From Orchestration to Choreography:
Memoryless and Distributed Orchestrators

Imene Ben-Hafaiedh, Susanne Graf and Sophie Quinton

VERIMAG, Université Joseph Fourier

FLACOS, September 2009

erimac

Outline

Motivation

Memoryless orchestrators

Distributing memoryless orchestrators

A Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 2/21

Motivation

Motivation

H Memoryless orchestrators

Distributing memoryless orchestrators

A Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 3/21

Motivation

Rich interaction in Web services

Client
Travel
Agency
Flight Hotel
Reservation Reservation

n-ary rendez-vous

Sophie Quinton

Client; Client»
REQ, REQ:>
Ticket Ticket
Office; Officen
01 02

Tickets

global priority

From Orchestration to Choreography: Memoryless and Distributed Orchestrators

4/21

Motivation

Orchestrators

m A contract describes how a client or a service is expected to behave.
m Syntax: 0 :=0| .o |o+0|oPo|recx.o|x
m A service p is compliant with a client o iff o || p has no deadlock.

m An orchestrator “helps” making a service compliant to a client.

Our approach
m Focus on a particular class: memoryless orchestrators (MO).
m MO can be represented as BIP connectors and priorities.

m MO can more easily be distributed.

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 5/21

Memoryless orchestrators

Motivation

Memoryless orchestrators

Distributing memoryless orchestrators

A Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 6 /21

Memoryless orchestrators

Contracts in a fragment of CCS

Syntax
oc:=0|a.o|loc+o|oPo|recx.o|x
Semantics
@ T T recx.o
a.c— o0 odp—0 recx.c — o{ /x}
T / @ !
g —O0 g —0
T e
o+p—o +p oc+p—o
Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators

7/21

Memoryless orchestrators

Toy examples

A simple example that works with priorities.
Client : 3.c.e+ b.d. e Service : a.d + b.d
A simple example that does not work with priorities.

Client: 3.c.e+ b.b.c.e+ b.3.d. e Service: a.d + b.b.d + b.a.d

ollp=
b

¢

d
@

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 8/21

Memoryless orchestrators

An example: the dining philosophers

Forks = rec x.fork.fork.thought.return.return.x
Philo = rec x.fork; .forks.thought.return.return.x

Lo~

forky forks fork forky forks
Philo,, Forks Philog

thought® return® \

hought® return®| | thought return

forkf < fork2a returh® rethirn®
forki" < forkf

return® return®

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 9/21

Distributing memoryless orchestrators

Motivation

H Memoryless orchestrators

Distributing memoryless orchestrators

A Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 10 /21

Distributing memoryless orchestrators

Description of the problem

m Components communicating via exchange of messages

m Global priority rules over interactions

m Restriction in this talk: only binary rendez-vous connectors

Properties expected

m Safety: in a given state, only specified interactions can be fired
m Progress: deadlock-freedom (no fairness)

m Efficiency: reduce the longest exchange of messages between two
transitions

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 11 /21

Distributing memoryless orchestrators

Principle of the algorithm

For a component K, an interaction is:
m possible = possible for K
m ready = possible for K and its counterpart

m enabled = ready + no ready interaction with higher priority

For each interaction « involved in a priority rule, a negotiator is chosen
between the processes that participate in a.

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 12 /21

Distributing memoryless orchestrators

Protocol overview

l

Ready
ComputeReadySet
answer ‘ | Check ‘ compute
negotiators ReadySet nextInteraction
Busy

execute the chosen action

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 13 /21

Distributing memoryless orchestrators

Negotiate:

Require: higherPrio(a) = {i | a < i}

—_
e

© 0N asE =

Input: interaction a
Output: OK or NOK
toCheck < higherPrio(a)
Vb € toCheck send READY?(b)
while toCheck # () do
if receive READY'!(b) then
return NOK
else if receive NOTREADY'!(b) then
toCheck «— toCheck\{b}
end if
end while
return OK

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators

14 /21

Distributing memoryless orchestrators

ComputeNextInteraction:

Require: toNegotiate = {i | negociator(i) = K}
Input: set of interactions readySet # ()
Output: set of interactions enabledSet

1: Ready:

2: localMax «— readySet\{i | 3j € readySet s.t. i < j}
3: enabledSet —— {i € readySet | i ¢ 7}
4: for all i € localMax N toNegotiate do
5. if Negotiate(i) = OK then

6: enabledSet «—— enabledSet U {i}
7. end if

8: end for

9: if enabledSet = () then

10: goto Ready

11: else

12: enabledSetCompleted «— true

13: end if

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 15 / 21

Distributing memoryless orchestrators

CheckReadySet:

Require: set of interactions possibleSet
Output: interaction i
createNewThread ChooseNextInteraction(readySet)
while not enabledSetCompleted do
if receive REFUSE(a) and a € enabledSet then
kill ChooseNextInteraction
end if
end while
choose interaction i to fire among enabledSet

N g s wne

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 16 / 21

Distributing memoryless orchestrators

Safety

m t; and tp are independent when one may fire in parallel with the other.
m Otherwise t; and t> are said to be in structural conflict.

m Confusion arises if t; and t, may fire concurrently, but firing one
modifies the set of transitions in actual conflict with the other.

P1 P2 p2
ta
P p3
P4
—
t1 t3 ta
ty t3

m A process can commit just one interaction at a time
= interactions in conflict cannot be committed simultaneously.

m We do not handle confusion related to priorities.

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 17 /21

Distributing memoryless orchestrators

Progress

m No notion of fairness
m Avoid additional deadlocks due to negotiations

m Avoid deadlocks due to cycles: use cycle breakers

Ki=a+b Ks=c+a
Ko=b+c

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 18 / 21

Distributing memoryless orchestrators

Efficiency: choice of the negociators

m Minimize the maximal number of components communicating to
decide the enabledness of an interaction.

m Centralized topology = as efficient as a central orchestrator

m Ring tobology = at least as efficient than a central orchestrator

Py

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 19 /21

Conclusion

Motivation

H Memoryless orchestrators

Distributing memoryless orchestrators

A Conclusion

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 20 /21

Conclusion

Conclusion and perspectives

Summary
m Memoryless orchestrators
m Concurrency and priorities can be inferred

m A distributed implementation

Future work

Handle multiparty interactions

Handle complex connectors: need for a new algorithm?
Add knowledge to reduce the need for communication
Combine this work with compositional verification

Evaluate the approach on actual Web services

Sophie Quinton From Orchestration to Choreography: Memoryless and Distributed Orchestrators 21 /21

	Motivation
	Memoryless orchestrators
	Distributing memoryless orchestrators
	Conclusion

