
From Orchestration to Choreography:
Memoryless and Distributed Orchestrators

Imene Ben-Hafaiedh, Susanne Graf and Sophie Quinton

VERIMAG, Université Joseph Fourier

FLACOS, September 2009

Outline

1 Motivation

2 Memoryless orchestrators

3 Distributing memoryless orchestrators

4 Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 2 / 21

Motivation

1 Motivation

2 Memoryless orchestrators

3 Distributing memoryless orchestrators

4 Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 3 / 21

Motivation

Rich interaction in Web services

Reservation
Flight

Reservation

Hotel

Travel
Agency

n-ary rendez-vous

Client

O1

global priority

Client1 Client2

Tickets

Ticket Ticket

REQ1 REQ2

O2

Office1 Office2

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 4 / 21

Motivation

Orchestrators

A contract describes how a client or a service is expected to behave.

Syntax: σ ::= 0 | α. σ | σ + σ | σ ⊕ σ | rec x . σ | x
A service ρ is compliant with a client σ iff σ ‖ ρ has no deadlock.

An orchestrator “helps” making a service compliant to a client.

Our approach

Focus on a particular class: memoryless orchestrators (MO).

MO can be represented as BIP connectors and priorities.

MO can more easily be distributed.

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 5 / 21

Memoryless orchestrators

1 Motivation

2 Memoryless orchestrators

3 Distributing memoryless orchestrators

4 Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 6 / 21

Memoryless orchestrators

Contracts in a fragment of CCS

Syntax
σ ::= 0 | α. σ | σ + σ | σ ⊕ σ | rec x . σ | x

Semantics

α. σ
α−→ σ σ ⊕ ρ

τ−→ σ rec x . σ
τ−→ σ{rec x . σ/x}

σ
τ−→ σ′

σ + ρ
τ−→ σ′ + ρ

σ
α−→ σ′

σ + ρ
α−→ σ′

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 7 / 21

Memoryless orchestrators

Toy examples

A simple example that works with priorities.

Client : ā. c . e + b̄. d . e Service : a. d̄ + b. d̄

A simple example that does not work with priorities.

Client : ā. c . e + b̄. b̄. c . e + b̄. ā. d . e Service : a. d̄ + b. b. d̄ + b. a. d̄

σ = ρ =

d̄

b̄

b̄āc

ā a b

ad̄ b

d̄cd

e e

e d

ba

a
b2

3

1

σ ‖ ρ =

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 8 / 21

Memoryless orchestrators

An example: the dining philosophers

Forks = rec x .fork .fork .thought.return.return.x
Philo = rec x .fork1 .fork2 .thought.return.return.x

fork1 fork fork1 fork2fork2

returnα thought returnβ

Forks PhiloβPhiloα

thoughtα return thoughtβ

forkβ
1

forkα
1

forkα
1

forkα
2

forkα
1

forkβ
2

returnβ

thoughtβ

returnα
returnβ

returnα

thoughtα

forkα
1 < forkβ

2

forkβ
1 < forkα

2

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 9 / 21

Distributing memoryless orchestrators

1 Motivation

2 Memoryless orchestrators

3 Distributing memoryless orchestrators

4 Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 10 / 21

Distributing memoryless orchestrators

Description of the problem

Components communicating via exchange of messages

Global priority rules over interactions

Restriction in this talk: only binary rendez-vous connectors

Properties expected

Safety: in a given state, only specified interactions can be fired

Progress: deadlock-freedom (no fairness)

Efficiency: reduce the longest exchange of messages between two
transitions

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 11 / 21

Distributing memoryless orchestrators

Principle of the algorithm

For a component K , an interaction is:

possible = possible for K

ready = possible for K and its counterpart

enabled = ready + no ready interaction with higher priority

For each interaction α involved in a priority rule, a negotiator is chosen
between the processes that participate in α.

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 12 / 21

Distributing memoryless orchestrators

Protocol overview

Check
ReadySetnegotiators

answer
nextInteraction

compute

execute the chosen action

ComputeReadySet

Ready

Busy

‖‖

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 13 / 21

Distributing memoryless orchestrators

Negotiate:

Require: higherPrio(a) = {i | a < i}
Input: interaction a
Output: OK or NOK

1: toCheck ←− higherPrio(a)
2: ∀b ∈ toCheck send READY ?(b)
3: while toCheck 6= ∅ do
4: if receive READY !(b) then
5: return NOK
6: else if receive NOTREADY !(b) then
7: toCheck ←− toCheck\{b}
8: end if
9: end while

10: return OK

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 14 / 21

Distributing memoryless orchestrators

ComputeNextInteraction:

Require: toNegotiate = {i | negociator(i) = K}
Input: set of interactions readySet 6= ∅
Output: set of interactions enabledSet

1: Ready:
2: localMax ←− readySet\{i | ∃j ∈ readySet s.t. i < j}
3: enabledSet ←− {i ∈ readySet | i 6∈ π}
4: for all i ∈ localMax ∩ toNegotiate do
5: if Negotiate(i) = OK then
6: enabledSet ←− enabledSet ∪ {i}
7: end if
8: end for
9: if enabledSet = ∅ then

10: goto Ready
11: else
12: enabledSetCompleted ←− true
13: end if

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 15 / 21

Distributing memoryless orchestrators

CheckReadySet:

Require: set of interactions possibleSet
Output: interaction i

1: createNewThread ChooseNextInteraction(readySet)
2: while not enabledSetCompleted do
3: if receive REFUSE (a) and a ∈ enabledSet then
4: kill ChooseNextInteraction
5: end if
6: end while
7: choose interaction i to fire among enabledSet

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 16 / 21

Distributing memoryless orchestrators

Safety

t1 and t2 are independent when one may fire in parallel with the other.

Otherwise t1 and t2 are said to be in structural conflict.

Confusion arises if t1 and t2 may fire concurrently, but firing one
modifies the set of transitions in actual conflict with the other.

p1 p2

t1 t3 t2

p1 p3

p2

p4

t1 t3

t2

A process can commit just one interaction at a time
=⇒ interactions in conflict cannot be committed simultaneously.

We do not handle confusion related to priorities.

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 17 / 21

Distributing memoryless orchestrators

Progress

No notion of fairness

Avoid additional deadlocks due to negotiations

Avoid deadlocks due to cycles: use cycle breakers

a

c

K2

K3

b

K1

K1 = a + b K3 = c + a

K2 = b + c

do(c)

do(c)

K1 K3

COMMIT(b)
COMMIT(c)

K2

COMMIT(a)

R
EF

U
SE

(b
)

REFUSE(a)

COMMIT(c)

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 18 / 21

Distributing memoryless orchestrators

Efficiency: choice of the negociators

Minimize the maximal number of components communicating to
decide the enabledness of an interaction.

Centralized topology =⇒ as efficient as a central orchestrator

Ring tobology =⇒ at least as efficient than a central orchestrator

P1 P3

P2

P0

P4 P5P6

P7

P8

P2

P3

P4

P1

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 19 / 21

Conclusion

1 Motivation

2 Memoryless orchestrators

3 Distributing memoryless orchestrators

4 Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 20 / 21

Conclusion

Conclusion and perspectives

Summary

Memoryless orchestrators

Concurrency and priorities can be inferred

A distributed implementation

Future work

Handle multiparty interactions

Handle complex connectors: need for a new algorithm?

Add knowledge to reduce the need for communication

Combine this work with compositional verification

Evaluate the approach on actual Web services

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 21 / 21

	Motivation
	Memoryless orchestrators
	Distributing memoryless orchestrators
	Conclusion

