
A Contract-Based Approach to Adaptivity in
User-Centric Pervasive Applications?

Martin Wirsing, Moritz Hammer, Andreas Schroeder, and Sebastian Bauer

Ludwig-Maximilians-Universität München, Germany
{wirsing, hammer, schroeda, bauerse}@pst.ifi.lmu.de

Abstract. Pervasive user-centric applications operate in highly dynamic and un-
certain environments. Designing such applications as one monolithic component
taking all possible environments into account inevitably leads to bad system de-
sign. We instead propose constructing partial solutions handling only a subset of
all possible environments, and changing the system as the environment evolves.
We use an assume-guarantee contract framework to infer the conditions under
which configurations exhibit the desired functionality. Furthermore, we show how
a system undergoing reconfigurations can be shown to satisfy a global assume-
guarantee contract.

1 Introduction

Pervasive user-centric applications are applications running on systems seamlessly inte-
grating with their environment and adapting it to the user’s current emotional, cognitive,
and physical state [6]. Such applications must deal with several challenges:

– They must operate in highly dynamic and uncertain environments.
– They often interact with other agents and humans.
– They must remain non-disruptive, and at the same time improve the experience of

the user.

In this paper, we take a closer look on how the first challenge in the development of
user-centric applications can be handled: dealing with highly dynamic and uncertain en-
vironments. Our approach involves making explicit assumptions about the environment
and the functionality of the system using assume-guarantee contracts[3]. We annotate
the components constituting the system with assume-guarantee contracts in order to
verify whether a global contract can be satisfied. If this is not the case, we introduce
components monitoring the system. By reconfiguring the system as soon as one of the
monitored conditions get falsified, we achieve adaptivity within the bounds of a given
specification defining the desired system behaviour. Furthermore, knowing the assume-
guarantee pairs of components, the reconfiguration rules and the overall contract to
satisfy, we can verify whether the system under construction satisfies the global system
contracts that describe its overall purpose.
? This work has been partially supported by the EC project REFLECT, IST-2007-215893 and

the GLOWA-Danube project 01LW0602A2 sponsored by the German Federal Ministry of
Education and Research.

The remainder of this paper is structured as follows. In Section 2, we give an in-
formal overview of our contract-based approach to adaptivity. Following this informal
description, Section 3 gives an example scenario for the usage of our approach, before
we introduce the formal assume-guarantee framework in Section 4. We conclude in
Section 5.

2 Contract-Based Approach to Adaptivity

User-centric pervasive adaptive systems need to be able to cope with a large amount
of uncertainty. Sensor readings might not be available or be inaccurate, and actuators
might fail to achieve the desired effect on the user. Different users might respond dif-
ferently to stimuli supplied by the system, and users might become bored by a stimulus
after different numbers of repetitions. In order to cope with the challenges of such a
volatile situation, such systems need to be engineered in a manner that supports adapting
to changes of the user and the environment. Obviously, such adaptivity can be realised
by implementing lots of case distinctions that address individual situations. However,
as the number of problems that need to be addressed increases, this will lead to bloated
and unmaintainable code.

Instead, we propose the use of components and reconfiguration to achieve adaptiv-
ity. Components are considered to be black boxes, making explicit only their commu-
nication requirements by means of required and provided ports. A system is comprised
from a number of components and their configuration, which describes how the re-
quired ports are connected to suitable provided ports. Numerous component models
describe how exactly this is achieved, and how the components can communicate in
order to achieve a common goal [4]. For the REFLECT project, we have developed our
own component framework [6], which is specially tailored to building adaptive systems
with multimedia sensors and actuators.

In a component application, individual components provide parts of the functional-
ity required by the entire system. By substituting, adding and removing individual com-
ponents, the system’s behaviour can be changed. This process is called reconfiguration.
Since entire components are replaced, little code needs to be added to the components
to achieve this kind of adaptivity. Instead, it is attained on a level more coarse: the level
of the system architecture.

Still, reconfiguration is a difficult problem, and while many framework support it [5]
the problems often outweigh the utility. One of this problems is the necessity to plan
how reconfiguration should be conducted, which usually requires both anticipation of
possible future problems as well as an algorithm to figure out a reconfiguration plan
that operates on a component configuration that has possibly undergone many recon-
figurations already. The anticipation of future reconfiguration scenarios is a difficult
task. Here, we propose a way to support the planning of reconfiguration by annotating
components with assume-guarantee pairs. Informally, the guarantee describes how a
component will conduct communication over its ports, given that the assumption about
the communication received by its ports holds. In this paper, we introduce a semantics-
based assume-guarantee framework similar to the framework proposed in [2].

Fig. 1. Initial System

From such assume-guarantee specifications, a component’s anticipation of possi-
ble employment scenarios can be derived. When designing a system, by connecting a
component to other components, the composition can be checked against the guaran-
tees provided by the communication partners, and possible mismatches can be detected.
Checking composability in such a way has a long tradition (e.g., [1]). Furthermore, the
intended behaviour of the entire application can be specified by assume-guarantee pairs,
where the assumptions address the physical environment, and the guarantees the out-
put produced. Again, the compatibility of a component configuration to such global
specifications can be checked, and invalid application designs can be detected.

However, an invalid application configuration can still be useful under certain con-
ditions. Identifying these assumptions and monitoring their validity allow to restrict the
execution of the generally invalid application to valid situations at runtime. If the as-
sumptions are about to get invalidated in a system run, it is still possible to execute a
reconfiguration to a system that will show the desired behaviour in the new environ-
ment. The role of monitors is hence to allow to deploy system configurations needing
assumptions that are not satisfied in the general case, and trigger reconfigurations as
these assumptions get falsified.

3 Example Scenario: Adaptive Advertising

In order to illustrate our approach, we use a simple adaptive advertising scenario. The
general idea of adaptive advertising is to adapt the displayed ad to the current situation
in front of it – whether there are several people just passing by, a small group of persons
watching the ad carefully, or just one person in front of it waiting for someone else.
The system uses cameras to observe the passers-by, and by this enables the ad to react
to e.g. the number of passers-by watching the advertisement, to discover their interest
in the advertisement by analysing their gaze direction and exposure time, or to enable
gesture-based interactions with a passer-by becoming interested in the ad.

A simple scenario within the vast ranges of possibilities the adaptive advertising
setting offers is an adaptive car advertisement, in which the displayed car reacts to the
position of users in front of the display: By moving around the display, a selected user
controls the orientation of the car.

Fig. 2. System with Reconfiguration

The contract to be satisfied by this system consists of two guarantees: (G1) Being an
interactive ad, the system should react to a user in front of the display. (G2) The content
displayed must change at least every ten seconds: an advertising campaign using a large-
scale display should not waste its capabilities by showing static content.

A first realisation of the system consists of four components (cf. Fig. 1): a camera
component for image acquisition, a position detection component detecting the posi-
tion of persons in front of the display, a control component selecting the person to be
given control over the car movements and how his position should be related to the
car’s rotation, and finally a rendering component displaying content. This simple re-
alisation is problematic, however. It cannot provide the guarantee that the displayed
content changes every ten seconds, as the car movement depends on the control of a
person in front of the display. Using a simple assume-guarantee calculus, we can show
that the system is incomplete although it provides part of the desired functionality.

By introducing a monitor observing whether someone is in front of the display, the
system can be made aware that it is about the violate its contract. Then, a reconfiguration
can be triggered which alters the system such that it shows a constantly revolving car
(cf. Fig. 2). In more formal terms, introducing a monitor allows to assume that the
environment exhibits certain features (e.g. always have someone in front of the display)
that it does not exhibit in the general case. Note that the second system (Fig. 2, right)
also needs monitoring, as it again does not satisfy G1: The second system does provide
interactive content to its viewers, and therefore must be changed as soon as a person is
in front of the display.

In the following section, we introduce a formal framework allowing to check the
properties described informally above, and show how it can be proven that the overall
system satisfies the global contracts G1 and G2.

4 Assume-Guarantee Specifications

We annotate every component in our adaptive system by a pair of assertions (A,G).
The assertion A formulates a property the component assumes from its environment

whereas G is the guarantee it provides to the environment given that A is satisfied. In
this way every component can be proven to be correct with respect to their assume-
guarantee specification.

We introduce a simple assume-guarantee framework which is formulated on the
semantic domain in terms of runs over a given signature. A signatureΣ consists of a set
of provided and required ports, denoted by portsprv (Σ) and portsreq(Σ) respectively.
We assume the notion of a subsignature Σ ⊆ Σ′ and the supremum of two signatures
Σ supΣ′; both notions are defined in the obvious way. A Σ-run is an abstract structure
representing one possible behaviour of the system. One possibility – among others – to
refine the notion of runs is to see them as capturing reception and sending of messages
on ports (given by Σ) over (discrete or continuous) time.

Assumptions, guarantees as well as implementations of components are considered
to be assertions. Given a signature Σ, a Σ-assertion E (also denoted by E : Σ) is
identified with a set of Σ-runs. We assume that every Σ-assertion E can be lifted to a
Σ′-assertion E ↑Σ′

for Σ ⊆ Σ′. Moreover, we define the composition of assertions by
E1 : Σ1 + E2 : Σ2 := E1 ↑Σ ∩ E2 ↑Σ for Σ = Σ1 sup Σ2. From now on, signatures
and liftings are omitted where they are not essential.

Assume-guarantee pairs are formulated as pairs of assertions (A : ΣA, G : ΣG).
Satisfaction is defined simply by inclusion of runs – more precisely, every run in M
which is in A (i.e. satisfies A) must be in G.

Definition 1. Let M : Σ be an implementation, and A : ΣA, G : ΣG two assertions.
M satisfies (A : ΣA, G : ΣG), denoted by M |= (A,G), if and only if ΣA, ΣG ⊆ Σ
and M ∩A ⊆ G.

Parallel composition of implementations preserves this satisfaction relation.

Lemma 1. Let M1 : Σ1, M2 : Σ2 be two implementations, and let portsprv (Σ1) ∩
portsprv (Σ2) = ∅ and portsreq(Σ1) ∩ portsreq(Σ2) = ∅. If M1 |= (A1, G1) and
M2 |= (A2, G2) and A is an assertion for which it holds A∩G1 ⊆ A2, A∩G2 ⊆ A1,
and A ⊆ A1 ∪A2 holds, then M1 +M2 |= (A,G1 ∩G2).

When building component systems we want to check whether the resulting spec-
ification satisfies a global system specification. Therefore we introduce a refinement
relation which allows assumptions to be weakened and guarantees to be strengthened.

Definition 2. (A,G) refines (A′, G′), denoted by (A,G) � (A′, G′), if A′ ⊆ A and
G ⊆ G′.

A major requirement for refinement relations is its compatibility with the satisfaction
relation for implementations, i.e. whenever an implementation satisfies a refined con-
tract, it satisfies the original contract.

Lemma 2. If M |= (A,G) and (A,G) � (A′, G′) then M |= (A′, G′).

A global system specification (Asys, Gsys) can then be verified in the following way.
Assume that the composed system M1 + . . . + Mn satisfies (A,G), then in order to
show that it also satisfies the global system specification (Asys, Gsys) it suffices to show
(A,G) � (Asys, Gsys).

In order to verify dynamic, reconfigurable systems, we must define the notions of
a composable system that is configured at each moment by connectors. From now on,
we consider more concrete runs of the form ρ : R+

0 → S with S a domain for states of
runs.

Definition 3. A set of implementations M1, . . . ,Mn is called composable iff Σi ∩ Σj
is the empty signature for all i 6= j. A configuration of M1, . . . ,Mn is a set of runs
C over Σ ∪ Con(Σ), ρ : R+

0 → P(Σ ∪ Con(Σ)), where Σ = supni=1Σi is the
supremum over all signatures, and Con(Σ) = portsreq(Σ) × portsprov (Σ) is the set
of all connectors. A configuration is valid iff for all ρ ∈ C. (r, p) ∈ ρ(i) implies that
r, p ∈ ρ(i) or r, p 6∈ ρ(i). 1 The composition under C, (M1 + . . .+Mn)|C is the set
C ∩ (M1 + . . .+Mn) ↑Σ∪Con(Σ).

Lifting M1 + . . .+Mn to Σ ∪Con(Σ) means the set of all runs in which each state of
a run ρ ∈M1 + . . .+Mn was extended with each subset of connectors Con(Σ).

A composable system is therefore a set of implementations that do not share any
ports a priori, hence allowing a configuration to define the port connections through its
runs (note that we consider only valid configurations in the following). Then, a com-
position under configuration is the set of runs that are compatible with the connections
defined by a run in the configuration.

Example 1. We give a very small example for a composable system and a configuration
in the following. Let portsreq(Σ1) = {a}, portsprv (Σ1) = ∅ and portsprv (Σ2) =
{b}, portsreq(Σ2) = ∅ be two signatures. Let M1 = {ρ1, ρ

′
1} : Σ1 and M2 = {ρ2} :

Σ2 be properties such that

ρ1(i) =
{
{a} if 0 ≤ i ≤ 2
∅ otherwise. ρ2(i) =

{
{b} if 1 ≤ i ≤ 3
∅ otherwise.

ρ′1(i) = ∅ for all i.

As the signatures of M1 and M2 are disjoint, M1 and M2 are composable. Let hence C
be a configuration of M1 and M2 containing all ρc for which it holds that (a, b) ∈ ρc(i)
for 2 ≤ i ≤ 3. Then, the composition M = {ρ} = (M1 +M2)|C consists of the single
run ρ such that

ρ(i) =

{a} if 0 ≤ i < 1
{a, b, (a, b)} if 1 ≤ i ≤ 2
{b} if 2 < i ≤ 3
∅ otherwise.

ρ is the composition of the runs ρ1 with ρ2 under one ρc ∈ C. Note that ρ′1 is not part
of the composed system, as there is no run in M2 to which it is compatible.

Note that Lemma 1 is still valid for composition under configuration, as the set of
implementations is further constrained. It is also possible to take the configuration runs
into the guarantee, as can be seen easily.

1 In a more general setting we would require that the r and p are equal in value. Here however,
we only consider predicates.

We now apply the described approach to our example scenario of Sect. 3. First, we
must refine the general assume-guarantee framework to a real-time LTL logic given as
follows.

Definition 4. The set of RT-LTL-formulae is inductively defined by the grammar

A ::= true | p | p1 ∼ p2 | ¬A | A ∨A | 2tA

with ports p, p1, p2 ∈ Σ. Let ρ : R+
0 → P(Σ ∪ Con(Σ)) be a valid run over Σ and

Con(Σ). Then ρ |= A iff for all i ∈ R+
0 . ρ, i |= A. The satisfaction relation |= between

pairs ρ, i and RT-LTL-formulae A is defined as follows.

1. ρ, i |= true.
2. ρ, i |= p iff p ∈ ρ(i).
3. ρ, i |= p1 ∼ p2 iff (p1, p2) ∈ ρ(i).
4. ρ, i |= ¬A iff ρ, i 6|= A.
5. ρ, i |= A ∨B iff ρ, i |= A or ρ, i |= B.
6. ρ, i |= 2tA iff ∀i ≤ j ≤ i+ t. ρ, j |= A.

In the following, we use 2A as abbreviation for 2∞A. 3tA andA⇒ B are defined
as usual. Note that 2A is equivalent to A.

Example 2. The system contract that must be shown for the system is the tuple

(GI, (2310CI) ∧ (20.5PT ⇒ 31R)).

Here, GI is “the camera produces a good image”, CI “the image shown on the display
changed”, PT is “there is a person in front of the ad”, and R stays for “the system
responded to the person in front of the ad”. Following Lemma 2, we must show that the
contract guaranteed by the composition, (A,G), is a refinement of the system contract
(Asys, Gsys). For the sake of brevity, we will focus on discussing the system guarantee
2310CI . In the example, the guarantee G of the composition (cf. Fig 2) can be shown
to guarantee the following five properties, where C1 is a shorthand notation for a con-
junction of connection constraints defining “the system is in configuration 1” (cf. Fig.
2, left), and C2 denotes similarly “the system is in configuration 2” (cf. Fig. 2, right).

1. C1 ⇒ PT ⇒ CI

2. C2 ⇒ CI

3. C1 ⇒ (23¬PT)⇒ (33.7C2)
4. C2 ⇒ (20.5PT)⇒ (30.7C1)
5. C1 ∨ C2

Note that property 3 and 4 express changes in configurations: property 3 expresses
that the first configuration (reacting to viewers) will be reconfigured in 3.7 seconds
to the second configuration (showing animated content) if the scene in front of the
display stays empty for three seconds. This property can be derived from the guarantee
of Monitor 1 together with the connection properties of configuration one. Similarly,

property 4 expresses that the system will be changed within 0.7 seconds if a person is
seen in front of the display for at least 0.5 seconds. Note that obviously, property 3 to 5
are derived from the behaviour of monitors and the specification of the configuration.

Properties 1 and 2 on the other side describe the behaviour of the system under each
configuration: in configuration 1 (reacting to viewers), the displayed image changes if a
person is in front of it. In configuration 2 (showing animated content), the image always
changes.

With the help of a small realtime-LTL calculus, then, we can to show that these five
properties imply 2310CI , which is one step in showing the refinement G ⊆ Gsys. Al-
together, it can be shown that the composition under the given reconfiguration refines
the global contract. Hence, by switching between two initially insufficient configura-
tions, the system is indeed showing the desired global behaviour.

5 Conclusion

Building pervasive user-centric applications brings several challenges, as they are op-
erating in highly dynamic and uncertain environments. In this paper, we took a closer
look in how this challenge can be taken by using a simple assume-guarantee-framework.
The assume-guarantee approach allows to make assumptions of a configuration about
the environment explicit. By monitoring these assumptions, it is possible to deploy an
application that does not satisfy its contract in the general case, but only under given
assumptions. As soon as these assumptions are violated, the system is reconfigured, so
that the new configuration satisfies the contract under the now given assumptions.

An interesting future work is the introduction of probabilistic assume-guarantee
contracts, as presented in [2]. Pervasive user-centric applications interface with the
real world through sensors and actuators, which may be unreliable in and exhibit not
only non-deterministic, but also probabilistic behaviour. With a probabilistic assume-
guarantee framework, it would be possible to model this uncertain behaviour of the
environment, and reason about the performance of pervasive user-centric applications
in these environments.

References
1. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In 8th European software

engineering conference (ESEC ’01), pages 109–120. ACM Press, 2001.
2. B. Delahaye and B. Caillaud. A Model for Probabilistic Reasoning on Assume/Guarantee

Contracts. ArXiv e-prints, November 2008.
3. Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst., 5(4):596–619, 1983.
4. K. Lau and Z. Wang. Software component models. IEEE Transactions on Software Engineer-

ing, 33(10):709–724, 2007.
5. M. Sadjadi and P. McKinley. A survey of adaptive middleware. Technical Report MSU-CSE-

03-35, Computer Science and Engineering, Michigan State University, 2003.
6. Andreas Schroeder, Marjolein van der Zwaag, and Moritz Hammer. A Middleware Architec-

ture for Human-Centred Pervasive Adaptive Applications. In 2nd Int. Conf. on Self-Adaptive
and Self-Organizing Systems (PerAda ’08), volume 0, pages 138–143, Los Alamitos, CA,
USA, 2008. IEEE Computer Society.

