DIEGO: A tool for Derlving
chorEoGraphy-cOnforming web service systems

Pablo Rabanal, Jose A. Mateo, Ismael Rodriguez and Gregorio Diaz

Reference Manual Version 3.0

UNIVERSIDAD DE
CASTILLA-1A MANCHA

Research partially supported by projects TIN2012-39394-04, and TIN2012-36812-C02-01.

e P. Rabanal and |. Rodriguez are with Departamento de Sisteim@mrmaticos y Computacion, Universidad Complutense aelrid,
Spain, 28040.
E-mail: prabanal@fdi.ucm.es;isrodrig@ @sip.ucm.es

e J.A. Mateo and G. Diaz are with Universidad de Castilla-Laridiaa, Albacete, Spain, 02071.
E-mail: [joseantonio.mateo,gregorio.diaz]@uclm.es

Thanks to all users and reviewers for their fruitful feedbadich can help us
to improve this tool and the algorithms in which is based.

1 PREREQUESITES

As we have developed DIEGO in order to work on Windows platferit is necessary to install the .NET
framework whether in your current Windows version is notuded. Moreover, we have used Microsoft
.NET Framework 4.5 during the implementation phase, so wewage the users to setup this framework
(or higher) in their computers. One can find the download pagbe next direction:
http://msdn.microsoft.com/en-us/netframework/aa®g92

As well, we have tested DIEGO on Windows XP and Windows 7 witHmding incompatibility errors.
Let us note that you must run DIEGO as administrator in WinglgW(click the right mouse button on
the .exefile and, then, click orRun as Administratgr

2 DIEGO: A ToOL FOR DERIVING CHOREOGRAPHY-CONFORMING WEB SERVICE
SYSTEMS

We outline in this manual the tool DIEGO, which has been imm@ated by using Microsoft Visual
Studio in language Visual Basic over .NET platform. Diffiere@ersions of DIEGO, including the last one
introduced here, are available|at http://www.dsi.uclrnetgs/diegal.

DIEGO was originally conceived to put our derivation algiems into practice. DIEGO (see Figure 1)
automatically derives a set of WS-BPEL services from a abgnaphy defined in a variant of WS-
CDL. The utility of DIEGO is twofold. On the one hand, the dexdi WS-BPEL services serve as early
prototypes that may help designers in the analysis anddsigelopment phases of the software life cycle.
Moreover, since WS-BPEL services can be executed indeeske thrototypes can be taken as preliminary
implementations that later will be refined by implement&s. the other hand, being provided with an
executable version of our derivation algorithms allows asobserve how our algorithms behave. By
observing their behaviour, we have been able to create nfficeert versions in contrast to the former
versions. In fact, in[[5] we used DIEGO to redesign the alhons presented in [2], [4]. In particular, the
initial algorithms were improved by removing some reduridamtrol messages. These redundant control
messages were discovered after observing the executicest services derived by DIEGO in some
case studies.

3 DIEGO: Derlving chorEoGraphy-cOnforming web service systems [E==)

Options Run

a path: DAD y g6l

- <procy ch’
="http:/ /sample.bpel.org/bpel/sample’

>
.org/orch/"

soap.org/wsdl/" />
wsdl"

pel.org/bpel/sample’
xmisoap.org/wsdl/" />

Web service orch is shown as a BPEL skeleton

Fig. 1: DIEGO main screen.

Despite the fact that it is presented as a single tool, DIE@®be considered an integrated composition
of separated applications, where each one is used to carry particular mission. In particular, we can
divide DIEGO into two complementary groups of tools. On thee dvand, theDerivation Enginetakes
as input the Extended Finite State Machine (EFSM) model ef ¢horeography, and it extracts the

http://msdn.microsoft.com/en-us/netframework/aa569263
http://www.dsi.uclm.es/retics/diego/

EFSMs models of the derived web services. On the other hahdr enodules are provided in order to
help designers to debug their choreographies. Along tHewolg lines, a more detailed description is
presented.

As commented previously, some designers might not be wiltin deal with EFSMs to model their
choreographies as either they are not familiar with the &ism or they require more standardization.
Thus, we had to decide first which language we should use th r@avider audience. We chose WS-CDL
since it is considered by many designers and researchedetfectostandard to define choreographies.
In technical terms, DIEGO takes as input a XML file represenaWS-CDL*choreography. Notice that
we denote by WS-CDL* a simple modification of WS-CDL that egiply supports the representation of
choreography evolutions agate transitionsThus, we opted to modify WS-CDL with a new tagnsition
to model state transitions as it can be seen in the next exa(mpboldface):

<interaction name="a_interaction” operation="a”
channelVariable="X2YChannef*
<participate relationshipType="“XY"
fromRole="XRoleType” toRole="YRoleType/>
<exchange name="aExch” action="request) >
<transition initialstate="s0” finalstate="s1” />
< /interactiorn>

Variable declarations, conditions, and assignments tiabfes are defined conforming to the WS-CDL
standard. Below we can see an example of how an integer l@aigabefined Yariabletag) and initialized
(assigntag). Our tool only handles integer variables for simpjicélthough it can be easily extended to
handle other types. Th®leTypestag defines the service owner of the variable. In the standandtiple
owners of the same variable can be defined, but DIEGO is lihfive simplicity to a single owner. In
the assignactivity, value2469 (given atsource expressigns assigned to the variablErack_WS(target
variable).

<variable name="Track_WS”
informationType="xsd:int” roleTypes="WS" />

<assignroleType="WS">
<copy name="Track_WS_assign”
<source expression="2469">
<target variable="Track_WS7 >
</copy>
< /assign>

In the next example we show how a conditional behavipragd tag) is defined by using theorkunit
construction. In this example,anda are variables, ané< represents the less-than sign (<). Therefore,
the guard of this example represents the expressien= 0 A a < 10). In our framework, any expression
can be composed by usimgpt andand operators (note that both form a complete set of logical @tpes).

<workunit name="opt1”
guard="not(c=0,a<10)” >
... (body of the workunit) ...
< /workunit>

The following example presents how a variable assignmetibin®e in aninteractionwhere valuer + 1
(send variablgis assigned to variablg (receive variablg Operations allowed in DIEGO are +, -, *, and
/.

<interaction name="b_interaction” operation="b”
channelVariable=“X2YChannel*
<participate relationshipType="XY"
fromRole="XRoleType” toRole="YRoleType/>
<exchange name="bExch” action="request™
<send variable="x+1"/>
<receive variable="y’/>
< /exchange-
<transition initialstate="s2” finalstate="s3" />
< /interactiorn>

We offer two possible ways to model a choreography, eithéin WWS-CDL documents or with UML
sequence diagrams. In the latter case, UML sequence diagreerautomatically translated into WS-CDL
by using WST [1], a tool developed by our research group. dvigles a GUI to create UML Sequence
Diagrams that can be automatically translated into its W&-@epresentation.

DIEGO also has a set of tools in order to help designers tamgtrect choreography specifications.
This toolkit is composed by four independent modules.

First, theParsermodule transforms WS-CDL* specifications into internal BFBased representations
used as input for thBerivation Engine In addition, theParserprovides useful information about possible
anomalies of WS-CDL* documents in an error log file. If theresess some kind of mistake that it is
not controlled by the tool, it will help users to constructrremt choreographies by offering detailed
information about detected errors in this log. In the curnegrsion, if the WS-CDL* document is not
syntactically correct, then the tool generates an errorsaggs

= DIEGO: Web Services Simulator

idf
i m 5570, JdPradis1 . paynentf1 1803 c1ientIn
iFoll gor- 53310 vatts, vaoas. idProdi§2=0, s tock=8, payment
b o1 ieneinE o bl loncinratisste. iPradies 81

Date = 28,10,2013 17:43:49

Hessa!{e Number = 4078
1D 2

Ui PreuluusState = siiampassive

s Transition = True orch;{takeyourchoicedatsli,<}> / WS2;(update.(3> idf

US CurrentState = sltakingchoicedofs2

US.UARS = [category=2@,y1=18, y2=12,y3=13.y4-16,y5=26 , idProduS2=B, stock=B, paynen
W82 =0, clientInfol

Date = 28,16,2813 17:43:49

Hessage Nunber = 4079
us.ID = us2
S . PreviousState = s1tak1ng:}101l:e4nﬂl$2
S .Transition = True WS2;{update,{}) / orchs<received.{>> u4=16
U5 CurrencState = 51 lanpassive
ARS - [category=-28,y1-18,y2=12, y3=13,y4-16,y5-26, idProdWs2=0, stock=8. paynen
s . cllentI folis2=81
Date - 28/18,2013 17:43:49

Message Numh er = 4088

US.ID = om

us. Pr:uluusState = sltaklng:hol:eﬂnfﬂSZ

Us . Transition = Tru W§2;(received.{3> ~ null;<null.{3> idf
WS .CurrentState = s
MS.UARS = [tag=20,x1=0.x2=0,x3-0,x4=0.x5=0, idProdi$1-8, paymentWS1-1883.clientIn
foll§1-1000, category=20,y1=10,y2=12,y3=13, y4=16.y5=26. idProdWS2=0,.stock=0,payment
182=A,clientInfol82=0, clientInfoWS3=A, idProdW83-G1

Date = 28/16,2013 17:43:49

Message Number = 4881
Us.ID = orch

US .PreviousState = si

Us.Transition = Tru nulls<null,{3> ~ WS2;<Ctakeyourchoicedatsl. (3> idf

US .CurrentState = sitakingchoice3ofWS2

MS.UARS = [tag=20,x1=0.x2=0,x3-0,x4=0.x5=0, idProdi$1-8, paymentWS1-1883.clientIn
Foll51-1800, category=20,y1=10,y2=12,y3=13, y4=16, y5=26. idProdWS2-08,stock=-8B,payment
52=8,clientInfollS2=| ,cllent]nanSC’I:B.i\‘lPrndMSﬁZB]

Date = 28/18,/2813 17:43:49

inulatio has expired ss=
Dave oai e ab15 15105 49

L =l

Fig. 2: Messages displayed in DIEGO Web Services Simulator.

Second, theNeb Services Simulat@llows to observe the interactions of derived services dbay
were executed. The result of the simulation can be observéldei Windows console (see Figlire 2), and
it is also stored in a log file where communications amongisesvare recorded. A future version of the
tool, currently under development, will be multi-platfofm particular, web-based). DIEGO permits to set
three different parameters for simulation purpose: Theimam possible delay for a message (measured

in seconds; the user can also indicate that there is no ddfa)maximum simulation time (measured
in seconds), and the maximum log size (measured in kilohytethe maximum log size is overflowed,
then the log is overwritten as needed. Simulations can beuss@ either stepwise, upon termination,
or upon some given point. These functionalities helped usntbance the algorithms themselves. More
importantly, without this functionality, the only way a ussould evaluate the system behavior would be
to directly deploy it in a real platform and observing theftcaamong participants by means of a sniffer,
which adds effort and time to the development process.

Third, DIEGO lets users check whether traces observed inifsgpexecutions of derived services are
conformed with the requirements imposed by some conformeglations. The tool supports the execution
of the system of derived services by manually or automdyiqah particular, randomly) applying the
language operational semantics. In the first case, the Usmyses which operational rule is applied,
whereas in the latter case DIEGO randomly chooses the eaacpath among all available execution
paths. After the execution of a trace, the user can ask DIE@@utomatically compare it with those
permitted by the choreography under different conformarempiirements: in particulasending(that
is, with respect to moments when messages are sgmessing(w.r.t. moments when messages are
processed), andynchronizatiorn(both).

Finally, with the help of theGraph Viewer a graphical representation of the choreography and the
derived services is given. These models help designersderstand how derived services solve issues
such as race conditions, non-determinism coordinatioshvarniables fetching. Moreover, graphical models
can be used together with the simulator to develop more efficervice designs or even to envisage more
efficient derivation algorithms for particular or generakes.

3 How 10 USE DIEGO TOOL

Roughly speaking, DIEGO is used as follows. First, the u$eukl select the path of the WS-CDL
document corresponding to the choreography he/she wantierive (see Figuré]3). Note that some
example choreographies are provided within the tool.

Fig. 3: Choreography path selection in DIEGO.

:; DIEGO: Deriving charEoGraphy-cOnforming web semvice systems ==

| options Run

Choreography path: |

Destination folder:

For checking choreography correctness, the user can pgredsuttonOptions— Show Choreography
(see Figurd_4a) or the user can run the algorithm (centchlaae decentralized version indistinctly).
After that, a text file calledErrorLog is created in choreography folder. In this file, some errars o
recommendations are presented.

If the WS-CDL* document is correct, the user can pressRbo@menu (see Figure_4b) executing one
of the versions of the algorithm: Centralized or Decentsadi

After generating the services, XML files containing the BRigscription are created in the destination
folder (see Figurél3), and an organizational tree (cafledtralizedor decentralizeddepending on the
former choice) is displayed on the left side of the interfésee Figuréll). By expanding this tree, the
derived orchestrations appear and, by clicking once on &nlgem, the appropriate BPEL orchestration
can be examined on the right side of the screen (see Figumylilouble-clicking on any of the tree
items, the corresponding EFSM is shown.

Finally, it is mandatory to simulate the WS-BPEL servicesated in order to check if they are conform
with the choreography. To this end, the optiSimulate Web Services the Run menu, invokes the
Web Services Simulat@mommented before (see Figure 5). The simulation of web sesvinas different
parameters. In Figurel 6, these parameters are depicted, fie user should decide to introduce some

= EI&{

& i J

zutsEWSS\mu\a(m o = Ctrle Al =
(a) Options menu in DIEGO. (b) Run menu in DIEGO.

Fig. 4. Two menus of DIEGO.

delays when sending the messages (-1 means no delay). Moraser can control the simulation duration
and the size of the log. This log can be stored in a text file kiclg the optionSave log as TxTn the
Options menulLastly, user can make a simulation step by step by markiegctteck boxStep-by-Step
Simulation

% DIEGO: Web Services Simulator =N

w#xs The simulation started soex -
Date = 25/@3/2014 8:26:03 L

) DIEGO: Derlving chorEoGraphy-cOnforming web service systems =

Options ~ Run

Choreography path: C:\Users\Jose'\Desktop"Dropbox\Public\UCLM-UCM\DIEGO" Example£ l:‘

— [l [n Number = 8881
Destiation folder: C:\Users\Jose\DesktopDropbor\Public\ UCL MHLICM\DIEGO Exarmple< | | VS 1D e arch

WS _PreviousState = =@

US.Transition = True null;<null.{3}> ~ Xs;<{takeyourchoiceBats®B,.{}> idf
e otz yridon “|| | us-Currentitate = sBstartingchoiceBof¥

WS_UARS = [dZ=@.aY=0,cY=0,ak=1181

Date = 25/83,2014 8:26:83

Hessage Number = BAB2
we_ 1D = ¥

US.PreviousState = sBiampassive

US_Transition = True orch:CtakeyourchoiceBats@,{3> / ¥;Cupdatel,{(p@, 13>, <pl, a¥
>> didf

WS _CurrentState = sliampassive

WS.UARS = [aX=11@1

Date = 25/B3-2014 8:26:83

Message Number = BO@3 =

The simulation of web services has been carried out succesfully 25/03/2014 8:26:03

Fig. 5: Simulator screen in DIEGO.

Once the services have been simulated, the user can chetkentiee traces generated in the simulation
are consistent with the choreograpiup menu, optionCheck Conformange

F = Bl
:; DIEGO: simulation parameters l = |] - -

Maximum message delay

Introduce the madimum message delay: B

Madmum simulation time

Introduce the madmum simulation time: Bi=

Maximum log size

Irtroduce the maximum log size (Kb): 102400 =

Step-by-step simulation

[Check ff you wart a step-by-step simulation

| Accept | | Cancel |

[|

Fig. 6: Simulator parameters screen in DIEGO.

REFERENCES

[1] M. Cambronero, G. Diaz, E. Martinez, V. Valero, and L. @ola. WST: A Tool Supporting Timed Composite Web Servicesiélo
Transformation. IFSIMULATION: Transactions of the Society for Modeling ansh@ation International page To appear. Sagem, 2011.

[2] G. Diaz and I. Rodriguez. Automatically deriving chagemphy-conforming systems of services.|EEE International Conference on
Services Computing (SCC’'QIEEE Computer Society, 2009.

[8] R. Hailstone and R. PerrylBM and the Strategic Potential of Web Services: AssessiagCustomer ExperiencdDC: Analyze the
Future, 2002.

[4] P. Rabanal, I. Rodriguez, J. A. Mateo, and G. Diaz. Imimgvhe automatic derivation of choreography-conformingbwservices
systems.Procedia C$9:449-458, 2012.

[5] I. Rodriguez, G. Diaz, P. Rabanal, and J. A. Mateo. A @ized and a decentralized method to automatically der@engraphy-
conforming web service systemd. Log. Algebr. Program.81(2):127-159, 2012.

	Prerequesites
	DIEGO: A tool for DerIving chorEoGraphy-cOnforming web service systems
	How to use DIEGO tool
	References

