
Runtime monitoring of contract regulated web services

Runtime monitoring of contract regulated
web services

Maciej Szreter2

a joint work with Alessio Lomuscio3, Wojciech Penczek1,2 and Monika Solanki3

1University of Podlasie, Siedlce, Poland

2Polish Academy of Sciences, Warsaw, Poland

3Department of Computing, Imperial College London, UK

Toledo, September 2009

Runtime monitoring of contract regulated web services

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Contracts and monitoring

Related work

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Contracts and monitoring

Related work

Related work

I Several papers on monitoring of web services (WS)
I Monitoring of WS based on model checking

I [8] Krichen, Tripakis. Black-box conformance testing for
real-time systems. In 11th International SPIN Workshop on
Model Checking of Software (SPIN04)

I [15] Raimondi, Skene, Chen, Emmerich. Efficient monitoring
of web service SLAs. Technical report, UCL, London, 2007.

I [NEW] Symbolic model checking approach
I no need to construct the product automaton
I model checkers designed for model checking
I easy to extend

Runtime monitoring of contract regulated web services

Contracts and monitoring

The general idea

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Contracts and monitoring

The general idea

The general architecture

Monitor
(CRM)

S

S1

Not Valid validrecovery

traces
Desired service

behaviour as
Timed Automata

Contract Specification

S2

The general architecture and methodology

Runtime monitoring of contract regulated web services

Contracts and monitoring

The general idea

Monitoring

I contract C → modeled by Time Automata
I web services WS → we consider only executions (snapshots)
I check if WS execute according to C

WS possibly distributed, we do not know implementations and
specifications

Runtime monitoring of contract regulated web services

Contracts

Repair Car contract

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Contracts

Repair Car contract

Repair Car

I Contract between Repair Car (RC) and Customer (C)

clause Contract regulated actions Deadline Violate Recover
1 Receives a repair request by C 5 days - -
2 Sends a repair proposal to C 7 days - -
3 Assess damage to the vehicle 3 days yes yes
4 Execute repair 30 days yes yes
5 Send repair report to C 5 days yes yes
6 For any violation take recovery action 3 days yes no (*)

Some contract regulated actions for RC
* - (take offline action)

Runtime monitoring of contract regulated web services

Contracts

Repair Car contract

Explanation

Step state Explanation
step 1 source RC waits to receives the request for repairing

cars.
target RC receives the request for repairing x cars. We

show here an example of the clock and variable
valuations for three cars.

step 3 source RC accepts the request for repairing x cars.
target RC sends repair proposals for repairing x cars.

Explanation of trace contents for steps 1 and 3

Runtime monitoring of contract regulated web services

Contracts

Repair Car contract

Set of behaviours for a service

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ

Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ

Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ

Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ

Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ

I local transitions

Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ

I synchronized transitions

Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Networks of automata
Fischer’s mutual exclusion

I n components; Ai = (Li , l ιi ,Ti ,Σi)
I product automaton (model): A = A1|| . . . ||An
I initial state l ι = (l ι1, . . . , l

ι
n)

I set of labels Σ
I properties expressed in CTL

mutual exclusion (3 processes):
ϕ = EF

(
(CRIT1 ∧ CRIT2) ∨ (CRIT1 ∧ CRIT3) ∨ (CRIT2 ∧ CRIT3)

)
Simplified mutual exclusion protocol [Fischer]:

Shared Variable

exit1

enter1

3

enter3 exit3

0 1

.
.

.

10

3 2

idle3

try3

enter3

CRIT3

Process3

kropki

exit3

10

Process1

enter1

3 2
exit1

idle1

try1

CRIT1

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Timed automata
enable modeling time flow

I clocks, invariants, guards

10

2

retry2 set2

enter2
CRIT2

exit2

Process2

21

0

set2set1

set1

set2

exit2 exit2

exit1exit1

try2
10

2

set1retry1

enter1

exit1

CRIT1

Process1

try1
retry2

retry1

try1 try2

exit2

exit1

enter2

set1

enter1

set2

Shared Variable

x1<= ∆

x1 <= ∆

x1 > δ

x2<= ∆

δ

x2 <= ∆x12

x2 >

{x1}

{x1}

{x1} {x2}

{x2}

{x2}{x1}

time zones
x2

D

x1

models

I concrete model
I detailed regions graph
I abstract graph

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Timed automata
enable modeling time flow

I clocks, invariants, guards

10

2

retry2 set2

enter2
CRIT2

exit2

Process2

21

0

set2set1

set1

set2

exit2 exit2

exit1exit1

try2
10

2

set1retry1

enter1

exit1

CRIT1

Process1

try1
retry2

retry1

try1 try2

exit2

exit1

enter2

set1

enter1

set2

Shared Variable

x1<= ∆

x1 <= ∆

x1 > δ

x2<= ∆

δ

x2 <= ∆x12

x2 >

{x1}

{x1}

{x1} {x2}

{x2}

{x2}{x1}

time zones
x2

D

x1

models

I concrete model
I detailed regions graph
I abstract graph

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Timed automata
enable modeling time flow

I clocks, invariants, guards

10

2

retry2 set2

enter2
CRIT2

exit2

Process2

21

0

set2set1

set1

set2

exit2 exit2

exit1exit1

try2
10

2

set1retry1

enter1

exit1

CRIT1

Process1

try1
retry2

retry1

try1 try2

exit2

exit1

enter2

set1

enter1

set2

Shared Variable

x1<= ∆

x1 <= ∆

x1 > δ

x2<= ∆

δ

x2 <= ∆x12

x2 >

{x1}

{x1}

{x1} {x2}

{x2}

{x2}{x1}

time zones
x2

D

x1

models

I concrete model
I detailed regions graph
I abstract graph

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Timed automata
enable modeling time flow

I clocks, invariants, guards

10

2

retry2 set2

enter2
CRIT2

exit2

Process2

21

0

set2set1

set1

set2

exit2 exit2

exit1exit1

try2
10

2

set1retry1

enter1

exit1

CRIT1

Process1

try1
retry2

retry1

try1 try2

exit2

exit1

enter2

set1

enter1

set2

Shared Variable

x1<= ∆

x1 <= ∆

x1 > δ

x2<= ∆

δ

x2 <= ∆x12

x2 >

{x1}

{x1}

{x1} {x2}

{x2}

{x2}{x1}

time zones
x2

D

x1

models

I concrete model
I detailed regions graph
I abstract graph

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

models discretized

discretized clock valuations

constraints
X - clocks
V - integer variables

C(X ,V) - clock constraints over
X and V ,
defined by the grammar:
cc ::= true | xi ∼ c | xi ⊗ xj ∼
c | xi ⊗ xj ∼ v | xi ⊗ v ∼
c | v ⊗ w ∼ xi | cc ∧ cc, where
xi , xj ∈ X , v ,w ∈ V , c ∈ N,
⊗ ∈ {+,−}, and
∼ ∈ {≤, <,=, >,≥}.

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

models discretized

discretized clock valuations

constraints
X - clocks
V - integer variables

C(X ,V) - clock constraints over
X and V ,
defined by the grammar:
cc ::= true | xi ∼ c | xi ⊗ xj ∼
c | xi ⊗ xj ∼ v | xi ⊗ v ∼
c | v ⊗ w ∼ xi | cc ∧ cc, where
xi , xj ∈ X , v ,w ∈ V , c ∈ N,
⊗ ∈ {+,−}, and
∼ ∈ {≤, <,=, >,≥}.

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

Timed automata
I standard formalism used in model checking
I several extensions - timed, parametric...

Definition
A timed automaton with discrete data (TADD) is a tuple
A = (Σ, L, l0,V ,X , E , I), where

I Σ is a finite set of labels (actions),
I L is a finite set of locations,
I l0 ∈ L is the initial location,
I V is the finite set of integer variables,
I X is the finite set of clocks,
I E ⊆ L× Σ× Bool(V)× C(X ,V)× Σ(V)× Asg(X)× L is a
transition relation, and

I I : L −→ C(X , ∅) is an invariant function.

Runtime monitoring of contract regulated web services

Contracts

Introduction to Time Automata

The semantics of automata
The semantics of A = (Σ, L, l0,V ,X , E , I) for an initial valuation
v0 : V −→ Z is a labelled transition system S(A) = (Q, q0,ΣS ,−→):

I Q = {(l , v, c) | l ∈ L ∧ v ∈ Z|V | ∧ c ∈ R |X |+ ∧ c |= I(l)} is the set of
states,

I q0 = (l0, v0, c0) is the initial state,

I ΣS = Σ ∪ R+ is the set of labels,

I −→⊆Q × ΣS × Q is the smallest transition relation:

I for a ∈ Σ,
(l , v, c) a−→(l ′, v′, c′) iff there exists a transition
t = (l , a, β, cc, α,A, l ′) ∈ E such that v |= β, (c, v) |= cc,
v′ = v(α), c |= I(l), and c′ = c(A) |= I(l ′) (action transition),

I for δ ∈ R+,

(l , v, c) δ−→(l , v, c+ δ) iff c |= I(l) and c+ δ |= I(l) (time
transition).

Runtime monitoring of contract regulated web services

Contracts

Timed Automata for specifying contracts

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Contracts

Timed Automata for specifying contracts

Repair Car contract as TA

clause Contract regulated actions Deadline Violation Recovery
3 Assess damage to the vehicle 3 days yes yes

Some contract regulated actions for RC

s8=notAssessed
x<=2

s7=Assessed
x<=30

s5=Received Vehicle

x<=3

s4=Contract Initiated
x<=7

!damageAssessed

clause=003,x=0

damageAssessed

SendAssessed? x=0

vehicleSent
SendVehicle!

x=0

TA specification of clause (3)

Runtime monitoring of contract regulated web services

Contracts

Timed Automata for specifying contracts

TADD semantics for RMCS

green state

red state

greengreen transition

greenred transition

redred transition

Partitioning of states and transitions in TADD

Runtime monitoring of contract regulated web services

Contracts

Timed Automata for specifying contracts

Partitioning of transitions

Based on the above partitioning each action transition (q, a, q′) of
S(A) can be one of the following four types of transitions:

I Contract compliant: between green and green states, i.e.,
q, q′ ∈ G , (compliance with the prescribed behaviour).

I Contract violating: between green and red states, i.e., q ∈ G and
q′ ∈ R (violates the prescribed behaviour of the contract)

I Recovery: between red and green states, i.e., q ∈ R and q′ ∈ G . (a
recovery action is taken by the service after a violation is recorded)

I Continuous contract violating: between red and red states, i.e.,
q, q′ ∈ R (no recovery results from a previous violation)

We say that there is a step from state q1 to q2 in A if

q1
δ1−→ q′

1
a−→ q′

2
δ2−→q2, for some states q′

1, q
′
2 ∈ Q, δ1, δ2 ∈ R+,

and a ∈ Σ.

Runtime monitoring of contract regulated web services

Contracts

Timed Automata for specifying contracts

Partitioning of transitions

Based on the above partitioning each action transition (q, a, q′) of
S(A) can be one of the following four types of transitions:

I Contract compliant: between green and green states, i.e.,
q, q′ ∈ G , (compliance with the prescribed behaviour).

I Contract violating: between green and red states, i.e., q ∈ G and
q′ ∈ R (violates the prescribed behaviour of the contract)

I Recovery: between red and green states, i.e., q ∈ R and q′ ∈ G . (a
recovery action is taken by the service after a violation is recorded)

I Continuous contract violating: between red and red states, i.e.,
q, q′ ∈ R (no recovery results from a previous violation)

We say that there is a step from state q1 to q2 in A if

q1
δ1−→ q′

1
a−→ q′

2
δ2−→q2, for some states q′

1, q
′
2 ∈ Q, δ1, δ2 ∈ R+,

and a ∈ Σ.

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

Bounded Model Checking

I consider all the executions of the system to a depth k
I encode them in propositional logic
I check the resulting formula using a SAT solver

advantage: no need to construct the model in advance
disadvantage: not complete in general

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

Experience of our team with BMC and SAT

I adding branching-time CTL logic to BMC
I BMC for timed systems
I BMC for epistemic logics
I BMC for cryptographic protocols
I BMC-based verification of Java programs
I BMC-based verification of UML state machines
I Unbounded Model Checking via SAT

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

VerICS: architecture

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC for reachability

k–models
Idea – to unwind the computation tree of a
model M up to depth k.

I M – a model, k ∈ N,
I Pathk – the set of all sequences

(q0, . . . , qk), where qi → qi+1.
I Mk = (Pathk ,L) is called the k-model.
I If a propositional formula ϕ holds in Mk ,

then ϕ holds in M.
I The problem Mk |= ϕ is translated to

checking satisfiability of the propositional
formula [Mk] ∧ [ϕ] using a SAT-solver.

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

SAT solvers
SAT

I Problem: is a propositional formula satisfiable?
I Theoretical complexity: NP-complete (Cook, 1971)
I Practical and efficient realizations of SAT solvers: only in the

last decade
I A general idea: search efficiently for a satisfying assignment

Details

I Efficient data representation
I Heuristics for deducing and learning information
I Frequently efficient in practice
I CNF: conjunctive normal form, conjunction of disjunctions of

literals

ϕ = (a ∨ b ∨ ¬c) ∧ (¬c) ∧ (a ∨ ¬b)

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

Symbolic methods
Boolean encoding of the system

Local states
s0 s1

s2s3

enc0

enc3

enc1

enc2

every location li ∈ Li is
represented by the vector
wi = (wi [1], . . . ,wi [li])

Il0(w) = ¬w[1] ∧ ¬w[2]

transition relation

��
��
��
��

��
��
��
��

s0 s1

s2s3

enc0

enc3

enc1

enc2

a

T (w, a, v) ≡ Il3(w) ∧ Il0(v)

Local transition relation: T (wi , vi) =
W
a∈Σi
T (wi , a, vi)

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

Symbolic methods
Boolean encoding of the system

Local states
s0 s1

s2s3

enc0

enc3

enc1

enc2

every location li ∈ Li is
represented by the vector
wi = (wi [1], . . . ,wi [li])

Il0(w) = ¬w[1] ∧ ¬w[2]

transition relation

��
��
��
��

��
��
��
��

s0 s1

s2s3

enc0

enc3

enc1

enc2

a T (w, a, v) ≡ Il3(w) ∧ Il0(v)

Local transition relation: T (wi , vi) =
W
a∈Σi
T (wi , a, vi)

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

Symbolic methods
Boolean encoding of the system

Local states
s0 s1

s2s3

enc0

enc3

enc1

enc2

every location li ∈ Li is
represented by the vector
wi = (wi [1], . . . ,wi [li])

Il0(w) = ¬w[1] ∧ ¬w[2]

transition relation

��
��
��
��

��
��
��
��

s0 s1

s2s3

enc0

enc3

enc1

enc2

a T (w, a, v) ≡ Il3(w) ∧ Il0(v)

Local transition relation: T (wi , vi) =
W
a∈Σi
T (wi , a, vi)

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC - symbolic encoding

w0

w1

w2

w3

I k-path: w0, . . . ,wk

I k-path is encoded by a propositional
formula:

pathk(w
0, . . . ,wk) = Ilι(w

0)∧
k̂

i=1

T (wi−1,wi)

ϕk(w
0, . . . ,wk) = pathk ∧ [ϕ](wk)

BMC
I k = 0

I if ϕk is satisfiable - the property is true

I if not, increase k

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC - symbolic encoding

w0

w1

w2

w3

init

I k-path: w0, . . . ,wk

I k-path is encoded by a propositional
formula:

pathk(w
0, . . . ,wk) = Ilι(w

0)∧
k̂

i=1

T (wi−1,wi)

ϕk(w
0, . . . ,wk) = pathk ∧ [ϕ](wk)

BMC
I k = 0

I if ϕk is satisfiable - the property is true

I if not, increase k

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC - symbolic encoding

w0

w1

w2

w3

T1

T2

T3

init

I k-path: w0, . . . ,wk

I k-path is encoded by a propositional
formula:

pathk(w
0, . . . ,wk) = Ilι(w

0)∧
k̂

i=1

T (wi−1,wi)

ϕk(w
0, . . . ,wk) = pathk ∧ [ϕ](wk)

BMC
I k = 0

I if ϕk is satisfiable - the property is true

I if not, increase k

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC - symbolic encoding

w0

w1

w2

w3

T1

T2

T3

prop

init

I k-path: w0, . . . ,wk

I k-path is encoded by a propositional
formula:

pathk(w
0, . . . ,wk) = Ilι(w

0)∧
k̂

i=1

T (wi−1,wi)

ϕk(w
0, . . . ,wk) = pathk ∧ [ϕ](wk)

BMC
I k = 0

I if ϕk is satisfiable - the property is true

I if not, increase k

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC - symbolic encoding

w0

w1

w2

w3

T1

T2

T3

prop

init

I k-path: w0, . . . ,wk

I k-path is encoded by a propositional
formula:

pathk(w
0, . . . ,wk) = Ilι(w

0)∧
k̂

i=1

T (wi−1,wi)

ϕk(w
0, . . . ,wk) = pathk ∧ [ϕ](wk)

BMC
I k = 0

I if ϕk is satisfiable - the property is true

I if not, increase k

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

Introduction to Bounded Model Checking

BMC - effectiveness example
Simplified Fischer’s mutual exclusion:

10

Process1 Shared Variable

enter2enter1

exit1

CRIT1

3 2
exit1

idle1

enter1

exit2 23

enter3 exit3

0 1
try1

BMC is effective
the reachable property
ψ1 = crit1, k = 2

n |ϕk | time

3 985 0.002
10 2581 0.006
20 5746 0.02
50 18655 0.39

100 52252 3.62

BMC is not effective, n = 4
unreachable mutex property
ψ2 =

∨
i,j∈{1,...,n},i 6=j criti ∧ critj

k |ϕk | time

3 1429 0.011
6 2689 0.34
9 4369 18.70

12 5209 129
15 6469 >1000

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

BMC-based monitoring

Outline

Contracts and monitoring
Related work
The general idea

Contracts
Repair Car contract
Introduction to Time Automata
Timed Automata for specifying contracts

Bounded Model Checking as monitoring engine
Introduction to Bounded Model Checking
BMC-based monitoring

Experimental results

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

BMC-based monitoring

Specifying sets of states

I input: pairs of observations (corresponding to a step)
I tool is stateless

I states can be specified not completely:
I full state specification → a concrete state
I empty specification → all states
I missing parts of specifications → a set Q ′ ⊆ Q of states

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

BMC-based monitoring

Monitoring results: The engine checks at runtime whether the stream
of execution steps received as inputs from the RSA, conforms with its
symbolic representation of all possible behaviours. For each execution
step, the answer returned by the monitoring engine is one of the following
facts:

I GREEN - the step is conforming with the specification, i.e., there is
a contract compliant transition between the source and target
states.

I RED - a red state is reached as a target of the transition given, i.e.,
a contract has been violated as a result of the transition.

Also can signify that the inputs do not comply with the extended
format of the TADD for the service.

I NONE - the step is not conforming with the specification, i.e.,
there is no such transition, neither contract compliant or otherwise.

I ERROR - the specification given does not mirror the observed
transition so it amounts to an error.

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

BMC-based monitoring

From monitoring to model checking
I For a given TADD A and a pair (Q1,Q2) of sets of global states of
S(A), we check whether there are two states q1 ∈ Q1 and q2 ∈ Q2

such that there is a step from q1 to q2.

I If so, we denote the step as Q1 ; Q2.

I Encode T (w, v). Then for each step, this formula is conjuncted with
the encodings of a pair of sets of states (Q1,Q2) given as an input:

I First make a query about a step from Q1 to the set of the red states
(Q1 ; R ∩ Q2): the input (Q1,R ∩ Q2) is encoded as ϕ1. If ϕ1 is
satisfiable, then “non compliance” is reported.

I If ϕ1 is not satisfiable, then the input (Q1,Q2) is encoded as ϕ2.
Depending on its safisfiability, either “compliance” or “invalid
transition” is reported

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

BMC-based monitoring

From monitoring to model checking
I For a given TADD A and a pair (Q1,Q2) of sets of global states of
S(A), we check whether there are two states q1 ∈ Q1 and q2 ∈ Q2

such that there is a step from q1 to q2.

I If so, we denote the step as Q1 ; Q2.

I Encode T (w, v). Then for each step, this formula is conjuncted with
the encodings of a pair of sets of states (Q1,Q2) given as an input:

I First make a query about a step from Q1 to the set of the red states
(Q1 ; R ∩ Q2): the input (Q1,R ∩ Q2) is encoded as ϕ1. If ϕ1 is
satisfiable, then “non compliance” is reported.

I If ϕ1 is not satisfiable, then the input (Q1,Q2) is encoded as ϕ2.
Depending on its safisfiability, either “compliance” or “invalid
transition” is reported

Runtime monitoring of contract regulated web services

Bounded Model Checking as monitoring engine

BMC-based monitoring

The scheme of the tool - in more detail

Runtime monitoring of contract regulated web services

Experimental results

Experimental results

I the implementation is based on Verics BMC
I tool extended with additional constraints
I MiniSAT solver used for testing SAT

Runtime monitoring of contract regulated web services

Experimental results

Monitoring against a clause

clause Contract regulated actions Deadline Violate Recover
2 Sends a repair proposal to C 7 days - -

Runtime valuations for clause (2)

Runtime monitoring of contract regulated web services

Experimental results

Results

step |cars| |int vars| |clocks| Nc/Nvars time [s] answer

1
10 10 10 6779/16528 <1

YES20 20 20 17738/43455 <1
300 300 300 265741/652852 4.3

3
10 10 10 6743/16431 <1

NO30 30 30 26781/65822 <1
300 300 300 265811/653052 5.4

Table: The experimental results. Size of encoding: Nc/Nvars is the
number of clauses/Boolean variables in the result CNF formula; time
refers to checking this formula using the tool Minisat.

Runtime monitoring of contract regulated web services

Experimental results

Future work

short-term

I (distributed) contracts expressed by networks of automata
I more than one step - exploit the power of SAT solvers
I real-world examples
I attaching contracts to running web services

long-term view

I temporal logics
I translating of web services (test all executions)
I ...

Runtime monitoring of contract regulated web services

Experimental results

Future work

short-term

I (distributed) contracts expressed by networks of automata
I more than one step - exploit the power of SAT solvers
I real-world examples
I attaching contracts to running web services

long-term view

I temporal logics
I translating of web services (test all executions)
I ...

	
	Contracts and monitoring
	Related work
	The general idea

	Contracts
	Repair Car contract
	Introduction to Time Automata
	Timed Automata for specifying contracts

	Bounded Model Checking as monitoring engine
	Introduction to Bounded Model Checking
	BMC-based monitoring

	Experimental results

