
Inter-service Dependency in the Action System Formalism

Extended Abstract

Mats Neovius1,2, Fredrik Degerlund1,2, Kaisa Sere1

1 Åbo Akademi University, Joukahaisenkatu 3 – 5, 20520 Turku, Finland

2 Turku Center for Computer Science, Joukahaisenkatu 3 – 5, 20520 Turku, Finland
{mats.neovius, fredrik.degerlund, kaisa.sere}@abo.fi

1 Introduction

The use of formal methods is widely recognised for facilitating systematic construction
of reliable and rigorous software. Methodologies supporting formalisation of
functionality relying on distributed sources suggest to mastering inter-module
dependencies where assignment of a global variable in one system changes the global
state. The challenge comes to be identifying the properties and restrictions when
formally defining dependencies involving the modules. The gain is that hence the
systems need not to be administrated by a central entity and can be truly distributed. The
modules can be independently replaceable as long as the functionality they guarantee
remains intact given certain conditions. Consequently, the modules have well defined
interfaces and they can be called services.

The motivation of our approach lies in that information sources become increasingly
distributed; the information is provided by scattered independent entities [1, 2]. These
entities depend on service(s) provide by other entities. A service can be an elementary
source of information, some entity deducing new information depending on other (lower
level) services or a combination of these two. Whether being an intermediate service or
elementary source of information, the internal functionality of the provided service need
not to be considered by the auxiliary services, i.e. the service can be considered a black-
box.

The contribution of this extended abstract is in providing a glimpse into the research
conducted in examining the means to formally rely on remote services and semantically
reason about these. For this, we have defined an operator that masters the dependency
relation that treats the remote services as stand-alone replaceable entities. Once
mastering the formalisation of the services’ interfaces, we claim that the formalism is
ripe for specifying truly distributed inter-service dependent systems. We have chosen to
model the dependency in the action system formalism framework, and we use reactive
action systems as they provide means for reasoning about the information in a modular,
distributed, manner. This extended abstract builds on our earlier work [3, 4].

2 Definitions of Concepts

For the reader to thoroughly understand this paper, some concepts need to be defined.
We will consider systems that are either sources and/or utilisers of information. This
paper will use source when indicating the origin of some information, realistically this is
the input to the system or a sensor introducing some context. The utiliser constitutes the
user of any provided information. Thus, an utiliser can be a source as well whenever it
utilises other sources but changes these according to some rules such as calculating the
mean value or by source introduction of its own. Realistically, this happens when a
service depends on subservices to provide.

Because the source must not dictate its utiliser(s) but the utiliser selects the source(s),
unidirectional dependencies are evident. Bidirectional dependencies in distinct traces are
expressible, e.g. mutual agreement considering entities A and B where ↪ denotes
“depends on”; A ↪ B and B ↪ A. We will also model direct and indirect dependencies.
In direct dependencies the utiliser will halt until the source provides its service whilst in
indirect the utiliser settles for being guaranteed that the source will eventually execute
the task. In addition, we will use other concepts specific to the formalism that are
introduced gradually.

3. Characteristics of an action

One way of formally modelling software is to focus on the state space of a program.
Each state in the state space is identified by the disjoint conditions that hold in it.
Changes in these conditions are of central interest and are traced. Because the current
state is well defined as are the executable tasks, a weakest precondition predicate can be
derived for each task. Deriving one predicate from another one coins the idea of a
predicate transformer, originally introduced by Dijkstra.

3.1. Actions at a glimpse

Since providing a table listing all possible preconditions for all post-execution states of
an action is unmanageable, due to its sheer size, the approach taken is to describe this as
a function describing the weakest precondition of an action [5]. The action system
framework is a state based formalism for defining distributed systems [6, 7]. The basic
component in an action system is the action. It bases on Dijkstra’s language of guarded
commands [5, 8] and is defined with the weakest precondition predicate transformer, in
short wp. From wp(A, q) we can derive the weakest precondition, i.e. the conditions for
which executing action A the postcondition q is satisfied. These pre- and postconditions
are mere predicates over state variables. The weakest precondition is defined for various
actions as follows:

wp (magic, q) = true Miraculous action (1)

wp (abort, q) = false Aborting action (2)

wp (skip, q) = q Stuttering action (3)

wp (x ≔ E, q) = q[E/x] Multiple assignment (4)

wp (A; B, q) = wp (A, wp (B, q)) Sequential composition (5)

wp (A [] B, q) = wp (A, q) ∧ wp (B, q) Nondeterministic choice (6)

wp ([a], q) = a ⇒ q Assumption (7)

wp ({a}, q) = a ∧ q Assertion (8)

The action abort is used to model disallowed behaviour, thus q is never satisfied, i.e.
the outcome is false. skip is a stuttering action, not doing anything, thus, the weakest pre-
condition for establishing post-condition q is q. x ≔ E is multiple assignment where all
occurrences of x are substituted with an element in E, A; B is the sequential composition
of two actions and A [] B the (demonic) nondeterministic choice between actions A and
B. [a] is the assumption that is assumed true and {a} is called the assertion that is a
predicate needed to evaluate true in order for the execution to proceed to guarantee q.
For assumption, if ‘a’ is false, the action behaves magically whilst for assertion, if ‘a’
evaluates false, the action aborts. Hence the actions abort and magic can be seen as
special cases of assertion and assumption, respectively.

An action A is enabled (gd A) whenever executing it does not establish an unwanted
post-condition.

gd A = ¬wp (A, false) Enabledness (9)

Hence, actions abort, skip and x ≔ E are always enabled.
This language allows guarded commands [gA]; sA, for convenience written gA → sA,

where gA is the guard. For the rest of the paper, we assume that any action A can be
written in the form:

A = gA → sA Guarded command (10)

such that:

gd A = gA (11)

and

gd sA = true (12)

Thus, enabledness of an action can be determined by checking its guard portion.
Furthermore, we note that since gd A = true, we can derive the following property of sA
by applying the definition of enabledness (formula 9):

wp (sA, false) = false Property sA (13)

Thereby sA must not establish a false post-condition. The weakest precondition
semantics for an action A = gA → sA is:

wp (gA → sA, q) = gA ⇒ wp (sA, q) wp for guarded command (14)

Having defined the guarded actions, we can define conditional choice and repetitive
construct:

wp (if A fi, q) = wp (A, q) ∧ gA Conditional choice (15)

wp (do A od, q) = (∀n.wp (An, gA ∨ q)) ∧ (∃n.¬gA
n) Repetitive construct (16)

where A
0 = skip and A

n+1 = A
n; A. The repetitive construct defines that each action

enables some action or establishes q and that there must exist some that does not enable
any other, i.e. partial correctness and termination. Consequently, an action A within do
… od may execute only when its guard gA holds.

3.2 Inter-action Dependencies

Expressing that an action depends on another action can be modelled using a special
operator. We denote it the dependency operator \\. Letting A and B be actions, where
A\\B denotes that A ↪ B, we define \\ to be:

Def. 1, dependency operator: A\\B = gA ∧ gB → A; B

Whenever having the construct A\\B, we call the dependent action A the native action
and B the trailing action. For the gB to evaluate true after having executed A, we need to
assure that A preserves gB by not assigning the free variables of B so that it would
disable gB. This characteristic is shown in Section 3.3 by calculating the guard for A\\B,
as is the wp for A\\B. Typically, at the time of termination A\\B would be disabled, i.e.
modelled to be executed exactly once.

3.3 Characteristics of the \\-operator

The dependency operator introduces some restrictions. We examine these by defining
how \\ relates to the provided semantics of section 3.1 by exposing its characteristics by
calculating its weakest precondition.

Characteristic 1, wp for \\: wp(A\\B, q)
= wp (gA ∧ gB → A; B, q) // Def. 1
= gA ∧ gB ⇒ wp (A; B, q) // formula 14
= gA ∧ gB ⇒ wp (A, wp (B, q)) // formula 5
= wp (gA ∧ gB → A, wp (B, q)) // rewrite 14

This characteristic coins the meaning of the \\ operator. Initially gA and gB need to
hold and after executing A, a state where B is enabled is reached, and after executing B, q

is established. Hence, A must not disable B.
Assuming that B establishes q whenever gB holds and executed after A, we can

calculate the collective guard of A\\B. This collective guard is deduced with the help of
wp formulae.

Characteristic 2, guard of \\: g(A\\B)
= ¬wp (A\\B, false) // formula 8
= ¬wp (gA ∧ gB → A, wp (B, false) // charac. 1
= ¬(gA ∧ gB ⇒ wp (A, wp (B, false)) // formula 14
= ¬(gA ∧ gB ⇒ wp (A, wp (gB → sB, false))) // formula 10
= ¬(gA ∧ gB ⇒ wp (A, gB ⇒ wp (sB, false)) // formula 14
= ¬(gA ∧ gB ⇒ wp (A, gB ⇒ false)) // formula 13
= ¬(gA ∧ gB ⇒ wp (A, ¬gB ∨ false)) // Def. ⇒
= ¬(gA ∧ gB ⇒ wp (A, ¬gB)) // tautology
= ¬(¬(gA ∧ gB) ∨ wp (A, ¬gB)) // Def. ⇒

= ¬¬(gA ∧ gB) ∧ ¬wp (A, ¬gB) // Def. deM
= gA ∧ gB ∧ ¬wp (A, ¬gB) // double neg

Characteristic 2 defines the general structure of the guard that must hold for the action
A\\B to be enabled. In short, the gA and gB need to hold and A must not disable B.

A\\B is not commutative. This is the case partly because the significance of order i.e.
distinction between the native action and trailing action in definition 1, where the native

action must not disable the trailing one. These characteristics support the definition
provided. Hence, we conclude property 1 for non-interference:

Property 1, non-interference native: The native action can only assign the free
variables of the trailing action in a manner that does not disable the guard of the
latter.

Property 1 states that a native action A must assure not to contribute towards disabling
the trailing action B. Therefore, A is not allowed to arbitrarily assign the variables of B.
However, the trailing action B can assign the native action’s variables; otherwise, the
impact of the trailing action would be restricted to the inclusion of the guard of the
dependency relation.

4. Dependency on an action system level

As the fundamentals of an action and the characteristics of the dependency operator are
provided, we extend usage of the operator to be used within an action system. The action
system building blocks are defined in Section 4.1. We consider reactive action systems,
where independent systems operate as a part of a more complex system. To navigate the
complex system and depend on these remote action systems, we introduce a means for
remote referencing in Section 4.2.

4.1. Action system at a glimpse

To start reasoning with action systems, we specify the elements of one, here named 	:

Def. 4, action system: 	 = |[var v,w* proc P:p; R*:r ● Init: A0; do Op: A od]| : i

In 	, v and w* are the variables declared by this action system. Variables v are local and
w* constitute the exported variables (denoted with an asterisk). Procedures are declared
in the clause proc where P: p is a local procedure p named P, only executed if called
upon whilst R* is a globally referable procedure. Action Init:A0 is the initialising action
assigning the declared variables their initial value where Init is the label of this action.
Each action label ∈ Name of action labels in the declaring action system. The do … od
bracket pair constitute the repetitive construct (formula 16) within which the action A
labelled Op is repeatedly executed until A aborts or until termination. Variables i stand
for the optional imported variables that are declared and exported by other action
systems but referenced from this. Together, import i and export w* constitute a situation
resembling shared writable memory where the variable type is declared by the exporting
action system.

Because considering reactive action systems the action system 	 is a part of a more
complex system, where all other action systems are considered as 	‘s environment,
commonly denoted as ℰ. As the action atomicity holds on the whole complex system,
any atomic action of 	 can be preceded by an action in ℰ impacting 	 by writing to 	‘s
global variable space. Hence, the reactive component does not terminate by itself as the
environment can, through the global variables, enable some actions within this. This
makes the termination a global property and the formalism comes to showing properties
of execution traces.

Any set of action systems in the reactive system can be composed to form a coherent
monolithic action system. This is realised with the commutative and associative parallel
composition operator ||, defined in Definition 2:

Def. 2, parallel composition ‘||’: Let
	 = |[var va, wa*; proc P:p ● Init:A0; do Op:A od]| : i and
ℬ = |[var vb, wb*; proc R*:r ● Init:B0; do Op:B od]| : j then
 = 	 || ℬ = |[var xm, xn*; proc P:p; R*:r ● Init:A0; B0;

do Op	: A [] Opℬ: B od]| : h where
h = i ⋃ j \ (wa ⋃ wb), xn* = wa ⋃ wb and xm = va ⋃ vb provided that va ⋂ vb = ∅.

Definition 2 states that if a set of action systems operates on a disjoint set of local
variables, va ⋂ vb = ∅, procedure names and action labels, they can be composed without
renaming to one action system where the actions within the repetitive do … od loop are
treated non-deterministically and procedures remain intact. If the local variables are not
disjoint or the local procedure names coincide; non-overlapping can be achieved through
renaming whereas the action labels are be given a suffix indicating their origin. In the
declaration above, action system is a parallel composition of 	 and ℬ where the
possible execution traces remain unchanged. || has the immediate drawback of
compromising modularity and reusability, i.e. composing action systems 	||ℬ = does
not guarantee that once decomposing , 	 and ℬ are recovered in their original form.
Consequently, composition provides a means to form an abstract view of the system as
well as refactoring the system.

4.2. Inter-Action System dependencies

Dependency within one action system is denoted by applying the dependency operator
within the do … od construct with a reference to an action within this same repetitive
construct. For referring to actions in the environment of this action system, means to
make “remote dependency references” need to be defined. The trailing action operates in
its own right, i.e. possibly providing its service to many disjoint actions without these
having to be aware of each other. To reference a remote system providing this service,
we define the @ reference:

Def. 3, @ reference: Let B be an action and ℬar an action system where B ∈ actions
of ℬar, then B@ℬar refers to action B in action system ℬar.

The @ is a postfix to an action where A\\B@ℬar denotes action A to depend on action B
in action system ℬar. Because of the atomicity of \\, action A\\B@ℬar waits for B to
finish; calling this a direct dependency relation. Consequently, several actions can
depend on B@ℬar without interference as B@ℬar is atomic and provides only to one
system at any given time resembling the situation where A requests a resource possessed
by B@ℬar.

Direct dependency relations do however halt the execution of the native system until
the referenced action B@ℬar terminates. As the scheduling for the whole system is not
of interest, breaking the atomicity might be of interest. This can be done whenever
B@ℬar only enables another action, labelled Bwake@ℬar that ought to be executed in the
wake of A. Hence, if B@ℬar enables Bwake and the system can guarantee that Bwake is
executed at some point after the reference, the atomicity of \\ is broken. This lets the
native system continue its execution until the possible results of Bwake are required. Thus,

A\\B@ℬar only enables Bwake that is assured to execute prior to the first execution of the
action labelled Bnat.

	 = |[var v,w* proc; ● Init: A0; do Op: gOp → A\\B@ℬar

[] “other actions” od]| : i
ℬar = |[var j,i* proc B*: gBorig ∧ k = false → k ≔ true; ● Init: Bar0;

do Bwake: k = true ∧ gBorig → sBorig; C; k ≔ false
[] Bnat: k = false ∧ gBorig → sBorig
[] “other actions” od]| : l

Here actions labelled Bnat and Bwake assure sBorig to be executed once but in addition to
sBorig, the referenced action labelled Bwake executes an additional action (possibly
stuttering) C and disables itself through assigning k false. As the guard of the globally
referable procedure B* is the same as for the alternatives of Bnat and Bwake, the semantics
of the remote dependency is not altered. The impact on the system is similar to the one
when considering only intra-action system dependencies but the atomicity is deliberately
broken down with the Boolean of k for the sake of immediate progress, i.e. being able to
execute the “other actions” in 	 before Bwake is finished. We call this indirect

dependency. Moreover, if action system 	 is the only system importing variable k, then
we say that k is a dedicated variable for this dependency. The trade-off with breaking the
dependency is that the execution order cannot be guaranteed and it should hence be used
carefully, i.e. as above when B* enables Bwake, A\\(B\\C) ordering is not necessarily kept
as A; Bwake; C because Bwake might actually execute after C, which is obvious as the
atomicity was deliberately broken. However, it can easily be shown that A executes
before C and before Bwake.

5. A short example

To clarify the realistic implementation scope of the ideas presented in this extended
abstract, we outline a short, easily conceivable example. This example bases on fraction
of a Buyer-Seller relation where the seller runs an ERP-system (Enterprise Resource
Planning).

Assuming two actions A ↪ B, a realistic scenario could be that A wants to buy
something sold by B i.e. a normal buyer-seller relation. Letting gA be ‘has money’ and A

constitute the state update, gB could realistically be ‘in stock’ where B merely updates
the stock. Consequently, per Definition 1, gA ∧ gB → A; B, buyer A has money whilst
the product is in stock and once bought the stock is updated. The novelty of this
approach is that in order for A to execute, gB needs to be true, i.e. product must be in
stock for the buyer to buy1 and A need only to know the “interface” of B, i.e. sell if in
stock.

ℬuyer = |[var v,w* proc; ● Init: A0; do Buy: gA → A\\B@�eller od]| : i
�eller = |[var j,i* proc; ● Init: B0; do B: gB → B od]| : l

However, as there is no reason why the ℬuyer should halt until the �eller is
complete, we break the atomicity.

ℬuyer = |[var v,w* proc; ● Init: A0; do Buy: gA → A\\B@�eller od]| : i

1 Mathematically, knowing this a priori is irrelevant as the system can be modelled so that once the

purchase is done, the product must be in stock.

�eller = |[var j,i* proc B*: gB ∧ j = false → j ≔ true; ● Init: B0;
do Bwake: gB → B; D
[]Bnat: gB → B od]| : l

Here the �eller’s gB stand for “in stock”. Hence, the dependency relation in the
action labelled Buy is disabled unless gB evaluates true. The auxiliary action D executes
only in the wake of a dependency reference to proc B* and could stand for shipping the
product and invoicing. Naturally, this relation can be extended to a multi-phased
dependency relationship where payment, cancellation, trust and other policies can be
included.

6. Conclusions

As the future is likely going to be about navigating the ubiquity of information, being
able to select, rely on and process relevant information, as well as to reason rigorously
with these, the need to formally treat remote providers of this information is evident. In
this extended abstract, we have shown research results in how inter-service dependencies
can be modelled in the action system framework. We have introduced and briefly
outlined the characteristics of a new dependency operator \\ and exemplified its
feasibility in a short example.

As the research on the \\ operator is far from finished, future work will address chains
of dependencies, non-ordered dependencies as well as refinement. The goal is to gain
and present a library of well defined operators that address the challenges brought along
with the ever increasing distribution of computations and responsibilities. We believe the
service oriented architecture provides a feasible and demanding platform to verify results
upon.

References

1. Neovius, M. and Yan, L.: A Design Framework for Wireless Sensor Networks. In Proceedings
of World Computer Congress - WCC 2006, Ad Hoc networking track, 2006.

2. Roman, G.C., Julien, C., and Payton, J.: A formal treatment of context-awareness, In
Proceedings of FASE’04, 2004.

3. Neovius, M. and Sere, K.: Formal Modular Modelling of Context-Awareness. To appear in
Post-proceedings of FMCO 2008. LNCS, 2009.

4. Degerlund, F. and Sere, K.: A Framework for Incorporating Trust into Formal Systems
Development. In Theoretical Aspects of Computing – ICTAC 2007, 4th International
Colloquium, Proceedings, 2007.

5. Dijkstra, E. W.: A Discipline of Programming. Prentice Hall, 197632.
6. Back, R.J.R and Kurki-Suonio, R.: Decentralization of Process Nets with Centralized Control.

In Proceedings of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, 1983

7. Sere, K.: Stepwise derivation of parallel algorithms, PhD dissertation, Åbo Akademi 1990.
8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, vol. 18, no. 8, 1975.

