and [3], Alur et al. and Baker et al., respectively, study pheblem of whether a given model
of a distributed system, described as a whole, can be rdatizeot. On the contrary, we are
not concerned about the realizability itself because wasseming that additional coordination
messages can be added to each involved party (in our casieesgr and the addition of these
messages allows us to realiany system described in our choreography formalism. In [3], the
authors consider the automatic pathology resolution, bulgorithm or systematic method to
solve pathologies is given indeed. Moreover, under the sdossthey assume, some pathologies
cannot be solved. In [20] Gotzhein and Bochmann present haddb automatically derive the

35

behavior of each party from the model of the distributedesystAuthors make some assumptions
about the communication medium: Separate input FIFO queuesch source are assumed, and
the order of messages is preserved as the protocol stateméssage delays are not considered.
In [5] local and non-local choices are discussed by Ben-Aakdand Leue, but only the detection
of problems in the system description is concerned, notyhthssis of the behavior of parties
in such a way that these problems do not appear. In [21] thihegis problem is considered by
Gouda and Yu, but distributed systems can have only twogsanvhich strongly eases the task
of providing a proper coordination between all existingtigst

In [17] Castejon et al. study system pathologies and infignpresent some ways to solve
them. Though no derivation algorithm or systematic metlsaghien, an interesting contribution
here is the classification of realizability problems frone thoint of view of each composition
operator. The operators under consideration are thoseis#ddL 2.0 collaborations, activity,
and interaction diagrams, that is: sequential compositiirrnative composition, interruption,
and parallel composition. Though this model is differeninirour FSM-based model, most of
pathologies identified in [17] apply to any kind of distribdtsystem, so they apply to models
defined in our languages too. Next we discuss them.

The sequential compositioaperator is prone to two kind of errors: causality and rage co
ditions. Thecausalityis broken when the expected sequence of interactions isreeegpved
in a system, that is, some action overtakes another one im@esirable way. This problem is
solved in our derivation algorithms by not letting a serneéwelve to the following step until the
whole system has been aligned to do so. In the centralizéxhatien for the semantics without
messages delays, a service may be several steps delaya@syititt to the orchestrator, but all
services are required to reach the current step when thesnerged in the current step indeed.
In the centralized derivation for the semantics with delasgvices are required to reach the
same step as the orchestrator (in particular, the orchesttaes not evolve further until they
do). Similarly, in the decentralized derivation, all seas are required to coordinately evolve to
each new step (under both semantics).

On the other hand, eace conditiongroblem appears if messages are sent to addressees in
some order, by they are received by these addressees ipi@dtforder. This problem may occur
only if the delayed messages semantics is considered.drcaise, messages of services derived
by our derivation algorithms can reach their destinatioa idifferent order as they were sent.
However, this does not disrupt the correct ordering in whralnsitions are actually executed.
Let us suppose that servigesends messageto B and nextA sendsy to B too, butB receives
y beforex. Note that, under the delayed messages semantics, botlm déovation algorithms
produce services where each message has itstgpen This is equivalent to having several
buffers, one for each message kind. In our example, se®ibas a buffer for messagesand
another one for messaggs Thus, even ify is received first and: is received next, servic8
will be able to taker from its buffer beforey if it is required. In particular, if servicé3 is in
a state where it caonly processr, it will be able to do so. Next, if it reaches a state where
it can only procesg, it will be able to do so too. Thus, servide may be designed in such a
way that message will be processedi.e. taken away from its buffer to trigger some transition
depending on that message) befgneegardless of whether is received before or not. If the
choreography requires thatis sent and processée@forey indeed, then the conditions required
for achieving sending and processing conformance are @exbén this example. This idea is
exploited in the derivation algorithms. By properly defigithe messages that can be processed
at each state, and not mixing messages involving two cotiseahoreography steps, services
correctly face the potential reception of messages in ardifft order as they were sent.

36

Thealternative compositiorspecified by the choice operator, describes alternatstgden
one or more paths. For this operator, in [17] two sourcesatflems are identified: the decision-
making process and the choice-propagation process. Regahédecision-making procesau-
thors define some choosing components based on the cosdiignciated with the alternatives.
As it was mentioned in the previous section, our FSM-basedetmioes not explicitly represent
the localization of local/external information, varial®r guards enabling/disabling transitions
according to variable values. In the centralized derivattbe orchestrator has omniscient ca-
pabilities, so it centralizes all information affectingaif@ons in the system and it autonomously
decides which alternative is taken next. In the decenedlgerivation, the decision-making pro-
cess is based on a mixture between a classical token ring eegpansibility chain. We assume
that thechoosing componentre, in our framework, thenessage senders each alternative
choice. A token ring, where each participant is able to chasther some of the choices where
it is the sender, or pass this responsibility to the nextiserin the ring, is created. Thus it is
implicitly assumed that, when each potential sender reseilie token, it has the information
required to decide whether it will take one of its choicestarill pass the decision to the next
potential sender. As mentioned in the previous sectiomriesinformation had to be received
by these potential senders before choosing, then the apagglty designer would have the re-
sponsibility of adding some messages before the choicey, $&rvices owning this information
to these potential senders, to conduct each sender to anpajape state where it will, or will not,
be able make each choice next. Alternatively, the requiréxtination to make choices could be
external such as external events. In this case, we may adopt the gaidtifis proposed in the
previous section: We enable the repetition of decisionintaprocesses in those states where
decisions of services might depend on external events thdd de delayed. The dependance
of models on local information and external events willéglicitly represented in our future
EFSM-based models.

The second problem with alternative composition identifiefd. 7] is thechoice-propagation
process In our framework, choices are propagated to services gusintrol messages gen-
erated by the orchestrator (in the centralized derivatn)y the service that eventually took
the choice (in the decentralized derivation). Note thatehdd not exisbrphanmessages (i.e.
messages that are sent and never processed) in any of thatides: At each step, all services
are required to process the choice notification messaggsdbeive before continuing (note that
there is onlyonechoice taken in each step), so they are necessarily pratbgsbe correspond-
ing addressees.

Two operators considered in [17], but not taken into accouatr proposal, are thiaterrup-
tion and theparallel composition Regarding the interruption, we have not explicitly intnodd
it in our model because this notion is not specifically idiéediin the choreography and orches-
tration languages motivating our models, WS-CDL and WS-BF&HiIl, these languages allow
designers to specifically denote that some behaviors ggetred if some exceptional situations
are detected. In our models, exceptional possibilitiesheatienoted as any other possibility, just
by adding a new non-deterministic choice to denote thisipiisg The reaction to this choice
can be defined by attaching an appropriate message to tistivar{e.g. an error or alert mes-
sage) and/or conducting it to an appropriate state. Reyattie parallel composition, there is
no explicit operator in our language to denote the paralletation of several processes inside
a given service. Let us note that, in many classical sensdrgjgproaches, it is assumed that a
parallel execution is equivalent choosing among all pdssitterleaved executions of all parallel
processes. In this specific case, the parallel operatiosigjsyntactic sugar, so it can be trivially
added to our language without modifying the current sernanti

37

8. Conclusions and future work

In this paper we have presented a formal method to autortigtiodract a system of services
from a given choreography, in such a way that the derivedeaystonforms to the choreogra-
phy. This method provides web service designers with a wagutomatically construct early
prototypesof services from a given choreography. These prototypedearsed to study their
properties, as well as to serve as a kind of early (corregtj@mentation that can be refined in
order to build the final implementation.

Instead on focusing on those choreographies where theahatajection works, our frame-
work produces choreography-compliant sets of services iveases where the natural projec-
tion does not work. This is achieved by adding some additior@ssaging to control branching
and races issues. As we have shown in the examples of th@$sdcelections in choreography
branching points may involveeveralservices, not just one, so imposing some coordination be-
tween these services is required, and this coordinationtipmvided by the natural projection.
Two derivation methods, one of them based on an orchestatvice and the other one yielding
a decentralized system, are presented. For each methodynsaler two alternatives: Mak-
ing the system conform with respect to instants where messaig sent, or making it conform
with respect to all proposed criteria. This distinction istivated by the use adsynchronous
communication, where the times when messages are sentaticthtés when they are processed
may differ. We also consider two possible interpretatiohssynchrony: One where the or-
der in which messages are sent is preserved in destinapaon lffers, and another one where
messages can be mixed up in destination input buffers. 8lengtd and decentralized derivation
algorithms are presented for both interpretations.

Languages for defining models of orchestrations and choapbies, based on extensions
of finite state machines with buffers, have been presentediwae have defined some formal
semantic relations where, in particular, sending traceslmtinguished from processing traces,
and the suitability of a service for a given choreography mheyend on the activities of the rest
of services it will be connected with. The proposed framéwisrillustrated with several toy
examples and a small case study.

As future work, we will study methods to reduce the numberddfitonal messaging we
have to add to derived services in order to control branchimdjraces issues. Let us note that
this goal can be considered at the services level, as we lwesid this paper, or, alternatively,
at the choreography level. In the latter case, we could esghthe goal as follows: We wish to
study what is the minimum amount of additional messaging axeeho add to a giveohore-
ography such that a simple natural projection of the augmentedediyraphy would lead to
choreography-compliant set of services. Thus, the proldEraducing the additional messag-
ing can be considered at any of these dual levels. Besidesfeveurrently developing a tool
such that, given a choreography defined by (a subset of) WS;@Bansforms it into the kind
of choreography models considered in this paper, next draatically extracts service models
according to the algorithms proposed in this paper, andlyifairansforms these models into
WS-BPEL. Let us note that this tool will, in turn, be useful exluce the number of additional
control messages in our derived systems and improve tHaiegficy, because it will allow to
easily experiment with alternative coordination stragsgiln particular, we wish to develop a
derivation method taking advantage of the main derivatiends, depending on the applicability
of each one in each case: a) natural projection if "well-fedmess” conditions hold; b) central-
ized derivation if (a) is not possible but all required infation to take a choice could be owned
by a single service; and c¢) decentralized derivation if §b)at possible, so a set of services must

38

coordinate, according to local information, to determine branch to choose. Finally, we wish
to introduce data variables and time in our modelling laiggisaby using a kind aéxtended finite
state machine¢EFSMs) with time as core model, instead of FSMs, as prelyaeiplained in
detail in Section 6.

Acknowledgments

We wish to thank the reviewers for the careful reading of thpgr and the detailed com-
ments.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizabilitydaverification of msc graphsTheor. Comput. Sgi.
331(1):97-114, 2005.

[2] T. Andrews and F. Curbera. Web Service Business Processuirn Language, Working Draft, 2004. Version
2.0, 1.

[3] P. Baker, P. Bristow, C. Jervis, D. J. King, R. Thomson, Btddell, and S. Burton. Detecting and resolving
semantic pathologies in UML sequence diagrams.Pioceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT InternaticBymposium on Foundations of Software Engineer-
ing, 2005, Lisbon, Portugal, September 5-9, 20f&ges 50-59, 2005.

[4] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Sifanella. Service selection by choreography-driven
matching. IWEWST2007.

[5] H.Ben-Abdallah and S. Leue. Syntactic detection of psscdivergence and non-local choice in message sequence
charts. In E. Brinksma, editofpols and Algorithms for the Construction and Analysis at@ysvolume 1217 of
Lecture Notes in Computer Scienpages 259—-274. Springer Berlin / Heidelberg, 1997. 10./EREb0035393.

[6] M. Boreale, R. D. Nicola, and R. Pugliese. Trace andtgstiquivalence on asynchronous processgsComput,
172(2):139-164, 2002.

[7] M. Bravetti, I. Lanese, and G. Zavattaro. Contract-dnvimplementation of choreographies. Trustworthy
Global Computing, 4th International Symposium, TGC 2008 c8lona, Spain, November 3-4, 2008, Revised
Selected Paperpages 1-18, 2008.

[8] M. Bravetti and G. Zavattaro. Towards a unifying theooy €horeography conformance and contract compliance.
In Software Compositigrpages 34-50, 2007.

[9] M. Bravetti and G. Zavattaro. Contract compliance andrebgraphy conformance in the presence of message
gueues. InProc. of 5th International workshop on Web Services and kbritethods, WS-FM’'08, LNCS (in
press) Springer, 2008.

[10] E. Brinksma and J. Tretmans. Testing transition systenmsanotated bibliography. lath Summer School on
Modeling and Verification of Parallel Processes, MOVEP'DNCS 2067 pages 187-195. Springer, 2001.

[11] T. Bultan and X. Fu. Choreography modeling and analysik wollaboration diagramslEEE Data Eng. Bull.
31(3):27-30, 2008.

[12] T. Bultan and X. Fu. Specification of realizable servemnversations using collaboration diagramService
Oriented Computing and Application®(1):27-39, 2008.

[13] N.Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. ZavatiaChoreography and orchestration: A synergic approach
for system design. Iiservice-Oriented Computing - ICSOC 2005, Third InternzsdiocConference, Amsterdam,
The Netherlands, December 12-15, 2005, Proceedipages 228-240, 2005.

[14] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavatia Choreography and orchestration conformance for
system design. II€oordination Models and Languages, 8th International @oefice, COORDINATION 2006,
Bologna, Italy, June 14-16, 2006, Proceedingages 63-81, 2006.

[15] L. Caires and H. T. Vieira. Conversation typd$eor. Comput. S¢i411(51-52):4399-4440, 2010.

[16] M. Carbone, K. Honda, and N. Yoshida. Theoretical agpetcommunication-centred programmirtgjectr. Notes
Theor. Comput. S¢i209:125-133, 2008.

[17] H. Castejon, R. Braek, and G. Bochmann. Realizabilitgafaboration-based service specificatioAsia-Pacific
Software Engineering Conferende73-80, 2007.

[18] I. Castellani and M. Hennessy. Testing theories fonakyonous languages. FSTTCSpages 90-101, 1998.

[19] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, and M. Weskeodkling service choreographies using bpmn and
bpeldchor. INCAISE pages 79-93, 2008.

39

[20]
[21]

[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]
[31]

[32]

[33]
[34]
[35]
[36]

[37]

(38]
[39]

[40]

R. Gotzhein and G. von Bochmann. Deriving protocol sfieations from service specifications including param-
eters.ACM Trans. Comput. SysB:255-283, November 1990.

M. Gouda and Y. Yu. Synthesis of communicating finite-staiachines with guaranteed progre<EE Transac-
tions on Communication82(7):779-788, 1984.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asyrious session types. ROPL, pages 273-284, 2008.
M. Huhns and M. Singh. Service-oriented computing: Kegaepts and principles. IiEEE Internet Computing
pages 75-81. IEEE Computer Society Press, 2005.

L. Lamport. Time, clocks, and the ordering of events in strihuted systemCommun. ACM21:558-565, July
1978.

I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bimgdgthe gap between interaction- and process-oriented
choreographies. 1&ixth IEEE International Conference on Software Engimegand Formal Methods, SEFM
2008, Cape Town, South Africa, 10-14 November 2p@8es 323-332, 2008.

D. Lee and M. Yannakakis. Principles and methods ofrigdfinite state machines: A survelyroceedings of the
IEEE, 84(8):1090-1123, 1996.

R. Lucchi and M. Mazzara. A pi-calculus based semanticsvis-bpel. J. Log. Algebr. Program.70(1):96-118,
2007.

A. Petrenko. Fault model-driven test derivation fronitérstate models: Annotated bibliography. 4th Summer
School on Modeling and Verification of Parallel Processe©O\REP'00, LNCS 2067pages 196—205. Springer,
2001.

Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theaadtioundation of choreography. MWWW pages
973-982, 2007.

I. Rodriguez. A general testability theory. GONCUR 2009 - Concurrency Theory, 20th International Crerfee,
LNCS 5710pages 572-586. Springer, 2009.

I. Rodriguez, M. Merayo, and M. NufieZ{OTL: Hypotheses and observations testing loglournal of Logic
and Algebraic Programming/4(2):57-93, 2008.

G. Salaun and T. Bultan. Realizability of choreogragshiising process algebra encodingsinbegrated Formal
Methods, 7th International Conference, IFM 2009, Dissd|dBGermany, February 16-19, 2009. Proceedings
pages 167-182, 2009.

J. Tretmans. Conformance testing with labelled tramsisystems: Implementation relations and test generation.
Computer Networks and ISDN Syste28:49—-79, 1996.

J. Tretmans. Testing concurrent systems: A formal approacCONCUR'99, LNCS 1664ages 46—65. Springer,
1999.

V. Valero, M. E. Cambronero, G. Diaz, and H. Macia. A petet approach for the design and analysis of web
services choreographied. Log. Algebr. Program2009.

V. Valero, G. Diaz, M. Cambronero, and H. Macia. A barrgémtional semantics for a subset of ws-cdl with time
restrictions.Journal of Logic and Algebraic Programmingugust 2009.

W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, &hd. W. Verbeek. Choreography conformance
checking: An approach based on bpel and petri netsTHa Role of Business Processes in Service Oriented
Architectures 2006.

W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stafd l&. Wolf. From public views to private views -
correctness-by-design for services Vits-FM pages 139-153, 2007.

W3C. Web Services Choreography Description Languag@4 2 t p: / / www. w3. or g/ TR/ 2004/

WD- ws- cdl - 10- 20041217.

W. L. Yeung. Mapping ws-cdl and bpel into csp for behaval specification and verification of web services. In
ECOWSpages 297-305, 2006.

Appendix: Proofs

Proof of Theorem¥4.3

Let us note that ifS conf # C then for allconf , € {conf/,conf/ conf’ conf?,
conf /', conf /} we haveS conf , C, so we will just proveS conf # C. According to defini-
tions 3.1 and 4.1, this is equivalent to proving that we fewep ({c™|o € prcTraces(S)}) =
Conp(t races(C)) andConp({c*|o € sndTraces(S)}) = Conp(t races(C)).

Let us begin by provingConp({c*|o € prcTraces(S)}) = Conp(traces(C)). In
particular, let us start by proving that#f € Conp({c™|c € prcTraces(S)}) theno €

40

Conp(traces(C)). The path closure can be either finite or infinite. Let us consider that it
is finite. Leto consist of[(sndy, i1, procy), ..., (sndm, im, procy,), st op] as well as all of its
prefixes. We will prove that all of these traces are¢ iraces (C), which will imply thato is in
fact a complete path closure bf aces(C).

Let ¢; be the initial configuration of anda = [(sndy, i1, procy), . .., (snd,, i, proc,.)] €
o. Since this sequence denotes a executiof,ahere existc > r consecutive evolutions of
S following the form (cy, snd}, i}, procy, oy, adr, c2), (c2, sndh, ih, proch, oh, adry, cs), ...,
(ck, snd), 1}, proc,,, o}, adry,, ck+1) such that, if the natural values < ... < a, denote all
consecutive indexes of inputs belonging\tbin the previous sequence (thatlis {a1,...,a.}
iff iy € M) then [(snd,,,i,, ,proc,,),...,(snd, i, ,proc,)] = [(sndy,i1,proc), ...,
(sndy, ir, proc,)].

Let us note that, for alt; < a, < a,, we have that,, ,, denotes the configuration of
after processing the inpmg in the previous sequence of consecutive evolutions.clLgt; =

((ud, 11508 1) (u Z;z:l, batl1))- According to the definition of, the last pair ofq, 1,
ie. (u Z*jl, b;”“jl) denotes the configuration of the orchestrator service hBycbnstruction of

S from C the names of states of each serviceSiare taken exactly from the names of states
in C. In particular, for each state, of C, in or chest r at or (C) we have a state,, as well

as a state,,; forall 1 < i < n+ 1 and allp less than or equal to the number of transitions
leavings, in C. Let us rename;,, (the initial state o) by s;. Let P denote the property that,
forall a; < aq < ar, there exisly — 1 statess,, ..., sq,y1 0f C andg consecutive evolutions
(81,1, ,snd,, ,proc, ,s2), ..., (sq, i;q,snd;q,proc;q,sq_,_l) in C such that we have:

(a) (configuration of the orchestratofor all1 < h < g, let p;, be the ordinal of the transi-
tion (s, iy, , snd,, ,proc,, ,sn+1) in the set of all transitions from statg in C. Then,
ugtly = sqp,; for somel < j <n+1andb;’l =[].

(b) (configuration of derived services that have already bedorimed by the orchestrator
about where to go in this steppralll < g <j —1we haveuZ 41 €{5c,8¢p. |1 < e <
q} U {sg,, s Sq+1}- Moreover, letf be such that) ., = sy oruj ., = sy—1p, ,. Then,
by 11 = lore,ay), (ore,apinppyy)s- -, (ore,aqp,)] (NOtE that iff = ¢+ 1 then this
buffer is empty).

(c) (configuration of derived services that have not been inéatrhy the orchestrator yet
about where to go in this stepjr allj < g < n we havevugq+1 € {5¢,8¢p. |1 <€ <
q}. Moreover, letf be such thauj ,, = sy orug ., = sf_1,, ,. Thenbj ., =

[(orc,ap p,), (ore,api1pspy)y- -5 (0rc,ag—1p,)]

Let us note that this property would imply, in particular, thaf(snd,, ,i, ,proc,,), ...,
(snd,, i, ,proc,)] € traces(C), thatis equal td(sndy, i1, procy), ..., (sndy, i, proc,)]
etr aces(C) as itis required.

We proveP by induction ovely. We takeg = 1 as anchor case. The first message belonging
to M that is processed if is i;,, . This message is sent by.d;,, and processed hyroc, . By
the construction o from C, a service ofS sends a message only after the orchestrator requests
to do so. Moreover, the orchestrator requests a servicenthaenessage to another exactly as
it is defined in one of the transitions leaviagin C. Thus, there exists a state of C such that
(s1,1q,,snd,, ,proc, ,s2)isan evolution of’. Let this evolution be the-th one leaving; in C.
By the construction 08 , the state of the orchestrator right after the seryiag:, processes

41

must bes;,,; for somel < j < n+1 (note that the orchestrator cannot go beysngd, ., before
proc;,, sends a messagg to it). Moreover, at that moment no service has sent a message
orchestrator yet, so the input buffer of the orchestratdr]isThus, we havéP (a). Regarding
(b), all services that have already been asked by the oral@stor taking the-th transition can
be in two configurations: either they have already procetisegair(orc, a1,,) from their input
buffer, and thus they are in either, or sy, or they have not, and thus they aresin In both
cases, condition (b) is preserved. Regarding (c), sertfhadave not been notified to take the
transition are necessarily #1, so (c) is fulfilled.

We consider the inductive case. By induction hypothesisusesuppose that there exist
(81,8g,, sndy,, procy, ,82), «.., (Sq,iq,, sndy ,proc, ,sq+1) transitions inC, “2;11 = Sqp;
forsomel < j < n+1, andb;‘ﬁ1 = []. Also by induction hypothesis, we assume that for
all1 < g < n+1we have thau! ., andb ,+1 Preserve conditions (b) and (c). Let us note

that, since we hava:"trl1 = Sgpj» the evolutlon(sq, i, s Sndg ,procy, , sq1) is in fact thep-th
transition leaving,, in 'C. According to the construction &ffromC, at states,,; the orchestrator
can reach the statg,, ,,1 without requiring any message from any other servicest, 1,
the orchestrator must process a messageom proc’ to move to state,;. Let us note that,
right after the serviceroc!, processes its message it reaches a sggtand sends a message
by to the orchestrator. Thus, the input buffer of the orchéstraill eventually bel(procy, , br)],
and thus it will be able to move tg,;. Once the orchestrator reaches state;, its input
buffer is empty again. Now we can prove the existence of aespbent evolution i€ and the
preservation of conditions (a), (b), and (c) as we did befiotde anchor case, though this time
we depart from state,,; and we process messa:ijle 11 (instead ofs; andi,, , respectively).
The only significant difference lies in proving conditiortg &nd (c). On the one hand, a service
that was in case (b) in stepwill be able to evolve into state, (if it did not do it before) by
processing all pairs stored in its input buffer (note thaythre stored in the required order to do
s0). On the other hand, a service that was in case (c) iysiélbreceive from the orchestrator
an instruction to take thg-th transition in that step, and next it will be able to praciso move
to states,;; by processing all pairs stored in its input buffer, as in (©nce the orchestrator
reaches state, 1, it will start to tell all services what transition to takestepg+1. In particular,
the servicesnd,, ., will eventually take the required transition and next iths#nd the message
in,+1 tOproc, L. Hence, the servicgroc, ., will eventually be able to process it. Let us note
that, at the time when servige-oc; ., processes that message from a servie€, ,,, some
services will have already been told by the orchestratortwhasition to take next. Thus, any
service being in cases (b) or (c) in stevill be again in any of these cases (b) or (c) in step
q+1.

In this way we have proven proper, and we conclude thdtsnd, ,i, ,proc,,), ...,
(snd,, i, ,proc,)] = [(sndy,i1,procy), ..., (snd,, i, proc,)] € traces(C).

As we consider that the path closurés finite, we also have to provésnd,, i1, proci),. . .,
(sndum, im, procy,), st op] € traces(C). Let us see that, due to the constructiorsdfom C,
S can get stuck only if the orchestrator reaches a stateich that there is no outgoing transition
at s; in C. Let us note that, if it is not the case, then the orchestmatlbibe able to select a
transition and request all other services to take that itians All services will add this request
to their input buffers, and eventually they will be able tkeadhat transition (note that, according
to P (b) and (c), all services will own all messages required twvin their input buffers). Then,
the orchestrator will ask a service to send a message toamtite former service will eventually
do it, and the latter will eventually process it, thus allogiithe orchestrator to continue. We

42

conclude that, ifS can get stuck after executin@snd,, i1, proci), ..., (sndm, im, procm)],
then we necessarily haVesnd, , i1, procy), . .., (sndp,, im, proc,,), st op] € C.

Let us suppose that the path closaris infinite. The property previously proved by induction
over g shows thatif a trace of lengtly can be executed hy, then it can also be executed 8y
Since this applies to traces of any size, all traces belgn@irihe infinite path closure can be
executed by, and so we have € Conmp(t r aces(C)).

Now we prove the inclusion of sets in the opposite directibaf is, we prove that i €
Conp(t races(C)) theno € Conp({c™|o € prcTraces(S)}). Again,o can be either finite
or infinite. Let us suppose that it is finite, that ésconsists of a trac§sndy, i1, proci), ...,
(sndpm, im, procy,), st op] and all of its prefixes. We prove that, for all€ [(snds, i1, procy),

, (snd,., i, proc,.)] € o, we haven € {cM |0 € sndTr aces(S)}. As before, let us rename
s;n (the initial state of’) by s;. Sincea € o, we know that there exist— 1 statesss, . .., s, of
C such that(sy, i1, sndq, proci, s2), ..., (sq,1r, snd,, proc,, s,+1) are consecutive evolutions
of C. Let P’ be the property that, for all < ¢ < r, there existh > ¢ consecutive evolu-
tions (c1,14,, sndy, proci, c2), ..., (b, %y, sndy, procy, cp41) in S such that, for some natural
numbersa; < ... < a4, We have thaty, ..., a, are the indexes of inputs in these evolutions
belonging toM (i.e. | € {ai,...,a,4} iff iy € M) and for alll < g < ¢ we havei, = i,
snd,, = sndgy, andproc,, = proc,. Moreover, letcy 1 = ((u),q,bp, 1), (ugill,bgill))
Then we have (a), (b), and (c) as stated before in progemgter replacmg aII appearances of
a4 by b (from now on, the resulting conditions will be denoted by, (@)’, and (c’)). Let us note
that the property?’ would imply, in particular, that € {c |0 € sndTr aces(S)}.

We can proveP’ by induction overg. Letq = 1 be the anchor case. Let us suppose that
(s1,11, sndy, procy, s2) is thep-th transition available i€ from s;. By the construction o
from C, the orchestrator starts at statetoo, and it can move from this state to a statg . From
this state, it starts to ask the rest of services for takiegtth available transition. Eventually,
the servicesnd; will be asked for sending,; to procy, it will do it, and proc; will eventually
process it. Letcy, i}, sndy, proci, c2), ..., (e, iy, sndy, proc,, cy+1) be the evolutions taken
S until proc; processes;. We haveproc, = proci, i, = i1, and for all evolutions before
(¢s, 1y, sndy, procy, cp1) NO message from/ is processed. Moreover, by using very similar
arguments as before when we considefPedt is easy to see that all conditions (a)’, (b)’, and (c)’
are kept in configurationy ; .

Let us consider the inductive case. Let us assuméthiablds forg. After executing the trace
[(sndy,i1,proci), ..., (sndy,iq, procy)], the choreography is in states,;,. Let us suppose
that (sg+1,ig+1, Sndg+1, procyt1, Sq+2) is thep-th available transition from,;; in C. By the
construction ofS from C, from a configuration of fulfilling (a)’, (b)’, and (c)’ in the ¢-th step,
the orchestrator of can evolve and reach the statg ;, where it will be able to take itg-th
choice to reach,. 1 , 1. At this state, the orchestrator will start to ask the restesvices for
taking thep-th transition too. On the other hand, regardless of whetreservicesnd, 1 was
in case (b)’ or (c) after the-th step, it will be able to process the messages in its inpfieb
until it reaches the state,; too. Thus, it will eventually send, ., to proc,,1. Similarly, the
serviceprocy+1 Will eventually process it. Let, be the configuration af right beforeproc, 41
processes, ;. There exists a configuratian;, such that(cy, iq+1, sndg+1, proces1, cp+1) IS
an evolution ofS. Now we can use similar arguments asArto show that (a)’, (b)’, and (c)’
hold incyy 1.

Proving thatS gets stuck only i’ does so, and proving the inclusion of all traces iwhen
o is infinite, requires similar arguments as well.

43

Finally, we can proveConp({c™|s € sndTraces(S)}) = Conp(traces(C)) by
ing very similar arguments as before when providgnp({c*|c € prcTr aces(S)})
Conp(traces(C)).

us

Proof of Theorem4.5

The structure of this proof is very similar to the proof of Dnem 4.3, so we will just point out
the differences with that proof. Sincenf / impliesconf ’, we just have to proveonf {, that
is, we have to prov€onp({c|oc € sndTraces(S)}) = Conp(traces(C)). Let us start
by consideringConmp ({c™|c € sndTraces(S)}) C Conp(traces(C)). Compared to the
systemsS constructed in Definition 4.2, the only difference of theteysS given in Definition 4.4
is that the acknowledgements of processing actions arditsed by acknowledgements of
sendingactions. In particular, it is the sender of each messagenarithe service responsible of
processing that message afterwards, the one that sendsagelgsto the orchestrator in order
to allow the orchestrator to go on with the next step. In otdgsrove that all sending traces of
S belong toC, we can use an adaptation of the propértgiven in the proof of Theorem 4.3.
This adaptation just consists in considersendingtraces rather than processing traces. Since
the systens of Definition 4.4 deals with sending traces exactly as théesys$ of Definition 4.2
deals with processing traces, the adaptation of the pypgednd its three statements (a), (b),
and (c) to deal with sending traces is straightforward, ant ¢he adaptation of the proof by
induction overg. On the other hand, the adaptation of the prop&ttyf Theorem 4.3 to prove
Conp(traces(C)) C Conp({c¥|o € sndTraces(S)}) is also direct.

Proof of Theoremd.7

The general structure of this proof will be similar to the girof Theorem 4.3. As we will
see, the main difference with that proof will lie in the way preve that traces &f andC belong
to each other, which will not be based on the state of the stcder (which does not exist in
this case) but in the relations between the states of alleservices.

Similarly to that proof, we just prové conf // C because it impliess conf , C for all
conf, € {conf/,conf/, conf’,conf/, conf/ conf/}. Again, we prove it by show-
ing that Conp({c™|oc € prcTraces(S)}) = Conp(traces(C)) and Comp({cM|oc €
sndTr aces(S)}) = Conp(traces(C)).

We start by provingConp({c*|o € prcTraces(S)}) = Conp(traces(C)). In partic-
ular, let us show that i& € Conp({oc™|o € prcTraces(S)}) theno € Conp(traces(C)).
Let us assume that the path closuris finite. Theng consists of some tradésndy, i1, proc;),

.oy ($ndp,, im, procy,), st op] as well as all of its prefixes. We prove that all of these traces
belong tot r aces(C), which implies that is a complete path closure bf aces(C).

Let ¢; be the initial configuration of anda = [(snds, i1, proci), . .., (snd,., i, proc,)] €
o. Let us introduce the same notation as in the proof of Theekénto refer the configurations
traversed bys in «.. Sincea denotes a execution 6f, there exisk > r consecutive evolutions of
S following the form (cy, snd}, i}, procy, oy, adrl, c2), (c2, sndy, ih, proch, oh, adry, cs), ...,
(¢, snd), 1}, procy,, o}, adry,, ck+1) such that, if the natural values < ... < a, denote all
consecutive indexes of inputs belonging’ubin the previous sequence (thatls {ai,...,a.}
if and only if i; € M) then[(snd, procy,), ..., (snd,, i, ,proc,)] =|(sndi,i1,proci),

., (sndy, i, proc,)].

Note that, for alla; < a, < a,, cq,+1 denotes the configuration of after processing the

inputi;, inthe previous sequence of consecutive evolutionsclet; = ((u}tqﬂ, b}LqH), ce

44

ay?’ a17

(ug,+1,b%,41))- According to the definition of, forall 1 < g < n we have thatug_,b5 1)
denotes the configuration of tlgeth derived service, that decent ral (C, id,). By the con-
struction ofS from C, the names of states of each servic&iare taken from the names of states
in C. In particular, for each staté of C, we have a statg’ as well as some other states related to
t (sldommom, st ienooses €1C) in all derived services. Let us recall that the iniigte ofC is

. Let Q denote the property that forall < a, < a,, there exisyy — 1 statess?, ..., s7™! of
C andq consecutive evolutions, i, , snd,, , proc, ,s%), ..., (s%i;, ,snd, ,proc, ,s?)
in C such that we have:

7a17

(a) (configuration of the serviogecent r al (C,proc;,)) Letid, = proc;, . We have.? =
sittandb] L, =[]

(b) (configuration of the servicdecentr al (C, snd’aq)) Letid, = snd;q. Foralll < h <
g, let p;, be the ordinal of the transitiots”, @, , snd,, ,proc, ,s"™) in the set of all

9 a;]
transitions from state, in C where the sender isud;, . We haveu; ., = s and

quH = [(procgq, ididit)].

q
ichoose’,
Pq

(c) (configuration of the rest of servicekgt 1 < g < n be such thatd, # proc’ and
idg # snd,, . Letd, be the index of the last step where eithei) chose the transition to
be taken or (II)Ld was required to make the choice of either choosing one ofitsitions
or notbeforereaching the service that actually made the decision indtegt. Formally,
dy is the maximum natural value with< d; < ¢ such that, for alll; < e < ¢, we have
that there does not exigtsuch thatd,, zds or it does butj > k wheresnd,, idse
(recall the definition of the ligtids, . . . , idj,] at the beginning of Definition 4. 6) Leb be
the index of the last step wheié, was the processor of the message. Formallys the
maximum natural value with < d» < ¢ such that, for altl, < e < ¢, we haveproc;, #
id,. Letd = max(dy, dz). Thenwe havetg 41 = s forsomed < t < ¢, wheres! € S,
andS! is the set of all states beginning b’y(that iS,5%, St yontchooser Stwillehoose €1C). FOT

all1 < h < gq, letp, be defined as in (b). We also ha»r(ebgrﬁrl >= (Wit Weo1),
where< quH > is the result of removing fror all pairs where the input does not follow
the formtakemychoice; for somek or ididit, and for allt + 1 < y < g — 1 we have
wy = (snd,, ,takemychoice,,) or wy = (procy, ,ididit).
This propertyQ imply, in particular, thaf(snd,, i, ,proc,),...,(snd;, , ‘;T,proc)] €
traces(C), thatis,[(sndy, i1, proc1), ..., (sndy, i, proc,)] € t races(C) asitis requwed.
We proveQ by induction overg. We takeg = 1 as anchor case. The first message belonging
to M that is processed i is i;, . This message is sent by.d, and processed byroc;,

By the definition ofS, a servicesnd;,, of S sends a service only after (a) all services before

sndy, in the list of services capable to sending a message explicitly refuse to do so; and

(b) all services aftesnd;,, have been notified who will make the decision (by propagatiiey

alreadychosenspar _ Message and receivingosencomplete from the last service). In particu-

lar, by the construction af from C, snd;,, sendsi;, only if this can be done i@ from states!.
Thus, there exists a staté of C such that(s , al,snd L Proc, s s?) is an evolution ofC. Let
idy = proc,, be the service that processggs. Sincec,, 11 denotes the configuration &fright
afterproc], processes, , by the definition ofS we haveu! ., = s* andb? ,, = []sowe have
(a). Now, letid, = snd;, . Sinceproc, has already processed the message, already sent

it, so by the deflnltlon ofS we observe thatf | = s andb] |, = [(proc ididit))

ichaose/ ai?’
45

and we have (b). Finally, let < g < n be such thaid, # proc, andid, # snd;, . The
servicesnd;,, has not informed the servigd, about what path it must take at this step (it starts
to do soafter it processes thédidit message), so we hawéqul = s! for somes! € S! and
<b; 11 >=[] and we have (c).

We consider the inductive case. By induction hypothestsusesuppose that there exist
(st,i! ,snd, ,proc, ,s%), ..., (s%,i sndy, ,procy, ,s9%1) transitions inC and all services

v Yaqr ai’ » Yag)
at configuratiorc,,, 1 preserve (a), (b) and (c) By the definition &f at stateswhoose the

serwcesndgq starts to ask all the rest of services (I@mbc , which was already asked) for
taking its choicep,, and it reaches stat¢™! when it finishes that task. Consequently, all of
these services add a pe@hnd;q,takemychoicepq) to their input buffers. Note that, by (c), all
services can process the messages in their input bufférshaytreachs?*! as well; this implies
emptying their buffers indeed. Now, we reason similarlyrathe anchor case. By the definition
of S, a serviceproc;, processes a messagleJr only after the servicend;, sends that
message to it. However by the constructionSofrom C, the systemS allows such a behavior
only if there exists a stat¢ " such tha(s*™", 4, ,snd;, . ,proc, . ,s?"*)isan evolution of

C. Right afterproc’ processes’ , by the constructlon af from C we have thaproc!

Ag+4+1
reaches the destination state of the evolulight* |, ,snd, ,proc, . ,s7?) of C, that

is 972, and its buffer is empty, so we have (a). Besides, right aﬂe&’ . processes the
message, the servieed;, ,, isin states? ! and its input buffer |§¢(pr0ca o0 Adidit)],

zchoose’
so we have (b) as well. Regardlng (c), each serwce not béihgrehe processor or the sender
of the message is in any of the following cases: (i) in siep 1 it had to choose not to take
any of its transitions (before givingroc;q ., the chance to actually take one of its transitions);

and (ii) it did not. In case (i), it will be at some stat&"" e S9*1 and its input buffer will be
empty. In case (ii), let us consider the possible cases o$d¢hdce in the previous step If it
was the processor at that step, then its state wildé and its input buffer will be empty, thus
fulfilling condition (c) at stepy + 1. If it was the sender at step then it could have processed
theididit message from the processor or not; in both cases, it willlfabindition (c) at step
q + 1. Finally, if it was neither the processor nor the sendem tte sender added a message
(snd;q, takemychoice,,) to its input buffer and it will fuffill (c) as well.

In this way we prove property, and we can conclude thétsnd,, ,i;, ,proc,,), ...,
(snd,, i, ,proc,)] = [(sndy,i1,procy), ..., (snd,,ir, proc,)] € traces(C).

We are conS|dering that the path closurie finite, so we also have to projends, i1, procy),

.oy (sndp,, im,procy,), st op] € traces(C). Let us see that, due to the constructionSof

from C, S can get stuck only if services reach a stdtsuch that there is no outgoing transition
ats'inC. Let us suppose that it is not the case, that is, there is goimgt transition frons® in C
where a servicend sends a messageto a serviceoroc. By the construction of from C, from
states’ there is at least one service capable of sending a messagiean sendn to proc indeed.
Let us see that some service®Will be able to process one of the available transitionsviSes
can refuse to take one of their transitions until the lastisercapable to take one of its transi-
tions is reached. This last service is forced to take onesdfainsitions. So, one of the services
will necessarily choose to take one of its transitions (sag wheresnd’ sendsm’ to proc’).
After snd’ sendsr/, it will wait for the acknowledgement fromroc’. By Q (a), (b), and (c), the
configurations of services guarantee that the sepioe’ will eventually be able to process’
and send the acknowledgementtal’, which will then ask all the rest of services for taking its
choice. The rest of services will eventually be able to t&let thoice. In order to see this, let us

46

ai)?

note that there is no risk that a service receiveskamychoice message from the servieerv’
choosing the transition at stép- 1 beforeit receives a messagekemychoice from a service
serv choosing the transition at stépNote thatserv’ begins to sendakemychoice messages
only after (a) all services beforerv’ have refused to take one of their choices in s$ted ; and
(b) the last service sendscaosencomplete message taerv’, which implies that all services
afterserv’ have received anlreadychosen message fromerv’. In particular, the serviceerv
will be able to do (a) or (b) only after it has seait of its takemychoice messages. So, the
first takemychoice message sent yerv’ is sent after the lagukemychoice message sent by
serv is sent. We conclude that all services will be able to protiessakemychoice messages
in the right order, and thus they will be able to reach theidasbn of the transition of under
simulation. We conclude th& does not get stuck as long &sallows to execute a subsequent
transition. Thus, ifS can get stuck after executin@snd, , i1, procy), . .., (sndm, im, procy)],
then we necessarily haVesnd, , i1, proci), . .., (sndpy,, im, proc,,), st op] € C.

We consider that is infinite. The property) shows thatif a trace of lengtly can be executed
by S, then it can also be executed By Since this applies to traces of any size, all traces belong-
ing to the infinite path closure can be executed hiy, and so we have € Conp(tr aces(C)).

We consider the inclusion of sets in the opposite directtbat is, we prove that itr €
Conp(t races(C)) theno € Conp({c™|o € prcTraces(S)}). Again,o can be either finite
or infinite. Let us suppose that it is finite, that ésconsists of a trac§snd, i1, procy), ...,
(sndpm,im, procy,),st op] as well as all of its prefixes. We prove that, for all tragee
[(sndy,i1,proci), ..., (snd,,i., proc,)] € o, we havea € {cM |0 € sndTraces(S)}. Let
us recall again that the initial state ©fis s*. Sincea € o, we know that there exist— 1 states
s?,...,s" of C suchthat(s', iy, sndy, proci, %), ..., (s%,i.,snd,,proc,,s"+1) are consecu-
tive evolutions ofC. Let Q' be the property that, for all < ¢ < r, there exisb > ¢ consecutive
evolutions(cy, i1, snd}, proci, ca), ..., (e, 1y, sndy, procy, cp+1) in S such that, for some nat-
ural numbers;; < ... < aq, We have that,, ..., a4 are the indexes of inputs in these evolutions
belonging toM (i.e. I € {a1,...,a,4} iff iy € M) and for alll < g < ¢ we havei, = i,
snd,, = sndgy, andproc), = proc,. Moreover, letcy 1 = ((u),1,bp, 1), (ugill,bgill))
Then we have (a), (b), and (c) as stated before in profggjter replacmg aII appearances of
aq by b (from now on, the resulting conditions will be denoted by, (@)’, and (c’)). Let us note
that the property®’ would imply, in particular, thatr € {c™|c € sndTr aces(S)}.

Let us proveQ’ by induction overg. We takeq = 1 as anchor case. Let us suppose that
(s',i1,sndy, procy, s?) is thep-th transition available i€ from s;. By the construction of
from C, all services start at*. The first service capable of sending a message akecides
whether it will take some of its transitions or it will refuse do so and it will let the next
service decide. In this way, all services capable of takimmes of their transitions will have
the chance to choose one of their transitions until someevhtoes so. One of these services
is sndy, which can decide to take the transition where it seRd® proc,. After it receives a
chosencomplete message from the last service, it send® procy, proc, processes it and sends
an acknowledgement tend;. Let (¢1,i], snd}, proci,c2), ..., (cb,i}, snd}, procy, cpy1) be
the evolutions take® until proc; processes;. We haveproc, = proci, i, = i, and, for
all evolutions beforéc, iy, sndy, procj, cy+1), N0 message from is processed. Moreover, by
using very similar arguments as before when we consid@réts easy to see that all conditions
(@), (b)', and (c)’ are kept in configuratiosy, ;.

Let us consider the inductive case. Let us assumalhholds forq. After executing the trace
[(sndy,i1,procy),. .., (sndy,iq, procy)], the choreography is in states?*!. Let us suppose

47

that (s, i1, sndg41, procgs1, s72) is thep-th available transition from?*! in C. By the
construction ofS from C, at a configuration of fulfilling (a)’, (b)’, and (c)’ in theg-th step, the
first service capable of sending a message fséit can evolve and reach the stafe!. Once
it reachess?t1, it can refuse to take any of its transitions or let the nertise to decide, which
in turn will eventually be able to reacli*! and decide, and so on until the service responsible
to either taking one of its transitions or refusing to do serig,,;. This servicesnd,;; can
actually choose to seng; to proc,y1. The serviceproc,+1, which is also able to eventually
reachs?™!, will be able to process, 1. Letc, be the configuration of right beforeproc, 1
processes, ;. There exists a configuratian;, such that(cy, iq+1, sndq+1, proces1, cp+1) IS
an evolution ofS. Now, we can use similar arguments as we did in the inducise ©fQ to
show that (a)’, (b)’, and (c)’ hold i@, ;.

Proving thatS gets stuck only i” does so, and proving the inclusion of all traces iwhen
o is infinite, requires similar arguments as well.

Finally, we can proveConp({c™|s € sndTraces(S)}) = Conp(traces(C)) by us-
ing very similar arguments as before when provitanp ({c™|oc € prcTraces(S)}) =
Conp(traces(C)).

Proof of Theorem4.9

As it happened before with the proofs of theorems 4.3 andtebstructure of this proof is
very similar to the proof of Theorem 4.7. Therefore, we wilkij focus on showing the differ-
ences with that proof. Sinageonf / impliesconf’, we just have to proveonf /, that is, we
have to proveConp({c* |0 € sndTraces(S)}) = Conp(traces(C)). Let us start by con-
sideringConp({c* |0 € sndTraces(S)}) C Conp(traces(C)). Compared to the system
S constructed in Definition 4.6, the only difference of thetepsS given in Definition 4.8 is
that the acknowledgements of processing actionsleleted In particular, no service sends any
messagedidit to the service that chooses the transition to be taken arndseexls a message
belonging toM to another service. In order to prove that all sending trad¢eS belong toC,
we can use an adaptation of the propaptgiven in the proof of Theorem 4.3. This adaptation
just consists in considerirgendingtraces rather than processing traces. It is worth to point ou
that the sender of each message belonging/tdoes not begin to ask the rest of services for
following its pathuntil it has sent its message to the destination service. Let @sthat the
service that will send a message belongingifoin the nextstep needs to reach the next state
to do so, so it is forced to wait until the service of the pregistep tells it which transition
it must take. Thus, the next sending event will necessasglyplen after the previous message
has been sent indeed. The adaptation of the prog@rand its three statements (a), (b), and
(c) to deal with sending traces is straightforward, and stvésadaptation of the proof by in-
duction overg. On the other hand, the adaptation of the prop&tyf Theorem 4.7 to prove
Conp(traces(C)) C Conp({cM|o € sndTraces(S)}) is also direct.

Proof of Theoremb.4

Due to the similarities between the adapted centralizetvatean given in Definition 5.3
and the previous centralized derivation given in Definittb@, we can compose this proof as
an adaptation of the proof of Theorem 4.3 — taking into actdhe differences between the
original operational semantics, given in Definition 2.4¢ dne semantics that apply here, given
in Definition 5.2. It is easy to adapt the proof of Theorem 4 3¢e that thenew derivation
holds under theld operational semantics. In particular, let us note that & af additional

48

control messages in the new derivation just constraintedéuathe evolution of the system. Let us
analyze step by step the behavior of the derived system tineleewsemantics where messages
can be delayed — and thus mixed up in input buffers. Firstusetonsider how the system
executes itfirst choreography transition, following some transition aaflié at the first state of
the choreography. We distinguish the following points ia #ixecution of this first choreography
transition:

)

@)

®3)

(4)

The system is in its initial configuration. All servicestithe orchestrator are in their initial
states. Besides, the input buffers of all services are sadgsempty, and the input buffer
of the orchestrator is empty too. Moreover, we also have ().

From moment (1), the system will eventually reach a caméijon where the orchestrator
has sent the ;, messages to all services. This occurs after the orchesttaboses one of
the available transitions, and next takes all transitiohsene it sends:;, to announce its
choice to the rest of services (let us note that the orchestiaes not need any message
from any other service to take all of these transitions).rhement (2) denote the execution
point where this has just happened. In this point, we cantedtaltl serviced; must be in
one of the following cases:

(2.1) The messagerc, a;,) has not been received ;. In this case(orc, a;p, id;) € D.

(2.2) Serviceid; has already received;,, butid; has not sent the messalgeto orc yet.
In this case, the input buffer ofl; must bef(orc, ajp)].

(2.3) Serviceid; has already sent messalgeo the orchestrator, but the orchestrator has
not received it yet. Then(id;, b;, orc) € D and the input buffer ofd; is | | again.

(2.4) Serviceid; has already sent messagebtdo the orchestrator, and the orchestrator
has received it. Therfid;, b;) belongs to the input buffer of the orchestrator, and the
input buffer of serviced; is | | again.

From moment (2), the system will eventually reach a caméiion where all services have
sent the messagesto the orchestrator. Due to the construction of the deriystesn, this
implies that the service responsible of sending the mesaatiee current choreography
transition has done so, and that the service responsibleockgsing it has done so as
well. Let moment (3) denote the moment where all of these tevieave just happened.
Given the four possible cases of moment (2), we can see thahphut buffer of allid;
must be| |. Besides, eithefid;, b;) belongs to the input buffer of the orchestrator, or
(id;, b, orc) € D.

From moment (3), the system will eventually reach a caméijon where the orchestrator
has processed the messagérom all services. Though messaggesan be received by
the orchestrator in any order, let us note that all of thesssage9,,...,b, belong to
different messagéypesof the orchestrator, so they do not block each other in thatinp
buffer and the orchestrator can take the messagéeach required service from the input
buffer as long as it has received it, regardless of whethmrahessages from different
services have been received before in the input buffer aorloettmoment (4) denote the
execution point where all the aforementioned events hastehppened. In this case, the
input buffers of all services and the orchestrator are engotgl D = (). Moreover, it is
easy to see that all services and the orchestrator must bstateahaving the same name

49

as the destination of the choreography transition that bas lexecuted by the system of
services.

At moment (4), the system fulfills the same conditions as inmaot (1) regarding input
buffers and the state of the sBt though all services and the orchestrator are in the netd sfa
the choreography. It is easy to prove, by induction over tmaler of choreography transitions
taken, that after executing any number of choreographysitians and reaching moment (4),
the system will necessarily reach moments (2), (3), and $4)escribed above for the next
choreography transition, and this can be saidafioy choreography transition that can be taken
from the previous choreography state. Thus, the systembeilible to make services perform
all transitions required by the choreography. By using lsimarguments as in the proof of
Theorem 4.3, we have that the system of services conforntetohoreography with respect to
all proposed relations.

Proof of Theorem5.5

Since the derivation used in this result is the derivatiaspnted in Definition 4.6, we can
construct this proof as an adaptation of the proof of Theotémtaking into account the differ-
ence between the operational semantics applying in thaifiocase, given in Definition 2.4, and
the semantics used here, given in Definition 5.2. Followiregdame idea as in the proof of The-
orem 5.4, let us analyze step by step the behavior of theatbsystem under the new semantics
where messages can be delayed and thus mixed up in inputsbuFiest, let us consider how
the system executes ifisst choreography transition, following some transition asblié at the
first state of the choreography. We distinguish the follayints in the execution of this first
choreography transition. This time, our analysis step bp s8till go a little bit further than the
execution of the first transition.

(1) The system is in its initial configuration. All serviceiean their initial states, and their
input buffers are necessarily empty. Moreover, we also ave ().

(2) From moment (1), the system will eventually reach a ceméiion where some service
id, decides that it will choose some of the transitions where the sender. It will do
it by sending a messagéreadychosen, to the next serviced, in the decision-making
sequence. Let moment (2) denote the execution point wherddls just happened. That
is, analreadychosen, message was sent by, to id, in the last system transition that
has been executed before moment (2). At this point, we caths¢ehe input buffers
of all services must bé], even those of services befoié, in the sequence (which
must have already processed their messages regardingdk®demaking; otherwise the
decision-making would not have reachel}). The input buffers ofd,, id., and the rest
of services that have not participated yet in the sequere@lapo equal td |. Besides,
D = {(id, alreadychosen,,id,)}.

(3) From moment (2), the system will eventually reach a caméiion where the last service
of the decision-making sequence, sdy, sends a messagéosencomplete to id,. Let
(3) denote the moment where this just has happened. Let asthatid, is blocked
until it receives that message, so the action of announdiagchoice taken byd, to
all services (by sending messagesemychoice;) has not started yet. It is easy to see
that, at this point, the input buffers of all services must[Beand we must hav® =
{(idy, chosencomplete, id,)}. Besides, for some choreography stajethe state otd,

IS s - ehoose: @Nd the state of the rest of servicesds . ;oo
50

(4) From moment (3), the system will eventually reach a camfiion where serviced,
has sent the messageemychoice;, as well as the message required by the selected
choreography transition, to its addressee,iglgy and nextd, has sentdidit to id,,. Let
us note that, since messages can be mixeddJgould receiven beforetakemychoice;.
However, once it has received both messages, it will be abtmntinue, sincen and
takemychoice; are of different types and each one does not block the \viigilaf the
other in the input buffer after both are stored in the buffBesides, let us note that no
other service has done anything since moment (3) to thist,pbetause onlyd, and
id, are involved in the aforementioned messages exchangedanddt of services are
blocked. Let (4) denote the moment where all of this has jappkned. It is easy to see
thatid, must be in some stat€ , andid, must be in some statfj-, and the input

ichoose
buffers of both services are equal[tb Moreover, input buffers of the rest of services are
[] as well, and we hav® = {(id,, ididit,id,)}.

(5) From moment (4), the system will eventually reach a statereid, has sent the mes-
sagestakemychoice; to all services that had not received it yet at moment (4)sghe
services are all buid,). Let (5) denote the precise moment where this happens. Some
services might have already processed the megsageychoice;, and thus they would
have reached a state of the fosfyy while some other services might not have done so (in
this case, their correspondingkemychoice; messages would belong to the set of not-
yet received messagd3). Moreover, services that have already reackiedould have
gone beyond and they could have started to participate idehision-making of theext
choreography transition. Moreover, some senii¢g could already have taken the de-
cision to take the choice of the next transition, and it cduddle already propagated its
decision of choosing to the next service of the decisionintakequence. However, we
know for sure that servicgl,, has not received the messag@sencomplete allowing it
to go further, because, as we said before, we are assumingpdimaent (5) happens right
after id, has sentakemychoice; to all services. Thusid, hasnot participated in the
decision-making of the next choreography transition (febat all services are required
to do so beforehosencomplete can be sent). Moreover, services that have not processed
theirtakemychoice; messages frori, have not been able to participate in that decision-
making either. For each of these servicegi/eemychoice; message could be mixed up in
its input buffer with a message used to participate in thés@@tmaking of the next chore-
ography transitioniffontchoose or alreadychosen,). However, even itakemychoice;
is receivedater thanidontchoose or alreadychosen,,, it can be processed by the service
when it is received, because both kind of messages beloriffecedt types.

(6) From moment (5), the system will eventually reach a caméion where the last ser-
vice participating in the decision-making of the next clugraphy transition, saydy,
sends a messaggiosencomplete to id,. This must happen because, from moment
(5), all services that had not processed thekemychoice; message at moment (5) will
be able to do so, so all services will eventually be able tdigipate in the decision-
making of the new choreography transition. Let (6) denote grecise moment when
idy sendschosencomplete to id,. Similarly to moment (3), let us note thad, is
blocked until it receives that messagesencomplete, so the action of announcing the
choice taken byid, in the new step to all services has not started yet. It is easy t
see that, at this point, the input buffers of all services thines|], and we must have

51

D = {(idy, chosencomplete, id,)}. Besides, for some choreography stéethe state of
id, is s and the state of the rest of servicesjémchoose.

iwillchoose?

At moment (6), the system fulfills the same conditions as inmmaot (3) regarding input
buffers and the state of the g8f though all services are in the statéfﬁﬂ Lehoose ands:{;omchoose
concerning thenextstate of the choreography. It is easy to prove, by inductiar the number
choreography transitions taken, that after executing amyber of choreography transitions and
reaching moment (6), the system will eventually reach mdmé#t), (5), and (6) as described
above for the next transition, and this can be saidafty choreography transition that can be
taken from the previous choreography state. Thus, the mystid be able to make services
perform all transitions required by the choreography. Bpgisimilar arguments as in the proof
of Theorem 4.7, we have that the system of services confartgetchoreography with respect

to all proposed relations.

52

