
Automatically deriving choreography-conforming systems of services ∗

Gregorio Díaz
Dept. de Sistemas Informáticos

Universidad de Castilla-La Mancha
02071. Albacete, Spain
gregorio.diaz@uclm.es

Ismael Rodríguez
Dept. Sist. Informáticos y Computación

Universidad Complutense de Madrid
28040. Madrid, Spain
isrodrig@sip.ucm.es

Abstract

We present a formal method to derive a set of web ser-
vices from a given choreography, in such a way that the
system consisting of these services necessarily conforms to
the choreography. A formal model to represent orchestra-
tions and choreographies is given, and we define several
conformance semantic relations allowing to detect whether
a set of orchestration models, representing some web ser-
vices, leads to the overall communications described by a
choreography.

1 Introduction

The definition of a web service-oriented system involves
two complementary views: Orchestration and choreogra-
phy. The orchestration concerns the internal behavior of a
web service in terms of invocations to other services. On the
other hand, the choreography concerns the observable in-
teraction among web services. Roughly speaking, the rela-
tion between orchestration and choreography can be stated
as follows: The collaborative behavior, described by the
choreography, should be the result of the interaction of the
individual behaviors of each involved party, which are de-
fined via the orchestration.

In this paper we present some formal frameworks to au-
tomatically derive web services (in particular, their orches-
tration definition) from a given choreography, in such a way
that the concurrent behavior of these derived services nec-
essarily conforms to the choreography. The first derivation
method is based on adding an orchestrator service, which is
a kind of director that is responsible of coordinating services
and controlling the system workflow. An alternative method
deriving a decentralized system, with no orchestrator, is pre-
sented too. In order to fix the meaning of conformance in
this context, we define several semantic relations such that,

∗Research partially supported by projects TIN2006-15578-C02,
PEII09-0232-7745, CCG08-UCM/TIC-4124, and the UCM-BSCH pro-
gramme (GR58/08 - group number 910606).

given the orchestration of some web services and a chore-
ography defining how these web services should interact,
they decide whether the interaction of these web services
necessarily leads to the required observable behavior. Mod-
els of orchestrations and choreographies are constructed by
means of two different formal languages. Languages ex-
plicitly consider characteristics such as service identifiers,
specific senders/addressees, message buffers for represent-
ing asynchronous communications, or message types.

This paper makes the following contributions. First, the
proposed method to derive a conforming set of service mod-
els from a given choreography model can be used to de-
fine models and early prototypes of web services systems,
as well as to formally/empirically analyze the properties of
these models/prototypes. Moreover, if service orchestra-
tions do not have to be automatically derived but are given,
then the proposed conformance relations between orches-
trations and choreographies also allow developers to select
the adequate service that accomplishes the behavior of cer-
tain role, thus aiding web service discovery tasks. Models
defined in the proposed modeling languages can be used to
analyze the properties of systems of services, such as stuck-
freeness and other problems derived from concurrent exe-
cution. By analyzing the order of exchanged messages we
can study whether the information is ready when required,
which concerns correlation and compensation issues.

2 Related Work

There are few related works that deal with the asyn-
chronous communication in contracts for web service con-
text. In fact, we are only aware of three works from van
der Alst et al. [11], Kohei Honda et al. [8] and, Bravetti
and Zavattaro [3]. In particular, van der Alst et al. [11]
present an approach for formalizing compliance and refine-
ment notions, which are applied to service systems speci-
fied using open Workflow Nets (a type of Petri Nets) where
the communication is asynchronous. The authors show
how the contract refinement can be done independently, and

2009 IEEE International Conference on Services Computing

978-0-7695-3811-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SCC.2009.52

9

2009 IEEE International Conference on Services Computing

978-0-7695-3811-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SCC.2009.52

9

they check whether contracts do not contain cycles. Kohei
Honda et al. [8] present a generalization of binary session
types to multiparty sessions for π-calculus. They provide a
new notion of types which can directly abstract the intended
conversation structure among n-parties as global scenarios,
retaining an intuitive type syntax. They also provide a con-
sistency criteria for a conversation structure with respect to
the protocol specification (contract), and a type discipline
for individual processes by using a projection. Bravetti and
Zavattaro [3] allow to compare systems of orchestrations
and choreographies by means of the testing relation given
by [1, 6]. Systems are represented by using a process alge-
braic notation, and operational semantics for this language
are defined in terms of labeled transitions systems. On the
contrary, our framework uses an extension of finite state ma-
chines to define orchestrations and choreographies, and a
semantic relation based on the conformance relation [10]
is used to compare both models. In addition, let us note
that [3] considers the suitability of a service for a given
choreography regardless of the actual definition of the rest
of services it will interact with, i.e. the service must be
valid for the considered role by its own. This eases the task
of finding a suitable service fitting into a choreography role:
Since the rest of services do not have to be considered, we
can search for suitable services for each role in parallel.
However, let us note that sometimes this is not realistic. In
some situations, the suitability of a service actually depends
on the activities provided by the rest of services. For in-
stance, let us consider that a travel agency service requires
that either the air company service or the hotel service (or
both) provide a transfer to take the client from the airport
to the hotel. A hotel providing a transfer is good regardless
of whether the air company provides a transfer as well or
not. However, a hotel not providing a transfer is valid for
the travel agency only if the air company does provide the
transfer. This kind of subtle requirements and conditional
dependencies is explicitly considered in our framework so,
contrarily to [3], our framework considers that the suitabil-
ity of a service depends on what the rest of services actu-
ally do. Furthermore, this paper presents a method to au-
tomatically derive services from a choreography in such a
way that the system consisting of these services necessarily
conforms to the choreography. This contrasts with the pro-
jection notion given in [3], which does not guarantee that
derived services do so.

Other works concern the projection and conformance
validation between choreography and orchestration with
synchronous communication. Bravetti and Zavattaro [2]
propose a theory of contracts for conformance checking.
They define an effective procedure that can be used to verify
whether a service with a given contract can correctly play a
specific role within a choreography. In [9], Zongyan et al.
define the concept of restricted natural choreography that

is easily implementable, and they propose two structural
conditions as a criterion to distinguish the restricted natu-
ral choreography. Furthermore, they propose a new con-
cept, the dominant role of a choice for projection concerns.
Carbone et al. [5] study the description of communication
behaviors from a global point of view of the communica-
tion and end-point behavior levels. Three definitions for
proper-structured global description and a theory for pro-
jection are developed. Bultan and Fu [4] specify Web Ser-
vices as conversations by Finite State Machines to analyze
whether UML collaboration diagrams are realizable or not.

3 Formal model

In this section we present our languages to define models
of orchestrations and choreographies. In [7], an extended
version of this paper is given, including additional examples
and notions. Some preliminary notation is presented next.

Definition 3.1 Given a type A and a1, . . . , an ∈ A with
n ≥ 0, we denote by [a1, . . . , an] the list of elements
a1, . . . , an of A. We denote the empty list by [].

Given two lists σ = [a1, . . . , an] and σ′ = [b1, . . . , bm]
of elements of type A and some a ∈ A, we consider σ · a =
[a1, . . . , an, a] and σ · σ′ = [a1, . . . , an, b1, . . . , bm].

Given a set of lists L, a path-closure of L is any subset
V ⊆ L such that for all σ ∈ V we have that (a) either
σ = [] or σ = σ′ · a for some σ′ with σ′ ∈ V ; and (b) there
do not exist σ′, σ′′ ∈ V such that σ · a = σ′ and σ · b = σ′′

with a �= b.
We say that a path-closure V of L is complete in L if it is

maximal in L, that is, if there does not exist a path-closure
V ′ ⊆ L such that V ⊂ V ′. The set of all complete path-
closures of L is denoted by Comp(L). �	

We present our model of web service orchestration. The
internal behavior of a web service in terms of its interac-
tion with other web services is represented by a finite state
machine where, at each state s, the machine can receive an
input i and produce an output o as response before moving
to a new state s′. Moreover, each transition explicitly de-
fines which service must send i: A sender identifier snd is
attached to the transition denoting that, if i is sent by service
snd, then the transition can be triggered. We assume that all
web services are identified by a given identifier belonging to
a set ID. Moreover, transitions also denote the addressee of
the output o, which is denoted by an identifier adr. In order
to represent the asynchronous communication between ser-
vices, services are endowed with an input buffer where all
inputs received and not processed yet are cumulated. Each
input has attached the identifier of the sender of the input.
A partition of the set of possible inputs will be explicitly
provided, and each set of the partition will denote a type of

1010

inputs. If a service transition requires receiving an input i

whose type is t, then we will check if the first message of
type t appearing in the input buffer is i indeed. If it is so
(the predicate available given in the next definition will
be used to check this), then we will be able to consume the
input from the input buffer and take the transition.1

Definition 3.2 Given a set of service identifiers ID, a ser-
vice for ID is a tuple (id, S, I, O, sin, T, ψ) where id ∈ ID

is the identifier of the service, S is the set of states, I is
the set of inputs, O is the set of outputs, sin ∈ S is the
initial state, T is the set of transitions, and ψ is a parti-
tion of I , i.e. we have

⋃
p∈ψ p = I and for all p, p′ ∈ ψ

we have p ∩ p′ = ∅. Each transition t ∈ T is a tuple
(s, i, snd, o, adr, s′) where s, s′ ∈ S are the initial and fi-
nal states respectively, i ∈ I is an input, snd ∈ ID is the
required sender of i, o ∈ O is an output, and adr ∈ ID is
the addressee of o. A transition (s, i, snd, o, adr, s′) is also

denoted by s
(snd,i)/(adr,o)

−−−−−−−−−−−−→ s′.
Given a service M = (id, S, I, O, sin, T), an in-

put buffer for M is a list [(id1, i1), . . . , (idk, ik)] where
id1, . . . , idk ∈ ID and i1, . . . , ik ∈ I . A configuration
of M is a pair c = (s, b) where s ∈ S is a state of M and
b is an input buffer for M . The set of all input buffers is
denoted by B. The initial configuration of M is (sin, []).

Let us suppose that, given a set S, 2S denotes the
powerset of S. Let b = [(id1, i1), . . . , (idk, ik)] ∈ B
with k ≥ 0 be an input buffer, id ∈ ID, i ∈ I , and
S ∈ 2I . We have available(b, id, i, S) iff, for some
1 ≤ j ≤ k, we have (idj , ij) = (id, i) and there
do not exist l < j, id′ ∈ ID, and i′ ∈ S, such that
(idl, il) = (id′, i′). We have insert(b, id, i) = b · (id, i).
In addition, we also have remove(b, id, i) =
[(id1, i1), . . . , (idj−1, ij−1), (idj+1, ij+1), . . . , (idk, ik)],
provided that j ∈ IN is the minimum value such that
j ∈ [1..k], id = idj , and i = ij . �	

Next we compose services into systems of services.

Definition 3.3 Let ID = {id1, . . . , idp}. For all 1≤ j ≤ p,
let Mj = (idj , Sj , Ij , Oj , sj,in, Tj, ψj) be a service for ID.
Then, S = (M1, . . . , Mp) is a system of services for ID.

For all 1≤j≤p, let cj be a configuration of Mj . We say
that c = (c1, . . . , cp) is a configuration of S. Let c′1, . . . , c

′

p

be the initial configurations of M1, . . . , Mp, respectively.
Then, (c′1, . . . , c

′

p) is the initial configuration of S. �	

We formally define how systems evolve, i.e. how a ser-
vice of the system triggers a transition and how this affects
other services in the system. Outputs of services will be
considered as inputs of the services these outputs are sent
to. Besides, we consider a special case of input/output that

1Note that, equivalently, we could speak about different input buffers,
one for each type, rather than a single input buffer.

will be used to denote a null communication. If the input
of a transition is null then we are denoting that the ser-
vice can take this transition without waiting for any pre-
vious message from any other service, that is, we denote
a proactive action of the service. Similarly, a null output
denotes that no message is sent to other service after tak-
ing the corresponding transition. In both cases, the sender
and the addressee of the transition are irrelevant, respec-
tively, so in these cases they will also be denoted by a null

symbol. A system evolution will be denoted by a tuple
(c, snd, i, proc, o, adr, c′) where c and c′ are the initial and
the final configuration of the system, respectively, i is the
input processed in the evolution, o is the output sent as re-
sult of the evolution, proc is the service whose transition is
taken in the evolution, snd is the sender of i, and adr is the
addressee of o. There are two reasons why an evolution can
be produced: (a) a service proactively initiates a transition,
that is, a transition whose input is null is taken; and (b)
a service triggers a transition because there is an available
message in its input buffer labelled by the sender identifier
and the input required by the transition. In both cases (a)
and (b), there are two possibilities regarding whether a new
output is sent or not: (1) if the transition denotes a null

output then no other input buffer is modified; (2) otherwise,
i.e. if the transition denotes an output different from null,
then this output is stored in the buffer of the addressee as an
input. By considering any combination of either (a) or (b)
with either (1) or (2), four kinds of evolutions arise indeed.

Definition 3.4 Let ID = {id1, . . . , idp} be a set of ser-
vice identifiers and S = (M1, . . . , Mp) be a system of
services for ID where for all 1 ≤ j ≤ p we have that
Mj = (idj , Sj , Ij , Oj , sj,in, Tj, ψj). Let c = (c1, . . . , cp)
be a configuration of S where for all 1 ≤ j ≤ p we have
cj = (sj , bj).

An evolution of S from the configuration c is a tuple
(c, snd, i, proc, o, adr, c′) where i ∈ I1 ∪ . . . ∪ Ip is the
input of the evolution, o ∈ O1∪ . . .∪Op is the output of the
evolution, c′ = ((s′1, b

′

1), . . . , (s
′

p, b
′

p)) is the new configu-
ration of S, and snd, proc, adr ∈ ID are the sender, the
processer, and the addressee of the evolution, respectively.
All these elements must be defined according to one of the
following choices:

(a) (evolution activated by some service by itself)
For some 1 ≤ j ≤ p, let us suppose

sj
(null,null)/(adr′,o)

−−−−−−−−−−−−−−−→ s′ ∈ Tj . Then, s′j = s′

and b′j = bj . Besides, snd = null, proc = idj ,
adr = adr′;

(b) (evolution activated by processing a message from the
input buffer of some service) For some 1 ≤ j ≤ p, let

us suppose that sj
(snd′,i)/(adr′,o)

−−−−−−−−−−−−−−→ s′ ∈ Tj and we
have available(bj , snd′, i, p), where p is the only

1111

set belonging to ψj such that i ∈ p. Then, s′j = s′

and b′j = remove(bj , snd′, i). Besides, snd = snd′,
proc = idj , and adr = adr′;

where, both in (a) and (b), the new configurations of the rest
of services are defined by one of the following choices:

(1) (no message is sent to another service) If adr′ = null

or o = null then for all 1 ≤ q ≤ k with q �= j we have
s′q = sq and b′q = bq.

(2) (a message is sent to another service) Otherwise, let
idg = adr′ for some 1 ≤ g ≤ k. Then, we have s′g =
sg and b′g = insert(bg, idj, o). Besides, for all 1 ≤
q ≤ k with q �= j and q �= g we have s′q = sq and
b′q = bq. �	

Figure 1 (left and center) shows a simple client/server or-
chestration specification where the client (A) sends requests
to the server (B) and the server responds to them, until the
client notifies that it leaves the system. Initial states are de-
noted by a double circle node, and null inputs and outputs
are denoted by the dash symbol.

As we will see later, the conformance of a system of ser-
vice orchestrations with respect to a choreography will be
assessed in terms of the behaviors of both machines. We ex-
tract the behaviors of systems of services as follows: Given
any sequence of consecutive evolutions of the system from
its initial configuration, we take the sequence of inputs and
outputs labelling each evolution and we remove all null el-
ements from this sequence. The extracted sequence (called
trace) represents the effective behavior of the original se-
quence. We distinguish two kinds of traces. A sending trace
is a sequence of outputs ordered as they are sent by their
corresponding senders. A processing trace is a sequence of
inputs ordered as they are processed by the services which
receive them, that is, they are ordered as they are taken from
the input buffer of each addressee service to trigger some of
its transitions. Both traces attach some information to ex-
plicitly denote the services involved in each operation.

Definition 3.5 Let S be a system, c1 be the initial
configuration of S, and (c1, snd1, i1, proc1, o1, adr1, c2),
(c2, snd2, i2, proc2, o2, adr2, c3), . . . , (ck, sndk, ik, prock,

ok, adrk, ck+1) be k consecutive evolutions of S.
Let a1 ≤ . . . ≤ ar denote all indexes of non-null outputs

in the previous sequence, i.e. we have j ∈ {a1, . . . , ar}
iff oj �= null. Then, [(proca1

, oa1
, adra1

), . . . ,
(procar

, oar
, adrar

)] is a sending trace of S. In ad-
dition, if there do not exist snd′, i′, proc′, o′, adr′, c′

such that (ck+1, snd′, i′, proc′, o′, adr′, c′) is an evolu-
tion of S then we also say that [(proca1

, oa1
, adra1

), . . . ,
(procar

, oar
, adrar

),stop] is a sending trace of S. The set
of all sending traces of S is denoted by sndTraces(S).

Let a1 ≤ . . . ≤ ar denote all indexes of non-null inputs
in the previous sequence, i.e. we have j ∈ {a1, . . . , ar}
iff ij �= null. Then, [(snda1

, ia1
, proca1

), . . . ,
(sndar

, iar
, procar

)] is a processing trace of S. In
addition, if there do not exist snd′, i′, proc′, o′, adr′, c′

such that (ck+1, snd′, i′, proc′, o′, adr′, c′) is an evolu-
tion of S then we also say that [(snda1

, ia1
, proca1

), . . . ,
(sndar

, iar
, procar

),stop] is a processing trace of S.
The set of all processing traces of S is denoted by
prcTraces(S). �	

Next we introduce our formalism to represent choreogra-
phies. Contrarily to systems of orchestrations, this formal-
ism focuses on representing the interaction of services as a
whole. Thus a single machine, instead of the composition of
several machines, is considered. Each choreography transi-
tion denotes a message action where some service sends a
message to another one.

Definition 3.6 A choreography machine C is a tuple C =
(S, M, ID, sin, T) where S denotes the set of states, M

is the set of messages, ID is the set of service identifiers,
sin ∈ S is the initial state, and T is the set of transi-
tions. A transition t ∈ T is a tuple (s, m, snd, adr, s′)
where s, s′ ∈ S are the initial and final states, respectively,
m ∈ M is the message, and snd, adr ∈ ID are the sender
and the addressee of the message, respectively. A transition

(s, m, snd, adr, s′) is also denoted by s
m/(snd→adr)

−−−−−−−−−−−−→ s′.
A configuration of C is any state s ∈ S. An evolu-

tion of C from the configuration s ∈ S is any transition
(s, m, snd, adr, s′) ∈ T from state s. The initial configura-
tion of C is sin. �	

Coming back to our previous example, Figure 1 (right)
depicts a choreography C between services A and B, that
is, the client and the server. The transitions of this choreog-
raphy actually denote the same evolutions we can find in a
system of services consisting of services A and B.

As we did before for systems of services, next we iden-
tify the sequences of messages that can be produced by a
choreography machine.

Definition 3.7 Let c1 be the initial configuration of a chore-
ography machine C. Let (c1, m1, snd1, adr1, c2), . . . ,

(ck, mk, sndk, adrk, ck+1) be k ≥ 0 consecutive evolu-
tions of C. We say that σ = [(snd1, m1, adr1), . . . ,
(sndk, mk, adrk)] is a trace of C. In addition,
if there do not exist m′, snd′, adr′, c′ such that
(ck+1, m

′, snd′, adr′, c′) is an evolution of C then we also
say that [(snd1, m1, adr1), . . . , (sndk, mk, adrk),stop]
is a trace of C. The set of all traces of C is denoted by
traces(C). �	

1212

A Client
� �

�

(−,−)/(B, exit)

(−,−)/
(B, request)

(B, response)
/(−,−)

B Server

� �

(A, request)/
(A, response)

(A, exit)/(−,−)

C Chor
� �

�

exit

A → B

request

A → B

response

B → A

Figure 1. A client/server orchestration (left and center) and a choreography specification (right).

4 Conformance relations and derivation of
choreography-compliant sets of services

Now we are provided with all the required formal ma-
chinery to define our conformance relations between sys-
tems of orchestrations and choreographies. We will con-
sider a semantic relation inspired in the conformance test-
ing relation given in [10]. This notion is devoted to check
whether an implementation meets the requirements imposed
by a specification. In our case, we will check whether the
behavior of a system of orchestration services meets the re-
quirement given by the choreography.

However, there are some important differences between
the notion proposed in [10] and the notion considered here.
The behavior of orchestrations and choreographies will not
be compared in terms of their possible interactions with an
external entity (i.e. user, observer, external application, etc)
but in terms of what both models can/cannot do by their
own, because both models are considered as closed worlds.
Let us also note that non-determinism allows a choreogra-
phy to provide multiple valid ways to perform the opera-
tions it defines. Consequently, we consider that a system
of orchestration services conforms to a choreography if it
performs one or more of these valid ways. For each of
these valid ways, care must be taken not to allow the sys-
tem of services to incompletely perform it, i.e. to finish in
an intermediate state – provided that the choreography does
not allow it either. In order to check these requirements,
only complete path-closures will be considered (see Defi-
nition 3.1). Moreover, the set of complete path-closures of
the system of choreographies is required to be non-empty
because the system is required to provide at least one (com-
plete) way to perform the requirement given by the chore-
ography. Alternatively, we also consider another relation
where the system of orchestrations is required to perform
all execution ways defined by the choreography. This alter-
native notion will be called full conformance.

Let us recall that we consider asynchronous communica-
tions in our framework. Thus, the moment when a message
is sent does not necessarily coincide with the moment when
this message is taken by the receiver from its input buffer
and is processed. In fact, we can define a choreography in

such a way that defined communications refer to either the
former kind of events or the latter (i.e., instants where mes-
sages are sent, or instants where messages are processed by
their receivers, respectively). Thus, we consider two ways
in which a system of services may conform to a choreog-
raphy: with respect to sending traces, and with respect to
processing traces. Besides, we explicitly identify the case
where both conformance notions simultaneously hold.

Definition 4.1 Let S be a system of services and C be a
chorography machine.

We say that S conforms to C with respect to send-
ing actions, denoted by S confs C, if either we have
∅ ⊂ Comp(sndTraces(S)) ⊆ Comp(traces(C)) or we
have ∅ = Comp(sndTraces(S)) = Comp(traces(C)).

We say that S fully conforms to C with respect
to sending actions, denoted by S conff

s C, if
Comp(sndTraces(S)) = Comp(traces(C)).

We say that S conforms to C with respect to process-
ing actions, denoted by S confp C, if we have either
∅ ⊂ Comp(prcTraces(S)) ⊆ Comp(traces(C)) or
∅ = Comp(prcTraces(S)) = Comp(traces(C)).

We say that S fully conforms to C with respect
to processing actions, denoted by S conff

p C, if
Comp(prcTraces(S)) = Comp(traces(C)).

We say that S conforms to C, denoted by S conf C, if
S confs C and S confp C.

We say that S fully conforms to C, denoted by
S conff C, if S conff

s C and S conff
p C. �	

The subtle differences between all the previous semantic
relations are illustrated in detail, by means of several exam-
ples and a small case study, in [7].

Once we are provided with appropriate notions to com-
pare sets of orchestration models with choreography mod-
els, we study the problem of automatically deriving orches-
tration services from a given choreography, in such a way
that the system consisting of these derived services con-
forms to the choreography. Let us consider deriving ser-
vices by projecting the structure of the choreography into
each involved service. Each service copies the form of
states and transitions of the choreography, though service
transitions are labeled only by actions concerning the ser-
vice. Unfortunately, if services are derived in this way then,

1313

in general, the resulting set of services does not conform to
the choreography with respect to any of the proposed con-
formance notions. An example illustrating this problem is
given in [7]. In this example, in order to conform to the
choreography, a service must take a choice that depends on
another choice previously taken by another service. How-
ever, the latter service does not communicate its choice to
the former in any way. In particular, if only messages ap-
pearing in the choreography are allowed in services then
no definition of the required services allows to meet the re-
quirement imposed by the choreography in this example.
Next we reconsider our conformance relations under the as-
sumption that additional messages are allowed indeed. That
is, services are allowed to send/receive additional messages
not included in the choreography. In order to avoid con-
fusion between standard chorography messages and other
messages, the latter messages are required to be different
to the former. The new versions of conformance relations
require traces inclusion/equality again, though we remove
additional messages prior to comparing sets of traces.

Definition 4.2 Let σ∈sndTraces(S)∪ prcTraces(S)
where S is a system of services. The constrain of σ to a
set of inputs and outputs Q, denoted by σQ, is the result of
removing from σ all elements (a, m, b) with m �∈ Q.

Let S be a system of services for ID and let C =
(S, M, ID, sin, T) be a choreography. Let confx ∈
{confs,conf

f
s ,confp,conf

f
p}. We have S conf′

x C
if S confx C provided that the occurrences of
sndTraces(S) and prcTraces(S) appearing in Defi-
nition 4.1 are replaced by sets {σM |σ ∈ sndTraces(S)}
and {σM |σ ∈ prcTraces(S)}, respectively. Now, let
confx ∈ {conf,conff}. We have S conf′

x C if
S confx C provided that the occurrences of confs,

conff
s , confp, conf

f
p appearing in the definition of

conf and conff , given in Definition 4.1, are replaced by
conf′

s,conf
f
s
′,conf′

p,conf
f
p
′, respectively. �	

Intuitively, a derivation of services based on a simple
projection does not work because it does not make services
follow the non-deterministic choices taken by the choreog-
raphy. In order to solve this problem, next we consider an
alternative way to extract services from the choreography.
In particular, new control messages are added to make all
services follow the same non-determinism choices of the
choreography, as we did in our previous example. In or-
der to do it, we will introduce a new service, called the
orchestrator, which will be responsible of making all non-
deterministic choices of the choreography. For each state sj

of the choreography having several outgoing transitions, an
equivalent transition will be non-deterministically taken by
the orchestrator (say, the p-th available transition). Next, the
orchestrator will take several consecutive transitions to an-
nounce its choice to all services. In each of these transitions,

the orchestrator will send a message ajp to another service,
meaning that the p-th transition leaving state sj must be
taken by the service. After (a) the orchestrator announces
its choice to all services; and (b) the orchestrator receives a
message bjp from the addressee of the choreography transi-
tion (this message denotes that the addressee has processed
the message), the orchestrator will reach a state represent-
ing the state reached in the choreography after taking the
selected transition, and the same process will be followed
again. By adding the orchestrator, we make sure that all
services follow the same non-deterministic choices of the
choreography, and thus a system consisting of the orchestra-
tor and the corresponding derived services will conform to
the choreography with respect to all conf′

x relations given
in Definition 4.2. Let us note that, since the only message
required by the orchestrator to continue is sent by the ad-
dressee denoted in the choreography transition, at a given
time the orchestrator and the services could have reached
different steps of the choreography simulation execution (in
general, the orchestrator will be in a further step). There is
no risk that services confuse the order in which each tran-
sition must be taken, because all messages controlling tran-
sition choices are introduced in input buffers (as the rest
of messages) and they will belong to the same type. Thus,
they will be processed in the same order as the orchestrator
sent each of them. This guarantees that services will be led
through the choreography graph by following the orchestra-
tor plan, in the same order as planned. Next we will assume
that the identifier of the orchestrator is orc.

Definition 4.3 Let C = (S, M, ID, sin, T) be a chore-
ography machine where ID = {id1, . . . , idn} and S =
{s1, . . . , sl}. For all 1 ≤ i ≤ n, the controlled service for C
and idi, denoted controlled(C, idi), is a service

Mi =

⎛
⎝

idi, S ∪ {sij , s
′

ij |i, j ∈ [1..l]},
M ∪ {aij |i, j ∈ [1..l]}, M ∪ {bij |i, j ∈ [1..l]},
sin, Ti, {{m}|m ∈ M} ∪ {{aij|i, j ∈ [1..l]}}

⎞
⎠

where for all sj ∈ S the following transitions are in Ti:

• Let t1, . . . , tk be the transitions leaving sj in C. For all

1 ≤ p ≤ k we have sj
(orc,ajp)/(null,null)

−−−−−−−−−−−−−−−−−→ sjp∈Ti.

• For all 1 ≤ p ≤ k, if tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈
T is the p-th transition leaving sj in C, then we have

sjp
(snd′,i)/(adr′,o)

−−−−−−−−−−−−−−→ ujp ∈ Ti where

(a) if snd = idi then snd′ = i = null, adr′ = adr,
o = m, and ujp = s′j .

(b) else, if adr = idi then snd′ = snd, i = m,
adr′ = o = null, and ujp = s′jp. Besides, we

also have s′jp

(null,null)/(orc,bjp)
−−−−−−−−−−−−−−−−−→ s′j in Ti.

1414

(-- ,--)/
(--,--)

A

(--,--)/
(A,a1)

C

e

A B

(--,--)/

(B,b1)/ (A,b2)/

(--,--)/
(B,e)

(B,f)/
(--,--)

(--,--)/

(A,e)/
(--,--)

(--,--)/
(A,f)

o B

f

B A

(-- ,--)/
(--,--)

(B,a1)

(--,--) (--,--)

(--,--)/
(A,a2)

(--,--)/

(B,a2)

(o,a1)/
(--,--)

(o,a2)/
(--,--)

(o,b2)

(o,a1)/
(--,--)

(o,a2)/
(--,--)

(--,--)/
(o,b1)

Figure 2. Orchestrator-based derivation.

(c) else snd′ = i = adr′ = o = null and ujp = s′j .

The orchestrator of C, denoted by orchestrator(C),
is a service

O =

⎛
⎝

orc, S ∪ {sijk|i, j ∈ [1..l], k ∈ [1..n+1]},
M ∪ {bij|i, j ∈ [1..l]}, M ∪ {aij |i, j ∈ [1..l]},
sin, To, {{m}|m ∈ M} ∪ {{bij|i, j ∈ [1..l]}}

⎞
⎠

where for all sj ∈ S the following transitions are included
in To:

• Let t1, . . . , tk be the transitions leaving sj in C. For all

1≤p≤k we have sj
(null,null)/(null,null)

−−−−−−−−−−−−−−−−−−→ sjp1∈To.

• For all 1≤p≤k, if tp = sj
m/(snd→adr)

−−−−−−−−−−−−→ s′j ∈ T is
the p-th transition leaving sj in C, then for all 1≤ i≤n

we have sjpi
(null,null)/(idi,ajp)

−−−−−−−−−−−−−−−−−→ sjp i+1∈To. We

also have sjp n+1
(adr,bjp)/(null,null)

−−−−−−−−−−−−−−−−−→ s′j ∈To. �	

Theorem 4.4 Let C = (S, M, ID, sin, T) be a
choreography with ID = {id1, . . . , idn}. Let
S = (controlled(C, id1), . . . , controlled(C, idn),
orchestrator(C)). For all confx ∈ {conf′s,conf

′

p,

conf′,conff
s
′, conff

p
′, conff′} we have S confx C.

�	
Figure 2 shows a choreography C as well as the services

derived from C by applying Definition 4.3, including an or-
chestrator O.

If we do not need to meet the conformance with respect
to processing traces, that is, if we only require conf′

s and
conff

s
′, then we do not need to require that addressees of

choreography transitions block the advance of the orches-
trator until they process received messages. This restriction
was imposed just to force the message processing follow
the order required by the choreography. Alternatively, if
addressees do not block the orchestrator then, for instance,

the service responsible of processing the second message of
the execution could process it before the service responsible
of processing the first one does so. Even if the orchestrator
were not required to wait for the addressees, the order in
which messages are sent would be correct as long as the or-
chestrator is required to wait for the senders. Actually, if we
only consider conformance with respect to sending traces
then replacing the restriction of waiting for the addresses
by the restriction of waiting for the senders is a good choice
in terms of efficiency. This is because, in this case, the or-
chestrator will not be blocked just waiting for the message
to be processed; on the contrary, it will be able to go on
even if the message has not been processed yet. Thus, by
taking this alternative, the rate of activities the services can
actually execute in parallel is increased.

Definition 4.5 We have that controlled’(C, idi) is de-
fined as controlled(C, idi) after replacing cases (a) and
(b) of Definition 4.3 by the following expressions:

(a) if snd = idi then snd′ = i = null, adr′ = adr,
o = m, and ujp = s′jp. Besides, we also have

s′jp

(null,null)/(orc,bjp)
−−−−−−−−−−−−−−−−−→ s′j in Ti.

(b) else, if adr = idi then snd′ = snd, i = m, adr′ =
o = null, and ujp = s′j . �	

Theorem 4.6 Let C = (S, M, ID, sin, T) be a chore-
ography with ID = {id1, . . . , idn}. Let S =
(controlled’(C, id1), . . . ,controlled’(C, idn),
orchestrator(C)). For all confx ∈ {conf′

s,conf
f
s
′}

we have S confx C. �	

Let us note that we can remove the orchestrator and dis-
tribute its responsibilities among the services themselves,
thus making a decentralized solution. Let s be a choreogra-
phy state with several outgoing transitions. Instead of using
an orchestrator to choose which transition is taken, we do as
follows: We sort all outgoing transitions e.g. by the name
of the sender and we make the first sender choose between
(a) taking any of the transitions where it is the sender; or
(b) refusing to do so. In case (a) it will announce its choice
to the rest of services, thus playing the role of the orches-
trator in this step. In case (b) it will notify its rejection to
choose a transition to the second service. Then, the second
service will choose either (a) or (b) in the same way, and so
on up to the last sender, which will be forced to take one
of its transitions. Let us note that, in this alternative de-
sign, a service can receive the request to take a given non-
deterministic choice from several services, and thus all cor-
responding transitions must be created. This complicates
the definition of the derivation; due to the lack of space,
the formal definition of this derivation is given in [7] (see
Definitions 5.1 and 5.3). As it is shown in Theorems 5.2

1515

(-- ,--)/
(B,a1)

A

(B)/,a11
()--,--

C

e

A B

(B,f)/

(B,b2)/

B

f

B A

(-- ,--)/
(B,a2)

(B,b1)

(--,--)

(--,--)/
(B,a21)

(--,--)/

(B,e)

()--,--

(--,--)/
(A,a11)

(--,--)/

(A,b1)/

()--,--

(A,f)

(--,--)

()/A,a21
()--,--

(A,e)/

(A,b2)

()/A,a1 ()/A,a2

Figure 3. Decentralized derivation.

and 5.4 of [7], the set of services derived in this way also
conforms to the choreography with respect to all relations
given in Definition 4.2 (if services wait for the addressee of
the choreography transition) or with respect to conf′

s and
conff

s
′ (if they do not).

An example of derivation of the former kind is depicted
in Figure 3. For the sake of simplicity, some transitions
included in the formal derivation have been omitted. Ser-
vice A receives the responsibility of either taking one of the
transitions where it is the sender (there is only one in this
example) or refusing to do so. In the former case, it tells
the next service in the list (B) that it will decide the tran-
sition indeed (message a2) and next it tells all services (i.e.
just B) which of its transitions it will actually take (a21).
Then, it sends e to B and waits for a signal indicating that
B has processed the message (b2). In the latter case, i.e.
if it refuses to choose one of its transitions, then it tells its
decision to next service B (message a1) and waits for the
rest of services (just B) to tell it which choice it must take.
When B does so (a11), it waits for receiving b from B and
next it acknowledges the reception (b1). The behavior of B

turns out to be dual to the behavior of A.

5 Conclusions and future work

In this paper we have presented a formal framework to
automatically extract a system of services that conforms to
a given choreography. Two derivation methods, one of them
based on an orchestrator service and the other one yielding
a decentralized system, are presented. For each method, we
consider two alternatives: Making the system conform with
respect to instants where messages are sent, or making it
conform with respect to all proposed criteria. Languages for
defining models of orchestrations and choreographies have
been presented, and we have defined some formal seman-

tic relations where, in particular, sending traces are distin-
guished from processing traces, and the suitability of a ser-
vice for a given choreography may depend on the activities
of the rest of services it will be connected with, which con-
trasts with previous works [3]. The proposed framework is
illustrated with several toy examples and a small case study,
given in [7].

References

[1] M. Boreale, R. D. Nicola, and R. Pugliese. Trace and
testing equivalence on asynchronous processes. Inf.
Comput., 172(2):139–164, 2002.

[2] M. Bravetti and G. Zavattaro. Towards a unifying the-
ory for choreography conformance and contract com-
pliance. In Software Composition, pages 34–50, 2007.

[3] M. Bravetti and G. Zavattaro. Contract compliance
and choreography conformance in the presence of
message queues. In Proc. of 5th International work-
shop on Web Services and Formal Methods, WS-
FM’08, LNCS (in press). Springer, 2008.

[4] T. Bultan and X. Fu. Specification of realizable ser-
vice conversations using collaboration diagrams. Ser-
vice Oriented Computing and Applications, 2(1):27–
39, 2008.

[5] M. Carbone, K. Honda, and N. Yoshida. Theoreti-
cal aspects of communication-centred programming.
Electr. Notes Theor. Comput. Sci., 209:125–133, 2008.

[6] I. Castellani and M. Hennessy. Testing theories for
asynchronous languages. In FSTTCS, pages 90–101,
1998.

[7] G. Díaz and I. Rodríguez. Automatically deriving
choreography-conforming systems of services: Ex-
tended version. Technical Report DIAB-09-06-2, Uni-
versidad de Castilla-La Mancha, 2009.

[8] K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session types. In POPL, pages 273–284,
2008.

[9] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the the-
oretical foundation of choreography. In WWW, pages
973–982, 2007.

[10] J. Tretmans. Testing concurrent systems: A formal
approach. In CONCUR’99, LNCS 1664, pages 46–65.
Springer, 1999.

[11] W. M. P. van der Aalst, N. Lohmann, P. Massuthe,
C. Stahl, and K. Wolf. From public views to private
views - correctness-by-design for services. In WS-FM,
pages 139–153, 2007.

1616

