

Towards a rigorous IT security
engineering

Antonio Maña

FLACOS'09 - Toledo, Spain, 25-Sep-09

Invited talk

Next 50 minutes

FLACOS'09 - Toledo, Spain, 25-Sep-09

 We will advocate a change of paradigm based on
 the precise and formal specification of security solutions and

security properties; and
 the use of these formally verified properties as the basis for the

expression of requirements and the engineering of secure systems.

 We will also introduce two pillars to solve the situation.
 On the one hand, we present the SERENITY model of secure and

dependable systems and show how it supports the creation of
secure and dependable systems for these new computing
paradigms.

 On the other hand we discuss the concept of contract and the role
it plays in ensuring a rigorous treatment of security.

 Finally some conclusions will be drawn and we’ll present a
proposal for establishing a renewed security engineering discipline.

The current state of affairs

Chapter I – A sad story

FLACOS'09 - Toledo, Spain, 25-Sep-09

If we need security (and we do)…

FLACOS'09 - Toledo, Spain, 25-Sep-09

 More and more aspects of our daily lives are affected by computing
systems.

 Developing secure systems is still an art
 IT Security is treated as an add-on
 The complexity of these systems is becoming larger than the

capacity of humans to understand and secure such IT system

 Security engineering
 has been used to denote partial approaches that cover only small

parts of the processes that are required in order to create a secure
system, like modelling, verification, programming, etc.

 Guidelines, recommendations, best practices, certification and
similar approaches lack the necessary rigour and precision
 Some examples are: Common criteria, traditional security patterns,

Sarbanes-Oxley and HIPA Acts, etc

…we need security engineering

FLACOS'09 - Toledo, Spain, 25-Sep-09

 The existence of a rigorous IT security
engineering discipline could
 not only change that situation of lack of

guarantees; but also
 improve the security of IT systems by

allowing them to be prepared to operate in
unforeseen contexts; and

 allow us to successfully provide security to
the extremely complex and dynamic IT
systems that are coming in the near future.

Threat-based security enginering
considered harmful

Chapter II – The good one turned villain

FLACOS'09 - Toledo, Spain, 25-Sep-09

Threat-based security enginering

FLACOS'09 - Toledo, Spain, 25-Sep-09

Threat-based security enginering
Why it is not appropriate

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Lack of dynamism and support for evolution
 Threats change when systems change even if the protection goals remain

the same
 Full reengineering is required in order to cope with any context change
 Very dificult to identify changes required in the system, as a result of a

context change
 Poor traceability

 Threats are dificult to trace to protection goals or security requirements
 Systems engineered following a threat- based approach tend to be

extremely dificult to maintain and to adapt to new context conditions
 Expression of user requirements is lacking, not precise or context-

dependent
 Using threats as the input to design process hides the user requirements
 Reduces the longevity and stability of the system specification and the

system under development becomes weaker in terms of:
 maintainability;
 traceability; and
 resilience to evolution

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Completeness
 The complete set of threats is impossible to identify
 Future systems will make it harder even for the most experienced and

visionary security experts
 The infamous penetrate-and-patch vicious cycle

 New threats and vulnerabilities are discovered during system operation
requiring the system to be patched

 degradation of the quality and introduction of new vulnerabilities
 Assurance and certification should not be based on threats

 Stating (even proving) that a system can withstand a threat does not say
much about what can be guaranteed about the system

 Poor user communication
 “Don’t worry, your system will be secure because we’ll protect it against

cross-site scripting and will use authenticated TLS connections”
 Customers do not understand if this solves their problem
 Abuse and misuse cases can help, but still they lack precision and do not

provide the guarantees that customers need

Threat-based security enginering
Why it is not appropriate

SERENITY

Chapter III – Things can improve (I)

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Computing ecosystems (common to many future
computing paradigms) will offer

 highly distributed,
 dynamic services,
 without a common owner or controller,
 where availability and state of elements is unpredictable

 in environments that will be
 heterogeneous,
 large scale and
 nomadic,

 where computing nodes will be omnipresent and
communications infrastructures will be dynamically
assembled,

 and where humans are part of the “system”.

What’s so new in the new
computing paradigms?

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Provision of security and dependability for these
ecosystems will be increasingly difficult using
existing security solutions, engineering approaches and
tools because of the combination of

 distributed nature,
 heterogeneity,
 scale (size, complexity),
 dynamism,
 lack of central control,
 unpredictability,
 human presence (with all that it implies)
 along with the higher demands for privacy,

dependability and security.

Security and Dependability in the
new computing paradigms

FLACOS'09 - Toledo, Spain, 25-Sep-09

 High complexity, large scale and dynamic nature of
these computing ecosystems
 Not possible to foresee all possible situations and

interactions which may arise
 Infrastructure security cannot be flexible enough

 Not possible to create suitable solutions to address the
users’ security and dependability requirements

 Lack of control
 S&D engineers will be faced with pieces of software,

communication infrastructures and hardware devices not
under their control.

 Application-level security will not be sufficient
 Runtime monitoring emerges as an essential element

Challenges for S&D
Security and Dependability

FLACOS'09 - Toledo, Spain, 25-Sep-09

Challenges for S&D
 Unpredictability

 Traditionally, S&D Engineers have been faced with complex but static
and predictable systems

 existing tools and processes not well-suited for these new
environments

 Again, calls for monitoring and context awareness
 Human presence

 Affects unpredictability, dynamism, requirements for S&D …
 Privacy becomes a major concern
 “Interfacing” to humans becomes a key issue

 Increased needs for S&D
 Applications not only interact with humans

 humans are part of the system
 Systems are intrinsically sensible
 Applications run on non trusted devices (infrastructure)
 Systems must survive

 Evolution of infrastructure / context
 Evolution of threats
 …

FLACOS'09 - Toledo, Spain, 25-Sep-09

General challenges

 The concepts of system and application
as we know them nowadays will disappear,
 from static architectures with well-defined

pieces of hardware, software, communication
links, limits and owners,

 to open architectures that are sensitive,
adaptive, context-aware and responsive to
users’ needs and habits.

 Precisely, this is what we refer to as
Computing ecosystems.

FLACOS'09 - Toledo, Spain, 25-Sep-09

SERENITY in a nutshell

 OBJECTIVE:
 SERENITY was launched as an initiative for the provision of

Security and Dependability (S&D) in AmI ecosystems
 APPROACH:

 SERENITY was based on capturing the knowledge of S&D
Engineers and making it available for automated processing

 FEATURES:
 SERENITY supports the provision of S&D both at

development time and at runtime
 SERENITY deals with both static and dynamic aspects
 SERENITY considers S&D at different abstraction levels
 SERENITY research has been guided by carefully selected

scenarios

Ambient Intelligence

FLACOS'09 - Toledo, Spain, 25-Sep-09

 STATEMENT
 Providing S&D in AmI scenarios requires the dynamic

application of the expertise of S&D engineers.
 SERENITY aims at capturing this expertise and making it

available in the above-mentioned scenarios
 LINE

 S&D Patterns are the means, complemented by
Runtime Monitoring mechanisms and tools

 COVERAGE
 In order to cover the complete lifecycle of S&D

solutions, SERENITY provides
 state-of-the-art techniques and tools for the analysis

of S&D Solutions at different levels; and
 Development time and runtime frameworks to

support the automated provision of S&D for AmI
applications

How does SERENITY deal with
these problems? (I)

FLACOS'09 - Toledo, Spain, 25-Sep-09

How does SERENITY deal with
these problems? (II)

FLACOS'09 - Toledo, Spain, 25-Sep-09

 ACTOR: S&D Solution Developer
 Develops S&D Solutions
 Creates S&D Artefacts

 ACTOR: Application Developer
 Identifies S&D Requirements
 Develops applications

 ACTOR: S&D Authority
 Defines S&D Configuration
 Manages SRF Library

 ACTOR: Security Officer / S&D Administrator
 Defines S&D Properties and S&D Policies

SERENITY Lifecycle Model:
actors

Evolution Path

SERENITY Lifecycle Model:
Overview

Application
Developer

CAPTURING
S&D Knowledge

Design Time
EXPLOITATION

Run-time EXPLOITATION

S&D Expert S&D Administrator
S&D Solutions

S&D Authority

S&D Artefacts

Executable
Implementation

SERENITY-enabled
application

S&D
Properties

S&D
Configuration

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

Main individual
technologies/results involved

 Analysis and development of S&D Solutions
 At different abstraction levels

 Modelling S&D
 Not only solutions, but also requirements,

properties, policies, context, …
 Development time support

 Solution discovery, selection, adaptation and
integration

 Runtime support
 Solution selection and dynamic management

 Runtime monitoring
 In open, distributed and uncontrolled scenarios

 System evolution
 Based on the runtime support

ACTOR: S&D Solution Developer
S&D Experts: Analyse solutions,

create and validate S&D Artefacts
S&D Engineers: implement

executable components

Analysing and developing
 S&D Solutions

 Security expert in research and development
 Standardisation bodies for S&D technology
 Implementer for S&D building blocks/services
Verification, validation and certification
 Expert in legal issues
…

FLACOS'09 - Toledo, Spain, 25-Sep-09

 S&D Experts
Mechanisms to promote the reuse of their solutions
Mechanisms to support interoperability of their solutions
Tools to analyse and verify their solutions
Means to precisely describe the solutions (including

security properties, context in which the solution is
applicable, monitoring rules

Means for guidelines and generic interfaces for secure
implementations

Mechanisms to relate different solutions and different
properties

Analysing and developing
 S&D Solutions

FLACOS'09 - Toledo, Spain, 25-Sep-09

Workflow and services:
Processes, dynamic behaviour, relies on underlying engines.
Needs both, static and process-oriented view. Two different
languages. Tool support for BPEL patterns.

Scope of support for analysis and
verification of S&D solutions

Organisational and legal requirements:

Static trust relations, language for requirements specifications
tools for design and validation of patterns.

Networks and devices:
Large variety of requirements and solutions. Requirements
language provides formal semantics for many of them.
Tool for validation within AmI scenarios. Patterns range from
validated solutions to best practice solutions.

FLACOS'09 - Toledo, Spain, 25-Sep-09

 S&D Engineers
Support for the development of executable components.
Library to make S&D implementations available to the

system engineer
Provide validated and precisely specified solutions and

standards
Make implementations available with all information

given by the security expert, i.e. provide enough
information for a secure deployment

Analysing and developing
 S&D Solutions

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

Main individual
technologies/results involved

 Analysis and development of S&D Solutions
 At different abstraction levels

 Modelling S&D
 Not only solutions, but also requirements,

properties, policies, context, …
 Development time support

 Solution discovery, selection, adaptation and
integration

 Runtime support
 Solution selection and dynamic management

 Runtime monitoring
 In open, distributed and uncontrolled scenarios

 System evolution
 Based on the runtime support

FLACOS'09 - Toledo, Spain, 25-Sep-09

Modelling S&D: Basic artefacts

 Modelling S&D Requirements
 S&D Properties
 S&D Policies

 Modelling S&D Solutions:
 S&D Classes
 S&D Patterns
 S&D Implementations
 Executable implementations

Modelling S&D Solutions
 SERENITY Artefacts:

 S&D Patterns represent abstract S&D solutions that provide
one or more S&D Properties. The popular Needham-Schroeder
public key protocol is an example of an S&D solution that can be
represented as an S&D Pattern.

 S&D Classes represent S&D services (abstractions of a set of
S&D Patterns characterized for providing the same S&D
Properties and being compatible with a common interface). An
example of an S&D Class is the ConfidentialCommunicationClass,
which defines an interface including among others, an abstract
method SendConfidential(Data, Recipient).

 S&D Implementations represent operational S&D solutions,
which are in turn called Executable Components. It is
important to note that the expression “operational solutions”
refers here to any final solution (e.g. component, web service,
library, etc.) that has been implemented and tested for
compliance with the corresponding S&D Pattern.

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

Main individual
technologies/results involved

 Analysis and development of S&D Solutions
 At different abstraction levels

 Modelling S&D
 Not only solutions, but also requirements,

properties, policies, context, …
 Development time support

 Solution discovery, selection, adaptation and
integration

 Runtime support
 Solution selection and dynamic management

 Runtime monitoring
 In open, distributed and uncontrolled scenarios

 System evolution
 Based on the runtime support

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Identifying and expressing requirements
 Mechanisms to express, analyse and relate S&D Properties
 Mechanisms to comply S&D Policies (both enterprise-wide and

others)

SERENITY supports

 Developing applications
 A catalogue of precisely described S&D Solutions available at

development time
 Mechanisms to match the application requirements and the solutions

that can be used to fulfil these requirements
 Mechanisms to enhance independence from S&D solutions, allowing

runtime adaptation to unforeseen context conditions and to support
persistence of the application in the future

 Trust mechanisms

Application Development
Support API

 The SERENITY Development Time
Framework supports developers in finding
the solutions they need

 The Serenity Application Support Library
gives us access to methods that help us to
build SERENITY-aware applications.

 This API encapsulates all the
communication with the SRF and the
mechanisms used to access the S&D
services provided by ECs.

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

Main individual
technologies/results involved

 Analysis and development of S&D Solutions
 At different abstraction levels

 Modelling S&D
 Not only solutions, but also requirements,

properties, policies, context, …
 Development time support

 Solution discovery, selection, adaptation and
integration

 Runtime support
 Solution selection and dynamic management

 Runtime monitoring
 In open, distributed and uncontrolled scenarios

 System evolution
 Based on the runtime support

FLACOS'09 - Toledo, Spain, 25-Sep-09

Runtime Support

 The SERENITY Runtime Framework (SRF)
is responsible for the dynamic provision of
S&D Solutions to requesting applications

 It has to deal with the selection,
activation, configuration and deactivation
of solutions in specific context conditions.

 It controls most of the runtime aspects
and plays a central role in system and
solution evolution.

FLACOS'09 - Toledo, Spain, 25-Sep-09

The SERENITY S&D model:
SERENITY Runtime Framework

id Component Model

Serenity Runtime Framework

Negotiation

Monitoring

Context Manager

S&D Manager

S&D Framework
configuration

«executable»

Application

«ext.»

Monitor Service

Event Manager

«executable»

Executable
Implementation

Instance

Runtime S&D Library

«ext.»

External systemNegotiation

Monitoring

Console

Exc.Implem.
Hander Manager

S&DClass

S&DImplementation

S&DPattern

ActivePatterns

Event Collector

S&D Authority

Event History

Event
receiver

Event
dispatcher

. . .

S&D Query

Exec.
Implement.
Instance
Handler

BelongsTo*

Activate /
Deactivate

S&D Service
Request

Implements

*

Events

Monitoring

Events

Events

FLACOS'09 - Toledo, Spain, 25-Sep-09

Main individual
technologies/results involved

 Analysis and development of S&D Solutions
 At different abstraction levels

 Modelling S&D
 Not only solutions, but also requirements,

properties, policies, context, …
 Development time support

 Solution discovery, selection, adaptation and
integration

 Runtime support
 Solution selection and dynamic management

 Runtime monitoring
 In open, distributed and uncontrolled scenarios

 System evolution
 Based on the runtime support

Monitoring specification
 Monitoring rules are expressed in EC-Assertion and

have the generic form

B H
 stating that when B is True, H must also be True. Both

B (Body) and H (Head) are defined as conjunctions of
Event Calculus predicates.

 The predicates used in monitoring rules express
 the occurrence of an event (Happens predicate),
 the initiation or termination of a fluent (i.e.

condition) by the occurrence of an event (Initiates and
Terminates predicates respectively),

 or the validity of fluent (HoldsAt predicate)
 Predicates are associated with time variables

FLACOS'09 - Toledo, Spain, 25-Sep-09

Monitoring specification
 Time constraints are indicated as time ranges e.g.

R(t1,t1+1000)
 The monitoring rules in S&D Patterns must be designed

to provide the information required in order to assess
the correct functioning of the pattern and executable
components that realise it.

 In a running system, the basic building blocks are the
Executable Components (ECs), which are
implementations of the S&D Patterns.

 ECs must include appropriate Event Capturers in order
to inform their clients about their internal operation.

 All implementations of an S&D Pattern must include
code to capture the events used in the monitoring rules
of the pattern and to notify the events to the
application through the SRF.

FLACOS'09 - Toledo, Spain, 25-Sep-09

Monitoring operation
 Monitoring

 When an event from an EC is received by the SRF
it is managed by the core monitoring mechanism
of the framework.

 In this case, the event is forwarded to the
appropriate monitoring service, which evaluates
the state of the EC by applying the monitoring
rules defined in the corresponding S&D Pattern.

 If a violation of one of these rules is detected, this
violation is reported to the SRF, which registers it
and takes appropriate actions (such as deactivate
the pattern, pause, reset, etc.)

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

Main individual
technologies/results involved

 Analysis and development of S&D Solutions
 At different abstraction levels

 Modelling S&D
 Not only solutions, but also requirements,

properties, policies, context, …
 Development time support

 Solution discovery, selection, adaptation and
integration

 Runtime support
 Solution selection and dynamic management

 Runtime monitoring
 In open, distributed and uncontrolled scenarios

 System evolution
 Based on the runtime support

SERENITY maintenance and
evolution infrastructure

FLACOS'09 - Toledo, Spain, 25-Sep-09

Monitoring operation
 Need for additional monitoring layers

 To deal with potential problems caused by
the interaction between different ECs, a
second monitoring mechanism is in charge of
monitoring at the level of one particular
SERENITY framework.

 To support maintenance and evolution of
specific S&D solutions and detect problems
with non-compliant implementations, as well
as problems in the modelling, solution-
specific elements called Metamonitors
perform vertical analysis.

FLACOS'09 - Toledo, Spain, 25-Sep-09

Evolution Maintenance
Elements

 Transparency Agent
 Associated and deployed with a specific SRF
 Horizontal analysis: Analyses data from different S&D

Solutions in the same environment.
 Collects information related to the violations of

monitoring rules, analyses it and presents it to the TA
administrator.

 The results may be sent to the Metamonitor depending
on certain rules, so the administrator of the
Transparency Agent can choose what information to
send to the Metamonitor and what to keep as
confidential (Controlled Transparency).

FLACOS'09 - Toledo, Spain, 25-Sep-09

Evolution Maintenance
Elements

 Metamonitor
 Deployed on an external infrastructure.
 Vertical analysis: Analyses data from different

machines about the same S&D Solution.
 Receives information from several Transparency Agents

and performs a new analysis on this.
 The Metamonitor has a global view of what is the

behaviour of the S&D Solutions in different contexts, and
therefore is able to deduce proper conclusions that are
not possible locally (modification of the description of an
S&D Pattern, the deactivation of particular S&D
solutions, etc.). This benefits both, the user of these
solutions and the solution developer.

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

What SERENITY
does NOT cover

 Design / Creation of S&D Solutions
 Cryptography
 Hardware

 S&D Certification
 Not only solutions, but also systems, certifiable

policies, …
 Dependencies on context, composability, …

 Application requirements discovery /
refinement
 Refinement in application development process

(application modelling, MDA, etc.)
 Domain-specific models
 Plus Trust management, Risk, QOS, etc.

Contracts

Chapter VI – Things can improve (II)

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Informally speaking we could define a contract as
an agreement between two or more parties
that establishes obligations for these parties
and guarantees about those obligations.

 More precisely, the BusinessDictionary.com states
that a contract is a “Voluntary, deliberate, and
legally enforceable (binding) agreement
between two or more competent parties.”

 The main difference between the two is that we
do not necessarily assume that a contract has to
have any legal meaning (although we do not
exclude that possibility).

The role of contracts in a rigorous
security engineering

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Contracts can be used in IT security for different purposes. Among these,
we highlight the following:

 Contracts as means for agreeing on security aspects. In this case
the contract establishes the terms (e.g. mechanisms, guarantees,
referees and trusted third parties, etc.) that will be used in an interaction
between two or more parties. A well-known example of this is constituted
by SLAs (service-level agreements) that establish aspects related to the
QoS (Quality of Service) like bandwidth, uptime, throughput, etc. Also in
this category we find expression of the “terms of use”.

 Contracts as specifications. A contract can be used to specify aspects
of the operation of an entity. For instance, it can be used to specify the
means by which the entity ensures the confidentiality of the data
processed in an application in cloud computing or service-oriented
computing. Another interesting case in this category is that of software
contracts, which have been used in component-based development and
especially for COTS (components-off-the-shelf). The same concept has
recently been applied to the field of secure coding. In fact, some mature
development strategies like PCC (proof carrying code) are closely related
to this. In PCC, executable code comes with proofs that demonstrate
adherence to a contract. These proofs can be verified by the runtime
environment prior to code execution.

Uses of contracts

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Contracts as guarantees. A contract can be
used to state guarantees about the operation of
an entity. For instance, it can be used to
guarantee that an economic compensation will be
available to the user should the confidentiality of
the data processed in an application in cloud
computing or service-oriented computing be
broken.

 Contracts as disclaimers. The idea in this case
is to make the user aware of the risks that the
software introduce and to declare the limitations
of the guarantees of a provider.

The role of contracts in a rigorous
security engineering

FLACOS'09 - Toledo, Spain, 25-Sep-09

 From the previous descriptions one can easily
understand that the concept of contract constitutes a
key element in providing precision, control, limitations
and rigour into the security engineering discipline.

 Contracts reduce uncertainty and provide support for
sound reasoning about dynamic, distributed and
composed systems.

 In the SERENITY model,
 contracts are mainly used to establish agreements

between different SRFs,
 but the contents of the descriptions made using the

S&D Artefacts can also be considered as contracts.

The role of contracts in a rigorous
security engineering

The SERENITY experience.
Towards Information Security
as an Engineering Discipline.

Chapter V – The road ahead

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

 Set of (mostly unrelated) techniques for developing a
secure system
 Processes
 Requirements engineering
 Modelling secure systems
 Code development and Language-based security
 Verification and Validation
 Certification and assurance
 Risk management
 …

Remember Security Enginering?

FLACOS'09 - Toledo, Spain, 25-Sep-09

What is the contribution of
SERENITY to security engineering?

Evolution Path

SERENITY Lifecycle Model:
Recall

Application
Developer

CAPTURING
S&D Knowledge

Design Time
EXPLOITATION

Run-time EXPLOITATION

S&D Expert S&D Administrator
S&D Solutions

S&D Authority

S&D Artefacts

Executable
Implementation

SERENITY-enabled
application

S&D
Properties

S&D
Configuration

FLACOS'09 - Toledo, Spain, 25-Sep-09

Conclusions

Epilogue – Moving on

FLACOS'09 - Toledo, Spain, 25-Sep-09

FLACOS'09 - Toledo, Spain, 25-Sep-09

 We have shown that threat-based security
engineering is not appropriate anymore due to:
 (i) is the origin of penetrate-and-patch situation;
 (ii) does not result in specifications that can survive

evolution; and
 (iii) does not capture user requirements.

 We have advocated a change of paradigm based
on the redesign and integration of security engineering
mechanisms and tools, grounded in new principles such as

 the precise and formal specification of security solutions
and security properties; and

 the use of these formally verified properties as the basis for
the expression of requirements and the engineering of
secure systems; and

 the use of the concept of contract as a means to increase
rigour and trust.

Conclusions

FLACOS'09 - Toledo, Spain, 25-Sep-09

 We have introduced two pillars to solve the
situation:
 the SERENITY model of secure and dependable

systems; and
 the concept of contract and the role it plays in

ensuring a rigorous treatment of security.
 Our ultimate goal is to establish IT security as

a fully fledged engineering discipline, by
means of the definition of integrated processes
with well-defined goals and interfaces that combine
the different techniques, methodologies and tools
to support the engineering of future secure IT
systems.

Conclusions

FLACOS'09 - Toledo, Spain, 25-Sep-09

Thank you

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51
	Página 52
	Página 53
	Página 54
	Página 55
	Página 56
	Página 57

