
1

DIEGO: A tool for DerIving
chorEoGraphy-cOnforming web service systems

Pablo Rabanal, Jose A. Mateo, Ismael Rodríguez and Gregorio Díaz

✦

Reference Manual Version 3.0

Research partially supported by projects TIN2012-39391-C04-04, and TIN2012-36812-C02-01.

• P. Rabanal and I. Rodríguez are with Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid,
Spain, 28040.
E-mail: prabanal@fdi.ucm.es;isrodrig@@sip.ucm.es

• J.A. Mateo and G. Díaz are with Universidad de Castilla-La Mancha, Albacete, Spain, 02071.
E-mail: [joseantonio.mateo,gregorio.diaz]@uclm.es

2

Thanks to all users and reviewers for their fruitful feedback which can help us
to improve this tool and the algorithms in which is based.

3

1 PREREQUESITES

As we have developed DIEGO in order to work on Windows platforms, it is necessary to install the .NET
framework whether in your current Windows version is not included. Moreover, we have used Microsoft
.NET Framework 4.5 during the implementation phase, so we encourage the users to setup this framework
(or higher) in their computers. One can find the download pagein the next direction:
http://msdn.microsoft.com/en-us/netframework/aa569263

As well, we have tested DIEGO on Windows XP and Windows 7 without finding incompatibility errors.
Let us note that you must run DIEGO as administrator in Windows 7 (click the right mouse button on
the .exefile and, then, click onRun as Administrator).

2 DIEGO: A TOOL FOR DERIVING CHOREOGRAPHY-CONFORMING WEB SERVICE

SYSTEMS

We outline in this manual the tool DIEGO, which has been implemented by using Microsoft Visual
Studio in language Visual Basic over .NET platform. Different versions of DIEGO, including the last one
introduced here, are available at http://www.dsi.uclm.es/retics/diego/.

DIEGO was originally conceived to put our derivation algorithms into practice. DIEGO (see Figure 1)
automatically derives a set of WS-BPEL services from a choreography defined in a variant of WS-
CDL. The utility of DIEGO is twofold. On the one hand, the derived WS-BPEL services serve as early
prototypes that may help designers in the analysis and design development phases of the software life cycle.
Moreover, since WS-BPEL services can be executed indeed, these prototypes can be taken as preliminary
implementations that later will be refined by implementers.On the other hand, being provided with an
executable version of our derivation algorithms allows us to observe how our algorithms behave. By
observing their behaviour, we have been able to create more efficient versions in contrast to the former
versions. In fact, in [5] we used DIEGO to redesign the algorithms presented in [2], [4]. In particular, the
initial algorithms were improved by removing some redundant control messages. These redundant control
messages were discovered after observing the execution traces of services derived by DIEGO in some
case studies.

Fig. 1: DIEGO main screen.

Despite the fact that it is presented as a single tool, DIEGO can be considered an integrated composition
of separated applications, where each one is used to carry out a particular mission. In particular, we can
divide DIEGO into two complementary groups of tools. On the one hand, theDerivation Enginetakes
as input the Extended Finite State Machine (EFSM) model of the choreography, and it extracts the

http://msdn.microsoft.com/en-us/netframework/aa569263
http://www.dsi.uclm.es/retics/diego/

4

EFSMs models of the derived web services. On the other hand, other modules are provided in order to
help designers to debug their choreographies. Along the following lines, a more detailed description is
presented.

As commented previously, some designers might not be willing to deal with EFSMs to model their
choreographies as either they are not familiar with the formalism or they require more standardization.
Thus, we had to decide first which language we should use to reach a wider audience. We chose WS-CDL
since it is considered by many designers and researchers thede-factostandard to define choreographies.
In technical terms, DIEGO takes as input a XML file representing aWS-CDL*choreography. Notice that
we denote by WS-CDL* a simple modification of WS-CDL that explicitly supports the representation of
choreography evolutions asstate transitions. Thus, we opted to modify WS-CDL with a new tagtransition
to model state transitions as it can be seen in the next example (in boldface):

<interaction name=“a_interaction” operation=“a”
channelVariable=“X2YChannel”>
<participate relationshipType=“XY”
fromRole=“XRoleType” toRole=“YRoleType”/>
<exchange name=“aExch” action=“request”/>
<transition initialstate=“s0” finalstate=“s1” />

</interaction>

Variable declarations, conditions, and assignments to variables are defined conforming to the WS-CDL
standard. Below we can see an example of how an integer variable is defined (variable tag) and initialized
(assigntag). Our tool only handles integer variables for simplicity, although it can be easily extended to
handle other types. TheroleTypestag defines the service owner of the variable. In the standard, multiple
owners of the same variable can be defined, but DIEGO is limited for simplicity to a single owner. In
the assignactivity, value2469 (given atsource expression) is assigned to the variableTrack_WS(target
variable).

<variable name=“Track_WS”
informationType=“xsd:int” roleTypes=“WS”/>

<assignroleType=“WS”>
<copy name=“Track_WS_assign”>
<source expression=“2469”/>
<target variable=“Track_WS”/>

</copy>
</assign>

In the next example we show how a conditional behavior (guard tag) is defined by using theworkunit
construction. In this example,c anda are variables, and< represents the less-than sign (<). Therefore,
the guard of this example represents the expression¬(c = 0∧ a < 10). In our framework, any expression
can be composed by usingnot andand operators (note that both form a complete set of logical operators).

<workunit name=“opt1”
guard=“not(c=0,a<10)” >
... (body of the workunit) ...

</workunit>

The following example presents how a variable assignment isdone in aninteractionwhere valuex+1
(send variable) is assigned to variabley (receive variable). Operations allowed in DIEGO are +, -, *, and
/.

5

<interaction name=“b_interaction” operation=“b”
channelVariable=“X2YChannel”>
<participate relationshipType=“XY”
fromRole=“XRoleType” toRole=“YRoleType”/>
<exchange name=“bExch” action=“request”>
<send variable=“x+1”/>
<receive variable=“y”/>

</exchange>
<transition initialstate=“s2” finalstate=“s3” />

</interaction>

We offer two possible ways to model a choreography, either with WS-CDL documents or with UML
sequence diagrams. In the latter case, UML sequence diagrams are automatically translated into WS-CDL
by using WST [1], a tool developed by our research group. It provides a GUI to create UML Sequence
Diagrams that can be automatically translated into its WS-CDL representation.

DIEGO also has a set of tools in order to help designers to build correct choreography specifications.
This toolkit is composed by four independent modules.

First, theParsermodule transforms WS-CDL* specifications into internal EFSM-based representations
used as input for theDerivation Engine. In addition, theParserprovides useful information about possible
anomalies of WS-CDL* documents in an error log file. If there exists some kind of mistake that it is
not controlled by the tool, it will help users to construct correct choreographies by offering detailed
information about detected errors in this log. In the current version, if the WS-CDL* document is not
syntactically correct, then the tool generates an error message.

Fig. 2: Messages displayed in DIEGO Web Services Simulator.

Second, theWeb Services Simulatorallows to observe the interactions of derived services as ifthey
were executed. The result of the simulation can be observed in the Windows console (see Figure 2), and
it is also stored in a log file where communications among services are recorded. A future version of the
tool, currently under development, will be multi-platform(in particular, web-based). DIEGO permits to set
three different parameters for simulation purpose: The maximum possible delay for a message (measured

6

in seconds; the user can also indicate that there is no delay), the maximum simulation time (measured
in seconds), and the maximum log size (measured in kilobytes). If the maximum log size is overflowed,
then the log is overwritten as needed. Simulations can be executed either stepwise, upon termination,
or upon some given point. These functionalities helped us toenhance the algorithms themselves. More
importantly, without this functionality, the only way a user could evaluate the system behavior would be
to directly deploy it in a real platform and observing the traffic among participants by means of a sniffer,
which adds effort and time to the development process.

Third, DIEGO lets users check whether traces observed in specific executions of derived services are
conformed with the requirements imposed by some conformance relations. The tool supports the execution
of the system of derived services by manually or automatically (in particular, randomly) applying the
language operational semantics. In the first case, the user chooses which operational rule is applied,
whereas in the latter case DIEGO randomly chooses the execution path among all available execution
paths. After the execution of a trace, the user can ask DIEGO to automatically compare it with those
permitted by the choreography under different conformancerequirements: in particular,sending(that
is, with respect to moments when messages are sent),processing(w.r.t. moments when messages are
processed), andsynchronization(both).

Finally, with the help of theGraph Viewer, a graphical representation of the choreography and the
derived services is given. These models help designers to understand how derived services solve issues
such as race conditions, non-determinism coordination, and variables fetching. Moreover, graphical models
can be used together with the simulator to develop more efficient service designs or even to envisage more
efficient derivation algorithms for particular or general cases.

3 HOW TO USE DIEGO TOOL

Roughly speaking, DIEGO is used as follows. First, the user should select the path of the WS-CDL
document corresponding to the choreography he/she wants toderive (see Figure 3). Note that some
example choreographies are provided within the tool.

Fig. 3: Choreography path selection in DIEGO.

For checking choreography correctness, the user can press the buttonOptions→ Show Choreography
(see Figure 4a) or the user can run the algorithm (centralized or decentralized version indistinctly).
After that, a text file calledErrorLog is created in choreography folder. In this file, some errors or
recommendations are presented.

If the WS-CDL* document is correct, the user can press theRunmenu (see Figure 4b) executing one
of the versions of the algorithm: Centralized or Decentralized.

After generating the services, XML files containing the BPELdescription are created in the destination
folder (see Figure 3), and an organizational tree (calledcentralizedor decentralized, depending on the
former choice) is displayed on the left side of the interface(see Figure 1). By expanding this tree, the
derived orchestrations appear and, by clicking once on any of them, the appropriate BPEL orchestration
can be examined on the right side of the screen (see Figure 1).By double-clicking on any of the tree
items, the corresponding EFSM is shown.

Finally, it is mandatory to simulate the WS-BPEL services created in order to check if they are conform
with the choreography. To this end, the optionSimulate Web Services, in the Run menu, invokes the
Web Services Simulatorcommented before (see Figure 5). The simulation of web services has different
parameters. In Figure 6, these parameters are depicted. First, the user should decide to introduce some

7

(a) Options menu in DIEGO. (b) Run menu in DIEGO.

Fig. 4: Two menus of DIEGO.

delays when sending the messages (-1 means no delay). Moreover, user can control the simulation duration
and the size of the log. This log can be stored in a text file by clicking the optionSave log as TxTin the
Options menu. Lastly, user can make a simulation step by step by marking the check boxStep-by-Step
Simulation.

Fig. 5: Simulator screen in DIEGO.

Once the services have been simulated, the user can check whether the traces generated in the simulation
are consistent with the choreography (Runmenu, optionCheck Conformance).

8

Fig. 6: Simulator parameters screen in DIEGO.

REFERENCES

[1] M. Cambronero, G. Díaz, E. Martínez, V. Valero, and L. Tobarra. WST: A Tool Supporting Timed Composite Web Services Model
Transformation. InSIMULATION: Transactions of the Society for Modeling and Simulation International, page To appear. Sagem, 2011.

[2] G. Díaz and I. Rodríguez. Automatically deriving choreography-conforming systems of services. InIEEE International Conference on
Services Computing (SCC’09). IEEE Computer Society, 2009.

[3] R. Hailstone and R. Perry.IBM and the Strategic Potential of Web Services: Assessing the Customer Experience. IDC: Analyze the
Future, 2002.

[4] P. Rabanal, I. Rodríguez, J. A. Mateo, and G. Díaz. Improving the automatic derivation of choreography-conforming web services
systems.Procedia CS, 9:449–458, 2012.

[5] I. Rodríguez, G. Díaz, P. Rabanal, and J. A. Mateo. A centralized and a decentralized method to automatically derive choreography-
conforming web service systems.J. Log. Algebr. Program., 81(2):127–159, 2012.

	Prerequesites
	DIEGO: A tool for DerIving chorEoGraphy-cOnforming web service systems
	How to use DIEGO tool
	References

