
Runtime monitoring of contract regulated

web services

Alessio Lomuscio1, Wojciech Penczek2,3, Monika Solanki1 and Maciej Szreter2

1 Department of Computing
Imperial College London, UK

2 Institute of Computer Science
PAS, Poland

3 University of Podlasie, Poland

Abstract. We investigate the problem of locally monitoring contract regulated
behaviours in web services. We encode contract clauses in service specifications
by using extended timed automata. We propose a non intrusive local monitoring
framework along with an API to monitor the fulfilment (or violation) of contrac-
tual obligations. We illustrate our methodology by monitoring a service compo-
sition scenario from the vehicle repair domain, and report on the experimental
results.

1 Introduction

Web services (WS) are now considered one of the key technologies for building new gen-
erations of digital business systems. Service level agreements (SLAs) provide a useful
mechanism to establish agreed levels of service provision when interactions are invoked
within certain parameters. Although SLAs are useful, they can represent only basic agree-
ments of service provision. Applications running complex, human-like activities require
more general and sophisticated declarative specifications certifying legal-like agreements
among the parties.

A useful concept from the legal domain in this sense is the one of contract as found
in human societies. Should a contract be broken by one of the parties, additional rights
and/or obligations (e.g., penalties to be paid) may be applicable to some party. In this
paper, we study the problem of monitoring runtime behaviours of contract regulated web
services. While contracts are usually negotiated offline, it is of interest to monitor at run-
time whether interactions between WS are complying to the contracts stipulated between
the parties. We put forward a “symbolic” solution to the problem above. We represent
both all possible behaviours and the contractually-correct ones as an appropriate timed
automata [1] at local web-service level. Specifically we present a local contract runtime
monitor (CRM) based on the symbolic toolkit Verics [5], a symbolic model checker for
timed-automata. CRM checks the input at runtime against the symbolic representations
provided, and reports to the service (or directly to the engineer) any mismatch, or vi-
olation, between the contract-compliant behaviours originally prescribed and the ones
actually received in the input stream.

The significant advantage of the approach is that we do not need to keep the whole
state space of the possible and the contract-compliant behaviours in memory but we can
simply call the timed-automata engine at runtime to match moves against the stream of
events coming from the input. The paper is structured as follows: In Section 2 we briefly

introduce the formalism of timed automata as used here. Section 3 presents our moni-
toring framework. We analyse a motivating case study in 4 and discuss the monitoring
results. Section 5 presents related work and conclusions.

2 Monitoring via Timed Automata

Let IN denote the set of naturals (including 0), ZZ - the set of integers, Q - the set of
rational numbers, IR (IR+) - the set of (non-negative) reals, and V be a finite set of
integer variables. By a variable valuation we mean any total mapping v : V −→ IN. We
extend the mapping v to expressions of Ex(V) in the usual way. The satisfaction relation
(|=) for the boolean expressions is also standard.

Given a variable valuation v and an instruction α ∈ InsL(V), we denote by v(α) the
valuation v′, obtained after executing α at v, which is formally defined as follows:

– if α = ǫ then v′ = v,
– if α = (v := ex), then v′(v) = v(ex) and v′(v ′) = v(v ′) for all v ′ ∈ V \ {v},
– if α = α1α2, then v′ = (v(α1))(α2).

Let X = {x1, . . . , xnX
} be a finite set of real-valued variables, called clocks. The set of

clock constraints over X and V , denoted C(X ,V), is defined by the grammar: cc ::=
true | xi ∼ c | xi ⊗xj ∼ c | xi ⊗xj ∼ v | xi ⊗ v ∼ c | v⊗w ∼ xi| cc∧ cc, where xi, xj ∈ X ,
v, w ∈ V , c ∈ IN, ⊗ ∈ {+,−}, and ∼ ∈ {≤, <, =, >,≥}. Let X+ denote the set X ∪{x0},
where x0 6∈ X is a fictitious clock representing the constant 0. A clock-to-clock assignment
A over X is a function A : X −→ X+. Asg(X) denotes the set of all the assignments over
X . By a clock valuation we mean a mapping c : X −→ IR+. The satisfaction relation (|=)
for a clock constraint cc ∈ C(X ,V) under a clock valuation c and a variable valuation v

is defined as:

– (c,v) |= (xi ⊗ v ∼ c) iff c(xi) ⊗ v(v) ∼ c,
– the other cases are defined similarly.

In what follows, the set of all the pairs (c,v), composed of a clock and a variable valuation,
satisfying a clock constraint cc is denoted by [[cc]]. Given a clock valuation c and δ ∈ IR+,
by c + δ we denote the clock valuation c′ such that c′(x) = c(x) + δ for all x ∈ X .
Moreover, for a clock valuation c and an assignment A ∈ Asg(X), by c(A) we denote
the clock valuation c′ such that for all x ∈ X we have c′(x) = c(A(x)) if A(x) ∈ X ,
and c′(x) = 0 if A(x) = x0. Finally, by c0 we denote the initial clock valuation, i.e., the
valuation such that c0(x) = 0 for all x ∈ X . In this paper we assume a slightly modified
definition of timed automata with discrete data [17], which extend the standard timed
automata of Alur and Dill in the following way:

Definition 1. A timed automaton with discrete data (TADD) is a tuple A = (Σ, L, l0,V ,X , E , I),
where

– Σ is a finite set of labels (actions),
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– V is the finite set of integer variables,
– X is the finite set of clocks,

– E ⊆ L × Σ × Bool(V) × C(X ,V) × InsL(V) × Asg(X) × L is a transition relation,
and

– I : L −→ C(X , ∅) is an invariant function.

The invariant function assigns to each location a clock constraint (without integer vari-
ables4) expressing the condition under which A can stay in this location.

The semantics of a TADD A is given below.

Definition 2. The semantics of A = (Σ, L, l0,V ,X , E , I) for an initial variable valua-
tion v0 : V −→ ZZ is a labelled transition system S(A) = (Q, q0, ΣS ,−→), where:

– Q = {(l,v, c) | l ∈ L ∧ v ∈ ZZ|V | ∧ c ∈ IR
|X |
+ ∧ c |= I(l)} is the set of states,

– q0 = (l0,v0, c0) is the initial state,
– ΣS = Σ ∪ IR+ is the set of labels,
– −→⊆Q × ΣS × Q is the smallest transition relation:

• for a ∈ Σ,
(l,v, c)

a
−→(l′,v′, c′) iff there exists a transition t = (l, a, β, cc, α, A, l′) ∈ E such

that v |= β, (c,v) |= cc, v′ = v(α), c |= I(l), and c′ = c(A) |= I(l′) (action
transition),

• for δ ∈ IR+,

(l,v, c)
δ

−→(l,v, c + δ) iff c |= I(l) and c + δ |= I(l) (time transition).

Intuitively, in the initial state all the variables are set to their initial values, and all the
clocks are set to zero. Then, at a state q = (l,v, c) the system can either execute an
action or time transition.

2.1 TADD Semantics for RMCS

Inspired by related work in the formal representation of states of compliance and violation
[10], we partition the set of global states Q of S(A) for A = (Σ, L, l0,V ,X , E , I) into
two subsets G and R such that G∩R = ∅5. The set G represents green (or ideal) states,
whereas R represents the red (or non-ideal) ones. Intuitively, G contains the states of
compliance and R contains the states of violation with respect to the contract, i.e., the
whole set of clauses being included. Figure 1 illustrates the intuition behind the semantics.

Fig. 1. Partitioning of states and transitions in a TADD

Based on the above partitioning each action transition (q, a, q′) of S(A) can be one
of the following four types of transitions:

4 To ensure the monotonicity of the timed successor relation.
5 This partition is obtained “location-wise” from a partition of the set of locations L of A.

– Contract compliant: between green and green states, i.e., q, q′ ∈ G. These tran-
sitions occur when the observed behaviour is in compliance with the prescribed be-
haviour of the contract.

– Contract violating: between green and red states, i.e., q ∈ G and q′ ∈ R. These
transitions occur when the observed behaviour violates the prescribed behaviour of
the contract.

– Recovery: between red and green states, i.e., q ∈ R and q′ ∈ G. These transitions
occur when a recovery action is taken by the service after a violation of the prescribed
behaviour is recorded.

– Continuous contract violating: between red and red states, i.e., q, q′ ∈ R. The
transitions occur when no recovery results from a previous violation.

We say that there is a step from state q1 to q2 in A if q1

δ1−→ q′1
a

−→ q′2
δ2−→q2, for some

states q′1, q
′
2 ∈ Q, δ1, δ2 ∈ IR+, and a ∈ Σ.

3 Runtime monitoring framework

Our architecture for local monitoring, RMCS, is illustrated in Figure 2.

Fig. 2. The general architecture and methodology

Agents implementing WS are the primary entities within our framework. Service
behaviour and contracts associated with them may be specified at a high level using WS

standards, e.g., WSBPEL [13] and contracts, e.g., WSLA [7]. The TADD specification
for the service is engineered from these interface representations. The specification of
service behaviour used by RMCS is the TADD representation described in Section 2.
We use the XML format generated by the model checker UPPAAL for representing the
TADD. The runtime state analyser interfaces with the logger for receiving snapshots
of the latest variable valuations generated by the service. Snapshots are passed to the
RSA via the logging framework. RSA is also responsible for updating clocks by querying
the system hardware, in accordance with the granularity of a tick chosen by the service.
The monitoring engine is the core component responsible for testing the conformance of
runtime service behaviour presented as an input from the RSA, against the prescribed
TADD specification of the service.

Each execution step passed to the engine is encoded and its conformance to the TADD
specification is tested. Our SAT-based verification method does not need to construct
the complete model for A, which could be unfeasible for both the explicit-state as well
as BDD-based methods. The engine checks at runtime whether the stream of execution
steps received as inputs from the RSA, conforms with its symbolic representation of all
possible behaviours. For each execution step, the answer returned by the monitoring
engine is one of the following facts:

– GREEN - the step is conforming with the specification, i.e., there is a contract
compliant transition between the source and target states.

– RED - a red state is reached as a target of the transition given, i.e., a contract has
been violated as a result of the transition. This also signifies the fact that the inputs
do not comply with the extended format of the TADD for the service.

– NONE - the step is not conforming with the specification, i.e., there is no such
transition, neither contract compliant or otherwise.

– ERROR - the specification given does not mirror the observed transition so it
amounts to an error.

Results reported at runtime may be analysed in several ways.

4 A vehicle repair contract: case study

We consider a service composition scenario that defines a repair contract between a client
(C) and a vehicle repair company (RC). A repair contract specifies details concerning a
particular repair, i.e., the type of repair to be performed, price, dates, pickup and delivery
locations etc. For simplicity we only model the behaviour of RC. Table 1 identifies some
of the contract clauses governing the actions taken by RC, the deadlines against which
the contracts are monitored, if the clause can be violated, and, if a violation is recorded,
whether any recovery is possible. Note that in some cases RC may take an “offline”
action, in response to a violation from which no recovery may be possible. For example
consider clause 6: “For any violation take recovery action within 3 days”. If the recovery
action is not taken, C may take an offline legal action against RC.

The informal behaviour of RC is described as follows. When RC receives a request
from C to undertake a repair job, it sends a repair proposal. In response, C sends an
acceptance or rejection message. If accepted, RC sends a contract initiation message to
C. RC then waits for the vehicle to arrive, failing which it sends two reminders to C. If
the vehicle fails to arrive, it takes an offline action. As per the contract, RC is obliged to

clause Contract regulated actions Deadline Violation Recovery

1 Receives a repair request by C 5 days - -
2 Sends a repair proposal to C 7 days - -
3 Assess damage to the vehicle 3 days yes yes
4 Execute repair 30 days yes yes
5 Send repair report to C 5 days yes yes
6 For any violation take recov-

ery action
3 days yes no (take offline action)

Table 1. Some contract regulated actions for RC

assess the damage, repair the vehicle and send a report to C. On receiving the report, C

is obliged to send payment to RC. If the payment is not sent, RC sends two reminders
to C and then takes an offline action.

The actions taken by RC in response to messages sent by C are monitored to meet
the deadlines set for various activities as per the contract. Failure to meet deadlines is
considered a violation of the contractual obligations. In some cases a recovery from the
violation may be possible.

4.1 Monitoring the runtime behaviour of the Repair Company

The full set of behaviours of the repair company is represented by a TADD6. As described
in Section 4, deadlines for various activities are decided during contract negotiation
between the parties. Deadlines are defined in terms of number of days. For example
consider a contract clause to be monitored: If C sends a damaged vehicle to RC, RC

assesses the damage to the vehicle within 3 days -clause (3) in table 1. A snippet of the
TADD for the clause is shown in the Figure 3. Figure 3 describes the timeline in number

s8=notAssessed
x<=2

s7=Assessed
x<=30

s5=Received Vehicle

x<=3

s4=Contract Initiated
x<=7

!damageAssessed

clause=003,x=0

damageAssessed

SendAssessed? x=0

vehicleSent
SendVehicle!

x=0

Fig. 3. TA specification of clause (3)

of days for clause (3), a snapshot passed to RSA at x = 0 from the logger when a vehicle
for repair arrives, snapshots sent to the monitoring engine by the RSA and the results
from monitoring. As per the contract, once a damaged vehicle has arrived the damage
has to be assessed within 3 days. A snapshot is again sent by the logger to the RSA at
x = 5. The snapshot taken at x = 0 and at x = 5 are sent by the RSA as a pair - or as a

6 The complete TADD for the example is too large to be shown here.

Fig. 4. Runtime valuations for clause (2)

“step” to RMCS. The results returned by the monitoring engine are {RED, reset, 003}.
RED signifies that a violation has occurred, i.e., the damage was not assessed within
the deadline, reset indicates that the clock has been reset and 003 indicates the clause
index that has been violated.

4.2 Experimental results and Discussion

In order to validate our methodology, we implemented the above case study and mon-
itored several runtime execution steps for the service. RMCS successfully monitored 8
execution steps per second depending on the number of variables defined for the steps.
Violated contracts and clock resets were reported by RMCS. Note that this could be use-
ful in the context of monitoring SLAs, where typically large number of execution steps
need to be monitored to ensure a reliable Quality-of-Service.

5 Related work and conclusions

In this paper we presented a symbolic approach based on timed automata for the runtime
monitoring of contract regulated agent based WS. Monitoring service behaviour has
been an active area of research. Several efforts have investigated various formalisms and
frameworks for the monitoring of functional and non-functional properties of services.
The monitoring problem has been considered for several formalisms in papers [16, 2, 4,
14, 12, 11, 9, 3]. Timed automata have been used in earlier work such as [8] on monitoring
and fault diagnosis of systems, while [15] presents an approach which also uses timed
automata for monitoring SLAs. The aims of the above approaches are however quite
different from our objectives in this paper. However [8, 15] are not concerned with local
monitoring of contract-based executions.

An attractive feature of our approach over those mentioned above is that histories
and pending contracts are not stored in memory during the monitoring. This positively
impacts the scalability of the approach and is particularly useful when monitoring mul-
tiple and long running contracts between several services. As a case study we presented
the monitoring of contracts for a repair company. Although the TADD for the service

is not large enough to exploit the full capabilities of RMCS, we believe it is still suffi-
ciently significant to demonstrate the methodology and scope of the proposed approach.
Experiments demonstrate larger scenarios would be handled just as well by the technique.

Much work remains to be done. An important part of our future work is the translation
to TADDs from high level specification standards such as WSBPEL.

References

1. R. Alur. Timed Automata. In Proceedings of the 11th International Conference on Computer
Aided Verification (CAV’99), volume 1633 of LNCS, pages 8–22. Springer-Verlag, 1999.

2. Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time monitoring
of instances and classes of web service compositions. In ICWS ’06: Proceedings of the IEEE
International Conference on Web Services.

3. Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed services. In
ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented Comput-
ing. ACM.

4. Domenico Bianculli and Carlo Ghezzi. Monitoring conversational web services. In IW-
SOSWE ’07: 2nd international workshop on Service oriented software engineering. ACM.

5. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna,
and A. Zbrzezny. VerICS: A tool for verifying Timed Automata and Estelle specifications.
In Proc. of the 9th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), LNCS. Springer-Verlag.

6. N. Eén and N. Sörensson. MiniSat. http://minisat.se/MiniSat.html.
7. Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. J. Netw. Syst. Manage., 2003.
8. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. In 11th

International SPIN Workshop on Model Checking of Software (SPIN’04), Barcelona, Spain,
LNCS.

9. Zheng Li, Yan Jin, and Jun Han. A runtime monitoring and validation framework for web
service interactions. In ASWEC ’06: Proceedings of the Australian Software Engineering
Conference (ASWEC’06). IEEE Computer Society.

10. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.
11. G. Mahbub, K.; Spanoudakis. Run-time monitoring of requirements for systems composed

of web-services: initial implementation and evaluation experience. In ICWS’05, IEEE In-
ternational Conference on Web Services.

12. Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman, and John Warne. Contract
representation for run-time monitoring and enforcement. cec, 2003.

13. OASIS Web service Business Process Execution Language (WSBPEL) TC. Web service
Business Process Execution Language Version 2.0, 2007.

14. Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso. Planning
and monitoring web service composition. In AIMSA, pages 106–115, 2004.

15. F. Raimondi, J. Skene, L. Chen, and W. Emmerich. Efficient monitoring of web service slas.
Technical report, UCL, London, 2007.

16. Monika Solanki. A Compositional Framework for the Specification, Verification and Runtime
Validation of Reactive Web Service. PhD thesis, De Montfort University, Leicester, UK,
October 2005.

17. A. Zbrzezny and A. Pó lrola. SAT-based reachability checking for timed automata with
discrete data. Fundamenta Informaticae, 79(3-4):579–593, 2007.

