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Abstract—We present a tool to automatically derive
choreography-conforming web services systems. The user pro-
vides a specification that describes peer-to-peer collaborations of
the observable behavior of parties from a global viewpoint, in
our case WS-CDL documents, and the tool automatically extracts
the particular behavior of each participant, more concretely, WS-
BPEL documents defining the behavior from a local viewpoint. We
implement two automatic methods (centralized and decentralized)
that derive conforming systems even in cases where projecting the
choreography into each service would lead to a non-conforming
system. This issue is addressed by adding some control messages
that make services interact as required by the choreography.
Experiments where the number of exchanged messages is mea-
sured are presented, and strategies to reduce the number of these
messages are discussed.

Keywords- Web services composition; WS-CDL; WS-BPEL;
Conformance; FSM.

I. INTRODUCTION

In recent years, Service-Oriented Computing (SOC) has
emerged as a new technology to build distributed systems
as a composition of independent services. The web services
architecture has been widely accepted as a means of structuring
interactions among services. The definition of a web service-
oriented system involves two complementary views: Choreog-
raphy and Orchestration. On the one hand, the choreography
concerns the observable interactions among services and can
be defined by using specific languages, e.g., Web Services
Choreography Description Language (WS-CDL [22]) or by
using more general languages like UML Messages Sequence
Charts (MSC). On the other hand, the orchestration concerns
the internal behavior of a web service in terms of invocations
to other services. It is supported, e.g., by WS-BPEL [2]
(Web Services Business Process Execution Language), which
is the de facto standard language for describing web service
workflow in terms of web services compositions.

In this paper we present DIEGO, a tool for DerIving
chorEoGraphy-cOnforming web service systems. Given a
choreography defined in (a subset of) WS-CDL, it automat-
ically extracts a set of services defined in WS-BPEL such that
the interaction of these services necessarily leads to the behav-
ior defined by the choreography. Though DIEGO transforms
WS-CDL into WS-BPEL, it internally works with an extension
of finite state machines (FSMs). First, DIEGO transforms the
WS-CDL choreography into a variant of FSM where involved
services are explicitly identified. Next it extracts, from this

FSM-based model, services defined by means of a different
kind of FSMs variant where input buffers are used to support
asynchronous communications. Finally, these FSM extensions
are transformed into WS-BPEL.

The main problem arisen in the derivation of services from
a choreography is the fact that the natural projection does
not necessarily produce a set of services conforming to the
choreography. We can easily observe this problem in the
example depicted in Figure 1. On top of the figure we depict
Chor, a choreography involving three parties X , Y , and Z. It
defines the required communication flow among these entities.
For instance, the first transition denotes that the message a is
sent by service X to service Y . In addition, systems X , Y , and
Z shown at the bottom of the figure are services derived from
the choreography by directly projecting it into each involved
role. In order to enable asynchronous communication, we
consider that each service is endowed with a buffer to store
incoming messages. In the figure, each service transition is
labeled by a tag (S1,m1)/(S2,m2) stating that, if the service
has a message m1 from S1 stored in its buffer, then it can
send a message m2 to S2.
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Figure 1. Example of a natural projection.

We can see that X , Y , and Z are structural copies of the
choreography. In particular, each choreography transition is
translated into a transition labeled with a communication action



(reading a message from its buffer and/or sending a message
to another service). We write a null action (−−,−−) in the
service transition to show that the service does not read or send
any message in the transition.

The aim of this example is to illustrate two problems that are
inherent to this kind of derivation, as well as the necessity to
use alternative methods to fix them. On the one hand, services
could take non-deterministic choices of the choreography in a
non-consistent way. In our example, the choreography can take
two possible paths (its left branch or its right branch) depending
on the action taken by service Y (sending b to Z or sending c
to Z, respectively). In both branches, service Y sends messages
to Z, but neither Y nor Z contacts X afterwards to inform it
about the action taken by Y . Since Y and Z communicate,
they will follow the same branch. However, since X does
not need to have any specific message in its buffer to take
any of its two available transitions (both are labeled with
(−−,−−)/(−−,−−)), X could follow the opposite branch
as the one followed by Y and Z. On the other hand, we have
a race condition problem, i.e., the order of events defined by
the choreography could be violated because a service reaches
a subsequent state and overtakes the rest of services. Coming
back to our example, even if service X selects the proper
branch, it is possible that this service makes progress to the last
transition before service Y has taken any of its two available
actions. This is because service X just sends messages and
it does not need any message in its buffer to evolve to the
final state. This violates the choreography requirement that X
must send its message only after Y has already sent its own
message.

The derivation methods presented in this paper fix both
problems by adding some control messages that make services
interact with each other as required by the choreography. This
work continues our previous works [11], [12]. In these works,
FSM-based models for defining orchestrations and choreogra-
phies are presented. In these models, service communications
are asynchronous, in the sense that received messages are
stored in input buffers and the sender is not blocked after it
sends a message. However, according to the proposed oper-
ational semantics, when a message is sent, it is immediately
stored in the buffer of the destination service. Some confor-
mance relations to decide whether a set of services necessarily
produces the behavior defined by a choreography are presented,
and derivation algorithms to automatically extract the former
from the latter are given.

With respect to these previous works, this paper makes
the following contributions. First, we present a tool, based
on our formal framework, to automatically derive WS-BPEL
orchestrations from WS-CDL choreographies. Let us note that
our previous works present a theoretical framework for dealing
only with FSM-based models. Our tool allows web service
designers to rapidly obtain executable service prototypes from
a choreography definition, which may help them in early
stages of the development process (such as requisite analysis
or architecture design) or even serve as executable skeletons

for constructing the implementations from them. Moreover, the
tool includes three additional modules which do not only serve
as the basis for the current tool but will also be the root for our
future developments: parser, web services simulator, and graph
viewer. In addition, following the ideas of the (also theoretical
and FSM-based) improved formal model given in [20], the WS-
BPEL derivation algorithms of the tool produce correct services
even if sent messages can be delayed any arbitrarily long time
before they are received by their addressees. We also apply the
tool to empirically analyze the performance of our derivation
algorithms. We observe the number of additional messages
exchanged by derived services in systems of different size,
and we use this information to sketch improved versions of
our algorithms where the number of these additional messages
is reduced.

The rest of the paper is organized as follows. Next we
comment some related works. In Section II we define our
formal model as well as the centralized and decentralized
derivation algorithms. The presentation focuses on informally
introducing the main formal notions (detailed formal defini-
tions and correctness proofs can be found in our previous/cur-
rent works [12], [11], [20]). In Section III we describe our
derivation tool. We introduce the basic concepts to understand
its behavior and we illustrate its usage. In Section IV we
present a case study to ease the understanding of the tool.
Besides, we empirically analyze the performance of the tool.
In Section V we briefly discuss some alternative strategies
to improve it. Finally, we present our conclusions and future
work.

A. Related Work
In this section we comment on several works related to

our proposal. Regarding methods to derive services from a
given choreography, let us remark that many works in the
literature focus on studying the conditions that a choreog-
raphy must fulfill for making the natural projection work
(see e.g. [9], [4], [16]), rather than fixing the problems that
make natural project not to work. Some works concern the
projection and conformance validation between choreography
and orchestration with synchronous communication. Carbone
et al. [8] study the description of communication behaviors
from a global point of view of communication and end-point
behavior levels. Three definitions for proper-structured global
description and a theory for projection are developed. Bultan
and Fu [6], [5] specify web services as conversations using
UML collaboration diagrams and analyze the conditions under
which collaborations are realizable via finite state machines.
Authors enhance the proposal by introducing a tool offering the
possibility to use bounded buffers and reason about them. Their
tool, called cd2lotos, transforms Collaboration Diagrams into
LOTOS (Language of Temporal Ordering Specifications) [17].
The main issue in LOTOS is the inability to manage asyn-
chronous communication, so authors needed to implement
bounded FIFO queues. The main difference with our proposal
is that cd2lotos does not show the representation of the local
behavior of services, but it only checks if the choreography is

2



realizable. On the contrary, let us remark that our derivation
method works regardless of the form of the choreography. This
is achieved by introducing some additional control messages
that make services interact as required by the choreography.
Thus, all choreographies are realizable for us. Furthermore,
our tool offers to users a wider range of features like graphical
notion, BPEL derivation, etc.

In [19], Zongyan et al. identify and face the problems
appearing when deriving an implementable projection from a
choreography. Authors define the concept of restricted natural
choreography, which must fulfill two structural conditions, and
show that this kind of choreography is easily implementable.
For dealing with projection issues in non-restricted choreogra-
phies, they propose the existence of the dominant role of
a choice, i.e., the role that makes the decision. There are
two crucial differences between this work and our proposal.
On the one hand, the orchestration communication style is
synchronous in their work, while we consider asynchronous
communications, allowing us to explicitly distinguish between
the times when messages are sent and the times when they
are processed. On the other hand, the solution of the non-
deterministic choices problem considered in [19] is based
on explicitly adding extra information to the choice operator
to identify the dominant role at the choreography level. On
the other hand, in our derivation methods, a decision-making
mechanism to make services coordinate in choice points is
introduced at the orchestration level, but the choreography is
not modified (and, still, derived services can perform all inter-
actions defined in the choreography). In addition, we provide
correctness proofs of our derivation algorithms (see [20]), not
given in [19].

Finally, we compare our proposal with works in the domain
of communication systems and reactive systems in general
that address similar problems and use related formalizations.
In [14] Gotzhein and Bochmann present a method to auto-
matically derive the behavior of each party from the model
of the distributed system. However, no correctness proof is
given. Furthermore, authors make some assumptions about the
communication medium: Separate input FIFO queues for each
source are assumed, and the order in which messages are sent
is preserved in their destination, i.e., message delays are not
considered. In [3] local and non-local choices are discussed
by Ben-Abdallah and Leue, but only the detection of problems
in the system description is concerned, not the synthesis of
the behavior of parties in such a way that these problems
do not appear. In [15] the synthesis problem is considered
by Gouda and Yu, but distributed systems can have only two
parties, which strongly eases the task of providing a proper
coordination between all existing parties.

Let us note that most of the previous works are only
theoretical. On the contrary, in this paper we apply our theoret-
ical FSM-based models and their (formally proved) derivation
algorithms to develop a tool that automatically transforms WS-
CDL choreographies into WS-BPEL orchestrations. To the best
of our knowledge, DIEGO is the first tool that derives correct

WS-BPEL systems of services without requiring any well-
formed conditions to choreographies, under an asynchronous
environment where messages can be delayed arbitrarily long
times.

II. AUTOMATICALLY DERIVING
CHOREOGRAPHY-CONFORMING SYSTEMS OF SERVICES

UNDER THE PRESENCE OF DELAYED MESSAGES

In this section we briefly introduce our formal model as well
as our centralized and decentralized derivation algorithms for
this model. The interested reader can find a formal presentation
of these notions, as well as correctness proofs, in [11], [12],
[20]. Next, we briefly describe our orchestration and choreog-
raphy models. Let us note that both models are based on finite
state machines, FSMs.

First we introduce the orchestration model. The internal
behavior of a web service in terms of its interaction with other
web services is represented by a finite state machine where,
at each state s, the machine can receive an input message i
and produce an output message o as response before moving
to a new state s′. The set of services is identified by ID
and, in order to provide asynchronous communication between
services, all services are endowed with an input buffer to store
received and not processed inputs. The actual configuration
of an orchestration consists of two elements, its current state
and the contents of its input buffer. Each transition explicitly
defines which input i should be in the input buffer of the service
in order to trigger the transition, as well as the required sender
snd of this input. Besides, the transition specifies the output
message o that the service will send when the transition is
triggered, as well as the addressee adr of this message.

Contrarily to systems of orchestrations, a choreography
model focuses on representing the interaction of services as a
whole. Thus, a single machine, instead of the composition of
several machines, is considered. Each choreography transition
denotes a message action where some service sends a message
to another one. A choreography machine consists of a set of
states and transitions similar to the machines explained above,
though each transition consists of just three elements: The
message that is being exchanged, the sender, and the addressee.
The actual configuration of a choreography consists just in the
current state of its FSM model.

In both models, traces (i.e. sequences of events that can
be produced by systems) are represented in a similar way,
that is, each event is denoted by a message, a sender, and
an addressee (snd,m, adr). However, in the orchestration
model, events may refer to either the moments when messages
are sent or the moments when messages are processed by
their corresponding receivers (both moments differ because
we consider an asynchronous environment). Based on the
traces of choreographies and orchestrations, formal relations to
determine whether a system of services necessarily produces
the behavior required by a choreography are defined. In fact,
several conformance relations are defined. On the one hand,
the conformance of the system of services may be established
in terms of sending times or processing times (or both). On
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the other hand, systems of services may be required to be
able to perform all non-deterministic paths defined in the
choreography, or only at least one of them. Depending on these
options, different conformance relations are defined.

Derivation algorithms are defined to automatically extract,
from any given choreography model, a system of services
such that it necessarily produces the behavior defined by
the choreography with respect to each conformance relation.
Unfortunately, the problems of natural projection presented
in the introduction (inconsistent non-deterministic choices and
race conditions) cannot be solved unless we introduce some
additional control messages to be in charge of coordinating
services as required by the choreography. In this way, systems
conforming to the choreography (up to original choreography
messages, i.e. ignoring additional control messages) can be de-
rived. Two derivation methods, centralized and decentralized,
are constructed.

The centralized algorithm is described next. New control
messages are added to make all services follow the same non-
determinism choices of the choreography, as well as making
services wait until they have to act according to the order
of events defined by the choreography. A new service, called
orchestrator, is introduced. It is responsible of making all non-
deterministic choices of the choreography. For each state sj
of the choreography model with several outgoing transitions,
an equivalent transition is non-deterministically taken by the
orchestrator (say, the p-th available transition). Next, the or-
chestrator takes several consecutive transitions to announce its
choice to the other services. In each of these transitions, the
orchestrator sends a control message ajp to another service,
meaning that the p-th transition leaving state sj must be taken
by the service. After (a) the orchestrator announces its choice
to all services; and (b) the orchestrator receives a message bjp

from the addressee of the choreography transition (indicating
that it has processed the message), the orchestrator advances to
the next state. The same process is followed again in the new
state. By adding the orchestrator, we ensure that all services
follow the same non-deterministic choices of the choreography,
and thus a system consisting of the orchestrator and the
corresponding derived services conforms to the choreography
(in fact, with respect to all proposed conformance relations).

In the decentralized model, the orchestrator role is removed
and its responsibilities are distributed among the services
themselves. Instead of using an orchestrator to select which
transition is taken, we operate as follows: We sort all transitions
leaving the current choreography state in some arbitrary way
and we make the first sender choose between (a) taking any
of the transitions where it is the sender; or (b) refusing to do
so. In case (a), it announces its choice to the rest of services,
playing the orchestrator role in this step. In case (b), it notifies
its rejection to the second service, thus delegating the decision
making process on it. In this case, the second service chooses
either (a) or (b) in the same way, and so on up to the last
sender (which is forced to take one of its transitions if all
previous services refused to do so). In this alternative design,

a service can receive messages indicating the necessity to take
a specific non-deterministic choice from several services, and
thus all corresponding transitions must be created. Let us note
that, in this decentralized derivation method, more additional
control messages are required, but non-deterministic choices
are taken by services themselves rather than by an omniscient
orchestrator, which may be more realistic in several scenarios.
The correctness of both the centralized and the decentralized
methods under the proposed formal model is proved in [11],
[20].

During the implementation of the tool and the experi-
mentation with real services derived by it, we realized that
our underlying formal model might not be realistic in some
scenarios. The operational semantics of the previous models
assumes that sent messages are immediately stored in the input
buffer of message addressees. In particular, this means that
messages are stored in input buffers in the same order as
they were sent. However, message delays could break this
property. In order to remove the necessity of assuming this
hypothesis, an alternative model is considered in [20] where,
when a message is sent, it is not immediately stored at the
destination service. On the contrary, the message may stay in
the communication medium for any arbitrarily long time. A
configuration of a system depends not only on the configuration
of each service, but also on the multiset of messages that
have already been sent by services but have not reached their
destination yet. The operational semantics is modified to enable
two kind of events: Either a message is sent by some service or
a message in the medium reaches its destination (and is stored
in the input buffer of that service). According to this alternative
semantics, the former centralized and decentralized derivation
algorithms are redefined, and their correctness is proved. In
the centralized derivation, new additional acknowledgement
messages from services to the orchestrator are added to solve
reordering problems. In the decentralized derivation, due to
the use of acknowledgement messages indicating that the
“decision-making token ring” of the previous step is finished,
it turns out that the previous decentralized derivation works
correctly as well for the new semantics. The details can be
checked in [20].

DIEGO is based on the theoretical model given in [20],
where messages can be delayed any arbitrarily long times.
Consequently, the transformations from WS-CDL to WS-BPEL
developed in this paper are based on the FSM-based model
transformations given in [20], which are proved to be correct
with respect to this semantics. In addition, in Section V we will
sketch and discuss refined versions of these algorithms where
the number of control messages is reduced.

III. DIEGO: A TOOL FOR DERIVING
CHOREOGRAPHY-CONFORMING WEB SERVICE SYSTEMS

In this section we present the tool that puts the derivation
algorithms given in the previous section into practice. The
tool DIEGO (see Figure 2) derives WS-BPEL orchestration
services from a choreography defined in (a variant) of WS-
CDL. The utility of DIEGO is twofold. From a business
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point of view, the derived WS-BPEL services serve as early
prototypes that may help web services designers in the analysis,
design and development phases of the software life cycle.
Moreover, since WS-BPEL services can be executed indeed,
these prototypes can be taken as preliminary implementations
that later will be refined by implementers. From a research
point of view, being provided with an executable version of our
derivation algorithms allows us to observe their behavior and
better understand them, which helps us to create more efficient
versions of our algorithms (this will be considered in the next
section). The tool has been implemented by using Microsoft
Visual Studio in language Visual Basic over .NET platform.
DIEGO is available at http://www.dsi.uclm.es/retics/diego/.

Figure 2. DIEGO main screen.

Let us describe the inputs that must be given to our tool.
DIEGO receives, as input file, an XML file representing a
WS-CDL* choreography. We denote by WS-CDL* a simple
modification of WS-CDL that explicitly supports the represen-
tation of choreography evolutions as state transitions. Let us
note that WS-CDL does not offer a consistent way to model
state cycles, because WS-CDL workunits need an entrance
and a loop condition. We could use the arrival of messages
as conditions, but this would limit non-deterministic choices.
Thus, we opted to modify WS-CDL with a new tag transition to
model state transitions. WS-CDL* is a modification of standard
WS-CDL where interactions are labeled with the initial and
final state, as it can be seen in the next example (in boldface):

<interaction name=“a interaction” operation=“a”
channelVariable=“X2YChannel”>
<participate relationshipType=“XY”

fromRole=“XRoleType” toRole=“YRoleType” />
<exchange name=“aExch” action=“request” />
<transition initialstate=“s0” finalstate=“s1” />

</interaction>

As mentioned in the introduction, the tool includes three
additional modules which help to investigate the behavior of
the derivation algorithms. First, the Parser module transforms
WS-CDL* into an internal FSM-based representation. Apart
from this (which is actually necessary for the derivation), this
feature will be used in future versions of the tool to provide

useful information about possible incorrectness of WS-CDL*
documents.1 In the current version of DIEGO, the correctness
of the WS-CDL* document is checked and, if it is not correct,
then the tool generates an error message.

Figure 3. Messages displayed in DIEGO Web Services Simulator.

Secondly, the Web Services Simulator allows the user to
observe the communications of derived services as if they were
executed. Without this application, the only way to observe the
behavior of derived services would be directly deploying them
in a real platform and observing the traffic among participants
by means of a sniffer. Some of these packet analyzers are
Capsa [10], or the powerful testing tool SOAPUI [13].
Normally, this traffic consists on SOAP messages, so the sniffer
output would have to be further analyzed by the user in order to
extract the corresponding information. This difficulty is solved
in DIEGO by providing the simulator. Once web services have
been automatically derived from the choreography, DIEGO
allows us to simulate these web services in order to observe
how they work (see Figure 3). The result of the simulation can
be observed in the Windows console and also is stored in a
log file where communications among services are recorded.2

DIEGO allows the user to set three different parameters in
the simulation: The maximum possible delay for a message
(measured in seconds; the user can also indicate that there is not
limit for delays), the maximum simulation time of web services
(measured in seconds), and maximum log size (measured in
kilobytes). If the maximum log size is overflowed, the log is
overwritten as needed.

Finally, a Graph Viewer is used to graphically observe
the behavior of derived services. This information helps to
understand how derived services solve race conditions and non-
determinism problems, as well as how derived services could
be manually refined to provide more efficient tailored solutions
for some specific parts. Figure 4 depicts a graph sample of an
automatically generated web service.

DIEGO uses another tool, previously developed in our
research group, to design and create choreography inputs. The

1In particular, it will help users to construct syntactically correct choreogra-
phies by offering, in a log file, detailed information about detected errors.

2A future version of the tool, currently under development, will be multi-
platform (in particular, web-based).
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Figure 4. Example of web service graph.

tool WST [7] allows to create a UML Sequence Diagram as
a model for services interactions and, after that, it directly
translates this representation into WS-CDL. Thus, by integrat-
ing WST within DIEGO, users can provide DIEGO either
with WS-CDL documents or with UML sequence diagrams
(which, in turn, are automatically translated into WS-CDL by
WST). Next, WS-CDL files are translated into the WS-CDL*
format used in DIEGO. This is done by adding an initial and
final state to every interaction, as discussed above. Once the
WS-CDL* input is given, the user selects the corresponding
algorithm version (centralized or decentralized) to automati-
cally generate the set of web services that conforms to the
choreography. On the left side of the interface, a tree (called
centralized or decentralized, depending on the former choice)
is displayed. By expanding this tree, the derived services
appear and, by clicking once on any of them, the appropriate
BPEL orchestration can be examined on the right side of the
screen (see Figure 2). These abstract BPEL files can be used
by developers as templates for programming the actual web
services from them, in such a way that the control messages
required for behaving as required by the choreography are
given by DIEGO from scratch. The programmer can ma-
nipulate and enrich the abstract BPEL documents provided
by DIEGO, so she can execute them in any BPEL executer,
such as ActiveBPEL [1], Apache ODE [21], or Oracle BPEL
Process Manager [18].3 By double-clicking on any of the BPEL
documents, the corresponding graph is shown. In the “Run”
menu, the option “Simulate Web Services” invokes the “Web
Services Simulator” commented before.

In fact, the tool supports the development of more effi-
cient versions of our derivation algorithms. This is because
derivation developers can examine the messages exchanged
in order to identify redundant control messaging, which is
a very useful feedback to develop strategies to reduce the
redundancy. In fact, the derivation algorithms presented in this
paper are a refinement of the algorithms presented in [11]
(in particular, based on the improved theoretical model given
in [20]) where some control messages were removed thanks

3According to our development plan, our next version of DIEGO will be
integrated with one of these BPEL engines in order to support the execution
of derived services from a centralized interface in DIEGO.

to the experimentation with DIEGO. Further improvements of
the derivation algorithms are commented in the next section.

IV. CASE STUDY

In this section we present an empirical study of the number
of messages exchanged among services automatically gener-
ated by applying the centralized and decentralized derivations
provided by DIEGO. We show empirically that the number
of messages exchanged among the services increases linearly
with the number of web services involved in the choreography,
as well as with the depth of the choreography.

Next we present our experiments. In the first experiment,
we create choreographies that are similar to the one shown in
Figure 1. We change labels of transitions of this choreography
to create a new choreography with the same form where only
two web services are involved. This choreography is called
cExp1.2WS. Next we change one transition of choreography
cExp1.2WS by adding a new involved web service, thus
three web services participate in the new choreography. The
resulting new choreography is called cExp1.3WS. We con-
tinue changing the transitions and creating new choreographies
with 4, 5, ..., 10 involved web services (called cExp1.4WS,
cExp1.5WS, ..., cExp1.10WS, respectively). For all of these
choreographies, we execute our centralized and decentralized
algorithms in DIEGO and run the Web services simulator
to compare the number of messages exchanged. The results
obtained are shown in Table I, where column Version shows the
algorithm version employed, column Choreography shows the
name of the choreography used in the experiment, and column
Num msgs shows the number of messages exchanged between
the services when running the simulation. Let us note that, in
column Num msgs, sometimes an interval appears. This means
that the derivation version under consideration needed different
number of messages in different executions (let us note that the
choreography non-determinism is simulated by making random
choices in the simulator, and thus the number of messages
upon termination may vary depending on the chosen path). The
results presented show empirically that the number of messages
exchanged among derived web services increases linearly with
the number of services involved in the choreography.

In the second experiment, we create several choreographies
similar to cExp1.2WS where only two web services are
involved in each one. The differences among these chore-
ographies lies in the depth of the choreography (that is, the
depth of the tree denoting the choreography form). We create
choreographies similar to cExp1.2WS with depth 3 called
cExp2.depth=3, with depth 4 (as in cExp1.2WS) called
cExp2.depth=4, and so on up to depth 11 (cExp2.depth=11).
The results obtained are also shown in Table I. We observe that
the number of messages exchanged among web services also
increases linearly with the depth of the choreography.

The WS-CDL* documents used in the experi-
ments and some other examples are available at
http://www.dsi.uclm.es/retics/diego/.

As it can be seen in Table I, the difference between the
number of messages exchanged in the centralized and the
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Version Choreography Num msgs Choreography Num msgs
Centr. cExp1.2WS 27 cExp2.depth=3 18

Decentr. cExp1.2WS 27 cExp2.depth=3 18
Centr. cExp1.3WS 36 cExp2.depth=4 27

Decentr. cExp1.3WS 38-39 cExp2.depth=4 27
Centr. cExp1.4WS 45 cExp2.depth=5 36

Decentr. cExp1.4WS 48 cExp2.depth=5 36
Centr. cExp1.5WS 54 cExp2.depth=6 45

Decentr. cExp1.5WS 57-59 cExp2.depth=6 45
Centr. cExp1.6WS 63 cExp2.depth=7 54

Decentr. cExp1.6WS 68-70 cExp2.depth=7 54
Centr. cExp1.7WS 72 cExp2.depth=8 63

Decentr. cExp1.7WS 77-82 cExp2.depth=8 63
Centr. cExp1.8WS 81 cExp2.depth=9 72

Decentr. cExp1.8WS 86-91 cExp2.depth=9 72
Centr. cExp1.9WS 90 cExp2.depth=10 81

Decentr. cExp1.9WS 100-101 cExp2.depth=10 81
Centr. cExp1.10WS 99 cExp2.depth=11 90

Decentr. cExp1.10WS 109-110 cExp2.depth=11 90

Table I
EXPERIMENTS: MESSAGES EXCHANGED BETWEEN WS

decentralized versions is low, but it increases as the number of
web services involved in the choreography raises. This issue
has been observed in other experiments as well, though they are
not presented here due to lack of space. Finally, let us comment
that the number of possible choices available for each service
does not influence the number of messages exchanged. In
both the centralized and the decentralized derivation methods,
services have to be informed about chosen paths, but the
process of informing them does not depend on the number
of choices available for each service at each point (only the
choice actually taken is communicated to other services, and
each one is communicated by using a specific message).

V. DISCUSSION: IMPROVING DERIVATION ALGORITHMS

In this section we sketch some alternative derivation methods
where the number of additional control messages exchanged
between services is reduced. These alternative methods, not
given in previous papers, are the result of experimenting with
DIEGO, as their goal is eliminating some of the control
messages that were observed more frequently when simulating
derived services with DIEGO. Formally defining these algo-
rithms, as well as proving their correctness, is out of the scope
of this paper. Our goal is illustrating that DIEGO actually
supports the development of enhanced versions of web services
in general, and better derivation algorithms in particular.

We observed that most of avoidable control messages in
the derivation algorithms are sent to services that are not
involved in the current choreography step (that is, in the
natural projection, a (−−,−−)/(−−,−−) label is attached to
the corresponding service transition, according to the notation
given in the introduction). For each service, any sequence of
consecutive null transitions like that, departing at state s, and
followed by a non-null transition (i.e. a transition that actually
involves the service) reaching state s′, can be replaced by a
single transition from s to s′. We call it a direct transition.
Let us note that, if transitions are replaced like this, each
direct transition leads the service to immediately advance a
different number of choreography steps. Thus, services must

be informed not only about the transition to be taken at each
time, but also about what choreography state this transition
belongs to.

According to this change, in the centralized derivation, the
orchestrator does not have to inform about its choices to
services that are not involved in the current choreography state.
On the contrary, it just has to inform about what transition it
takes (and at what state) to the next services: (a) the sender
of the message, according to the choreography transition; and
(b) the receiver of that message. Besides, in order to avoid
the races condition problem, the orchestrator must receive a
signal from the receiver, indicating that the message has been
received. Consequently, for each service, each direct transition
denoting that the service sends a message is preceded by a
new transition where the orchestrator informs the sender about
its choice. Similarly, each direct transition where the service
receives a message is preceded by the same kind of transition,
and it is followed by a transition where it sends a signal to the
orchestrator, informing that the message was received (so, the
orchestrator may continue).

Adapting this idea to the decentralized derivation is a bit
more complex. In this case, when the receiver of the previous
message receives it, it initiates the decision-making token ring
of the next choreography step by sending a message to the first
service of the token ring of that step. Only services that can
send a message at the current choreography state participate in
the decision-making. When a service in the token ring chooses
one of its choices, it informs about is choice to the rest of
services in the ring, as well as to the receiver of the message
it has to send. Next, it sends the message to the receiver. When
the receiver receives it, it initiates the decision-making token
ring of the next step, and so on.

These alternative solutions, which are currently under de-
velopment in DIEGO, illustrate how the tool simulator can
provide relevant feedback to design more efficient derivation
algorithms. In particular, DIEGO might also help web service
designers to try and test tailored messaging solutions, that
is, solutions that are specifically designed to deal with their
particular web services (rather than with the general case, as
we do). Further developing these alternative algorithms (and
proving their correctness) is part of our future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a tool that automatically
extracts WS-BPEL orchestrations from WS-CDL choreogra-
phies. It is based on our previous algorithms to automati-
cally derive FSM-based orchestration models from FSM-based
choreography models. These algorithms derive correct systems
of services even if there might be arbitrarily long delays
between each message sending and the corresponding message
reception. Besides, both the centralized and the decentral-
ized algorithms produce correct sets of services regardless of
whether the natural projection would not work due to race
conditions or choices coordination problems. To the best of
our knowledge, DIEGO is the first tool that allows users to
derive correct sets of WS-BPEL services from a WS-CDL
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choreography by automatically solving both races and choices
problems (in an integrated way and without requiring any
human interaction) in an asynchronous environment where
messages can be arbitrarily delayed. The tool supports early
prototyping and, moreover, the documents it constructs are
valid skeletons for creating implementations where message
sending/reception is given from scratch by the tool. This
releases programmers from explicitly dealing with messages
coordination issues.

We consider many lines of future work. The first line con-
sists in formally defining the improved derivation algorithms
sketched in Section V, proving their correctness as we did
for previous algorithm versions, and empirically comparing
their performance with the algorithms currently implemented
in DIEGO, described in Section II. Regarding the tool itself,
perhaps the most ambitious goal is integrating the tool with a
wider-purpose tool supporting web services testing. Since our
derivation algorithms produce sets of services that are capable
of producing any interaction defined in the corresponding
choreography (ignoring additional control messages), we could
compare real web services systems against choreography speci-
fications indirectly, i.e. by comparing the behavior of these real
web services with the behavior of our automatically derived
services. Besides, the capability of simulating the behavior of
a system of BPEL services will allow us to systematically study
the fulfillment of some properties in web services systems
(e.g. absence of deadlocks, correct error handling, etc). Finally,
we wish to extend our orchestrations and choreographies
FSM-based models by introducing details such as parameters,
variables, and temporal conditions, which would allow the tool
to explicitly consider these details in the derivation.
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