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Abstract

We present a formal model to represent orchestrations and choreographies and we define several
conformancesemantic relations allowing to detect whether a set of orchestration models, rep-
resenting some web services, leads to the overall communications described in a choreography.
Given this formal model, we develop automatic methods to derive a set of web services from a
given choreography, in such a way that the system consistingof these services necessarily con-
forms to the choreography. These methods enable the construction of conforming systems of
services even in cases where projecting the choreography into each service would lead to a non-
conforming system. This issue is addressed by adding some control messages that make services
interact as required by the choreography. Two different derivation methods are presented. In the
centralizedmethod, a new service is responsible of managing these additional control messages.
In thedecentralizedmethod, the responsibility of handling these messages is distributed among
all services.

Keywords: Automatic Web service composition, formal specification, web service
choreography.

1. Introduction

Web services related technologies are a set of middleware technologies for supportingService-
Oriented Computing[23]. The definition of a web service-oriented system involves two com-
plementary views:Orchestrationand choreography. The orchestration concerns theinternal
behavior of a web service in terms of invocations to other services. It is supported, e.g., by
WS-BPEL [2] (Web Services Business Process Execution Language), which is a language for
describing the web service behavior (workflow) in terms of the composition of other web ser-
vices. On the other hand, the choreography concerns theobservableinteraction among web
services. It can be defined, e.g., by using WS-CDL [39] (Web Services Choreography Descrip-
tion Language). Roughly speaking, the relation between orchestration and choreography can be
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Figure 1: Example of natural projection.

stated as follows: The collaborative behavior, described by the choreography, should be the result
of the interaction of the individual behaviors of each involved party, which are defined via the
orchestration. Let us note that the communication among services is asynchronous. However,
choreographies do not capture the type of communication, but only the communication flow.

In this paper we present some formal frameworks to automatically derive web services (in
particular, their orchestration definition) from a given choreography, in such a way that the con-
current behavior of these derived services necessarilyconformsto the choreography.

The main problem arisen in the derivation of services from a choreography is the fact that the
natural projectiondoes not necessarily produce a set of services conforming this choreography.
We can easily observe this problem in the example depicted inFigure 1. The formalism used
here will be fully defined in Section 2, but we can familiarizeourselves with the notation now.
The system on the top,Chor, represents a choreography. It defines the required communication
flow among three servicesX, Y , andZ. For instance, the first transition denotes that the message
a is sent by serviceX to serviceY . In addition, machinesX, Y , andZ shown at the bottom of
the figure are services derived from the choreography by directly projecting it into each involved
service. In order to enable asynchronous communication, weconsider that each service is en-
dowed with a buffer to store incoming messages. In the figure,each service transition is labeled
by a tag(S1,m1)/(S2,m2) stating that if the service has a messagem1 from S1 stored in its
buffer then it can send a messagem2 to S2. Let us note that servicesX, Y andZ are structural
copies of the choreography. In particular, each service transition is labeled with a communication
action (readinga message from its buffer and/orsendinga message to another service) where
this action is directly taken from the corresponding choreography transition. If the service does
not read or send any message in the corresponding choreography transition then we write a null
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action(−−,−−) in the service transition.
This example illustrates two problems we are facing in this context. On the one hand, services

could take non-deterministic choices of the choreography in a non-consistent way. For instance,
let us note that, in our example, the choreography can take two possible paths (its left branch or
its right branch) depending on the action taken by serviceY (sendingb to Z or sendingc to Z,
respectively). In both branches, serviceY sends messages toZ, but neitherY nor Z contacts
X afterwards to inform it about the action taken byY . SinceY andZ communicate, they will
follow the same branch. However, sinceX does not need to have any specific message in its
buffer to take any of its two available transitions (both arelabeled with(−−,−−)/(−−,−−)),
X could follow theoppositebranch as the one followed byY andZ.

On the other hand, we may havecausalityand race problems, that is, services can evolve
to a successor state by overtaking the rest of services in thechoreography, or a sent message
can be delayed in such a way that a message from a successor step overtakes it, respectively.
Coming back to our example, the causality problem is observed if, for instance, after serviceX
selects the proper branch, this service makes progress to the last transitionbeforeserviceY has
taken any of its two available actions. This may happen indeed because serviceX just sends
messages and it does not need any message in its buffer to evolve to its final state. This violates
the choreography requirement thatX must send its message onlyafter Y has already sent its
own message. Regarding the other type of problem, the races problem, let us replace the first
choreography transition (whereX sendsa to Y ) by two transitions, from the same origin to the
same destination, whereX sends eitherb or c to Y , respectively. The natural projection would
project these two choreography transitions into the first two transitions of servicesX, Y , and
Z (in Z, both transitions would be null because they do not involveZ). If X sendsb andnext
it sendsc to Y , Y could receive them the other way around due to a long delay ofb in the
communication medium. ThenY would consume, in itsfirst transition, the message it should
take in thethird one, and the other way around.

In this paper we will present two methods to derive acorrectset of services from a choreogra-
phy. The first derivation method solves the previous problems by adding anorchestratorservice,
which is a kind of director that is responsible of coordinating services and controlling the sys-
tem workflow. An alternative method deriving adecentralizedsystem, without orchestrator, is
presented too. This version varies from the centralized onein the sense that it is not necessary
to introduce a new “almost-omniscient” orchestrator service that would be feasible only in some
concrete systems. On the contrary, in the decentralized system thedecision makingis shared by
all services. In general, this situation is more realistic because web services are independent and
do not share all their internal information.

In order to fix the meaning ofconformancein this context, we define several semantic rela-
tions such that, given the orchestration of some web services and a choreography defining how
these web services should interact, they decide whether theinteraction of these web services nec-
essarily leads to the required observable behavior. The proposed relations allow to assess services
either in terms of the times when messages aresent, or in terms of the times when messages are
processedby their destination services (that is, when destination services actually take them from
their input buffers to trigger some transition). Models of orchestrations and choreographies are
constructed by means of two different formal languages. Languages explicitly consider charac-
teristics such as service identifiers, specific senders/addressees, message buffers for representing
asynchronouscommunications, or message types. Besides, two semanticalinterpretations of
asynchrony are considered: One where messages are immediately stored in input buffers of their
corresponding addressees (so, the order in which messages are sent is preserved in input buffers
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of destination services), and another one where there mightbe adelaybetween the sending and
the reception of each message in the input buffer of the addressee (so messages can be mixed up
in destination input buffers). Centralized and decentralized derivation algorithms are presented
for both interpretations.

This paper makes the following contributions:

• We provide a formal model, based onfinite state machines(FSMs), for defining chore-
ographies and orchestrations in an asynchronous environment.

• We propose a set of conformance relations allowing to compare systems of orchestration
services and choreographies in different cases: (a) considering sending times, processing
times, or both; (b) considering all choreography sequencesor some of them; and (c) as-
suming that messages can be mixed up due to unpredictable delays in the communicating
medium or not.

• We develop centralized and decentralized derivation algorithms allowing to extract, from
any choreography (regardless of whether it is nicely defined or not), a set of services
such that these services will necessarily produce the behavior required by each proposed
conformance relation. Besides, proofs of the correctness of these algorithms are given.

These contributions help to face several problems related to the web service infrastruc-
ture. For instance, derivation algorithms allow to automatically extract early prototypes of
web services systems from choreographies, and next we can use these models/prototypes to for-
mally/empirically analyze their properties. Moreover, ifservice orchestrations do not have to be
automatically derived but aregiven, then the proposed conformance relations between orchestra-
tions and choreographies also allow developers to select the adequate service that accomplishes
the behavior of certain role, thus aiding web service discovery tasks. In fact, according to our
conformance relations, the correctness of a service for a given choreography depends on the
behavior of the rest of services under consideration, so a kind of global web service discovery
criterion is implicitly enabled by the conformance relations. Models defined in our modeling
languages can be used to analyze the properties of systems ofservices, such as stuck-freedom
and other problems derived from the concurrent execution. Since conformance relations allow us
to check that a system of services conforms to a choreography, we have that, if the choreography
is stuck-free, then the relation holds only if the system is so too, so conformance relations im-
plicitly allow to check the stuck-freedom. Moreover, the derivation methods given in the paper
guarantee that derived systems are stuck-free as long as thecorresponding choreographies are so.
Besides, by analyzing the order of exchanged messages we canstudy whether the information is
ready when required, which concerns correlation and compensation issues.

Next we introduce the structure of this paper. The formal model to define orchestrations and
choreographies is given in Section 2. The model given in thissection assumes that, when a ser-
vice sends a message, it is immediately stored in the input buffer of destination service. Next,
the conformance relations between orchestrations and choreographies are defined in Section 3,
where a collection of examples of different nature and complexity is given to show the subtle
differences between these relationships. Section 4 introduces the centralized and decentralized
methods to derive choreography-compliant sets of services. An alternative operational semantics,
where messages that have already been sent can be delayed before they are stored in the input
buffers of their addressees, is presented in Section 5. The centralized and decentralized deriva-
tion methods are adapted to this case, and their correctnessunder the new semantics is shown.
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Section 6 presents a discussion about features beyond the current model which will be addressed
in future works. The related work is presented and compared with our proposal in Section 7.
Finally, we state the conclusions in Section 8. Proofs of results are given in the appendix.

2. Formal model

In this section we present our languages to define models of orchestrations and choreogra-
phies. Some preliminary notation is presented next.

Definition 2.1. Given a typeA anda1, . . . , an ∈ A with n ≥ 0, we denote by[a1, . . . , an] the
list of elementsa1, . . . , an of A. We denote the empty list by[ ].

Given two listsσ = [a1, . . . , an] andσ′ = [b1, . . . , bm] of elements of typeA and some
a ∈ A, we considerσ · a = [a1, . . . , an, a] andσ · σ′ = [a1, . . . , an, b1, . . . , bm].

Given a set of listsL, a path-closureof L is any subsetV ⊆ L such that for allσ ∈ V we
have that:

(a) eitherσ = [ ] or σ = σ′ · a for someσ′ with σ′ ∈ V ; and

(b) there do not existσ′, σ′′ ∈ V such thatσ · a = σ′ andσ · b = σ′′ with a 6= b.

We say that a path-closureV of L is completein L if it is maximalin L, that is, if there does
not exist a path-closureV ′ ⊆ L such thatV ⊂ V ′. The set of all complete path-closures ofL is
denoted byComp(L). ⊓⊔

Intuitively, a complete path-closure is a set consisting ofa (maximal) sequence as well as all
of its prefixes.

2.0.1. Web service orchestration model with variables
2.1. Web service orchestration model

Both our orchestration model and our choreography models will be appropriate variants of
the notion offinite state machine(FSM). Let us note that our conformance relations to compare
orchestrations and choreographies will be based on the kindof conformance relations typically
appearing in formal testing techniques, where implementations are compared with specifica-
tions [26, 28, 10, 31, 30]. Since FSMs and FSM-variant modelshave been extensively used in
this kind of frameworks as underlying models, adopting thiskind of model will ease the adap-
tation of testing conformance notions to our model. Systemsof services will be modelled as
systems of a suitable variant of FSMs, while choreographieswill be modelled by a more direct
variant of FSM. The gap between these customized models and the kernel of WS-BPEL and WS-
CDL, respectively, is not big in conceptual terms, so they will constitute a suitable (simplified)
model of both languages.

We present our model of web serviceorchestration. The internal behavior of a web service
in terms of its interaction with other web services is represented by afinite state machinewhere,
at each states, the machine can receive an inputi and produce an outputo as response before
moving to a new states′. Moreover, each transition explicitly defines which service must sendi:
A sender identifiersnd is attached to the transition denoting that, ifi is sent by servicesnd, then
the transition can be triggered. We assume that all web services are identified by a given identifier
belonging to a setID. Moreover, transitions also denote theaddresseeof the outputo, which
is denoted by an identifieradr. Let us note that web services receive messages asynchronously.
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This is represented in the model by considering aninput bufferwhere all inputs received and not
processed yet are cumulated. Each input has attached the identifier of the sender of the input.
A partition of the set of possible inputs will be explicitly provided, and each set of the partition
will denote atype of inputs. If a service transition requires receiving an inputi whose type ist,
then we will check if the first message of typet appearing in the input buffer isi indeed. If it is
so (the predicateavailable given in the next definition will be used later to check this),then
we will be able to consume the input from the input buffer and take the transition.

Definition 2.2. Given a set of service identifiers denoted byID, a servicefor ID is a tuple
(id, S, I, O, sin, T, ψ) whereid ∈ ID is the identifier of the service,S is the set of states,I is
the set of inputs,O is the set of outputs,sin ∈ S is the initial state,T is the set of transitions,
andψ is a partition ofI, i.e. we have

⋃

p∈ψ p = I and for allp, p′ ∈ ψ we havep∩ p′ = ∅. Each
transitiont ∈ T is a tuple(s, i, snd, o, adr, s′) wheres, s′ ∈ S are the initial and final states
respectively,i ∈ I is an input,snd ∈ ID is the required sender ofi, o ∈ O is an output, and
adr ∈ ID is the addressee ofo, where we requiresnd 6= adr. A transition(s, i, snd, o, adr, s′)

is also denoted bys
(snd,i)/(adr,o)

−−−−−−−−−−−−→ s′.
Given a serviceM = (id, S, I, O, sin, T, ψ), an input buffer for the serviceM is a list

[(id1, i1), . . . , (idk, ik)] whereid1, . . . , idk ∈ ID andi1, . . . , ik ∈ I. A configurationof M is a
pair c = (s, b) wheres ∈ S is a state ofM andb is an input buffer forM . The set of all input
buffers is denoted byB. Theinitial configurationof M is (sin, [ ]).

Let us suppose that, given a setR, 2R denotes the powerset ofR. Let us consider that
b = [(id1, i1), . . . , (idk, ik)] ∈ B with k ≥ 0 is an input buffer,id ∈ ID, i ∈ I, andS ∈ 2I .
The predicateavailable(b, id, i, S) holds iff, for some1 ≤ j ≤ k, we have(idj , ij) =
(id, i) and there do not existl < j, id′ ∈ ID, and i′ ∈ S, such that(idl, il) = (id′, i′).
We also considerinsert(b, id, i) = b · (id, i). Finally, we considerremove(b, id, i) =
[(id1, i1), . . . , (idj−1, ij−1), (idj+1, ij+1), . . . , (idk, ik)], provided thatj ∈ IN is the minimum
value such thatj ∈ [1..k], id = idj , andi = ij . ⊓⊔

Let us note that, alternatively, we may think about message types just as a way to have
different input buffers, one for each type. In fact, the behavior of services is the same if this
alternative view is adopted. If a service requires a messagem from a given typet ∈ ψ to take
a given transition from the current state, then it will be able to do it only if the first message of
the buffer storing messages of typet is m indeed. Since message types can be defined by any
partition of the inputs set, this model captures, in particular, the case where a single input buffer
is used: This is the case where a single message type (embracing all messages) is considered. On
the other hand, it also allows us to consider that each kind ofmessage has its own input buffer:
This is done by considering that each type has a single message.

Next we compose services into systems of services.

Definition 2.3. Let ID={id1, . . . , idp}. For all1≤j≤p, letMj = (idj , Sj , Ij , Oj , sj,in, Tj , ψj)
be a service forID. Then,S = (M1, . . . ,Mp) is asystem of servicesfor ID.

For all 1 ≤ j ≤ p, let cj be a configuration ofMj . We say thatc = (c1, . . . , cp) is a
configurationof S. Let c′1, . . . , c

′
p be the initial configurations ofM1, . . . ,Mp, respectively.

Then,(c′1, . . . , c
′
p) is theinitial configurationof S. ⊓⊔

We formally define how systemsevolve, i.e. how a service of the system triggers a transition
and how this affects other services in the system. Outputs ofservices will be considered as inputs
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of the services these outputs are sent to. Besides, we consider a special case of input/output that
will be used to denote anull communication. If the input of a transition isnull then we are
denoting that the service can take this transition without waiting for any previous message from
any other service, that is, we denote aproactiveaction of the service. Similarly, anull output
denotes that no message is sent to other service after takingthe corresponding transition. In
both cases, the sender and the addressee of the transition are irrelevant, respectively, so in these
cases they will also be denoted by anull symbol. A system evolution will be denoted by a
tuple (c, snd, i, proc, o, adr, c′) wherec andc′ are the initial and the final configuration of the
system, respectively,i is the input processed in the evolution,o is the output sent as result of
the evolution,proc is the service whose transition is taken in the evolution,snd is the sender of
i, andadr is the addressee ofo. There are two reasons why an evolution can be produced: (a)
a service proactively initiates a transition, that is, a transition whose input isnull is taken; and
(b) a service triggers a transition because there is an available message in its input buffer labeled
by the sender identifier and the input required by the transition. In both cases (a) and (b), there
are two possibilities regarding whether a new output is sentor not: (1) if the transition denotes a
null output then no other input buffer is modified; (2) otherwise,i.e. if the transition denotes an
output different fromnull, then this output is stored in the buffer of the addressee as an input. By
considering any combination of either (a) or (b) with either(1) or (2), four kinds of evolutions
arise indeed.

Definition 2.4. Let ID = {id1, . . . , idp} be a set of service identifiers andS = (M1, . . . ,Mp)
be asystem of servicesfor ID where for all1 ≤ j ≤ p each serviceMj is defined byMj =
(idj , Sj , Ij , Oj , sj,in, Tj , ψj). Let c = (c1, . . . , cp) be a configuration ofS where for all1 ≤
j ≤ p we havecj = (sj , bj).

An evolutionof S from the configurationc is a tuple(c, snd, i, proc, o, adr, c′) wherei ∈
I1 ∪ . . . ∪ Ip ∪ {null} is the input of the evolution,o ∈ O1 ∪ . . . ∪Op ∪ {null} is the output of
the evolution,c′ = ((s′1, b

′
1), . . . , (s

′
p, b

′
p)) is the new configuration ofS, andsnd, proc, adr ∈

ID ∪ {null} are the sender, the processor, and the addressee of the evolution, respectively. All
these elements must be defined according to one of the following choices:

(a) (evolution activated by some service by itself)For some1 ≤ j ≤ p, let us suppose

sj
(null,null)/(adr′,o′)
−−−−−−−−−−−−−−−→ s′ ∈ Tj . Then,s′j = s′ and b′j = bj . Besides,snd = null,

proc = idj , adr = adr′, i = null, o = o′;

(b) (evolution activated by processing a message from the inputbuffer of some service)For

some1 ≤ j ≤ p, let us suppose thatsj
(snd′,i′)/(adr′,o′)
−−−−−−−−−−−−−−→ s′ ∈ Tj and the predicate

available(bj , snd′, i′, r) holds, wherer is the only set belonging toψj such thati′ ∈ r.
Then, s′j = s′ and b′j = remove(bj , snd′, i′). Besides,snd = snd′, proc = idj ,
adr = adr′, i = i′, o = o′;

where, both in (a) and (b), the new configurations of the rest of services are defined according to
one of the following choices:

(1) (no message is sent to another service)If adr′ = null or o′ = null then for all1 ≤ q ≤ p
with q 6= j we haves′q = sq andb′q = bq.

(2) (a message is sent to another service)Otherwise, letidg = adr′ for some1 ≤ g ≤ p.
Then, we haves′g = sg andb′g = insert(bg, idj , o′). Besides, for all1 ≤ q ≤ p with
q 6= j andq 6= g we haves′q = sq andb′q = bq.
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Figure 2: A client/server orchestration (left and center) and a choreography specification (right).

⊓⊔

Let us note that the previous operational semantics implicitly assume that, when a message
is sent, it is immediately stored in the input buffer of the destination service, so messages are
stored in the same order as they are sent and they cannot be mixed up. Though this kind of order
preservation might be feasible in some cases indeed (e.g. the underlying networking protocol
could undertake the responsibility of reordering messagesat some lower abstraction level, as
it happens, for instance, in live video streaming), this might not be feasible in other cases. In
Section 5 we will present an alternative framework where this is not assumed.

Figure 2 (left and center) shows a simple client/server orchestration specification where the
client (A) sends requests to the server (B) and the server responds to them, until the client notifies
that it leaves the system. Initial states are denoted by a double circle node, andnull inputs and
outputs are denoted by the dash symbol.

As we will see later, the conformance of a system of service orchestrations with respect to
a choreography will be assessed in terms of the behaviors of both machines. We extract the
behaviors of systems of services as follows: Given any sequence of consecutive evolutions of
the system from its initial configuration, we take the sequence of inputs and outputs labeling
each evolution and we remove allnull elements from this sequence. The extracted sequence
(called trace) represents theeffectivebehavior of the original sequence. We distinguish two
kinds of traces. Asending traceis a sequence of outputs ordered as they aresentby their
corresponding senders. Aprocessing traceis a sequence of inputs ordered as they areprocessed
by the services which receive them, that is, they are orderedas they are taken from the input buffer
of each addressee service to trigger some of its transitions. Both traces attach some information
to explicitly denote the services involved in each operation.

Definition 2.5. Let S be a system,c1 be the initial configuration ofS, and the set of tuples
(c1, snd1, i1, proc1, o1, adr1, c2), (c2, snd2, i2, proc2, o2, adr2, c3), . . . , (ck, sndk, ik, prock,
ok, adrk, ck+1) bek consecutive evolutions ofS.

Let a1 ≤ . . . ≤ ar denote all indexes of non-null outputs in the previous sequence, i.e. we
havej ∈ {a1, . . . , ar} iff oj 6= null. Then, [(proca1 , oa1 , adra1), . . . , (procar , oar , adrar )]
is a sending traceof S. In addition, if there do not existsnd′, i′, proc′, o′, adr′, c′ such that
(ck+1, snd

′, i′, proc′, o′, adr′, c′) is an evolution ofS then we also say that[(proca1 , oa1 , adra1),
. . . , (procar , oar , adrar ),stop] is a sending trace ofS. The set of all sending traces ofS is
denoted bysndTraces(S).

Let a1 ≤ . . . ≤ ar denote all indexes of non-null inputs in the previous sequence, i.e. we
havej ∈ {a1, . . . , ar} iff ij 6= null. Then, [(snda1 , ia1 , proca1), . . . , (sndar , iar , procar )]
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is aprocessing traceof S. In addition, if there do not existsnd′, i′, proc′, o′, adr′, c′ such that
(ck+1, snd

′, i′, proc′, o′, adr′, c′) is an evolution ofS then we also say that[(snda1 , ia1 , proca1),
. . . , (sndar , iar , procar ),stop] is a processing trace ofS. The set of all processing traces ofS
is denoted byprcTraces(S). ⊓⊔

2.2. Choreography model

Next we introduce our formalism to represent choreographies. Contrarily to systems of or-
chestrations, this formalism focuses on representing the interaction of services as a whole. Thus
a single machine, instead of the composition of several machines, is considered. Each chore-
ography transition denotes amessage actionwhere some service sends a message to another
service.

Definition 2.6. A choreography machineC is a tupleC = (S,M, ID, sin, T ) whereS denotes
the set of states,M is the set of messages,ID is the set of service identifiers,sin ∈ S is the
initial state, andT is the set of transitions. A transitiont ∈ T is a tuple(s,m, snd, adr, s′) where
s, s′ ∈ S are the initial and final states, respectively,m ∈M is the message, andsnd, adr ∈ ID
are the sender and the addressee of the message, respectively. A transition(s,m, snd, adr, s′) is

also denoted bys
m/(snd→adr)

−−−−−−−−−−−−→ s′.
A configurationof C is any states ∈ S. An evolutionof C from the configurations ∈ S is

any transition(s,m, snd, adr, s′) ∈ T from states. Theinitial configurationof C is sin. ⊓⊔

Coming back to our previous example, Figure 2 (right) depicts a choreographyC between
servicesA andB, that is, the client and the server. The transitions of this choreography actually
denote the same evolutions we can find in a system of services consisting of servicesA andB.

As we did before for systems of services, next we identify thesequences of messages that
can be produced by a choreography machine.

Definition 2.7. Let c1 be the initial configuration of a choreography machineC. Let the tuples
(c1,m1, snd1, adr1, c2), . . . , (ck,mk, sndk, adrk, ck+1) bek ≥ 0 consecutive evolutions of
C. We say thatσ = [(snd1,m1, adr1), . . . , (sndk,mk, adrk)] is a trace of C. In addition, if
there do not existm′, snd′, adr′, c′ such that(ck+1,m

′, snd′, adr′, c′) is an evolution ofC then
we also say that[(snd1,m1, adr1), . . . , (sndk,mk, adrk),stop] is a trace ofC. The set of all
traces ofC is denoted bytraces(C). ⊓⊔

3. Conformance relations

Now we are provided with all the required formal machinery todefine ourconformance
relationsbetween systems of orchestrations and choreographies. We will consider a semantic
relation inspired in theconformance testingrelation given in [33, 34]. This notion is devoted to
check whether animplementationmeets the requirements imposed by aspecification. In our case,
we will check whether the behavior of a system of orchestration services meets the requirement
given by the choreography.

However, there are some important differences between the notion proposed in [33, 34] and
the notion considered here. Contrarily to those works, the behavior of orchestrations and chore-
ographies will not be compared in terms of their possible interactions with an external entity
(i.e. user, observer, external application, etc) but in terms of what both models can/cannot do
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by their own, because both models are considered asclosed worlds. Let us also note that non-
determinism allows a choreography to provide multiple valid ways to perform the operations it
defines. Consequently, we consider that a system of orchestration services conforms to a chore-
ography if it performsone or moreof these valid ways. For each of these valid ways, care must
be taken not to allow the system of services toincompletelyperform it, i.e. to finish in an inter-
mediate state – provided that the choreography does not allow it either. In order to check these
requirements, only complete path-closures will be considered (see Definition 2.1). Moreover, the
set of complete path-closures of the system of services is required to be non-empty because the
system is required to provide at leastone(complete) way to perform the requirement given by
the choreography. Alternatively, we also consider anotherrelation where the system of services
is required to performall execution ways defined by the choreography. This alternative notion
will be calledfull conformance.

There are more differences between the conformance relation of [33, 34] and our approach.
Let us recall that we consider asynchronous communicationsin our framework. Thus, the mo-
ment when a message is sent does not necessarily coincide with the moment when this message
is taken by the receiver from its input buffer and is processed. In fact, we can define a chore-
ography in such a way that defined communications refer to either the former kind of events or
the latter (i.e., instants where messages are sent, or instants where messages are processed by
their receivers, respectively). Thus, we consider two waysin which a system of services may
conform to a choreography: with respect to sending traces, and with respect to processing traces.
A similar distinction was proposed in [25], as it is commented in Section 7. The case where both
conformance notions simultaneously hold is also identified.

Definition 3.1. Let S be a system of services andC be a choreography machine.
We say thatS conforms toC with respect to sending actions, denoted byS confs C, if

either we have that∅ ⊂ Comp(sndTraces(S)) ⊆ Comp(traces(C)) or we have that∅ =
Comp(sndTraces(S)) = Comp(traces(C)).

We say thatS fully conforms toC with respect to sending actions, denoted byS conffs C, if
Comp(sndTraces(S)) = Comp(traces(C)).

We say thatS conforms toC with respect to processing actions, denoted byS confp C,
if we have either that∅ ⊂ Comp(prcTraces(S)) ⊆ Comp(traces(C)) or we have that
∅ = Comp(prcTraces(S)) = Comp(traces(C)).

We say thatS fully conforms toC with respect to processing actions, denoted byS conffp C,
if Comp(prcTraces(S)) = Comp(traces(C)).

We say thatS conforms toC, denoted byS conf C, if S confs C andS confp C.
We say thatS fully conforms toC, denoted byS conff C, if S conffs C andS conffp C.

⊓⊔

3.1. Using the conformance relations: Examples

In this section we illustrate the use of the conformance relations given in Definition 3.1 with
several simple examples. A small case study introducing a more elaborated system will be given
in the next section.

Intuitively, a complete path-closure (see Definition 2.1) is a set consisting of a (maximal)
sequence as well as all of its prefixes. Let us note that the longest element of afinite com-
plete path-closure of traces necessarily finishes with thestop symbol. For the sake of clarity,
from now on a complete path-closure will be referred just by its longest element not including
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Figure 3: Orchestrations and choreographies.
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thestop symbol. For instance, the complete path-closure{[ ], [(1, a, 2)], [(1, a, 2), (1, b, 2)],
[(1, a, 2), (1, b, 2), stop]} will be referred just by[(1, a, 2), (1, b, 2)] (and we will say that
[(1, a, 2), (1, b, 2)] is a complete trace). Following a similar idea, aninfinite complete path-
closure{[ ], [(a1, b1, c1)], [(a1, b1, c1), (a2, b2, c2)], [(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)], . . .}
will be referred by the infinite list[(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), . . .].

Figure 3 presents several orchestration services and choreographies. For all depicted services
we will assume that each input belongs to a different type of inputs. LetS1 be a system of orches-
tration services consisting of services1 and2. We check whetherS1 conforms to choreographies
5 and6. If we consider theconfs relation, then we observe thatS1 conforms to both5 and
6. This is because the only possible complete sending trace ofS1 is [(1, a, 2), (1, b, 2)], which
is included in the set of complete traces of5 (which is{[(1, a, 2), (1, b, 2)], [(1, b, 2), (1, a, 2)]})
and6 ({[(1, a, 2), (1, b, 2)]}). Concerningfull conformance, we have thatS1 fully conforms to
6 with respect to sending traces, but not to5. Regarding processing traces, let us note thatS1

can generate the complete processing traces[(1, a, 2), (1, b, 2)] and[(1, b, 2), (1, a, 2)] (note that,
after a and b are received in the input buffer of service2, service2 can process them in any
order). Both complete processing traces are included in theset of complete traces of5, but not
in the corresponding set of6, which only includes[(1, a, 2), (1, b, 2)]. Thus, if eitherconfp or
conffp are considered, thenS1 conforms to5, but not to6.

LetS2 be the system consisting of services3 and4, and let us compare it with choreographies
7 and8. In this case, we have the opposite result as before. In particular, if processing traces
are considered, thenS2 conforms to both choreographies (iffull conformance is considered, it
only conforms to8). However,S2 does not conform to8 when sending traces are considered,
regardless of whether full conformance is considered or not. Let us note thatS2 can perform the
sending traces[(3, a, 4), (3, b, 4)] and [(3, b, 4), (3, a, 4)]. However, the sets of complete traces
of choreographies7 and8 are{[(3, a, 4), (3, b, 4)], [(3, b, 4), (3, a, 4)]} and{[(3, a, 4), (3, b, 4)]},
respectively. Thus, ifconfs orconffs are considered, thenS2 conforms to choreography7, but
not to choreography8.

Next, letS3 be the system consisting of services9 and10. We compareS3 with choreogra-
phies11 and12. The set of complete sending traces ofS3 is equal to{[(9, a, 10), (10, b, 9)],
[(10, b, 9), (9, a, 10)]}, while the set of complete processing traces ofS3 is {[(9, a, 10)]}. On the
one hand, the only complete trace of choreography11 is [(9, a, 10)], soS3 conforms to11 only
if processing traces are considered (with respect to bothconfp andconffp ). On the other hand,
choreography12 can produce both[(9, a, 10), (10, b, 9)] and [(10, b, 9), (9, a, 10)]. Since only
complete traces are considered,S3 conforms to12 only if sending traces are regarded (according
to bothconfs andconffs ).

Despite of the fact that only asynchronous communications are considered in our framework,
a kind of synchronous communications can be trivially defined indeed. Let us consider the
systemS4 consisting of services11 and12. After 11 sends messagemsg to 12, service11 will
be blocked until12 performs its unique transition and sends messageack back to11. So, a
synchronous communication between11 and12 is actually expressed by this trivial structure.
A syntactic sugar to denote a synchronous communication like this is implicitly proposed in
pictures of services13 and14, which are intended to be equivalent to11 and12, respectively.
In particular, we denote a synchronous communication on messagemsg by using new symbols
msg? andmsg!.

Let us recall that the suitability of an orchestration service to fulfill a given choreography
depends on the behavior of the rest of involved services. Letus consider that atravel agencyser-
vice requires that either theair companyservice or thehotelservice (or both) provide a transfer
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to take the client from the airport to the hotel. A hotel providing a transfer isgoodregardless
of whether the air company provides a transfer as well or not.However, a hotel not providing a
transfer is valid for the travel agencyonly if the air company does provide the transfer. Chore-
ography18 denotes the requirement that either the air company (represented by service15) or
the hotel (service16) must provide the travel agency (service17) with a messagea standing
for “we provide you with a transfer service.”In fact, we consider two possible air companies,
represented by services15 and15′. Service15 provides service17 with a transfer service, while
15′ does not (it does nothing). Similarly, services16 and16′ represent two hotels, where only
16 provides the travel agency with a transfer. Most combinations of, on one hand, either15 or
15′ and, on the other hand, either16 or 16′, allow 17 to satisfy choreography18 with respect
to (non-full) sending and processing conformance. In fact,only combining15′ with 16′ fails to
meet both non-full conformance relations. Thus, either theair company or the hotel must provide
the transfer. If full conformance is required, then the onlyvalid combination of air company and
hotel consists in taking15 and16, respectively.

We show that systems of orchestrations are required tocompleteall started sequences, that
is, they are required not to finish a started sequence until the choreography explicitly allows it.
Let us consider orchestration services21, 22, and22′, as well as choreography23. Let S5 be a
system consisting of services21 and22. The sequence[(21, a, 22), (21, b, 22)] is both the only
complete sending trace and the only complete processing trace of S5. Thus,S5 conforms to
choreography23 with respect to both kinds of traces. Let us substitute the definition of service
22 by that given for service22′, and letS′

5 be the resulting system. The set of complete sending
traces ofS′

5 is the same asS5, soS′
5 also conforms to23 with respect to sending traces. However,

the set of complete processing traces ofS′
5 is {[(21, a, 22′), (21, b, 22′)], [(21, a, 22′)]} because

22′ could take its right path and get stuck after receivinga (more formally,[(21, a, 22′),stop]
is a processing trace ofS′

5). Since[(21, a, 22′)] is not acompleteprocessing trace of23, S′
5 does

not conform to23 with respect to processing traces.
Finally, we consider a case where there areinfinite complete traces in systems due to the

presence of loops. Let us revisit the orchestrations and thechoreography previously depicted in
Figure 2, and letS be the composition ofA andB. The infinite set of complete traces of chore-
ographyC is T = {σ, σ1, σ2, σ3, . . .}, whereσ is the infinite concatenation of the subsequence
α = [(A, request, B), (B, response,A)], that is,σ = α · α · α · . . ., and for alli ∈ IN we have
σi = (α)i · (A, exit, B). In fact, the infinite set of complete sending and processingtraces of
S is T as well, so we have thatS conforms toC with respect to all relationsconfs, confp,
conf, conffs , conffp , andconff .

3.2. Case study: Purchase Process

In order to illustrate the application of the proposed notions to a more elaborated system, in
this section we present a small case study. This is a typical purchase process that uses Internet
as a business context for a transaction. There are three actors in this example: a customer, a
seller, and a carrier. The purchase works as follows:“A customer wants to buy a product by
using Internet. There are several sellers that offer different products in web-pages servers. The
customer contacts a seller in order to buy the desired product. The seller checks the stock and
contacts a carrier. Finally, the carrier delivers the product to the customer.”

Figures 4 and 5 depict the orchestration of the three actors represented in this purchase pro-
cess, that is, the customer, the seller, and the carrier. Thebehavior of each participant is defined
as follows:
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Figure 4: Client and Carrier orchestration specifications.
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Figure 5: Seller orchestration specification.
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2 → 3
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Figure 6: The choreography specification.
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sq1 [(1,iProduct,2), (2,lProduct,1), (1,Nothing,2)]
sq2 [(1,iProduct,2), (2,lProduct,1), (1,bProduct),

(2,NoStock,1)]
sq3 [(1,iProduct,2), (2,lProduct,1), (1,bProduct),

(2,Stock,1), (1,iPayment,2), (2,Receipt,1),
(2,PickOrder,3), (3,DeliverOrder,1)]

Table 1: Some sequences of choreographyC.

• Customer: It contacts the seller to buy a product. After consulting the product list, it can
either order a product or do nothing. If the customer decidesto buy a product, then it
must send the seller the information about the product and the payment method. After the
payment, it waits to receive the product from a carrier.

• Seller: It receives the customer order and the payment method. The seller checks if there
is enough stock to deliver the order and sends an acceptance notification to the customer.
If there is stock to deliver the order, then it contacts a carrier to deliver the product.

• Carrier: It picks up the order and the customer information in order to deliver the product
to the customer.

Figure 6 shows the choreography of this Internet purchase process. Once the three services
and the choreography specification are defined, we use the conformance relations given in Defi-
nition 3.1 to check if the composition of the proposed orchestration services satisfies the chore-
ography.

Let us consider a systemS = (1, 2, 3), where1, 2, and3 represent the client service, the seller
service, and the carrier service, respectively. LetC be the choreography machine depicted in Fig-
ure 6, and letsq1, sq2, sq3 be the three sequences depicted in Table 1. For all complete tracesσ of
C, σ is an infinite concatenation of these subsequences, that is,σ = α1 ·α2 ·α3 ·α4 · . . . where for
all i ∈ IN we haveαi ∈ {sq1, sq2, sq3}. It is easy to see that any complete sending or processing
traceσ′ of S must also be an infinite concatenation of subsequencessq1, sq2, sq3. Hence, for all
σ′ ∈ Comp(sndTraces(S)) ∪ Comp(prcTraces(S)) we haveσ′ ∈ Comp(traces(C)),
and thus we have bothSconfsC andSconfpC, which impliesSconfC. Moreover, in this
case we also have that, for allσ ∈ Comp(traces(C)), σ ∈ Comp(sndTraces(S)) and
σ ∈ Comp(prcTraces(S)). Therefore, we also haveSconffsC, SconffpC, andSconffC.

4. Derivation of choreography-compliant sets of services

Once we are provided with appropriate notions to compare sets of orchestration models with
choreography models, we study the problem of automaticallyderiving orchestration services
from a given choreography, in such a way that the system consisting of these derived services
conforms to the choreography.

Let us reconsider the possibility of deriving services by applying natural projection(see Fig-
ure 1) to the structure of the choreography into each involved service. Each service copies the
form of states and transitions of the choreography, though service transitions are labeled only
by actions concerning that service. Unfortunately, as we saw in the introduction, if services are
derived in this way then, in general, the resulting set of services does not conform to the chore-
ography with respect to any of the proposed conformance notions. Let us revisit servicesX, Y ,
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andZ of Figure 1, which are natural projections of choreographyChor (given in the same fig-
ure) into each service regarded in the definition ofChor. The composition ofX, Y , andZ does
not necessarily lead to the behavior required byChor due to the two problems we explained in
the introduction: (a) the possible inconsistency of service choices in non-deterministic elections;
and (b) the races risk.

In order to enable the comparison of this (wrong) derivationwith some forthcoming alterna-
tives in a single figure, servicesX, Y , Z, and choreographyChor are depicted again in Figure 3
under the new names of24, 25, 26, and27, respectively. Let us note that, ifonly messages ap-
pearing in choreography27 are allowed in services then no alternative definition of24, 25, and
26 allows to meet the requirement imposed by27: Service24 cannot decide whether it must send
b or c to 25 because it cannot know the message sent by25 to 26. We will make any choreog-
raphy realizable byaddingsome control messages to the definition of services. These messages
will allow services to know what is required at each time to properly make the next decision,
according to the choreography specification.

Next we reconsider our conformance relations under the assumption that these additional
messages are allowed indeed. That is, services are allowed to send/receive additional messages
not included in the choreography. In order to avoid confusion between standard choreography
messages and other messages, the latter messages are required to be different from the former.
Regarding the definition of conformance relations, we require traces inclusion/equality again,
though we remove additional messages prior to comparing sets of traces.

Definition 4.1. Let σ ∈ sndTraces(S)∪ prcTraces(S) whereS is a system of services.
The constrainof σ to a set of inputs and outputsQ, denoted byσQ, is the result of removing
from σ all elements(a,m, b) with m 6∈ Q.

Let S be a system of services forID and letC = (S,M, ID, sin, T ) be a choreography.
Let confx ∈ {confs,conf

f
s ,confp,conf

f
p}. We haveS conf′

x C if S confx C provided
that the occurrences ofsndTraces(S) andprcTraces(S) appearing in Definition 3.1 are
replaced by sets{σM |σ ∈ sndTraces(S)} and{σM |σ ∈ prcTraces(S)}, respectively.
Now, let confx ∈ {conf,conff}. We haveS conf′

x C if S confx C provided that the
occurrences ofconfs, conffs , confp, conf

f
p appearing in the definition ofconf andconff ,

given in Definition 3.1, are replaced byconf′
s,conf

f
s
′,conf′

p,conf
f
p
′, respectively. ⊓⊔

We revisit our previous example. Let us modify services24 and25 in such a way that, right
after25 sendsb or c to service26, service25 tells service24 whetherb or c was sent. This is
done by sending to service24 a new messaged or e, respectively. Services24′ and25′ (also
depicted in Figure 3) are the resulting new versions of services24 and25, respectively. Let us
note that the system consisting in24′, 25′, and26 conforms to27 with respect to all conformance
relations introduced in the previous definition, because all of them ignore messagesd ande.

4.1. Centralized derivation method

Let us present our first method to derive a choreography-compliant set of services from a
given choreography. Intuitively, a service derivation based on a simple natural projection does
not work because it does not guarantee that services will follow the elections and the sequencing
of events defined by the choreography. In order to solve this problem, next we consider an
alternative way to extract services from the choreography that is inspired on our previous example
(24′, 25′, 26). New control messages will be added to make all services follow the same choices
at each branching point of the choreography. In particular,we will introduce a new service, called
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orchestrator, which will be responsible of making all choices at choreography branching points,
as well as making services follow such choices. For each state sj of the choreography having
several outgoing transitions, the orchestrator will have an equivalent state with the same set of
outgoing transitions, which represent all the choices it can make. At that state, the orchestrator
will choose any of these transitions, say thep-th available transition. Then, the orchestrator
will take several consecutive transitions toannounceits choice to all services. In each of these
transitions, the orchestrator will send a messageajp to another service, meaning that thep-th
transition leaving statesj must be taken by the service. After (a) the orchestrator announces its
choice to all services; and (b) the orchestrator receives a messagebf from theaddresseeidf of
the choreography transition (this message denotes that theaddressee has processed the message),
the orchestrator will reach a state representing the state reached in the choreography after taking
the selected transition, and the same process will be followed again. By adding the orchestrator,
we make sure that all services take the same branch in each branching point of the choreography.
However, it is worth to point out that, since the only messagerequired by the orchestrator to
continue is sent by the addressee of the choreography transition, at a given time the orchestrator
and the services could have reached different steps of the choreography simulation execution (in
general, the orchestrator will be in afurtherstep). There is no risk that services break the relative
order in which transitions must be taken according to the choreography, because all messages
controlling transition choices are introduced in input buffers (as the rest of messages) and they
will belong to the sametype. Thus, they will be processed in the same order as the orchestrator
sent each of them. This guarantees that services will be led through the choreography graph by
following the orchestrator plan, in the same order as planned. In particular, as we will see after the
next definition, a system consisting of the orchestration and the corresponding derived services
will conformto the choreography with respect to allconf′

x relations given in Definition 4.1.
Next we will assume that the identifier of the orchestrator isorc.

Definition 4.2. Let C = (S,M, ID, sin, T ) be a choreography machine where the set of identi-
fiers isID = {id1, . . . , idn} and the set of states isS = {s1, . . . , sl}. For all 1 ≤ i ≤ n, the
controlled servicefor C andidi, denotedcontrolled(C, idi), is a service

Mi =





idi, S ∪ {sij , s
′
ij |i, j ∈ [1..l]},

M ∪ {aij |i, j ∈ [1..l]},M ∪ {bf |f ∈ [1..l]},
sin, Ti, {{m}|m ∈M} ∪ {{aij |i, j ∈ [1..l]}}





where for allsj ∈ S the following transitions are inTi:

• Let t1, . . . , tk be the transitions leavingsj in C. For all1 ≤ p ≤ k we add the transition

sj
(orc,ajp)/(null,null)

−−−−−−−−−−−−−−−−−→ sjp∈Ti.

• For all 1 ≤ p ≤ k, if tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈ T is thep-th transition leavingsj in

C, then we havesjp
(snd′,i)/(adr′,o)

−−−−−−−−−−−−−−→ ujp ∈ Ti where

(a) if snd = idi thensnd′ = i = null, adr′ = adr, o = m, andujp = s′j .

(b) else, ifadr = idi thensnd′ = snd, i = m, adr′ = o = null, andujp = s′jp.

Besides, we also haves′jp
(null,null)/(orc,bi)

−−−−−−−−−−−−−−−→ s′j in Ti.

(c) elsesnd′ = i = adr′ = o = null andujp = s′j .
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Figure 7: Derivation of services with orchestrator.

Theorchestratorof C, denoted byorchestrator(C), is a service

O =





orc, S ∪ {sijk|i, j ∈ [1..l], k ∈ [1..n+1]},
M ∪ {bf |f ∈ [1..l]},M ∪ {aij |i, j ∈ [1..l]},
sin, To, {{m}|m ∈M} ∪ {{bf}|f ∈ [1..l]}





where for allsj ∈ S the following transitions are included inTo:

• Let t1, . . . , tk be the transitions leavingsj in C. For all 1 ≤p ≤k we add the transition

sj
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→ sjp1∈To.

• For all 1 ≤ p ≤ k, if tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈ T is thep-th transition leavingsj in

C andadr = idf , then for all1 ≤ i ≤ n we havesjpi
(null,null)/(idi,ajp)

−−−−−−−−−−−−−−−−−→ sjp i+1∈To.

We also havesjp n+1
(adr,bf )/(null,null)
−−−−−−−−−−−−−−−→ s′j ∈To.

⊓⊔

Theorem 4.3. Let C = (S,M, ID, sin, T ) be a choreography withID = {id1, . . . , idn}. Let
S = (controlled(C, id1), . . . , controlled(C, idn), orchestrator(C)). For all con-
formance relationshipsconfx ∈ {conf′

s,conf
′
p, conf

′,conffs
′, conffp

′, conff′} we have
S confx C. ⊓⊔

The proof of the previous result, as well as the proofs of the rest of results, are given in the
appendix. Figure 7 shows a choreographyC as well as the services derived fromC by applying
Definition 4.2, including an orchestratorO.

If we do not need to meet the conformance with respect to processing traces, that is, if we
only requireconf′

s andconffs
′, then we do not need to require that addressees of choreography

transitionsblock the advance of the orchestrator until they process receivedmessages. This
restriction was imposed just to force the processing of messages follow the order required by the
choreography. Alternatively, if addressees did not block the orchestrator then, for instance, the
service responsible of processing the second message of theexecution could process it before the
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service responsible of processing the first one does so. Evenif the orchestrator were not required
to wait for the addressees, the order in which messages aresentwould be correct as long as
the orchestrator is required to wait for thesenders. Actually, if we only consider conformance
with respect to sending traces then replacing the restriction of waiting for the addressees by the
restriction of waiting for the senders is a good choice in terms of efficiency. This is because, in
this case, the orchestrator will not be blocked just waitingfor the message to be processed; on the
contrary, it will be able to go on even if the message has not been processed yet. Thus, by taking
this alternative, the rate of activities the services can actually execute inparallel is increased.

Definition 4.4. We have thatcontrolled’(C, idi) is defined ascontrolled(C, idi) after
replacing cases (a) and (b) of Definition 4.2 by the followingexpressions:

(a) if snd = idi thensnd′ = i = null, adr′ = adr, o = m, andujp = s′jp. Besides, we also

haves′jp
(null,null)/(orc,bi)

−−−−−−−−−−−−−−−→ s′j in Ti.

(b) else, ifadr = idi thensnd′ = snd, i = m, adr′ = o = null, andujp = s′j .

⊓⊔

Theorem 4.5. Let C = (S,M, ID, sin, T ) be a choreography withID = {id1, . . . , idn}. Let
S = (controlled’(C, id1), . . . ,controlled’(C, idn), orchestrator(C)). For all
confx ∈ {conf′

s,conf
f
s
′} we haveS confx C. ⊓⊔

4.2. Decentralized derivation method

In this section we introduce our decentralized method to extract a choreography-compliant
set of services from a given choreography. Let us note that, in general, the election of which
branches are taken at choreography branching points is madeby services according to theirlocal
information. Thus, the centralized solutions considered in the previous section are adequate
only as long as we can assume that the orchestrator can accessthe information that would make
each service take each possible choice. This might be the case of systems with strong security
measures, as well as some intranet systems. This might also be the case in some specific parts
of other larger service systems, which are globally decentralized but contain locally centralized
subsystems. For instance, data base providers could be locally centralized in web systems using
them, whereas subsystems such as inventory managers and payment gateways could be locally
centralized elements of e-commerce service systems. Nevertheless, most of web service systems
are mainly decentralized systems, at least at the highest hierarchy level. Therefore, we need an
alternative derivation method where we do not assume that a centralized entity could monitor all
variables affecting services elections at branching points.

Let us note that we canremovethe orchestrator and distribute its responsibilities among the
services themselves, thus making a decentralized solution. A choreography where, at all non-
deterministic points, all available choices involve the decision of a single participant (i.e. all
transition branches have the same sender) is a choreographywhere the decision-making is easy
to handle: At each choreography state, the decision responsibility should be given to that service,
and next all the other services should be consistent to that choice. The problem arises when a
choreography has states where the next choice could be takenby severalparticipants (i.e. avail-
able transition branches have different senders). Clearly, in this case the natural projection does
not work, so a decision-making mechanism involving all services that could make the choice at
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Figure 8: Derivation of services without orchestrator.

the current state must be designed. Lets be a choreography state with several outgoing transi-
tions. Instead of using an orchestrator to choose which transition is taken, we do as follows: We
sort all outgoing transitions by any criterion (e.g. by the name of the sender) and we make the
first sender choose between (a) taking any of the transitionswhere it is the sender; or (b) refusing
to do so. In case (a) it will announce its choice to the rest of services, thus playing the role of the
orchestrator in this step. In case (b) it will notify its rejection to choose a transition to the second
service. Then, the second service will choose either (a) or (b) in the same way, and so on up to
the last sender, which will be forced to take one of its transitions if all previous senders refused
to do so. Let us note that, in this alternative design, a service can receive the request to take a
given branch fromseveralservices, not just from one special service (which was theorchestrator
in the centralized method). Thus, new transitions have to becarefully added to services, which
complicates their design.

An example of decentralized derivation is depicted in Figure 8. For the sake of simplicity,
some transitions that would be part of derived services according to the formal derivation method
(given next, in Definition 4.6) have been omitted. ChoreographyC represents a branching point
where there are two possibilities: eitherA sendse toB, orB sendsf toA. We derive servicesA
andB fromC as we have sketched above. ServiceA receives the responsibility of either taking
one of the transitions where it is the sender (there is only one in this example) or refusing to do so.
In the former case, it tells the next service in the list (B) that it will decide the transition indeed
(messagea2) and next it tells all services (i.e. justB) whichof its transitions it will actually take
(a21). Then, it sendse toB and waits for a signal indicating thatB has processed the message
(b2). In the latter case, i.e. if it refuses to choose one of its transitions, then it tells its decision to
next serviceB (messagea1) and waits for the rest of services (justB) to tell it which choice it
must take. WhenB does so (a11), it waits for receivingb fromB and next it acknowledges the
reception(b1). The behavior ofB turns out to be dual to the behavior ofA.

Let us formally present the derivation of decentralized systems of services from choreogra-
phies. As we did in the centralized cases, two alternatives are considered: Making the system
conform to the choreography with respect to all proposedconf′

x conformance relations, and
making it conform only with respect to sending traces. Theorems 4.7 and 4.9 show the correct-
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ness of both approaches.

Definition 4.6. LetC = (S,M, ID, s1, T ) be a choreography machine withID = {id1, . . . , idn}
andS = {s1, . . . , sl}. For alls ∈ S andid ∈ ID, let Ts,id = {(s,m, id, adr, s′)|∃ adr,m, s′ :
(s,m, id, adr, s′) ∈ T} andms,id = |Ts,id|. For all 1 ≤ j ≤ ms,id, let ts,id,j denote the j-th
transition ofTs,id according to some arbitrary ordering criterium.

For all s ∈ S, let [ids1, . . . , id
s
hs
, idshs+1, . . . , id

s
n] denote any arbitrary sequence of all iden-

tifiers in ID such that the sequence preserves the condition that for all1 ≤ d ≤ hs we have
ms,ids

d
≥ 1, and for allhs + 1 ≤ d ≤ n we havems,ids

d
= 0.

For all 1 ≤ i ≤ n, thedecentralized servicefor C andidi, denoteddecentral(C, idi), is
a serviceMi = (idi, S

′
i, I

′
i, O

′
i, sin, Ti, {{i} | i ∈ {I ′i}}), whereS′

i, I
′
i, O

′
i consist of all states,

inputs, and outputs appearing in transitions described next and, for allsq ∈ S, the following
transitions are inTi:

(BASIC CASE)Let 1 ≤ k ≤ n be such thatidi = ids
q

k . We assume that(idi)− = ids
q

k−1 and
(idi)

+ = ids
q

k+1. We have the following transitions inTi:

(a) sq
((idi)

−,idontchoose)/(null,null)
−−−−−−−−−−−−−−−−−−−−−−−−−→ sqicanchoose ((idi)− tells idi that it refuses to choose

one of its transitions).

(b) For all1 ≤ y ≤ n such that we haveidy ∈ {ids
q

1 , . . . , (idi)
−} ∩ {ids

q

1 , . . . , id
sq

hsq
}, we

havesq
((idi)

−,alreadychoseny)/((idi)
+,alreadychoseny)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ sqidontchoose ((idi)− tells idi that
some servicey has already chosen, andidi propagates the message).

(c) sqicanchoose
(null,null)/((idi)

+,idontchoose)
−−−−−−−−−−−−−−−−−−−−−−−−−→ sqidontchoose (idi decides not to choose).

(d) sqicanchoose
(null,null)/((idi)

+,alreadychoseni)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ sqiwillchoose (idi decides to choose).

(e) For all1 ≤ j ≤ |Tsq,idi | we have the following transitions, where we assumetsq,idi,j =
(sq,m, snd, adr, s′q).

(e.1) sqiwillchoose
(ids

q

n ,chosencomplete)/(adr,takemychoicej)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ sqichoosej (the last service no-

tifies that all knowidi will choose, andidi chooses itsj-th transition and asksadr
to take its choice).

(e.2) sqichoosej
(null,null)/(adr,m)

−−−−−−−−−−−−−−−→ sqichoose′
j

(idi sends the messagem denoted by itsj-th

transition toadr).

(e.3) LetG = {g|g ∈ [1..n], g 6= i, idg 6= adr}.

(i) If G 6= ∅ then we havesqichoose′
j

(adr,ididit)/(null,null)
−−−−−−−−−−−−−−−−−−→ sqichoosej min(G)

(idi
waits for a signal fromadr indicating thatm was processed). Besides, for all
k ∈ G we have

· sqichoosejk
(null,null)/(idk,takemychoicej)

−−−−−−−−−−−−−−−−−−−−−−−−−→ v, wherev = sqichoosej k′
if k 6=

max(G) andv = s′q otherwise, andk′ is the minimum value inG such that
k′ > k (idi asks everybody to take its choice).
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(ii) Else (that is, ifG = ∅) then we havesqichoose′
j

(adr,ididit)/(null,null)
−−−−−−−−−−−−−−−−−−→ s′q (idi

waits for a signal fromadr indicating thatm was processed, andidi reaches the
destination state without asking anybody else).

(f) For all j ∈ [1..n]\{i} and for all1 ≤ k ≤ |Tsq,idj |, we have the following transitions,
where we assumetsq,idj ,k = (sq,m, snd, adr, s′q).

(f.1) If adr = idi then we havesqidontchoose
(idj ,takemychoicek)/(null,null)

−−−−−−−−−−−−−−−−−−−−−−−−−→ sqifollowjk

andsqifollowjk

(idj ,m)/(idj ,ididit)
−−−−−−−−−−−−−−−→ s′q (idi takes thek-th choice ofidj , which makes

idi receive a message fromidj and next acknowledge it).

(f.2) Otherwise, we havesqidontchoose
(idj ,takemychoicek)/(null,null)

−−−−−−−−−−−−−−−−−−−−−−−−−→ s′q (idi takes the
k-th choice ofidj , which does not concernidi).

(OTHER CASES)Transitions listed in the basic case are modified in some specific cases as
follows (modifications due to different cases are accumulative):

• If there are transitions leavingsq in which idi is the sender andidi is the first service doing
so, that is, ifidi = ids

q

1 , then transitions given in (a) and (b) of the basic case are replaced

by sq
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→ sqicanchoose.

• If there are transitions leavingsq in which idi is the sender andidi is the last service doing
so, that is, ifidi = ids

q

hsq
, then the transitions given in (c) of the basic case is deleted.

• If there is no transition leavingsq in which idi is the sender, that is ifidi 6= ids
q

j for all
1 ≤ j ≤ hsq , then the transition given in (a) of the basic case is deleted.

• If idi = ids
q

n (that is,idi is the last service in the considered sequence of services) then, in
any transition labeled by the pair((idi)−, alreadychoseny)/((idi)+, alreadychoseny),
this pair is replaced by the pair((idi)−, alreadychoseny)/(idy, chosencomplete)). Be-
sides, in any transition labeled by(null, null)/((idi)+, alreadychoseni), this pair is re-
placed by(null, null)/(idi, chosencomplete), and the transition denoted in (c) of the
basic case is deleted.

⊓⊔

Theorem 4.7. Let C = (S,M, ID, sin, T ) be a choreography withID = {id1, . . . , idn}. Let
S = (decentral(C, id1), . . . , decentral(C, idn)). For all confx ∈ {conf′

s,conf
′
p,

conf′,conffs
′, conffp

′, conff′} we haveS confx C. ⊓⊔

Definition 4.8. We have thatdecentral’(C, idi) is defined asdecentral(C, idi) in Defini-

tion 4.6 after replacing the first transition appearing in (e.3) (i) bysqichoose′
j

(null,null)/(null,null)
−−−−−−−−−−−−−−−−−−→

sqichoosej min(G)
, the transition of (e.3) (ii) bysqichoose′

j

(null,null)/(null,null)
−−−−−−−−−−−−−−−−−−→ s′q, and the sec-

ond transition denoted in (f.1) bysqifollowjk

(idj ,m)/(null,null)
−−−−−−−−−−−−−−−→ s′q. ⊓⊔
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Figure 9: Example of decentralized derivation.
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Theorem 4.9. Let C = (S,M, ID, sin, T ) be a choreography withID = {id1, . . . , idn}. Let
S = (decentral’(C, id1), . . . , decentral’(C, idn)). For allconfx ∈ {conf′

s,conf
f
s
′}

we haveS confx C. ⊓⊔

In Figure 9 we show an example where the derivation presentedin Definition 4.6 is applied
literally. ChoreographyChor consists of three different branches where a message (m1, m2, or
m3) is sent by a client service (C1,C2, orC3, respectively) to a server serviceS. The derivation
of the service clientC2 corresponds to the general (BASIC CASE) of this definition, whereas
C1 andC3 are obtained by applying the first and the second items of (OTHER CASES), corre-
sponding to the first and the last service sending a message inthe choice structure, respectively.
Finally, the server serviceS follows the structure specified for services that do not sendmes-
sages. Moreover,S plays the role of last service in the service sequence. Thus,the last two items
of (OTHER CASES) are applied in this case.

Both the centralized and the decentralized derivation algorithms add a high number of addi-
tional messages and constrain the free advance of services for the sake of control. Let us note
that, in this paper, our goal is not to provide the optimal solution, that is, the solution where the
parallel advance of services is restricted as weakly as possible or the minimum number of addi-
tional control messages is added. On the contrary, our goal is providing derivation algorithms to
construct sets of services that are correct with respect to the choreography, regardless of whether
the designer of the choreography created a nice choreography or, on the contrary, it contains
some intrinsic problems. Cutting some additional messagesto provide more optimal derivations
is out of the scope of this paper and is left as future work.

5. Derivation of services under the presence of delayed messages

In this section we consider an alternative semantic scenario for our framework. Let us note
that, according to the operational semantics of our systemsof services, given in Definition 2.4,
when a service sends a message, this message is immediately stored in the input buffer of the
addressee of the message. Let us suppose that a serviceA sends messagem1 to serviceB, and
next it sends messagem2, also to serviceB. Since the operational semantics says that messages
are stored immediately at the destination service, it is impossible that serviceB receives message
m2 and next it receives messagem1, which would makem2 appear beforem1 in the input
buffer of serviceB. Thus, the framework implicitly assumes one of the following hypothesis:
Either message delays in the communication medium are always the same (which is unfeasible
in practice), or the network protocol implicitly manages, at some lower implementation layer, a
proper reordering of messages allowing to keep the order in which messages were sent by each
client. For instance, in some cases, time stamps or orderingstamps can be added to messages
to enable this implicit ordering [24]. However, in some cases this solution might not be feasible
due to e.g. the impossibility to have a global clock.

In this section we consider an alternative scenario where, when a message is sent, it is not
immediately stored at the destination service. On the contrary, the message may stay “in the
communication medium” for any arbitrarily long time. In order to introduce this alternative
scenario, we will assume by default all definitions previously given in Section 2, though some
of them will have to be redefined. Next, we redefine the notion of system configuration. A
configuration of a system will depend not only on the configuration of each service, but also
on the multiset of messages that have already been sent by services but have not reached their
destination yet. We will denote this multiset byD. We consider that(id,m, id′) ∈ D denotes
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thatid sentm to id′, but id′ has not received it yet (so,m is not stored in the input buffer ofid′

yet,m is still in the communication medium).

Definition 5.1. (Redefinition of system configuration)Let S = (M1, . . . ,Mp) be a system of
services forID, where for all1 ≤ j ≤ p we haveMj = (idj , Sj , Ij , Oj , sj,in, Tj , ψj). For
all 1 ≤ j ≤ p, let cj be a configuration ofMj . Let D be a multiset of triples belonging to
ID × (O1 ∪ . . . ∪ Op) × ID. We say thatc = (c1, . . . , cp, D) is a configurationof S. Let
c′1, . . . , c

′
p be the initial configurations ofM1, . . . ,Mp, respectively. Then,(c′1, . . . , c

′
p, ∅) is the

initial configurationof S. ⊓⊔

Next we redefine the operational semantics of systems of services for the alternative scenario.
Now, when a service sends a message, it is not inserted in the input buffer of the addressee, but
it is added to the multiset of “not-yet received” messagesD. Besides, the operational semantics
also allows to take a triple(id,m, id′) fromD and store(id,m) at the input buffer ofid′. Thus,
the operational semantics splits any message sending into two separate semantic actions, thus
letting other actions happen between both.

Definition 5.2. (Redefinition of the operational semantics)Let ID = {id1, . . . , idp} be a set of
service identifiers andS = (M1, . . . ,Mp) be a system of services forID where for all1 ≤ j ≤ p
we haveMj = (idj , Sj , Ij , Oj , sj,in, Tj , ψj). Let c = (c1, . . . , cp, D) be a configuration ofS
where for all1 ≤ j ≤ p we havecj = (sj , bj).

An evolutionof S from the configurationc is a tuple(c, snd, i, proc, o, adr, c′) wherei ∈
I1∪ . . .∪Ip∪{null} is the input of the evolution,o ∈ O1∪ . . .∪Op∪{null} is the output of the
evolution,c′ = ((s′1, b

′
1), . . . , (s

′
p, b

′
p), D

′) is the new configuration ofS, andsnd, proc, adr ∈
ID ∪ {null} are the sender, the processor, and the addressee of the evolution, respectively. All
these elements must be defined according to one of the following choices:

(a) (evolution activated by some service by itself)For some1 ≤ j ≤ p, let us suppose

sj
(null,null)/(adr′,o′)
−−−−−−−−−−−−−−−→ s′ ∈ Tj . Then,s′j = s′ and b′j = bj . Besides,snd = null,

proc = idj , adr = adr′, i = null, o = o′. Moreover, ifadr′ 6= null thenD′ =
D ∪ (idj , o

′, adr′);

(b) (evolution activated by processing a message from the inputbuffer of some service)For

some1 ≤ j ≤ p, let us suppose thatsj
(snd′,i′)/(adr′,o′)
−−−−−−−−−−−−−−→ s′ ∈ Tj and the predicate

available(bj , snd′, i′, r) holds, wherer is the only set belonging toψj such thati′ ∈ r.
Then, s′j = s′ and b′j = remove(bj , snd′, i′). Besides,snd = snd′, proc = idj ,
adr = adr′, i = i′, o = o′. Moreover, ifadr′ 6= null thenD′ = D ∪ (idj , o

′, adr′);

(c) (evolution activated by the reception of some message stored in the multiset of not-yet
received messages)For some1 ≤ j ≤ p and1 ≤ c ≤ p, if (idc,m, idj) ∈ D then
snd, proc, adr = null, s′j = sj , and b′j = insert(bj , idc,m). Moreover,D′ =
D\(idc,m, idj).

where, in any of these cases (a), (b), and (c), for all1 ≤ q ≤ p with q 6= j we haves′q = sq and
b′q = bq. ⊓⊔

Next, let us analyze the (in-)correctness of the centralized and decentralized derivation meth-
ods presented in sections 4.1 and 4.2, respectively, under this alternative semantics.
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It is easy to see that the centralized version, given in Definition 4.2, does not work under
the new semantics. In this derivation, the orchestrator sends messagesajp to all services to
indicate that all services must take thep-th available transition at statesj . When the orchestrator
receives the messagebf , indicating that the addresseeidf of the message regarded in the current
step of the choreography has processed the message, the orchestrator starts the next step of
the choreography. It makes the next election, communicatesits choice to all services, and so
on. However, nothing guarantees that messagesajp indicating the choice to be followed at the
previous step will be received by servicesbeforemessagesajp indicating the choice at the new
step. If a messageajp of the next step arrives at a service before the messageajp of the previous
step, the service will take a wrong transition at the currentstep.

This problem can be easily fixed by making the orchestrator receive some new messages
from all services, where these messages indicate that the corresponding service has already re-
ceived the messageajp of the current step. If the orchestrator is forced to receiveall of these
acknowledgment messages before going on to the next step, then messagesajp of the next step
will be sent by the orchestratoronly aftermessagesajp of the previous step have been processed
by services. Thus, messagesajp of each step will be necessarily processed before that step fin-
ishes, that is, it will not be possible that a messageajp from a subsequent step is received before
another messageajp from a previous step. In the centralized derivation given inDefinition 4.2,
the only service forced to send an acknowledgmentbf to the orchestrator was the addressee
idf of the sending. In the next redefined derivation, the orchestrator will be forced to collect
these acknowledgment messages fromall services – and all services will be forced to send these
messages to the orchestrator.

Definition 5.3. We have thatcontrolledDelays(C, idi) is defined ascontrolled(C, idi)
after replacing cases (a), (b), and (c) of Definition 4.2 by the following expressions(now, mes-
sagesbf are sent in all cases):

(a) if snd = idi thensnd′ = i = null, adr′ = adr, o = m, andujp = s′jp. Besides, we also

haves′jp
(null,null)/(orc,bi)

−−−−−−−−−−−−−−−→ s′j in Ti.

(b) else, ifadr = idi thensnd′ = snd, i = m, adr′ = o = null, andujp = s′jp. Besides, we

also haves′jp
(null,null)/(orc,bi)

−−−−−−−−−−−−−−−→ s′j in Ti.

(c) elsesnd′ = i = adr′ = o = null andujp = s′jp. Besides,s′jp
(null,null)/(orc,bi)

−−−−−−−−−−−−−−−→ s′j is
in Ti.

Besides, the last term of the tuple definingcontrolledDelays(C, idi), which is equal to
{{m}|m ∈M} ∪ {{aij |i, j ∈ [1..l]}} in the definition ofcontrolled(C, idi) of Definition 4.2,
is replaced by{{m}|m ∈ M} ∪ {{aij}|i, j ∈ [1..l]} (each messageaij has its own message
type).

We have thatorchestratorDelays(C, idi) is defined asorchestrator(C, idi) after
replacing the second item of the definition of such a term in Definition 4.2 by the following
expression(messagesbf are collected from all services, not just from the addressee):

• For all1 ≤ p ≤ k, if tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈ T is thep-th transition leavingsj in C,

then for all1 ≤ i ≤ n we havesjpi
(null,null)/(idi,ajp)

−−−−−−−−−−−−−−−−−→ sjp i+1 ∈ To. Besides, for all
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1 ≤ i ≤ n− 1 we havesjp n+i
(idi,bi)/(null,null)

−−−−−−−−−−−−−−−→ sjp n+i+1 ∈ To. In addition, we have

sjp n+n
(idn,bn)/(null,null)
−−−−−−−−−−−−−−−→ s′j ∈ To.

⊓⊔

Theorem 5.4. Let us assume that the behavior of systems of services is defined by the oper-
ational semantics given in Def. 5.2. LetC = (S,M, ID, sin, T ) be a choreography withID =
{id1, . . . , idn}. LetS = (controlledDelays(C, id1), . . . , controlledDelays(C, idn),
orchestratorDelays(C)). For all conformance relationshipsconfx ∈ {conf′

s,conf
′
p,

conf′, conffs
′, conffp

′, conff′} we haveS confx C. ⊓⊔

If we can assume that messages are stored in input buffers in the same order as they are
sent, that is, if we can assume the old operational semanticsgiven in Definition 2.4, then the
previous solution is unnecessarily inefficient. The previous solution forces the orchestrator to
receive acknowledgments from all services before going on,which forces all services to reach
the current choreography step before the orchestrator goeson to the next step. This feature
reduces the capability of services to evolve independentlyfrom the rest of services, and thus
reduces the proportion of computations that are actually executed in parallel. However, this high
level of control is not necessary if messages cannot be mixedup in input buffers. Thus, if the old
operational semantics is assumed, then the old centralizedderivation given in Definition 4.2 is a
better choice.

Now, let us analyze the correctness of the decentralized derivation, given in Definition 4.6,
under the new alternative operational semantics. Let us note that this decentralized derivation
alreadyimposes a kind of strong control that is similar to the one described in our previous re-
defined centralized derivation. In particular, let us note that all services are required to know
which service will be responsible of taking the current choice beforethat service tells the rest
of services which one is its choice (see in Definition 4.6 that, before going on, the service de-
ciding must receive a messagechosencomplete from the last service of the sequence). Let
us note that this strong level of control is requiredevenif messages are not mixed up in input
buffers, that is, even if our original operational semantics is assumed. If the service making the
decision were not required to be sure that all services know that it will make the choice, then
messages denoting which service decides at two consecutivechoreography steps could be mixed
up: The message announcing which service makes the decisionin the stepi + 1 could reach
a given services before the message announcing which service makes the decision of the step
i is received bys. Messages denoting which choice is taken by the service making the choice
(takemychoicej) are sent by that service one after each other, and they are sent before the corre-
spondingtakemychoicej′ messages of the next step are sent. So, messages of this kind are sent
in the correct order (and stored in the correct order, if the old semantics is assumed). However,
messages denotingwhich service decides (i.e.idontchoose, alreadychoseny) are sent byall
services, one service after the other. Thus, the order in which messages of this kindbelonging
to different stepsare sent could be mixed up – unless a message likechosencomplete blocks
the sending of these messages in the next step until the last message of this kind is sent in the
previous step.

The use of the messagechosencomplete does not only solve the problem for the old seman-
tics, but also for the new one. On the one hand,takemychoicej messages from different steps
cannot be mixed up, because services must process theirtakemychoicej messages before they
can participate in the decision about which service choosesin the next step, and this decision
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must be taken before messagestakemychoicej of the next step are sent. By similar reasons,
messages used to decide which service must choose (i.e.idontchoose, alreadychoseny) of dif-
ferent steps cannot be mixed up: Messages of this kind belonging to the previous step must be
processed before the corresponding messages of the next step are sent. Thus, it turns out that our
original decentralized derivation works for the new operational semantics too.

Theorem 5.5. Let us assume that the behavior of systems of services is defined by the opera-
tional semantics given in Definition 5.2. LetC = (S,M, ID, sin, T ) be a choreography with
ID= {id1, . . . , idn}. Let S = (decentral(C, id1), . . . , decentral(C, idn)). For all con-
formance relationshipsconfx ∈ {conf′

s,conf
′
p, conf

′, conffs
′, conffp

′, conff′} we have
S confx C. ⊓⊔

6. Discussion: features beyond the current model

In this section we discuss some features of real web servicessystems that are not explicitly
represented in our current model of orchestrations and choreographies. Though introducing these
factors in our model is part of our future work plans, in this section we will sketch some ways to
take some of these factors into accountwithoutmodifying either the model itself or the derivation
algorithms. That is, the approaches described in this section will be conservative with our models.
The modification of models to explicitly manage these factors will be developed in our future
work.

Several factors affecting the behavior of real web servicessystems are not explicitly repre-
sented in the model, in particular: (a) message parameters and internal variables of services; (b)
the effect oftime on services; (c) the possibility that the information required to make a deci-
sion might not be owned by the service that makes the decision; and (d) the presence of external
events. Extending the model to include factors (a) and (b) requires replacing our FSM-based
model by a more expressive one, such asextended finite state machines(EFSM) or timed au-
tomata(TA), respectively. Changing our FSM-based models by thesemodels will require a sim-
ilar effort as other similar language extensions developedin other works of the literature, where
variables or time were added to previously developed simpler specification languages. The ex-
tensions required to include (a) and (b), while somehow standard, will probably be cumbersome
in technical terms, so discussing them is out of the scope of this paper.

Regarding (c), that is, the possibility that the information required to make each decision
might not be owned by the services that make such decisions, let us mention that the absence of
an (explicit) representation of this factor in our model is related to the absence of (b). If models
were endowed with internal variables and message parameters, internal variables of services
could be used to affect the availability of transitions by enabling/disabling transition guards,
and the values of these variables could be transmitted from aservice to another one by sending
messages with parameters. Thus, the transmission of information affecting decisions, from the
services owning this information to the services requiringthis information, could be naturally
represented by inserting, in the choreography, suitable messages from the former to the latter.

Still, the transmission of such information can be modeled to some extent in our simpler
FSM-based model too. For instance, a given serviceA may be atdifferentstates, depending
on the information we assume isowns. Let us assume that this information can be eitherx or
y. Since serviceA might be in a different state in each case, it can send different messages to
services depending on whether this information isx or y. In particular, depending on whether
serviceA sends amessagex or y to another serviceB, different choreography states, where
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serviceB has different available choices next, can be reached. Thus,the information owned by
A and transmitted byA to B (i.e. either messagex or messagey) can affect the set of choices
available later to serviceB. Following this idea, the choreography designer can include messages
from servicesowningthe required information to services requiring this information, where each
message enables different subsequent choices.

The convenience to keep a low number of states in the choreography could limit in practice
the creation of bifurcations to denote the choices of services depending on the received informa-
tion. For instance, we may explicitly represent the value owned by serviceA (eitherx or y) by
using two different states of serviceA or, alternatively, we couldabstractthis information and
consider a single state inA. In this case, serviceA non-deterministicallycommunicates toB that
its value isx or y. The non-determinism just denotes that both choices arepossible. In practice,
the choreography designer could be forced to introduce somelevel of abstraction in models for
the sake of model simplicity.

This limitation will be overcome when the model is moved fromFSMs to EFSMs in our
future work. The localization of the information and the dependance on it will be explicitly
represented by means oflocal variable values and transition guards potentially depending on
variables stored byotherservices. Following the derivation policy proposed in thispaper, new
adapted algorithms will be able toautomaticallymanage the transmission of the information
from the services where it is stored to the services where it is needed. If the choreography in-
cludes some decisions that depend on some variables that arenot stored by the services that will
actually make them, the derivation algorithms will automatically add some new control messages
in derived services. These control messages will make services owning such informationsend it
to services depending on it, before decisions are actually made. In this way, we will be consis-
tent with our derivation policy, whereall choreographies denote an interaction plan that can be
realized – provided that suitable control messages are added to services.

Regarding (d), the presence of external events, let us note that our model considers a closed
world assumption, i.e. the system of services does not interact with any external environment and
all exchanged messages are produced by services inside the system. Thus, there is no explicit
reference toexternalevents. In order to represent anexternal event source, capable of produc-
ing these events, we could explicitly model it by means of another service in the choreography.
Modeling event sources asservicesin choreographies might be a good approach to the notion of
event source, but it might not be suitable in terms of the derivation algorithms. The derivation
makes all services involved in each decision coordinate with each other, either in terms of the
orchestrator (in the centralized derivation) or in terms ofthe services themselves, which send
messages to each other (in the decentralized derivation). Neither of both choices can be applied
to anexternal event source, because these sources are notreal services and thus we cannotde-
sign them to comply to a given communication protocol established by the derivation algorithm
(in particular, an external events source will not participate in the token-ring decision process).
An alternative possibility consists in adding a new servicerepresenting anexternal event inter-
face. This service receives all external events, delivers them,and coordinates itself with the rest
of services as any other service. This solution might be feasible from the point of view of a
centralized derivation, because the orchestrator may assume the behavior of this external event
interface (note that this role would be consistent with its implicit omniscience). On the contrary,
it would not be an appropriate choice for the decentralized derivation method, because it violates
the decentralized approach.

A more natural approach to external events consists in assuming that events are justnot
explicitly represented in the model. In fact, the existenceof external events inreal services
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motivates (part of) the non-deterministic choices of services in themodel. That is, a state where
a real service may take either choice A (if it receives a kind of event) or choice B (if it receives
another kind of event, or no event at all) is modeled by the existence of two outgoing transition
where the service chooses either of these choices. The reason to take A or B is not represented in
the model due to the abstraction of the model: External events may make services take different
choices inreal services, so these choicesexist, as different possibilities, in the corresponding
models.

According to this view, an issue must still be addressed. In the decentralized derivation,
services involved in each decision have the choice to eithertake any of the choices where the
service chooses, or passing the responsibility of choosingto the next service. In a real service,
the decision of whether the responsibility to choosing should be passed to the next service or not
could depend, in some cases, on theabsenceof some external event that could be received by
the service or not (for instance, the servicepassesthe decision token if it has not received the
required event to take one of its transitions yet). Ifall services in the decision-making process
may pass the responsibility due to the absence of some required event, then the last service in the
sequence should also be given the choice to pass. Unfortunately, the derivation forces the last
service to take some of its choices if previous services havenot chosen yet.

If no service chooses due to the absence of the required external events to do so, then the
decision-making should berepeatedto give all services a new chance to receive the events they
require, until some of these events is eventually received by the corresponding service (so it no
longerpassesthe decision responsibility to the next service). That is, if a given decision-making
process depends on external events that enable/disable services choices, the decision-making
processes should have the capability toloop among derived services. We have two choices to
introduce this change. On the one hand, we could modify the decentralized derivation method
to explicitly replace some decision-makingsequencesby decision-makingloops(in particular,
those decision-making processes potentially depending ontheabsenceof external events). Let
us note that the introduction of loops is motivated by external events, which are not represented
in our current models. Since this new derivation would be useful only if factors beyond the
current model are considered (external events), we prefer to keep our decentralized derivation
method unmodified, and construct the new models with loops bymeans a newabstraction layer.
In this way, the (unmodified) decentralized derivation algorithm will still be motivated by the
sole goal of achieving correct systems in terms of the model semantics (where external events
are not explicitly represented), and details beyond the model will be treated in a different layer.

This new layer works as follows. Given a choreography, we identify those states where
decision-making sequences should be converted into decision-making loops (due to the potential
absence of external events governing some services choicesin real services). Let us call these
statesloop states. For each of these states, we identify the service that wouldbe the last one in
the decision-making sequence, according to our derivationalgorithm. Let us call these services
last services. Similarly, the first services in the decision-making sequences will be called justfirst
services. We construct anintermediate model, defined in the same language as the choreography,
which has the same states and transitions as the choreography. In addition, for allloop statesand
their respectivelast andfirst services, we add a transition from the loop state to itself where
the last service sends a new control message, calledrepeat, to the first service (an example is
depicted in Figure 10, where that message is called justr). In this way, one of the choices
of the last service of each decision-making sequence consists in repeatingthe decision-making
sequence, thus enabling a loop. If the last service takes this new choice then we interpret, in
terms of the correspondingreal service, that the service cannot take any of the other transitions
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Figure 10: Intermediate model example.

where it is the sender due to the absence of some required external event.
By applying the (unmodified) decentralized derivation to this intermediate model, rather than

to the choreography, the required loops will be introduced as a result of the new transitions added
to the intermediate model. If we compare the systems of services derived from the choreogra-
phy and the system derived from the intermediate model, it iseasy to check that they arenot
equivalent in terms of traces of non-control messages. Let us suppose that states of the choreog-
raphy has several outgoing transitions involving different services. No trace of the choreography
finishes at states (recall that we only considercompletetraces). Consequently, if a system of
services is derived from this choreography, then no trace ofthis system finishes ats. Let us
construct an intermediate model, from this choreography, where the possibility of looping in
s is added as explained. If a system of services is derived fromthe intermediate model, then
the system will be able to produce a trace where the system reachess and loops forever. After
s is reached, this infinite trace shows only control messages.In particular, control messages
where services coordinate the decision-making process arefollowed by the new control message
repeat, sent by the last service to the first service, and this process is repeated forever. If we
remove control messages from this trace then all messages afters is reached for the first time are
removed, and thus the remaining trace of non-control messagesfinishesat s. Hence, the system
of services derived from the intermediate model is not equivalent to the system derived from the
choreography. Still, the system derived from the intermediate model allows us to reduce the gap
between real systems and our models (without modifying the model itself) by introducing the
required loops. In the next definition, we consider that a state is loop-neededif a loop should be
introduced in its decision-making – according to criteria not considered in the model semantics,
such as the dependance on external events. We assume that each loop-needed state has at least
twoservices with the capability of deciding in its decision-making sequence. Note that, in states
where onlyoneservice decides, no loop is needed to give all deciding services new chances to
choose (in particular, this single deciding service can just not take any of its choices, until it can
choose indeed).

Definition 6.1. Let C = (S,M, ID, sin, T ) be a choreography andS∗ ⊆ S be a set ofloop-
needed states. The intermediate modelof C andS∗, denoted byintermediate(C, S∗), is a
choreography machineC′ = (S,M ∪ {repeat}, ID, sin, T

′) where
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s ∈ S∗ ∧ a andb are the first and last services in the
decision-making of states, respectively, according to
the decentralized derivation∧ a 6= b







⊓⊔

Definition 6.2. Let C = (S,M, ID, sin, T ) andσ ∈ Traces(C). Theconstrainof σ to a set of
messagesQ, denoted byσQ, is the result of removing fromσ all elements(a,m, b) withm 6∈ Q.

⊓⊔

The following straightforward result establishes the relation between choreographies and
their corresponding intermediate models (provided that weskip, in traces of the intermediate
model, all addedrepeat messages).

Proposition 6.3. Let C = (S,M, ID, sin, T ) be a choreography andS∗ ⊆ S. We have that
Traces(C) ⊆ {σM |σ ∈ Traces(intermediate(C, S∗)). ⊓⊔

7. Related Work

In this section we compare our proposal with other approaches. Regarding methods to de-
rive services from a given choreography, we can find some related works. In [29], Zongyan et
al. identify and face the problems appearing when deriving an implementable projection from
a choreography. Authors define the concept of restricted natural choreography, which must ful-
fill two structural conditions, and show that this kind of choreography is easily implementable.
Furthermore, a new concept, thedominant roleof a choice, is proposed for dealing with pro-
jection issues in non-restricted choreographies. At each non-deterministic choice, this dominant
role is the one that actually makes the decision. The first difference between this work and our
proposal is superficial and lies in the underlying model: [29] uses a process algebraic notation
while we use a state machine approach. However, there are also two crucial differences. On the
one hand, the orchestration communication style issynchronousin that work, while we consider
asynchronous communications and delays, which complicates the problem. On the other hand,
the solution of the non-deterministic choices problem considered in [29] is based onexplicitly
adding extra information to the choice operator by identifying the dominant role, and this must
be given as part of the choreography specification. In particular it is assumed that, for each non-
deterministic choice, we can always identify a dominant role that, by design definition, is the
one which owns the information to decide what branch the implementation should follow. For
instance, in the only branching point appearing in choreographyChor (see Figure 1), the only
reasonable candidate to be the dominant role is serviceY , because in this choice it is the only
service that has the opportunity to send messages to other services. Therefore this service is the
only one really involved in the choice. Let us suppose that wemodify, inChor, the label of the
transition whereY sendsc to Z. In particular, let us assume that the service sendingc to Z is
not Y , butX. Now there are two services involved in the choice and it is not possible to know
“a priori” which one is going to play the dominant role, so a kind of coordination between both
services must be externally imposed. Our centralized and decentralized approaches to derive
services from a choreography face this problemat orchestration level(not at the choreography
level) by either allowing the orchestration to make the decision (in the centralized version) or
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by distributing this responsibility among all the servicesthat are actually involved in the non-
deterministic choice (in the decentralized version). In addition, we face the non-deterministic
choices problem and the races problem in a single integratedframework (both problems are
treated separately in [29]), we allow to explicitly distinguish between the times when messages
are sent and the times when they are processed in our two approaches (this distinction is possible
because we consider asynchronous communication), and we provide correctness proofs of our
methods (not given in [29]).

The issue of investigating how we can design asynchronous communicating processes, in
such a way that they necessarily produce some behavior or reach some configuration, has been
tackled in several ways in the literature. For instance, [21] studies the problem of designing two
asynchronous processes in such a way that their progress is guaranteed, whereas [17] studies the
pathological situations where we cannot define some communicating processes conforming to a
given specification (due to the relevance of the problems identified in this work, the treatment of
these problems in our framework is extensively studied at the end of this section). Let us note
that, in our approach, we makeanychoreography realizable byaddingsome control messages
to the definition of services. These messages allow servicesto know what is required at each
time to properly make the next decision, according to the choreography. In [32], Salaün and
Bultan formalize choreographies by means of asynchronous communication with process alge-
bra. However, no solution for non-deterministic choices isprovided and no correctness proof is
presented. In contrast, authors enhance the proposal by introducing a tool offering the possibility
to use bounded buffers and reason about them. Van der Alst et al. [38] present an approach for
formalizing compliance and refinement notions, which are applied to service systems specified
using open Workflow Nets (a type of Petri Nets) where the communication is asynchronous. Au-
thors show how the contract refinement can be performed independently, and they check whether
contracts do not contain cycles. Honda et al. [22] present a generalization of binary session types
to multiparty sessions forπ-calculus. They provide a new notion of types which can directly
abstract the intended conversation structure amongn-parties asglobal scenarios, retaining an
intuitive type syntax. They also provide a consistency criteria for a conversation structure with
respect to the protocol specification (contract), and a typediscipline for individual processes by
using aprojection. A similar approach is followed in [15] by Caires and Vieira.They define a
formal framework called conversation types and present techniques to ensure progress of systems
involving several interleaved conversations/sessions. Bravetti and Zavattaro [9] allow to compare
systems of orchestrations and choreographies by means of the testingrelation given by [6, 18].
Systems are represented by using a process algebraic notation, and operational semantics for this
language are defined in terms of labeled transitions systems. On the contrary, our framework uses
an extension offinite state machinesto define orchestrations and choreographies, and a semantic
relation based on theconformancerelation [33, 34] is used to compare both models. In addition,
let us note that [9] considers the suitability of a service for a given choreographyregardlessof
the actual definition of the rest of services it will interactwith, i.e. the service must be valid
for the considered roleby its own. This eases the task of finding a suitable service fitting into
a choreography role: Since the rest of services do not have tobe considered, we can search for
suitable services for each rolein parallel. However, let us note that sometimes this is not real-
istic. In some situations, the suitability of a service actually depends on the activities provided
by the rest of services. For instance, let us revisit the travel agency example presented before in
Section 3.1 (this example involved choreography18 and services15, 15′, 16, 16′, 17 given in
Figure 3). In that example, we assumed that a travel agency service requires that either the air
company service or the hotel service (or both) provide a transfer to take the client from the airport
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sync. async. send. vs proc. full vs partial send+proc disjoint immediate vs delayed
Present work X X X X X X X

Lanese et al. X X X X X X X

Table 2: Comparison between Lanese et al. work and our work.

to the hotel. A hotel providing a transfer is good regardlessof whether the air company provides
a transfer as well or not. However, a hotel not providing a transfer is valid for the travel agency
only if the air company provides the transfer. Contrarily to[9], our framework considers that the
suitability of a service depends on what the rest of servicesactually do, so this kind of condi-
tional dependencies is taken into account. Furthermore, wepresent a method to automatically
deriveservices from a choreography in such a way that the system consisting of these services
necessarilyconformsto the choreography. This contrasts with the projection notion given in [9],
which does not guarantee that derived services do so. The problems ofthe natural projection,
already discussed in the introduction, are also suffered bythe method proposed in [9]. In order to
avoid these problems, the authors introduce some restrictions on choreographies to state which
ones are properly transformed by the projection.

Other works concern the projection and conformance validation between choreography and
orchestration withsynchronouscommunication. Bravetti and Zavattaro [8] propose a theoryof
contracts for conformance checking. They define an effective procedure that can be used to verify
whether a service with a given contract can correctly play a specific role within a choreography.
Carbone et al. [16] study the description of communication behaviors from a global point of view
of the communication and end-point behavior levels. Three definitions for proper-structured
global description and a theory for projection are developed. Bultan and Fu [12, 11] specify
web services as conversations by Finite State Machines to analyze whether UML collaboration
diagrams are realizable or not.

In [27], Lucchi and Mazzara provide a formalization of conformance withπ-calculus. By
means of automata, Schifanella et al. [4] define a conformance notion that checks whether the
interoperability is guaranteed. Moreover, Decker et al. [19] show how the Business Process
Modeling Notation (BPMN) and the Business Process Execution Language (BPEL) can be used
during choreography design. In [37], Van der Aalst et al. also focus on conformance by compar-
ing the observed behavior recorded in logs with some predefined model.

Regarding the definition of conformance relations between choreographies and orchestra-
tions, there are several works related to ours. We begin the comparison by considering the closest
work. In [25] Lanese et al. develop a very detailed and broad study to compare these kind of
systems. Their objective is bridging the gap between the WS-CDL and BPEL languages by for-
mally defining them and then finding out thefeaturessystems should have to be equivalent if the
natural projection is used. This work is based on the idea ofwell formed conditions, which de-
pend on the properties one wants to preserve in each case. This idea clearly differs from our own
objective since we do not try to discover what the conditionsallowing the equivalence between
systems are, but we define a derivation procedure able to derive a orchestration of services from
anychoreography; thus, since all choreographies enable a correct derivation by adding a suitable
set of new control messages,all choreographies are well-formed for us. Despite of this differ-
ence, our approach follows a similar work line regarding theproposal of conformance relations.
We both share the same idea of global and local behaviors for choreographies and orchestrations,
respectively, as well as similar asynchrony assumptions.
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In Table 2 we present a comparison of the conformance relations proposed in both works.
The table compares the presence of different kinds of relations. The first four columns compare
relations in terms of (a) different types of communication,i.e.,synchronousversusasynchronous
semantics; (b) the focus of the relation on either the times when messages areproduced/sentor
when they areprocessedby the addressee; and (c) the consideration offull behaviors or justpart
of them. Concerning the comparison of the type of communications, i.e. synchronous against
asynchronous, in [25] both types are considered, but in thispaper we do not explicitly consider
a synchronous communications framework. Let us note that synchronous communications can
be roughly simulated by making all messages be followed by a mandatory acknowledgement
message from the addressee to the sender, which must be received by the sender before it can
go on (this is illustrated in Section 3.1). Regarding sending and processing traces/behaviors, the
same idea is followed in both works, that is, in an asynchronous communications framework, the
time when a source generates a message differs from the instant when addressee actually reads
it, and the conformance with the respect to each kind of moments differs. On the other hand,
we consider not only the possibility of taking all behaviorsinto account in the comparison, but
we also allow to consider only some of them, that is, a system might be correct as long as it
implements at leastoneof the paths allowed by the choreography. In the next two columns of
the table, we show the presence of a relation considering simultaneously sending and processing
behaviors/traces, and the disjoint conformance relationship given in [25]. The last column of
the table illustrates the presence, in our framework, of relations under two different asynchrony
assumptions: (a) the case where messages are immediately stored in input buffers of destination
services; and (b) the case where there might be a delay between the sending and the storage of
messages in the corresponding input buffers.

There are other works based in the idea ofwell formed conditions[13, 14, 7]. In [13] Busi et
al. present a first version of the formal model followed laterby Lanese et al. to describe relations
between choreographies and orchestration. In this work authors define the formal machinery to
describe these two kinds of systems and a conformance relation based on bisimulation. Here Busi
et al. do not deal with coordination or derivation problems.In [14], Busi et al. retake the same
formal machinery, but this time they include state variables. The work is focused on the problem
of maintaining the data consistency among the participantsin the orchestration. In [7] Bravetti
et al, following their former works of Lanese et al. [25] and Bravetti et al. [8], study whether it
is possible to substitute a service by another one keeping all the properties of the composition.

To a lesser extent, there are also some related works about translating choreography and
orchestration languages that use formal models: Valero et al. [35] define a Petri net approach that
maps a subset [36] of WS-CDL to a Petri net model for analysis purposes, and Yeung [40] defines
a mapping from WS-CDL and BPEL4WS into CSP, providing a formal approach to verifying the
behavior of collaborating web services.

Finally, we compare our proposal with works in the domain of communication systems and
reactive systems in general that address similar problems and use related formalizations. In [1]
and [3], Alur et al. and Baker et al., respectively, study theproblem of whether a given model
of a distributed system, described as a whole, can be realized or not. On the contrary, we are
not concerned about the realizability itself because we areassuming that additional coordination
messages can be added to each involved party (in our case, services), and the addition of these
messages allows us to realizeanysystem described in our choreography formalism. In [3], the
authors consider the automatic pathology resolution, but no algorithm or systematic method to
solve pathologies is given indeed. Moreover, under the semantics they assume, some pathologies
cannot be solved. In [20] Gotzhein and Bochmann present a method to automatically derive the
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behavior of each party from the model of the distributed system. Authors make some assumptions
about the communication medium: Separate input FIFO queuesfor each source are assumed, and
the order of messages is preserved as the protocol states, i.e., message delays are not considered.
In [5] local and non-local choices are discussed by Ben-Abdallah and Leue, but only the detection
of problems in the system description is concerned, not the synthesis of the behavior of parties
in such a way that these problems do not appear. In [21] the synthesis problem is considered by
Gouda and Yu, but distributed systems can have only two parties, which strongly eases the task
of providing a proper coordination between all existing parties.

In [17] Castejon et al. study system pathologies and informally present some ways to solve
them. Though no derivation algorithm or systematic method is given, an interesting contribution
here is the classification of realizability problems from the point of view of each composition
operator. The operators under consideration are those usedin UML 2.0 collaborations, activity,
and interaction diagrams, that is: sequential composition, alternative composition, interruption,
and parallel composition. Though this model is different from our FSM-based model, most of
pathologies identified in [17] apply to any kind of distributed system, so they apply to models
defined in our languages too. Next we discuss them.

Thesequential compositionoperator is prone to two kind of errors: causality and race con-
ditions. Thecausality is broken when the expected sequence of interactions is not preserved
in a system, that is, some action overtakes another one in an undesirable way. This problem is
solved in our derivation algorithms by not letting a serviceevolve to the following step until the
whole system has been aligned to do so. In the centralized derivation for the semantics without
messages delays, a service may be several steps delayed withrespect to the orchestrator, but all
services are required to reach the current step when they areinvolved in the current step indeed.
In the centralized derivation for the semantics with delays, services are required to reach the
same step as the orchestrator (in particular, the orchestrator does not evolve further until they
do). Similarly, in the decentralized derivation, all services are required to coordinately evolve to
each new step (under both semantics).

On the other hand, arace conditionsproblem appears if messages are sent to addressees in
some order, by they are received by these addressees in a different order. This problem may occur
only if the delayed messages semantics is considered. In this case, messages of services derived
by our derivation algorithms can reach their destination ina different order as they were sent.
However, this does not disrupt the correct ordering in whichtransitions are actually executed.
Let us suppose that serviceA sends messagex toB and nextA sendsy toB too, butB receives
y beforex. Note that, under the delayed messages semantics, both of our derivation algorithms
produce services where each message has its owntype. This is equivalent to having several
buffers, one for each message kind. In our example, serviceB has a buffer for messagesx and
another one for messagesy. Thus, even ify is received first andx is received next, serviceB
will be able to takex from its buffer beforey if it is required. In particular, if serviceB is in
a state where it canonly processx, it will be able to do so. Next, if it reaches a state where
it can only processy, it will be able to do so too. Thus, serviceB may be designed in such a
way that messagex will be processed(i.e. taken away from its buffer to trigger some transition
depending on that message) beforey regardless of whetherx is received beforey or not. If the
choreography requires thatx is sent and processedbeforey indeed, then the conditions required
for achieving sending and processing conformance are preserved in this example. This idea is
exploited in the derivation algorithms. By properly defining the messages that can be processed
at each state, and not mixing messages involving two consecutive choreography steps, services
correctly face the potential reception of messages in a different order as they were sent.
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Thealternative composition, specified by the choice operator, describes alternatives between
one or more paths. For this operator, in [17] two sources of problems are identified: the decision-
making process and the choice-propagation process. Regarding thedecision-making process, au-
thors define some choosing components based on the conditions associated with the alternatives.
As it was mentioned in the previous section, our FSM-based model does not explicitly represent
the localization of local/external information, variables, or guards enabling/disabling transitions
according to variable values. In the centralized derivation, the orchestrator has omniscient ca-
pabilities, so it centralizes all information affecting decisions in the system and it autonomously
decides which alternative is taken next. In the decentralized derivation, the decision-making pro-
cess is based on a mixture between a classical token ring and aresponsibility chain. We assume
that thechoosing componentsare, in our framework, themessage sendersof each alternative
choice. A token ring, where each participant is able to choose either some of the choices where
it is the sender, or pass this responsibility to the next service in the ring, is created. Thus it is
implicitly assumed that, when each potential sender receives the token, it has the information
required to decide whether it will take one of its choices or it will pass the decision to the next
potential sender. As mentioned in the previous section, if some information had to be received
by these potential senders before choosing, then the choreography designer would have the re-
sponsibility of adding some messages before the choice, from services owning this information
to these potential senders, to conduct each sender to an appropriate state where it will, or will not,
be able make each choice next. Alternatively, the required information to make choices could be
external, such as external events. In this case, we may adopt the modifications proposed in the
previous section: We enable the repetition of decision-making processes in those states where
decisions of services might depend on external events that could be delayed. The dependance
of models on local information and external events will beexplicitly represented in our future
EFSM-based models.

The second problem with alternative composition identifiedin [17] is thechoice-propagation
process. In our framework, choices are propagated to services by using control messages gen-
erated by the orchestrator (in the centralized derivation)or by the service that eventually took
the choice (in the decentralized derivation). Note that there do not existorphanmessages (i.e.
messages that are sent and never processed) in any of the derivations: At each step, all services
are required to process the choice notification messages they receive before continuing (note that
there is onlyonechoice taken in each step), so they are necessarily processed by the correspond-
ing addressees.

Two operators considered in [17], but not taken into accountin our proposal, are theinterrup-
tion and theparallel composition. Regarding the interruption, we have not explicitly introduced
it in our model because this notion is not specifically identified in the choreography and orches-
tration languages motivating our models, WS-CDL and WS-BPEL.Still, these languages allow
designers to specifically denote that some behaviors are triggered if some exceptional situations
are detected. In our models, exceptional possibilities canbe denoted as any other possibility, just
by adding a new non-deterministic choice to denote this possibility. The reaction to this choice
can be defined by attaching an appropriate message to the transition (e.g. an error or alert mes-
sage) and/or conducting it to an appropriate state. Regarding the parallel composition, there is
no explicit operator in our language to denote the parallel execution of several processes inside
a given service. Let us note that, in many classical semantical approaches, it is assumed that a
parallel execution is equivalent choosing among all possible interleaved executions of all parallel
processes. In this specific case, the parallel operation is just a syntactic sugar, so it can be trivially
added to our language without modifying the current semantics.
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8. Conclusions and future work

In this paper we have presented a formal method to automatically extract a system of services
from a given choreography, in such a way that the derived system conforms to the choreogra-
phy. This method provides web service designers with a way toautomatically construct early
prototypesof services from a given choreography. These prototypes canbe used to study their
properties, as well as to serve as a kind of early (correct) implementation that can be refined in
order to build the final implementation.

Instead on focusing on those choreographies where the natural projection works, our frame-
work produces choreography-compliant sets of services even in cases where the natural projec-
tion does not work. This is achieved by adding some additional messaging to control branching
and races issues. As we have shown in the examples of the Section 4, elections in choreography
branching points may involveseveralservices, not just one, so imposing some coordination be-
tween these services is required, and this coordination is not provided by the natural projection.
Two derivation methods, one of them based on an orchestratorservice and the other one yielding
a decentralized system, are presented. For each method, we consider two alternatives: Mak-
ing the system conform with respect to instants where messages are sent, or making it conform
with respect to all proposed criteria. This distinction is motivated by the use ofasynchronous
communication, where the times when messages are sent and the times when they are processed
may differ. We also consider two possible interpretations of asynchrony: One where the or-
der in which messages are sent is preserved in destination input buffers, and another one where
messages can be mixed up in destination input buffers. Centralized and decentralized derivation
algorithms are presented for both interpretations.

Languages for defining models of orchestrations and choreographies, based on extensions
of finite state machines with buffers, have been presented, and we have defined some formal
semantic relations where, in particular, sending traces are distinguished from processing traces,
and the suitability of a service for a given choreography maydepend on the activities of the rest
of services it will be connected with. The proposed framework is illustrated with several toy
examples and a small case study.

As future work, we will study methods to reduce the number of additional messaging we
have to add to derived services in order to control branchingand races issues. Let us note that
this goal can be considered at the services level, as we have done in this paper, or, alternatively,
at the choreography level. In the latter case, we could rephrase the goal as follows: We wish to
study what is the minimum amount of additional messaging we have to add to a givenchore-
ography, such that a simple natural projection of the augmented choreography would lead to
choreography-compliant set of services. Thus, the problemof reducing the additional messag-
ing can be considered at any of these dual levels. Besides, weare currently developing a tool
such that, given a choreography defined by (a subset of) WS-CDL, it transforms it into the kind
of choreography models considered in this paper, next it automatically extracts service models
according to the algorithms proposed in this paper, and finally it transforms these models into
WS-BPEL. Let us note that this tool will, in turn, be useful to reduce the number of additional
control messages in our derived systems and improve their efficiency, because it will allow to
easily experiment with alternative coordination strategies. In particular, we wish to develop a
derivation method taking advantage of the main derivation trends, depending on the applicability
of each one in each case: a) natural projection if "well-formedness" conditions hold; b) central-
ized derivation if (a) is not possible but all required information to take a choice could be owned
by a single service; and c) decentralized derivation if (b) is not possible, so a set of services must
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coordinate, according to local information, to determine the branch to choose. Finally, we wish
to introduce data variables and time in our modelling languages by using a kind ofextended finite
state machines(EFSMs) with time as core model, instead of FSMs, as previously explained in
detail in Section 6.
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Appendix: Proofs

Proof of Theorem4.3

Let us note that ifS conff′ C then for allconfx ∈ {conf′
s,conf

′
p, conf

′,conffs
′,

conffp
′, conff′} we haveS confx C, so we will just proveS conff′ C. According to defini-

tions 3.1 and 4.1, this is equivalent to proving that we haveComp({σM |σ ∈ prcTraces(S)}) =
Comp(traces(C)) andComp({σM |σ ∈ sndTraces(S)}) = Comp(traces(C)).

Let us begin by provingComp({σM |σ ∈ prcTraces(S)}) = Comp(traces(C)). In
particular, let us start by proving that ifσ ∈ Comp({σM |σ ∈ prcTraces(S)}) thenσ ∈
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Comp(traces(C)). The path closureσ can be either finite or infinite. Let us consider that it
is finite. Letσ consist of[(snd1, i1, proc1), . . . , (sndm, im, procm),stop] as well as all of its
prefixes. We will prove that all of these traces are intraces(C), which will imply thatσ is in
fact a complete path closure oftraces(C).

Let c1 be the initial configuration ofS andα = [(snd1, i1, proc1), . . . , (sndr, ir, procr)] ∈
σ. Since this sequence denotes a execution ofS, there existk ≥ r consecutive evolutions of
S following the form(c1, snd

′
1, i

′
1, proc

′
1, o

′
1, adr

′
1, c2), (c2, snd

′
2, i

′
2, proc

′
2, o

′
2, adr

′
2, c3), . . . ,

(ck, snd
′
k, i

′
k, proc

′
k, o

′
k, adr

′
k, ck+1) such that, if the natural valuesa1 < . . . < ar denote all

consecutive indexes of inputs belonging toM in the previous sequence (that is,l ∈ {a1, . . . , ar}
iff i′l ∈ M ) then [(snd′a1 , i

′
a1 , proc

′
a1), . . . , (snd

′
ar , i

′
ar , proc

′
ar )] = [(snd1, i1, proc1), . . . ,

(sndr, ir, procr)].
Let us note that, for alla1 ≤ aq ≤ ar, we have thatcaq+1 denotes the configuration ofS

after processing the inputi′aq in the previous sequence of consecutive evolutions. Letcaq+1 =

((u1aq+1, b
1
aq+1), . . . , (u

n+1
aq+1, b

n+1
aq+1)). According to the definition ofS, the last pair ofcaq+1,

i.e. (un+1
aq+1, b

n+1
aq+1), denotes the configuration of the orchestrator service. By the construction of

S from C, the names of states of each service inS are taken exactly from the names of states
in C. In particular, for each statesq of C, in orchestrator(C) we have a statesq, as well
as a statesqpi for all 1 ≤ i ≤ n + 1 and allp less than or equal to the number of transitions
leavingsq in C. Let us renamesin (the initial state ofC) by s1. LetP denote the property that,
for all a1 ≤ aq ≤ ar, there existq − 1 statess2, . . . , sq+1 of C andq consecutive evolutions
(s1, i

′
a1 , snd

′
a1 , proc

′
a1 , s2), . . . , (sq, i

′
aq , snd

′
aq , proc

′
aq , sq+1) in C such that we have:

(a) (configuration of the orchestrator)For all 1 ≤ h ≤ q, let ph be the ordinal of the transi-
tion (sh, i

′
ah
, snd′ah , proc

′
ah
, sh+1) in the set of all transitions from statesh in C. Then,

un+1
aq+1 = sqpqj for some1 ≤ j ≤ n+ 1 andbn+1

aq+1 = [ ].

(b) (configuration of derived services that have already been informed by the orchestrator
about where to go in this step)For all1 ≤ g ≤ j − 1 we haveugaq+1 ∈ {se, sepe |1 ≤ e ≤

q} ∪ {s′qpq , sq+1}. Moreover, letf be such thatugaq+1 = sf or ugaq+1 = sf−1pf−1
. Then,

bgaq+1 = [(orc, af pf ), (orc, af+1 pf+1
), . . . , (orc, aq pq )] (note that iff = q + 1 then this

buffer is empty).

(c) (configuration of derived services that have not been informed by the orchestrator yet
about where to go in this step)For all j ≤ g ≤ n we haveugaq+1 ∈ {se, sepe |1 ≤ e ≤

q}. Moreover, letf be such thatugaq+1 = sf or ugaq+1 = sf−1pf−1
. Then,bgaq+1 =

[(orc, af pf ), (orc, af+1 pf+1
), . . . , (orc, aq−1 pq−1

)].

Let us note that this propertyP would imply, in particular, that[(snd′a1 , i
′
a1 , proc

′
a1), . . . ,

(snd′ar , i
′
ar , proc

′
ar )] ∈ traces(C), that is equal to[(snd1, i1, proc1), . . . , (sndr, ir, procr)]

∈ traces(C), as it is required.
We proveP by induction overq. We takeq = 1 as anchor case. The first message belonging

toM that is processed inS is i′a1 . This message is sent bysnd′a1 and processed byproc′a1 . By
the construction ofS from C, a service ofS sends a message only after the orchestrator requests
to do so. Moreover, the orchestrator requests a service to send a message to another exactly as
it is defined in one of the transitions leavings1 in C. Thus, there exists a states2 of C such that
(s1, i

′
a1 , snd

′
a1 , proc

′
a1 , s2) is an evolution ofC. Let this evolution be thep-th one leavings1 in C.

By the construction ofS, the state of the orchestrator right after the serviceproc′a1 processesi′1
41



must bes1pj for some1 ≤ j ≤ n+1 (note that the orchestrator cannot go beyonds1p n+1 before
proc′a1 sends a messagebf to it). Moreover, at that moment no service has sent a messageto the
orchestrator yet, so the input buffer of the orchestrator is[ ]. Thus, we haveP (a). Regarding
(b), all services that have already been asked by the orchestrator for taking thep-th transition can
be in two configurations: either they have already processedthe pair(orc, a1p) from their input
buffer, and thus they are in eithers1p or s2, or they have not, and thus they are ins1. In both
cases, condition (b) is preserved. Regarding (c), servicesthat have not been notified to take thep
transition are necessarily ins1, so (c) is fulfilled.

We consider the inductive case. By induction hypothesis, let us suppose that there exist
(s1, i

′
a1 , snd

′
a1 , proc

′
a1 , s2), . . . , (sq, i

′
aq , snd

′
aq , proc

′
aq , sq+1) transitions inC, un+1

aq+1 = sqpj

for some1 ≤ j ≤ n + 1, andbn+1
aq+1 = [ ]. Also by induction hypothesis, we assume that for

all 1 ≤ g ≤ n + 1 we have thatugaq+1 andbgaq+1 preserve conditions (b) and (c). Let us note

that, since we haveun+1
aq+1 = sqpj , the evolution(sq, i′aq , snd

′
aq , proc

′
aq , sq+1) is in fact thep-th

transition leavingsq in C. According to the construction ofS fromC, at statesqpj the orchestrator
can reach the statesqp n+1 without requiring any message from any other service. Atsqp n+1,
the orchestrator must process a messagebf from proc′aq to move to statesq+1. Let us note that,
right after the serviceproc′aq processes its message, it reaches a states′qp and sends a message
bf to the orchestrator. Thus, the input buffer of the orchestrator will eventually be[(proc′aq , bf )],
and thus it will be able to move tosq+1. Once the orchestrator reaches statesq+1, its input
buffer is empty again. Now we can prove the existence of a subsequent evolution inC and the
preservation of conditions (a), (b), and (c) as we did beforein the anchor case, though this time
we depart from statesq+1 and we process messagei′aq+1 (instead ofs1 andi′a1 , respectively).
The only significant difference lies in proving conditions (b) and (c). On the one hand, a service
that was in case (b) in stepq will be able to evolve into statesq+1 (if it did not do it before) by
processing all pairs stored in its input buffer (note that they are stored in the required order to do
so). On the other hand, a service that was in case (c) in stepq will receive from the orchestrator
an instruction to take thep-th transition in that step, and next it will be able to process it to move
to statesq+1 by processing all pairs stored in its input buffer, as in (b).Once the orchestrator
reaches statesq+1, it will start to tell all services what transition to take instepq+1. In particular,
the servicesnd′aq+1 will eventually take the required transition and next it will send the message
i′aq+1 to proc′aq+1. Hence, the serviceproc′aq+1 will eventually be able to process it. Let us note
that, at the time when serviceproc′aq+1 processes that message from a servicesnd′aq+1, some
services will have already been told by the orchestrator what transition to take next. Thus, any
service being in cases (b) or (c) in stepq will be again in any of these cases (b) or (c) in step
q + 1.

In this way we have proven propertyP, and we conclude that[(snd′a1 , i
′
a1 , proc

′
a1), . . . ,

(snd′ar , i
′
ar , proc

′
ar )] = [(snd1, i1, proc1), . . . , (sndr, ir, procr)] ∈ traces(C).

As we consider that the path closureσ is finite, we also have to prove[(snd1, i1, proc1), . . . ,
(sndm, im, procm),stop] ∈ traces(C). Let us see that, due to the construction ofS from C,
S can get stuck only if the orchestrator reaches a statest such that there is no outgoing transition
at st in C. Let us note that, if it is not the case, then the orchestratorwill be able to select a
transition and request all other services to take that transition. All services will add this request
to their input buffers, and eventually they will be able to take that transition (note that, according
toP (b) and (c), all services will own all messages required to evolve in their input buffers). Then,
the orchestrator will ask a service to send a message to another, the former service will eventually
do it, and the latter will eventually process it, thus allowing the orchestrator to continue. We
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conclude that, ifS can get stuck after executing[(snd1, i1, proc1), . . . , (sndm, im, procm)],
then we necessarily have[(snd1, i1, proc1), . . . , (sndm, im, procm),stop] ∈ C.

Let us suppose that the path closureσ is infinite. The property previously proved by induction
overq shows that,if a trace of lengthq can be executed byS, then it can also be executed byC.
Since this applies to traces of any size, all traces belonging to the infinite path closureσ can be
executed byC, and so we haveσ ∈ Comp(traces(C)).

Now we prove the inclusion of sets in the opposite direction,that is, we prove that ifσ ∈
Comp(traces(C)) thenσ ∈ Comp({σM |σ ∈ prcTraces(S)}). Again,σ can be either finite
or infinite. Let us suppose that it is finite, that is,σ consists of a trace[(snd1, i1, proc1), . . . ,
(sndm, im, procm),stop] and all of its prefixes. We prove that, for allα ∈ [(snd1, i1, proc1),
. . . , (sndr, ir, procr)] ∈ σ, we haveα ∈ {σM |σ ∈ sndTraces(S)}. As before, let us rename
sin (the initial state ofC) by s1. Sinceα ∈ σ, we know that there existr − 1 statess2, . . . , sr of
C such that(s1, i1, snd1, proc1, s2), . . . , (sq, ir, sndr, procr, sr+1) are consecutive evolutions
of C. Let P ′ be the property that, for all1 ≤ q ≤ r, there existb ≥ q consecutive evolu-
tions (c1, i′1, snd

′
1, proc

′
1, c2), . . . , (cb, i

′
b, snd

′
b, proc

′
b, cb+1) in S such that, for some natural

numbersa1 < . . . < aq, we have thata1, . . . , aq are the indexes of inputs in these evolutions
belonging toM (i.e. l ∈ {a1, . . . , aq} iff i′l ∈ M ) and for all1 ≤ g ≤ q we havei′ag = ig,

snd′ag = sndg, andproc′ag = procg. Moreover, letcb+1 = ((u1b+1, b
1
b+1), . . . , (u

n+1
b+1 , b

n+1
b+1 )).

Then, we have (a), (b), and (c) as stated before in propertyP after replacing all appearances of
aq by b (from now on, the resulting conditions will be denoted by (a)’, (b)’, and (c’)). Let us note
that the propertyP ′ would imply, in particular, thatα ∈ {σM |σ ∈ sndTraces(S)}.

We can proveP ′ by induction overq. Let q = 1 be the anchor case. Let us suppose that
(s1, i1, snd1, proc1, s2) is thep-th transition available inC from s1. By the construction ofS
from C, the orchestrator starts at states1 too, and it can move from this state to a states1p1. From
this state, it starts to ask the rest of services for taking the p-th available transition. Eventually,
the servicesnd1 will be asked for sendingi1 to proc1, it will do it, and proc1 will eventually
process it. Let(c1, i′1, snd

′
1, proc

′
1, c2), . . . , (cb, i

′
b, snd

′
b, proc

′
b, cb+1) be the evolutions taken

S until proc1 processesi1. We haveproc′b = proc1, i′b = i1, and for all evolutions before
(cb, i

′
b, snd

′
b, proc

′
b, cb+1) no message fromM is processed. Moreover, by using very similar

arguments as before when we consideredP, it is easy to see that all conditions (a)’, (b)’, and (c)’
are kept in configurationcb+1.

Let us consider the inductive case. Let us assume thatP ′ holds forq. After executing the trace
[(snd1, i1, proc1), . . . , (sndq, iq, procq)], the choreographyC is in statesq+1. Let us suppose
that (sq+1, iq+1, sndq+1, procq+1, sq+2) is thep-th available transition fromsq+1 in C. By the
construction ofS from C, from a configuration ofS fulfilling (a)’, (b)’, and (c)’ in theq-th step,
the orchestrator ofS can evolve and reach the statesq+1, where it will be able to take itsp-th
choice to reachsq+1 p 1. At this state, the orchestrator will start to ask the rest ofservices for
taking thep-th transition too. On the other hand, regardless of whetherthe servicesndq+1 was
in case (b)’ or (c)’ after theq-th step, it will be able to process the messages in its input buffer
until it reaches the statesq+1 too. Thus, it will eventually sendiq+1 to procq+1. Similarly, the
serviceprocq+1 will eventually process it. Letcb be the configuration ofS right beforeprocq+1

processesiq+1. There exists a configurationcb+1 such that(cb, iq+1, sndq+1, procq+1, cb+1) is
an evolution ofS. Now we can use similar arguments as inP to show that (a)’, (b)’, and (c)’
hold in cb+1.

Proving thatS gets stuck only ifC does so, and proving the inclusion of all traces inσ when
σ is infinite, requires similar arguments as well.
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Finally, we can proveComp({σM |σ ∈ sndTraces(S)}) = Comp(traces(C)) by us-
ing very similar arguments as before when provingComp({σM |σ ∈ prcTraces(S)}) =
Comp(traces(C)).

Proof of Theorem4.5

The structure of this proof is very similar to the proof of Theorem 4.3, so we will just point out
the differences with that proof. Sinceconffs impliesconf′

s, we just have to proveconffs , that
is, we have to proveComp({σM |σ ∈ sndTraces(S)}) = Comp(traces(C)). Let us start
by consideringComp({σM |σ ∈ sndTraces(S)}) ⊆ Comp(traces(C)). Compared to the
systemS constructed in Definition 4.2, the only difference of the systemS given in Definition 4.4
is that the acknowledgements of processing actions are substituted by acknowledgements of
sendingactions. In particular, it is the sender of each message, andnot the service responsible of
processing that message afterwards, the one that sends a messagebf to the orchestrator in order
to allow the orchestrator to go on with the next step. In orderto prove that all sending traces of
S belong toC, we can use an adaptation of the propertyP given in the proof of Theorem 4.3.
This adaptation just consists in consideringsendingtraces rather than processing traces. Since
the systemS of Definition 4.4 deals with sending traces exactly as the systemS of Definition 4.2
deals with processing traces, the adaptation of the property P and its three statements (a), (b),
and (c) to deal with sending traces is straightforward, and so is the adaptation of the proof by
induction overq. On the other hand, the adaptation of the propertyP ′ of Theorem 4.3 to prove
Comp(traces(C)) ⊆ Comp({σM |σ ∈ sndTraces(S)}) is also direct.

Proof of Theorem4.7

The general structure of this proof will be similar to the proof of Theorem 4.3. As we will
see, the main difference with that proof will lie in the way weprove that traces ofS andC belong
to each other, which will not be based on the state of the orchestrator (which does not exist in
this case) but in the relations between the states of all derived services.

Similarly to that proof, we just proveS conff′ C because it impliesS confx C for all
confx ∈ {conf′

s,conf
′
p, conf

′,conffs
′, conffp

′, conff′}. Again, we prove it by show-
ing that Comp({σM |σ ∈ prcTraces(S)}) = Comp(traces(C)) and Comp({σM |σ ∈
sndTraces(S)}) = Comp(traces(C)).

We start by provingComp({σM |σ ∈ prcTraces(S)}) = Comp(traces(C)). In partic-
ular, let us show that ifσ ∈ Comp({σM |σ ∈ prcTraces(S)}) thenσ ∈ Comp(traces(C)).
Let us assume that the path closureσ is finite. Then,σ consists of some trace[(snd1, i1, proc1),
. . . , (sndm, im, procm),stop] as well as all of its prefixes. We prove that all of these traces
belong totraces(C), which implies thatσ is a complete path closure oftraces(C).

Let c1 be the initial configuration ofS andα = [(snd1, i1, proc1), . . . , (sndr, ir, procr)] ∈
σ. Let us introduce the same notation as in the proof of Theorem4.3 to refer the configurations
traversed byS in α. Sinceα denotes a execution ofS, there existk ≥ r consecutive evolutions of
S following the form(c1, snd

′
1, i

′
1, proc

′
1, o

′
1, adr

′
1, c2), (c2, snd

′
2, i

′
2, proc

′
2, o

′
2, adr

′
2, c3), . . . ,

(ck, snd
′
k, i

′
k, proc

′
k, o

′
k, adr

′
k, ck+1) such that, if the natural valuesa1 < . . . < ar denote all

consecutive indexes of inputs belonging toM in the previous sequence (that is,l ∈ {a1, . . . , ar}
if and only if i′l ∈M ) then[(snd′a1 , i

′
a1 , proc

′
a1), . . . , (snd

′
ar , i

′
ar , proc

′
ar )] = [(snd1, i1, proc1),

. . . , (sndr, ir, procr)].
Note that, for alla1 ≤ aq ≤ ar, caq+1 denotes the configuration ofS after processing the

input i′aq in the previous sequence of consecutive evolutions. Letcaq+1 = ((u1aq+1, b
1
aq+1), . . . ,
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(unaq+1, b
n
aq+1)). According to the definition ofS, for all 1 ≤ g ≤ n we have that(ugaq+1, b

g
aq+1)

denotes the configuration of theg-th derived service, that isdecentral(C, idg). By the con-
struction ofS from C, the names of states of each service inS are taken from the names of states
in C. In particular, for each statest of C, we have a statest as well as some other states related to
t (stidontchoose, s

t
iwillchoose, etc) in all derived services. Let us recall that the initialstate ofC is

s1. LetQ denote the property that, for alla1 ≤ aq ≤ ar, there existq − 1 statess2, . . . , sq+1 of
C andq consecutive evolutions(s1, i′a1 , snd

′
a1 , proc

′
a1 , s

2), . . . , (sq, i′aq , snd
′
aq , proc

′
aq , s

q+1)
in C such that we have:

(a) (configuration of the servicedecentral(C, proc′aq )) Let idg = proc′aq . We haveugaq+1 =

sq+1 andbgaq+1 = [ ].

(b) (configuration of the servicedecentral(C, snd′aq )) Let idg = snd′aq . For all1 ≤ h ≤

q, let ph be the ordinal of the transition(sh, i′ah , snd
′
ah
, proc′ah , s

h+1) in the set of all
transitions from statesh in C where the sender issnd′ah . We haveugaq+1 = sqichoose′pq

and

bgaq+1 = [(proc′aq , ididit)].

(c) (configuration of the rest of services)Let 1 ≤ g ≤ n be such thatidg 6= proc′aq and
idg 6= snd′aq . Letd1 be the index of the last step where either (i)idg chose the transition to
be taken or (ii)idg was required to make the choice of either choosing one of its transitions
or notbeforereaching the service that actually made the decision in thatstep. Formally,
d1 is the maximum natural value with1 ≤ d1 ≤ q such that, for alld1 < e ≤ q, we have
that there does not existj such thatidg = ids

e

j , or it does butj > k wheresnd′ae = ids
e

k

(recall the definition of the list[ids1, . . . , id
s
hs
] at the beginning of Definition 4.6). Letd2 be

the index of the last step whereidg was the processor of the message. Formally,d2 is the
maximum natural value with1 ≤ d2 ≤ q such that, for alld2 < e ≤ q, we haveproc′ae 6=
idg. Letd = max(d1, d2). Then we haveugaq+1 = st∗ for somed ≤ t ≤ q, wherest∗ ∈ St,
andSt is the set of all states beginning byst (that is,st, stidontchoose, s

t
iwillchoose, etc). For

all 1 ≤ h ≤ q, let ph be defined as in (b). We also have< bgaq+1 >= [wt+1, . . . , wq−1],
where<bgaq+1> is the result of removing fromσ all pairs where the input does not follow
the formtakemychoicek for somek or ididit, and for allt + 1 ≤ y ≤ q − 1 we have
wy = (snd′ay , takemychoicepy ) orwy = (proc′ay , ididit).

This propertyQ imply, in particular, that[(snd′a1 , i
′
a1 , proc

′
a1), . . . , (snd

′
ar , i

′
ar , proc

′
ar )] ∈

traces(C), that is,[(snd1, i1, proc1), . . . , (sndr, ir, procr)] ∈ traces(C), as it is required.
We proveQ by induction overq. We takeq = 1 as anchor case. The first message belonging

to M that is processed inS is i′a1 . This message is sent bysnd′a1 and processed byproc′a1 .
By the definition ofS, a servicesnd′a1 of S sends a service only after (a) all services before
snd′a1 in the list of services capable to sending a message ats1 explicitly refuse to do so; and
(b) all services aftersnd′a1 have been notified who will make the decision (by propagatingthe
alreadychosensnd′a1

message and receivingchosencomplete from the last service). In particu-

lar, by the construction ofS from C, snd′a1 sendsi′a1 only if this can be done inC from states1.
Thus, there exists a states2 of C such that(s1, i′a1 , snd

′
a1 , proc

′
a1 , s

2) is an evolution ofC. Let
idg = proc′a1 be the service that processesi′a1 . Sinceca1+1 denotes the configuration ofS right
afterproc′a1 processesi′a1 , by the definition ofS we haveuga1+1 = s2 andbga1+1 = [ ] so we have
(a). Now, letidg = snd′a1 . Sinceproc′a1 has already processed the message,snd′a1 already sent
it, so by the definition ofS we observe thatuga1+1 = s1ichoose′p1

andbga1+1 = [(proc′a1 , ididit)]
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and we have (b). Finally, let1 ≤ g ≤ n be such thatidg 6= proc′a1 and idg 6= snd′a1 . The
servicesnd′a1 has not informed the serviceidg about what path it must take at this step (it starts
to do soafter it processes theididit message), so we haveugaq+1 = s1∗ for somes1∗ ∈ S1 and
<bgaq+1>= [ ] and we have (c).

We consider the inductive case. By induction hypothesis, let us suppose that there exist
(s1, i′a1 , snd

′
a1 , proc

′
a1 , s

2), . . . , (sq, i′aq , snd
′
aq , proc

′
aq , s

q+1) transitions inC and all services
at configurationcaq+1 preserve (a), (b), and (c). By the definition ofS, at states1ichoose′pq

the

servicesnd′aq starts to ask all the rest of services (butproc′aq , which was already asked) for
taking its choicepq, and it reaches statesq+1 when it finishes that task. Consequently, all of
these services add a pair(snd′aq , takemychoicepq ) to their input buffers. Note that, by (c), all
services can process the messages in their input buffers until they reachsq+1 as well; this implies
emptying their buffers indeed. Now, we reason similarly as in the anchor case. By the definition
of S, a serviceproc′aq+1

processes a messagei′aq+1
only after the servicesnd′aq+1

sends that
message to it. However, by the construction ofS from C, the systemS allows such a behavior
only if there exists a statesq+2 such that(sq+1, i′aq+1

, snd′aq+1
, proc′aq+1

, sq+2) is an evolution of
C. Right afterproc′aq+1

processesi′aq+1
, by the construction ofS from C we have thatproc′aq+1

reaches the destination state of the evolution(sq+1, i′aq+1
, snd′aq+1

, proc′aq+1
, sq+2) of C, that

is sq+2, and its buffer is empty, so we have (a). Besides, right afterproc′aq+1
processes the

message, the servicesnd′aq+1
is in statesq+1

ichoose′pq+1

and its input buffer is[(proc′aq+1
, ididit)],

so we have (b) as well. Regarding (c), each service not being either the processor or the sender
of the message is in any of the following cases: (i) in stepq + 1 it had to choose not to take
any of its transitions (before givingproc′aq+1

the chance to actually take one of its transitions);

and (ii) it did not. In case (i), it will be at some statesq+1
∗ ∈ Sq+1 and its input buffer will be

empty. In case (ii), let us consider the possible cases of theservice in the previous stepq. If it
was the processor at that step, then its state will besq+1 and its input buffer will be empty, thus
fulfilling condition (c) at stepq + 1. If it was the sender at stepq, then it could have processed
the ididit message from the processor or not; in both cases, it will fulfill condition (c) at step
q + 1. Finally, if it was neither the processor nor the sender, then the sender added a message
(snd′aq , takemychoicepq ) to its input buffer and it will fulfill (c) as well.

In this way we prove propertyQ, and we can conclude that[(snd′a1 , i
′
a1 , proc

′
a1), . . . ,

(snd′ar , i
′
ar , proc

′
ar )] = [(snd1, i1, proc1), . . . , (sndr, ir, procr)] ∈ traces(C).

We are considering that the path closureσ is finite, so we also have to prove[(snd1, i1, proc1),
. . . , (sndm, im, procm),stop] ∈ traces(C). Let us see that, due to the construction ofS
from C, S can get stuck only if services reach a statest such that there is no outgoing transition
atst in C. Let us suppose that it is not the case, that is, there is an outgoing transition fromst in C
where a servicesnd sends a messagem to a serviceproc. By the construction ofS from C, from
statest there is at least one service capable of sending a message:snd can sendm toproc indeed.
Let us see that some service ofS will be able to process one of the available transitions. Services
can refuse to take one of their transitions until the last service capable to take one of its transi-
tions is reached. This last service is forced to take one of its transitions. So, one of the services
will necessarily choose to take one of its transitions (say,one wheresnd′ sendsm′ to proc′).
After snd′ sendsm′, it will wait for the acknowledgement fromproc′. By Q (a), (b), and (c), the
configurations of services guarantee that the serviceproc′ will eventually be able to processm′

and send the acknowledgement tosnd′, which will then ask all the rest of services for taking its
choice. The rest of services will eventually be able to take that choice. In order to see this, let us
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note that there is no risk that a service receives atakemychoice message from the serviceserv′

choosing the transition at stepl + 1 beforeit receives a messagetakemychoice from a service
serv choosing the transition at stepl. Note thatserv′ begins to sendtakemychoice messages
only after (a) all services beforeserv′ have refused to take one of their choices in stepl+1; and
(b) the last service sends achosencomplete message toserv′, which implies that all services
afterserv′ have received analreadychosen message fromserv′. In particular, the serviceserv
will be able to do (a) or (b) only after it has sentall of its takemychoice messages. So, the
first takemychoice message sent byserv′ is sent after the lasttakemychoice message sent by
serv is sent. We conclude that all services will be able to processthe takemychoice messages
in the right order, and thus they will be able to reach the destination of the transition ofC under
simulation. We conclude thatS does not get stuck as long asC allows to execute a subsequent
transition. Thus, ifS can get stuck after executing[(snd1, i1, proc1), . . . , (sndm, im, procm)],
then we necessarily have[(snd1, i1, proc1), . . . , (sndm, im, procm),stop] ∈ C.

We consider thatσ is infinite. The propertyQ shows that,if a trace of lengthq can be executed
by S, then it can also be executed byC. Since this applies to traces of any size, all traces belong-
ing to the infinite path closureσ can be executed byC, and so we haveσ ∈ Comp(traces(C)).

We consider the inclusion of sets in the opposite direction,that is, we prove that ifσ ∈
Comp(traces(C)) thenσ ∈ Comp({σM |σ ∈ prcTraces(S)}). Again,σ can be either finite
or infinite. Let us suppose that it is finite, that is,σ consists of a trace[(snd1, i1, proc1), . . . ,
(sndm, im, procm),stop] as well as all of its prefixes. We prove that, for all traceα ∈
[(snd1, i1, proc1), . . . , (sndr, ir, procr)] ∈ σ, we haveα ∈ {σM |σ ∈ sndTraces(S)}. Let
us recall again that the initial state ofC is s1. Sinceα ∈ σ, we know that there existr − 1 states
s2, . . . , sr of C such that(s1, i1, snd1, proc1, s2), . . . , (sq, ir, sndr, procr, s

r+1) are consecu-
tive evolutions ofC. LetQ′ be the property that, for all1 ≤ q ≤ r, there existb ≥ q consecutive
evolutions(c1, i′1, snd

′
1, proc

′
1, c2), . . . , (cb, i

′
b, snd

′
b, proc

′
b, cb+1) in S such that, for some nat-

ural numbersa1 < . . . < aq, we have thata1, . . . , aq are the indexes of inputs in these evolutions
belonging toM (i.e. l ∈ {a1, . . . , aq} iff i′l ∈ M ) and for all1 ≤ g ≤ q we havei′ag = ig,

snd′ag = sndg, andproc′ag = procg. Moreover, letcb+1 = ((u1b+1, b
1
b+1), . . . , (u

n+1
b+1 , b

n+1
b+1 )).

Then, we have (a), (b), and (c) as stated before in propertyQ after replacing all appearances of
aq by b (from now on, the resulting conditions will be denoted by (a)’, (b)’, and (c’)). Let us note
that the propertyQ′ would imply, in particular, thatα ∈ {σM |σ ∈ sndTraces(S)}.

Let us proveQ′ by induction overq. We takeq = 1 as anchor case. Let us suppose that
(s1, i1, snd1, proc1, s

2) is thep-th transition available inC from s1. By the construction ofS
from C, all services start ats1. The first service capable of sending a message ats1 decides
whether it will take some of its transitions or it will refuseto do so and it will let the next
service decide. In this way, all services capable of taking some of their transitions will have
the chance to choose one of their transitions until some of them does so. One of these services
is snd1, which can decide to take the transition where it sendsi1 to proc1. After it receives a
chosencompletemessage from the last service, it sendsi1 toproc1, proc1 processes it and sends
an acknowledgement tosnd1. Let (c1, i′1, snd

′
1, proc

′
1, c2), . . . , (cb, i

′
b, snd

′
b, proc

′
b, cb+1) be

the evolutions takenS until proc1 processesi1. We haveproc′b = proc1, i′b = i1 and, for
all evolutions before(cb, i′b, snd

′
b, proc

′
b, cb+1), no message fromM is processed. Moreover, by

using very similar arguments as before when we consideredQ, it is easy to see that all conditions
(a)’, (b)’, and (c)’ are kept in configurationcb+1.

Let us consider the inductive case. Let us assume thatQ′ holds forq. After executing the trace
[(snd1, i1, proc1), . . . , (sndq, iq, procq)], the choreographyC is in statesq+1. Let us suppose
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that (sq+1, iq+1, sndq+1, procq+1, s
q+2) is thep-th available transition fromsq+1 in C. By the

construction ofS from C, at a configuration ofS fulfilling (a)’, (b)’, and (c)’ in theq-th step, the
first service capable of sending a message fromsq+1 can evolve and reach the statesq+1. Once
it reachessq+1, it can refuse to take any of its transitions or let the next service to decide, which
in turn will eventually be able to reachsq+1 and decide, and so on until the service responsible
to either taking one of its transitions or refusing to do so issndq+1. This servicesndq+1 can
actually choose to sendiq+1 to procq+1. The serviceprocq+1, which is also able to eventually
reachsq+1, will be able to processiq+1. Let cb be the configuration ofS right beforeprocq+1

processesiq+1. There exists a configurationcb+1 such that(cb, iq+1, sndq+1, procq+1, cb+1) is
an evolution ofS. Now, we can use similar arguments as we did in the inductive case ofQ to
show that (a)’, (b)’, and (c)’ hold incb+1.

Proving thatS gets stuck only ifC does so, and proving the inclusion of all traces inσ when
σ is infinite, requires similar arguments as well.

Finally, we can proveComp({σM |σ ∈ sndTraces(S)}) = Comp(traces(C)) by us-
ing very similar arguments as before when provingComp({σM |σ ∈ prcTraces(S)}) =
Comp(traces(C)).

Proof of Theorem4.9

As it happened before with the proofs of theorems 4.3 and 4.5,the structure of this proof is
very similar to the proof of Theorem 4.7. Therefore, we will just focus on showing the differ-
ences with that proof. Sinceconffs impliesconf′

s, we just have to proveconffs , that is, we
have to proveComp({σM |σ ∈ sndTraces(S)}) = Comp(traces(C)). Let us start by con-
sideringComp({σM |σ ∈ sndTraces(S)}) ⊆ Comp(traces(C)). Compared to the system
S constructed in Definition 4.6, the only difference of the systemS given in Definition 4.8 is
that the acknowledgements of processing actions aredeleted. In particular, no service sends any
messageididit to the service that chooses the transition to be taken and next sends a message
belonging toM to another service. In order to prove that all sending tracesof S belong toC,
we can use an adaptation of the propertyQ given in the proof of Theorem 4.3. This adaptation
just consists in consideringsendingtraces rather than processing traces. It is worth to point out
that the sender of each message belonging toM does not begin to ask the rest of services for
following its pathuntil it has sent its message to the destination service. Let us note that the
service that will send a message belonging toM in the nextstep needs to reach the next state
to do so, so it is forced to wait until the service of the previous step tells it which transition
it must take. Thus, the next sending event will necessarily happen after the previous message
has been sent indeed. The adaptation of the propertyQ and its three statements (a), (b), and
(c) to deal with sending traces is straightforward, and so isthe adaptation of the proof by in-
duction overq. On the other hand, the adaptation of the propertyQ′ of Theorem 4.7 to prove
Comp(traces(C)) ⊆ Comp({σM |σ ∈ sndTraces(S)}) is also direct.

Proof of Theorem5.4

Due to the similarities between the adapted centralized derivation given in Definition 5.3
and the previous centralized derivation given in Definition4.2, we can compose this proof as
an adaptation of the proof of Theorem 4.3 – taking into account the differences between the
original operational semantics, given in Definition 2.4, and the semantics that apply here, given
in Definition 5.2. It is easy to adapt the proof of Theorem 4.3 to see that thenewderivation
holds under theold operational semantics. In particular, let us note that the use of additional
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control messages in the new derivation just constraints further the evolution of the system. Let us
analyze step by step the behavior of the derived system underthenewsemantics where messages
can be delayed – and thus mixed up in input buffers. First, letus consider how the system
executes itsfirst choreography transition, following some transition available at the first state of
the choreography. We distinguish the following points in the execution of this first choreography
transition:

(1) The system is in its initial configuration. All services and the orchestrator are in their initial
states. Besides, the input buffers of all services are necessarily empty, and the input buffer
of the orchestrator is empty too. Moreover, we also haveD = ∅.

(2) From moment (1), the system will eventually reach a configuration where the orchestrator
has sent theajp messages to all services. This occurs after the orchestrator chooses one of
the available transitions, and next takes all transitions where it sendsajp to announce its
choice to the rest of services (let us note that the orchestrator does not need any message
from any other service to take all of these transitions). Letmoment (2) denote the execution
point where this has just happened. In this point, we can see that all serviceidi must be in
one of the following cases:

(2.1) The message(orc, ajp) has not been received byidi. In this case,(orc, ajp, idi) ∈ D.

(2.2) Serviceidi has already receivedajp, but idi has not sent the messagebi to orc yet.
In this case, the input buffer ofidi must be[(orc, ajp)].

(2.3) Serviceidi has already sent messagebi to the orchestrator, but the orchestrator has
not received it yet. Then,(idi, bi, orc) ∈ D and the input buffer ofidi is [ ] again.

(2.4) Serviceidi has already sent message tobi to the orchestrator, and the orchestrator
has received it. Then,(idi, bi) belongs to the input buffer of the orchestrator, and the
input buffer of serviceidi is [ ] again.

(3) From moment (2), the system will eventually reach a configuration where all services have
sent the messagesbi to the orchestrator. Due to the construction of the derived system, this
implies that the service responsible of sending the messageat the current choreography
transition has done so, and that the service responsible of processing it has done so as
well. Let moment (3) denote the moment where all of these events have just happened.
Given the four possible cases of moment (2), we can see that the input buffer of allidi
must be[ ]. Besides, either(idi, bi) belongs to the input buffer of the orchestrator, or
(idi, bi, orc) ∈ D.

(4) From moment (3), the system will eventually reach a configuration where the orchestrator
has processed the messagebi from all services. Though messagesbi can be received by
the orchestrator in any order, let us note that all of these messagesb1, . . . , bn belong to
different messagetypesof the orchestrator, so they do not block each other in the input
buffer and the orchestrator can take the messagebi of each required service from the input
buffer as long as it has received it, regardless of whether other messagesbj from different
services have been received before in the input buffer or not. Let moment (4) denote the
execution point where all the aforementioned events have just happened. In this case, the
input buffers of all services and the orchestrator are empty, andD = ∅. Moreover, it is
easy to see that all services and the orchestrator must be in astate having the same name
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as the destination of the choreography transition that has been executed by the system of
services.

At moment (4), the system fulfills the same conditions as in moment (1) regarding input
buffers and the state of the setD, though all services and the orchestrator are in the next state of
the choreography. It is easy to prove, by induction over the number of choreography transitions
taken, that after executing any number of choreography transitions and reaching moment (4),
the system will necessarily reach moments (2), (3), and (4) as described above for the next
choreography transition, and this can be said foranychoreography transition that can be taken
from the previous choreography state. Thus, the system willbe able to make services perform
all transitions required by the choreography. By using similar arguments as in the proof of
Theorem 4.3, we have that the system of services conforms to the choreography with respect to
all proposed relations.

Proof of Theorem5.5
Since the derivation used in this result is the derivation presented in Definition 4.6, we can

construct this proof as an adaptation of the proof of Theorem4.7, taking into account the differ-
ence between the operational semantics applying in that former case, given in Definition 2.4, and
the semantics used here, given in Definition 5.2. Following the same idea as in the proof of The-
orem 5.4, let us analyze step by step the behavior of the derived system under the new semantics
where messages can be delayed and thus mixed up in input buffers. First, let us consider how
the system executes itsfirst choreography transition, following some transition available at the
first state of the choreography. We distinguish the following points in the execution of this first
choreography transition. This time, our analysis step by step will go a little bit further than the
execution of the first transition.

(1) The system is in its initial configuration. All services are in their initial states, and their
input buffers are necessarily empty. Moreover, we also haveD = ∅.

(2) From moment (1), the system will eventually reach a configuration where some service
idy decides that it will choose some of the transitions where it is the sender. It will do
it by sending a messagealreadychoseny to the next serviceidz in the decision-making
sequence. Let moment (2) denote the execution point where this has just happened. That
is, analreadychoseny message was sent byidy to idz in the last system transition that
has been executed before moment (2). At this point, we can seethat the input buffers
of all services must be[ ], even those of services beforeidy in the sequence (which
must have already processed their messages regarding the decision-making; otherwise the
decision-making would not have reachedidy). The input buffers ofidy, idz, and the rest
of services that have not participated yet in the sequence are also equal to[ ]. Besides,
D = {(idy, alreadychoseny, idz)}.

(3) From moment (2), the system will eventually reach a configuration where the last service
of the decision-making sequence, sayidf , sends a messagechosencomplete to idy. Let
(3) denote the moment where this just has happened. Let us note that idy is blocked
until it receives that message, so the action of announcing the choice taken byidy to
all services (by sending messagestakemychoicej) has not started yet. It is easy to see
that, at this point, the input buffers of all services must be[ ], and we must haveD =
{(idf , chosencomplete, idy)}. Besides, for some choreography statesq, the state ofidy
is sqiwillchoose, and the state of the rest of services issqidontchoose.
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(4) From moment (3), the system will eventually reach a configuration where serviceidy
has sent the messagetakemychoicej , as well as the messagem required by the selected
choreography transition, to its addressee, sayida, and nextida has sentididit to idy. Let
us note that, since messages can be mixed up,ida could receivem beforetakemychoicej .
However, once it has received both messages, it will be able to continue, sincem and
takemychoicej are of different types and each one does not block the visibility of the
other in the input buffer after both are stored in the buffer.Besides, let us note that no
other service has done anything since moment (3) to this point, because onlyidy and
ida are involved in the aforementioned messages exchanges and the rest of services are
blocked. Let (4) denote the moment where all of this has just happened. It is easy to see
that idy must be in some statesqichoose′

j
andida must be in some states′j , and the input

buffers of both services are equal to[ ]. Moreover, input buffers of the rest of services are
[ ] as well, and we haveD = {(ida, ididit, idy)}.

(5) From moment (4), the system will eventually reach a statewhereidy has sent the mes-
sagestakemychoicej to all services that had not received it yet at moment (4) (these
services are all butida). Let (5) denote the precise moment where this happens. Some
services might have already processed the messagetakemychoicej , and thus they would
have reached a state of the forms′j , while some other services might not have done so (in
this case, their correspondingtakemychoicej messages would belong to the set of not-
yet received messagesD). Moreover, services that have already reacheds′j could have
gone beyond and they could have started to participate in thedecision-making of thenext
choreography transition. Moreover, some serviceidy′ could already have taken the de-
cision to take the choice of the next transition, and it couldhave already propagated its
decision of choosing to the next service of the decision-making sequence. However, we
know for sure that serviceidy′ has not received the messagechosencomplete allowing it
to go further, because, as we said before, we are assuming that moment (5) happens right
after idy has senttakemychoicej to all services. Thus,idy hasnot participated in the
decision-making of the next choreography transition (recall that all services are required
to do so beforechosencomplete can be sent). Moreover, services that have not processed
their takemychoicej messages fromidy have not been able to participate in that decision-
making either. For each of these services, atakemychoicej message could be mixed up in
its input buffer with a message used to participate in the decision making of the next chore-
ography transition (idontchoose or alreadychoseny′ ). However, even iftakemychoicej
is receivedlater thanidontchoose or alreadychoseny′ , it can be processed by the service
when it is received, because both kind of messages belong to different types.

(6) From moment (5), the system will eventually reach a configuration where the last ser-
vice participating in the decision-making of the next choreography transition, sayidf ,
sends a messagechosencomplete to idy′ . This must happen because, from moment
(5), all services that had not processed theirtakemychoicej message at moment (5) will
be able to do so, so all services will eventually be able to participate in the decision-
making of the new choreography transition. Let (6) denote the precise moment when
idf sendschosencomplete to idy′ . Similarly to moment (3), let us note thatidy′ is
blocked until it receives that messagechosencomplete, so the action of announcing the
choice taken byidy′ in the new step to all services has not started yet. It is easy to
see that, at this point, the input buffers of all services must be [ ], and we must have
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D = {(idf , chosencomplete, idy)}. Besides, for some choreography states′q, the state of

idy′ is sq
′

iwillchoose, and the state of the rest of services issq
′

idontchoose.

At moment (6), the system fulfills the same conditions as in moment (3) regarding input
buffers and the state of the setD, though all services are in the statessq

′

iwillchoose andsq
′

idontchoose

concerning thenextstate of the choreography. It is easy to prove, by induction over the number
choreography transitions taken, that after executing any number of choreography transitions and
reaching moment (6), the system will eventually reach moments (4), (5), and (6) as described
above for the next transition, and this can be said forany choreography transition that can be
taken from the previous choreography state. Thus, the system will be able to make services
perform all transitions required by the choreography. By using similar arguments as in the proof
of Theorem 4.7, we have that the system of services conforms to the choreography with respect
to all proposed relations.
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