
Programming Web Services
with Choreography

Marco Carbone
IT University of Copenhagen

FLACOS’09, Toledo, Spain
--- September 2009

Sunday, October 4, 2009

This Talk In One Slide
• Choreography and Web Services (07)

- A model for Choreography

- Session Types

- Global Calculus

- About End-Point Projection (EPP)

• Interactional Exceptions and Choreography (08&workinprogress)

- Session Types and Exceptions

- Extension of the Global Calculus

- About End-Point Projection (EPP)

Sunday, October 4, 2009

Choreography?

Choreography as a way of describing communication-
based systems focusing on global message flows

Idea from WS-CDL, the Web Services Choreography
Description Language

XML-based description language

Developed by W3C (since 2003) in collaboration with
private companies Pi4Tech, Adobe, Oracle, Sun, etc.

π-calculus experts invited since 2004 (R. Milner and us)

Sunday, October 4, 2009

Choreography?

Choreography as a way of describing communication-
based systems focusing on global message flows

Idea from WS-CDL, the Web Services Choreography
Description Language

XML-based description language

Developed by W3C (since 2003) in collaboration with
private companies Pi4Tech, Adobe, Oracle, Sun, etc.

π-calculus experts invited since 2004 (R. Milner and us)

Joint with K. Honda & N. Yoshida
Sunday, October 4, 2009

Choreography? (2)
Choreography as a way of describing communication-
based systems focusing on global message flows

1. Entities have a common goal

2. No single point of control

3. Only describe communications

“Dancers dance following a global scenario without a
single point of control”, WS-CDL working group

Sunday, October 4, 2009

Example: End Points
ALICE

send Bob<“Hello”>;
receive (z)

Sunday, October 4, 2009

Example: End Points
ALICE

send Bob<“Hello”>;
receive (z)

BOB

receive (x)
send Carl<“Hello”>;

Sunday, October 4, 2009

Example: End Points
ALICE

send Bob<“Hello”>;
receive (z)

BOB

receive (x)
send Carl<“Hello”>;

CARL

receive (y)
send Alice<“Hello”>;

Sunday, October 4, 2009

Example: End Points
ALICE

send Bob<“Hello”>;
receive (z)

BOB

receive (x)
send Carl<“Hello”>;

What happens in this
system?

•Alice writes to Bob, then
•Bob writes to Carl, then
•Carl writes to Alice

CARL

receive (y)
send Alice<“Hello”>;

Sunday, October 4, 2009

Example: Choreography

Alice → Bob <“Hello”, x> .
Bob → Carl <“Hello”, y> .
Carl → Alice <“Hello”, z>

Sunday, October 4, 2009

Example: comparison
ALICE

send Bob<“Hello”>;
receive (z)

CARL

receive (y)
send Alice<“Hello”>;

BOB

receive (x)
send Carl<“Hello”>;

Alice → Bob <“Hello”, x> .
Bob → Carl <“Hello”, y> .
Carl → Alice <“Hello”, z>

Sunday, October 4, 2009

Why Choreography?

• Useful at design stage
• Abstraction of a system for formal reasoning
• Monitoring

Sunday, October 4, 2009

Why Choreography?

• Useful at design stage
• Abstraction of a system for formal reasoning
• Monitoring

BOB

Alice → Bob <“Hello”, x> .
Bob → Carl <“Hello”, y> .
Carl → Alice <“Hello”, z>

ALICE

“Hello”

OK!

Sunday, October 4, 2009

Why Choreography?

• Useful at design stage
• Abstraction of a system for formal reasoning
• Monitoring

BOB

Alice → Bob <“Hello”, x> .
Bob → Carl <“Hello”, y> .
Carl → Alice <“Hello”, z>

ALICE

“Cheat Carl”

What???
&^%#@

Sunday, October 4, 2009

Why Choreography?

• Useful at design stage
• Abstraction of a system for formal reasoning
• Monitoring
• ...

Sunday, October 4, 2009

Observation & Question

1. Choreography, nice

2. End-point, directly gives implementation
of communication primitives

Sunday, October 4, 2009

Observation & Question

1. Choreography, nice

2. End-point, directly gives implementation
of communication primitives

•Can we formally relate 1. and 2.?
➡ Can we define an automated mapping from
1. to 2.?

QUESTION

Sunday, October 4, 2009

A possible solution with sessions [ESOP07]

Choreography EPP EP A1 EP An

Sunday, October 4, 2009

A possible solution with sessions [ESOP07]

Choreography EPP EP A1 EP An

•Define two models (process algebras):
‣ Global Calculus (GC);
‣ End-point Calculus (EPC);

Sunday, October 4, 2009

A possible solution with sessions [ESOP07]

Choreography EPP EP A1 EP An

•Define two models (process algebras):
‣ Global Calculus (GC);
‣ End-point Calculus (EPC);

•Define an efficient mapping (EPP) from GC to EPC

Sunday, October 4, 2009

A possible solution with sessions [ESOP07]

Choreography EPP EP A1 EP An

•Define two models (process algebras):
‣ Global Calculus (GC);
‣ End-point Calculus (EPC);

•Define an efficient mapping (EPP) from GC to EPC

•EPP theorem: is EPP always correct?

Sunday, October 4, 2009

Related Work

• Q. Zongyan et al. [WWW07]
CCS-like approach (similar to ours), no sessions

• Bultan et al.
(Communicating) Finite State Automata

• BIP, REO

• MSC, Protocol Narrations, etc.

Sunday, October 4, 2009

Sessions (Types) in two slides...

Channel-based communication:

two types of channels

service channels: ch,... (e.g. services, public channels)

session channels: s,t,...(e.g. session id’s)

participants invoke shared channels and

then they communicate over session channels (s)

Sunday, October 4, 2009

Sessions (Types) in two slides... (2)

Each service channel ch has a type α:

ch@B : α

“ch is located at B and is used as α”

α specifies the direction and the type of each
message sent in a session (e.g. over s)

!(int).?(bool) + !(real).!(real).?(bool)

Sunday, October 4, 2009

Service Channel Principle

A service (ch) is always available in many copies

Sunday, October 4, 2009

Service Channel Principle

A service (ch) is always available in many copies

Alice → Bob ch(...) .
Bob → Carl <“Hello”, y> .
...
Carl → Bob ch (...). ...

Sunday, October 4, 2009

I::= A → B : ch(s). I (init)
| A → B : s<op, e,y>. I (com)
| if e@A then I1 else I2 (cond)
| I1 + I2 (sum)
| I1 ❘ I2 (par)
| rec X. I (rec)
| X (recVar)
| (νs) I (res)

Global Calculus

Sunday, October 4, 2009

I::= A → B : ch(s). I (init)
| A → B : s<op, e,y>. I (com)
| if e@A then I1 else I2 (cond)
| I1 + I2 (sum)
| I1 ❘ I2 (par)
| rec X. I (rec)
| X (recVar)
| (νs) I (res)

Global Calculus

Sunday, October 4, 2009

I::= A → B : ch(s). I (init)
| A → B : s<op, e,y>. I (com)
| if e@A then I1 else I2 (cond)
| I1 + I2 (sum)
| I1 ❘ I2 (par)
| rec X. I (rec)
| X (recVar)
| (νs) I (res)

Global Calculus

Sunday, October 4, 2009

I::= A → B : ch(s). I (init)
| A → B : s<op, e,y>. I (com)
| if e@A then I1 else I2 (cond)
| I1 + I2 (sum)
| I1 ❘ I2 (par)
| rec X. I (rec)
| X (recVar)
| (νs) I (res)

Global Calculus

Sunday, October 4, 2009

I::= A → B : ch(s). I (init)
| A → B : s<op, e,y>. I (com)
| if e@A then I1 else I2 (cond)
| I1 + I2 (sum)
| I1 ❘ I2 (par)
| rec X. I (rec)
| X (recVar)
| (νs) I (res)

Global Calculus

Sunday, October 4, 2009

I::= A → B : ch(s). I (init)
| A → B : s<op, e,y>. I (com)
| if e@A then I1 else I2 (cond)
| I1 + I2 (sum)
| I1 ❘ I2 (par)
| rec X. I (rec)
| X (recVar)
| (νs) I (res)

Global Calculus

Sunday, October 4, 2009

(causality) semantics

I → I’
•communication happens in the system;
•the system becomes I’

A → B : ch(s). I → (νs) I
A → B : s<op, e,y>. I → I

Sunday, October 4, 2009

(causality) semantics

I → I’
•communication happens in the system;
•the system becomes I’

A → B : ch(s). I → (νs) I
A → B : s<op, e,y>. I → I [e/y]

Sunday, October 4, 2009

(causality) semantics

(σ,I) → (σ’,I’)
•communication happens in the system;
•the system becomes I’

(σ, A → B : ch(s). I) → (σ, (νs) I)
(σ, A → B : s<op, e,y>. I) → (σ@B[y= σ(e)@A], I)

Sunday, October 4, 2009

An Example

Sunday, October 4, 2009

An Example (2)

Sunday, October 4, 2009

An Example (3)

Sunday, October 4, 2009

An Example (4)

Sunday, October 4, 2009

End-Point Calculus

P::= *ch (s) . P (serv)
| ch ! (s) . P (req)
| s ? (op1(x1).P1 + ... + opn(xn).Pn) (in)
| s ! op<e>. P (out)
| P1 ⊕ P2 (oplus)
| P1 ❘ P2 (par)
| if e then P1 else P2 (cond)

| rec X. P | X | (νs) P (other)

Sunday, October 4, 2009

End-Point Calculus

P::= *ch (s) . P (serv)
| ch ! (s) . P (req)
| s ? (op1(x1).P1 + ... + opn(xn).Pn) (in)
| s ! op<e>. P (out)
| P1 ⊕ P2 (oplus)
| P1 ❘ P2 (par)
| if e then P1 else P2 (cond)

| rec X. P | X | (νs) P (other)

Sunday, October 4, 2009

End-Point Calculus

P::= *ch (s) . P (serv)
| ch ! (s) . P (req)
| s ? (op1(x1).P1 + ... + opn(xn).Pn) (in)
| s ! op<e>. P (out)
| P1 ⊕ P2 (oplus)
| P1 ❘ P2 (par)
| if e then P1 else P2 (cond)

| rec X. P | X | (νs) P (other)

Sunday, October 4, 2009

End-Point Calculus

P::= *ch (s) . P (serv)
| ch ! (s) . P (req)
| s ? (op1(x1).P1 + ... + opn(xn).Pn) (in)
| s ! op<e>. P (out)
| P1 ⊕ P2 (oplus)
| P1 ❘ P2 (par)
| if e then P1 else P2 (cond)

| rec X. P | X | (νs) P (other)

Sunday, October 4, 2009

End-Point Calculus

P::= *ch (s) . P (serv)
| ch ! (s) . P (req)
| s ? (op1(x1).P1 + ... + opn(xn).Pn) (in)
| s ! op<e>. P (out)
| P1 ⊕ P2 (oplus)
| P1 ❘ P2 (par)
| if e then P1 else P2 (cond)

| rec X. P | X | (νs) P (other)

Sunday, October 4, 2009

How does EPP work?
For each session (service) and Seller:

Sunday, October 4, 2009

How does EPP work?
For each session (service) and Seller:

Sunday, October 4, 2009

How does EPP work?
For each session (service) and Seller:

Sunday, October 4, 2009

How does EPP work?
For each session (service) and Seller:

SELLER

*ch1(s).
s ? QuoteReq(x).
s ! QuoteRes<quote>.
s ? QuoteAcc(z).
ch2!(r).
r ! ShipReq<z>.
r ? ShipConf.
s ! OrderConf

Sunday, October 4, 2009

How does EPP work?
and for Buyer...

Sunday, October 4, 2009

How does EPP work?
and for Buyer...

Sunday, October 4, 2009

How does EPP work?
and for Buyer...

BUYER

ch1!(s).
s!QuoteReq<product>.
s?QuoteRes(y).
s!QuoteAcc<creditcard>.
s?OrderConf

Sunday, October 4, 2009

How does EPP work? (2)

•Careful with participant with multiple services

Sunday, October 4, 2009

How does EPP work? (2)

•Careful with participant with multiple services

SELLER

*ch1(s).
s ! op1<e1>.

|

*ch2!(r).
r ! op2<e2>.
 ⊕
r ! op3<e3>.

}thread

}thread

Sunday, October 4, 2009

How does EPP work? (2)

•Careful with participant with multiple services

SELLER

*ch1(s).
s ! op1<e1>.

|

*ch2!(r).
r ! op2<e2>.
 ⊕
r ! op3<e3>.

NOTE.

The EPP guarantees that actions happen in
the right order.

This is not always feasible!!!

}thread

}thread

Sunday, October 4, 2009

Three principles

Three principles for correct EPP:

Connectedness. A causality principle.

Well-Threadedness. A local causality
principle related to services.

Coherence. Consistent behaviour of the same
service over a global description.

This properties can be (in)validated algorithmically

Sunday, October 4, 2009

Three principles

Three principles for correct EPP:

Connectedness. A causality principle.

Well-Threadedness. A local causality
principle related to services.

Coherence. Consistent behaviour of the same
service over a global description.

This properties can be (in)validated algorithmically

Sunday, October 4, 2009

Three principles

Three principles for correct EPP:

Connectedness. A causality principle.

Well-Threadedness. A local causality
principle related to services.

Coherence. Consistent behaviour of the same
service over a global description.

This properties can be (in)validated algorithmically

Sunday, October 4, 2009

Connectedness

Sunday, October 4, 2009

Coherence

Sunday, October 4, 2009

Coherence (bad case)

Sunday, October 4, 2009

EPP Theorem

The end point projection is:

Type preserving

I → I’ implies EPP(I) → EPP(I’)

EPP(I) → R implies I → I’ and EPP(I’)∼R

Barb preserving

whenever I is well-typed, connected, well-threaded
and coherent

Sunday, October 4, 2009

Exceptions

• Interactional Exceptions and Choreography (08&workinprogress)

- Session Types and Exceptions

- Extension of the Global Calculus

- About End-Point Projection (EPP)

Sunday, October 4, 2009

Exceptions, Literally...

•“An Exception is a person or thing that is
excluded from a general statement or does not
follow a rule” (Mac Dictionary)

•“Exception (handling) is a programming
language construct or computer hardware
mechanism designed to handle the occurrence
of some condition that changes the normal
flow of execution.” (Wikipedia)

Sunday, October 4, 2009

Exceptions, Literally...

•“An Exception is a person or thing that is
excluded from a general statement or does not
follow a rule” (Mac Dictionary)

•“Exception (handling) is a programming
language construct or computer hardware
mechanism designed to handle the occurrence
of some condition that changes the normal
flow of execution.” (Wikipedia)

Sunday, October 4, 2009

Exceptions, in General

! ! ! try !{! /* Default Code */ }

! ! ! catch {! /* Handler Code */ }

If an exception is thrown by the default
code then the handler is executed.

Exceptions are thrown with a special
command throw

Sunday, October 4, 2009

What if apply the exception (compensation)
idea to choreography?

! ! ! try !{! /* Default Interaction */ }

! ! ! catch {! /* Handler Interaction */ }

Exceptions and Choreography

Sunday, October 4, 2009

What if apply the exception (compensation)
idea to choreography?

! ! ! try !{! /* Default Interaction */ }

! ! ! catch {! /* Handler Interaction */ }

Exceptions and Choreography

Graphically...

Sunday, October 4, 2009

A Simple Financial Protocol

Carbone

in I or J . Further, in A → B : b(s)[t̃, I, J], we shall exclude refinements on ti in

J . As well, we do not allow top-level throws in handlers. This prevents a handler

from throwing a further exception in the same session.

Example 2.1 (A simple Financial Protocol) This example [5] is a typical scenario

in financial protocols. Consider a customer Buyer who wishes to purchase a product

from a company Seller. Buyer starts a session with Seller who repeatedly sends quote

updates about the product price. When Buyer decides to accept a particular quote,

without explicitly notifying Seller, it throws an exception. At this point, Seller and

Buyer move together to a new stage (exceptional stage with respect to the ordinary

sequence of actions) where they exchange information for successfully terminating

the transaction e.g. credit card details for payment and receipt. A global calculus

representation of the protocol which uses the interactional exception mechanism is

given:

1. Buyer→ Seller : chSeller(s) [s,

2. rec X . Seller→ Buyer : s�update, quote, y� .

3. if (y < 100)@Buyer then throw else X,




 default

4. Seller→ Buyer : s�conf, cnum, x� .

5. Buyer→ Seller : s�data, credit, x�]




 handler

In line 1, Buyer invokes service chSeller from Seller. Line 2 and 3 compose the

default choreography: the interaction Seller→ Buyer : s�update, quote, y� models

the sending of a quote quote from Seller to Buyer who will store the received value

at variable y. In line 3, variable y is checked by Buyer and if its value is less than

100, an exception will be thrown otherwise the course of action will go back to line

2. Lines 4 and 5 describe how the system will handle an exception: Seller will send

a confirmation cnum and Buyer will reply with its credit card credit. Note that

variable x denotes two different variables in lines 4 and 5: the first one is located

at Buyer while the second is located at Seller.

The behaviour described by the choreography above may also be represented by

replacing the throw operator with the code in the handler, i.e.:

rec X . Seller→ Buyer : s�update, quote, y� .
if (y < 100)@Buyer then {. . . as in handler . . .} else X,

Although this is a legitimate way of describing the protocol, the choreography above

increases the burden of the implementation. An end-point representation would

require a hack i.e. that Buyer notifies Seller of its guard evaluation at each iteration

while our solution can be implemented with end-point interactional exceptions thus

automatically guaranteeing the propagation of the exceptional state. Hence, the

user (or architect) could be allowed to write exception-free descriptions as the above

but then a tool would have to translate them into something like the one with

exceptions.

4

Sunday, October 4, 2009

A Financial Protocol with Broker

Carbone

Example 2.2 (A Financial Protocol with Broker) We extend the protocol above

including a third participant, a broker Broker whose rôle is to buy from Seller and

resell to Buyer (a typical situation in financial protocols). In this scenario, Buyer

will invoke Broker rather than Seller and act almost identically as in the previous

example. On the other hand Broker, after being invoked by Buyer and checking his

reputation, will invoke Seller and act as Buyer in the previous example. As before,

Buyer can raise an exception in case of quote acceptance but also Broker can throw

if Buyer’s reputation is not satisfactory before even invoking Seller. This can be

written in the global calculus as:

1. Buyer → Broker : chBroker(s) [s,

2. Buyer → Broker : s�identify, id, x� .

3. if bad(x)@Broker then throw

4. else Broker → Seller : chSeller(t)[(s, t), rec X .

5. Seller → Broker : t�update, quote, y� .

6. Broker → Buyer : s�update, 1.1 ∗ y, y� .

7. if (y < 100)@Buyer then throw else X,





default

8. Seller → Broker : t�conf, cnum, x� .

9. Broker → Buyer : s�conf, x, x� .

10. Buyer → Broker : s�data, credit, x� .

11. Broker → Seller : t�data, x, x�],






handler






default

12. Broker → Buyer : s�reject, reason, x�]

�
handler

In lines 1 and 2, Buyer invokes service chBroker and sends its identity id to

Broker who, in line 3, will check whether Buyer is bad or not. If Buyer is not

trusted, Broker will raise an exception which will take both Buyer and Broker to

an abortion procedure in line 12. Note that in this case, Buyer and Broker are

the only participants involved so far and the only ones who will move to another

conversation for handling the exception.

If Buyer can be trusted, Broker invokes service chSeller and forwards to Buyer

all quotes received from Seller increasing them by 10%. As before, Buyer will

throw an exception whenever s/he decides to accept a quote. In this case, as the

participants involved are now Buyer, Broker and Seller, the handler to be executed

is the inner one where Broker will forward messages between Buyer and Seller (see

lines 8-11). This event will also discard the handler in line 12 which, after session

initiation in line 4, has become inactive.

Semantics. Above, we have shown how interactional exceptions can be exploited

5

Sunday, October 4, 2009

A Financial Protocol with Broker

Carbone

Example 2.2 (A Financial Protocol with Broker) We extend the protocol above

including a third participant, a broker Broker whose rôle is to buy from Seller and

resell to Buyer (a typical situation in financial protocols). In this scenario, Buyer

will invoke Broker rather than Seller and act almost identically as in the previous

example. On the other hand Broker, after being invoked by Buyer and checking his

reputation, will invoke Seller and act as Buyer in the previous example. As before,

Buyer can raise an exception in case of quote acceptance but also Broker can throw

if Buyer’s reputation is not satisfactory before even invoking Seller. This can be

written in the global calculus as:

1. Buyer → Broker : chBroker(s) [s,

2. Buyer → Broker : s�identify, id, x� .

3. if bad(x)@Broker then throw

4. else Broker → Seller : chSeller(t)[(s, t), rec X .

5. Seller → Broker : t�update, quote, y� .

6. Broker → Buyer : s�update, 1.1 ∗ y, y� .

7. if (y < 100)@Buyer then throw else X,





default

8. Seller → Broker : t�conf, cnum, x� .

9. Broker → Buyer : s�conf, x, x� .

10. Buyer → Broker : s�data, credit, x� .

11. Broker → Seller : t�data, x, x�],






handler






default

12. Broker → Buyer : s�reject, reason, x�]

�
handler

In lines 1 and 2, Buyer invokes service chBroker and sends its identity id to

Broker who, in line 3, will check whether Buyer is bad or not. If Buyer is not

trusted, Broker will raise an exception which will take both Buyer and Broker to

an abortion procedure in line 12. Note that in this case, Buyer and Broker are

the only participants involved so far and the only ones who will move to another

conversation for handling the exception.

If Buyer can be trusted, Broker invokes service chSeller and forwards to Buyer

all quotes received from Seller increasing them by 10%. As before, Buyer will

throw an exception whenever s/he decides to accept a quote. In this case, as the

participants involved are now Buyer, Broker and Seller, the handler to be executed

is the inner one where Broker will forward messages between Buyer and Seller (see

lines 8-11). This event will also discard the handler in line 12 which, after session

initiation in line 4, has become inactive.

Semantics. Above, we have shown how interactional exceptions can be exploited

5

Sunday, October 4, 2009

Global Calculus Extension

Carbone

system facilitating the design stage and leaving the implementation details to the
(possibly automated) process of generating a sound end-point code, called end-point
projection.

Exceptions are a mechanism widely adopted in modern programming languages
(e.g. Java, C#) for dealing with exceptional system behaviours i.e. they are de-
signed to handle the occurrence of some conditions interrupting the normal flow
of execution of a program 3 . While the classical notion of exception is bound to
the local flow of a process, in communication-centred programming exceptions are
about the flow of interactions where a sudden interruption must involve all inter-
acting participants. We shall call this kind of exception an interactional exception
[5].

This work studies an extension of choreography with exceptions in the setting
of session-based communication and session types [6]. In particular, we shall see
how exceptions are naturally interactional in choreography (choreography is about
interactions) while they require an exception propagation mechanism at end-point
level.
Contributions of the paper. Below, we list the contributions of this paper:
• syntax, reduction semantics and typing of the global calculus with exceptions;
• syntax, reduction semantics and typing of the end-point calculus with exceptions

and locations;
• a discussion through examples of the requirements for guaranteeing a sound map-

ping from the global calculus to the end-point calculus (end-point projection).

Outline. The remainder of the paper is divided as follows: Section 2 introduces
the extension of the global calculus with exception primitives and discusses the new
typing system where a new type for exceptions, the try-catch type is introduced;
Section 3 adapts the results found in [5] to a calculus with locations; Section 4
discusses with examples the end-point projection and how it changes in presence of
exception constructs; Section 5 concludes the paper.

2 Extending Choreography with Exceptions

Syntax. The global calculus [3,4] is a model of choreography based on WS-CDL 4

[10]. We hereby extend it with new terms for describing exceptions. The syntax of
a global description (or choreography) I is defined as:

I, J ::= A → B : a(s)[t̃, I, J] (init) | 0 (inaction)
| A → B : s�op, e, y� . I (com) | I | J (par)
| throw (throw) | I + J (sum)
| if e@A then I else J (cond) | X (recVar)
| rec X . I (rec)

3 Note that exceptions is not necessarily associated to unwanted/erroneous behaviour: “Exception (han-
dling) is a programming language construct or computer hardware mechanism designed to handle the oc-
currence of a condition that changes the normal flow of execution” - Wikipedia
4 WS-CDL is a description language developed by W3C WS-CDL Working Group based on the notion of
choreography and it is mainly used for business protocols.

2

Sunday, October 4, 2009

End-Points?

Carbone

Rule (G-TTry) types try-catch blocks and carries conditions similar to (G-TInit).
The main difference lies on the typing of I where any session channel ti not in s̃
must be protected i.e. there is a try-catch block on ti. As a result, also chan-
nels in s̃ become protected. We impose this condition because we want to avoid
to brutally terminate unprotected sessions, operation that would not have a real
end-point implementation. In (G-TWrap), all those unprotected session channels
become protected where their type becomes a try-catch type whose left-hand side
is randomly chosen (α�

i). (G-TRes) is standard.
In the sequel, Γ � σ means that Γ � x@A : θ for all x@A in σ. The expected

property of subject reduction holds like in the original version without exceptions.

Theorem 2.5 (Subject Reduction) Assume Γ � σ and let I be derived from a
non-run-time global description. Then Γ � I � ∅ and (σ, I) → (σ�, I �) imply Γ � σ�

and Γ � I � � ∅.

3 End-Point Interactional Exceptions

End-point interactional exceptions were first introduced in [5]. In this section,
we briefly introduce the formalism enhanced with locations and such that branch-
ing/selection are embedded in standard communication (as in [4]).
Syntax. The syntax of processes (often called programs) and networks in the
asynchronous end-point calculus with exceptions is reported below:

P ::= !c(κ)[P,Q] (service) | c(λ)[κ̃, P, Q] (request)

| κ?Σiopi�xi�.Pi (input) | κ!op�e� . P (output)

| P | Q (par) | if e then P else P (cond)

| 0 (inact) | P ⊕Q (choice)

| X (termVar) | rec X . P (recursion)

| throw (throw)

N ::= A[P]σ | N1 || N2 | �

where κ, λ denote polarised session channels s+, s−. The term (service) denotes a
service c which, when invoked, will initiate a session κ with a default process P
and a handler Q (to be used when an exception is thrown). Dually, term (request)
represents the invocation of service c with session channel λ, default process P and
handler Q. The vector κ̃ is used for refinement similarly to the choreography case.
The remaining terms are standard. In the end-point calculus, we shall make the
same assumptions about refinement and recursion done for the global calculus. Free
session channels and term variables are also defined similarly.

A network N is the parallel composition of participants denoted by A[P]σ
where A is the participant’s name and P is the process running at such location in
a state σ. The latter is similar to the global case but it only maps variables (now
local) to values.

11

Sunday, October 4, 2009

EPP?

Sunday, October 4, 2009

EPP? (Buyer)
Carbone

thread 1, we have that TP(Protocol, 1) is:

chBroker(s+)[s+,

s+!identify�id� . rec X . s+?update(y) . if (y < 100) then throw else X,

merge(s+?conf(x) . s+!data�credit�, s+?reject(x) . P)]

where the merging merge(s+?conf(x) . s+!data�credit�, s+?reject(x) . P) is equal to
s+?(conf(x) . s+!data�credit� + reject(x) . P) where P is the thread projection of 1
in A. The projection of thread 2, TP(Protocol, 2) is

∗chBroker(s−)[

s−?identify(x) . if bad(x) then throw

else chSeller (t+)[(s−, t+),

rec X . t+?update(y) . s−!update�y + 10%� . X
�

default

t+?conf(x) . s−!conf�x� . s−?data(x) . t+!data�x�],
�

handler






default

s−!reject�reason� .A]
�

handler

Finally, thread 3 has the following projection:

∗chSeller(t−)[rec X . t−!update�quote� . X, t−!conf�cnum� . t−?data(x)]

Note that thread projection is not participant projection. In fact, each partici-
pant may contain more than one single service (unlike this example meant to focus
on the exception aspect of choreography).

5 Conclusions

We have introduced the notion of exception for choreography. In particular, we
have extended the syntax of the global calculus [3,4] with the exception mechanism
and given its formal semantics. The aim of this work was to show how exceptions
can be used at choreography level and, with examples, how they can be mapped
to end-points. In the global calculus, exceptions are a simple form of transferring
execution to a different choreography. But, together with a sound end-point pro-
jection, choreography becomes a powerful tool for designing end-point behaviour
where the raising of an exception will transfer the execution of all end-points to an
exception handling interaction.
Future Work. The global calculus with exceptions introduced in this work is
still limited to some basic operators and only includes values in messages. One
point that needs further investigation is to allow the passing of service and session
channels although this problem should also be carefully studied at end-point level.

The end-point projection has only been analysed through examples but it has
been revealed that it does not follow directly from the work done in [4]. However, the

19

Sunday, October 4, 2009

Buyer
Buyer

µX.

if (ok(y)) then throw else X

try {

}

quote

Broker

serv@Broker

t!�id�.

t?(y).

id

Buyer Broker

conf
card

{+
catch {

l1 : t!�card�. t?(y)
l2 : Pabort}

invoke serv@Broker(t);

Abort

EPP? (Buyer)

Sunday, October 4, 2009

EPP? (Broker)

Carbone

thread 1, we have that TP(Protocol, 1) is:

chBroker(s+)[s+,

s+!identify�id� . rec X . s+?update(y) . if (y < 100) then throw else X,

merge(s+?conf(x) . s+!data�credit�, s+?reject(x) . P)]

where the merging merge(s+?conf(x) . s+!data�credit�, s+?reject(x) . P) is equal to
s+?(conf(x) . s+!data�credit� + reject(x) . P) where P is the thread projection of 1
in A. The projection of thread 2, TP(Protocol, 2) is

∗chBroker(s−)[

s−?identify(x) . if bad(x) then throw

else chSeller (t+)[(s−, t+),

rec X . t+?update(y) . s−!update�y + 10%� . X
�

default

t+?conf(x) . s−!conf�x� . s−?data(x) . t+!data�x�],
�

handler






default

s−!reject�reason� .A]
�

handler

Finally, thread 3 has the following projection:

∗chSeller(t−)[rec X . t−!update�quote� . X, t−!conf�cnum� . t−?data(x)]

Note that thread projection is not participant projection. In fact, each partici-
pant may contain more than one single service (unlike this example meant to focus
on the exception aspect of choreography).

5 Conclusions

We have introduced the notion of exception for choreography. In particular, we
have extended the syntax of the global calculus [3,4] with the exception mechanism
and given its formal semantics. The aim of this work was to show how exceptions
can be used at choreography level and, with examples, how they can be mapped
to end-points. In the global calculus, exceptions are a simple form of transferring
execution to a different choreography. But, together with a sound end-point pro-
jection, choreography becomes a powerful tool for designing end-point behaviour
where the raising of an exception will transfer the execution of all end-points to an
exception handling interaction.
Future Work. The global calculus with exceptions introduced in this work is
still limited to some basic operators and only includes values in messages. One
point that needs further investigation is to allow the passing of service and session
channels although this problem should also be carefully studied at end-point level.

The end-point projection has only been analysed through examples but it has
been revealed that it does not follow directly from the work done in [4]. However, the

19

Sunday, October 4, 2009

Buyer

quote

Broker
serv@Broker

id

Seller

}

Broker

service serv(t) {

if bad(x) then throw else
t?(x).

invoke serv@Seller(s);

µX. s?(x). t!�x + 10%�. X

try (t) {

try (t, s) {

catch { t � l1. . . . fwd . . . }

catch { t � l2. P �
abort }

serv@Seller
quote

EPP? (Broker)

Sunday, October 4, 2009

Buyer

quote

Broker
serv@Broker

id

Buyer Broker

Seller

}

Broker

service serv(t) {

if bad(x) then throw else
t?(x).

invoke serv@Seller(s);

µX. s?(x). t!�x + 10%�. X

try (t) {

try (t, s) {

catch { t � l1. . . . fwd . . . }

catch { t � l2. P �
abort }

Seller

serv@Seller
quote

Abort

EPP? (Broker)

Sunday, October 4, 2009

Buyer

quote

Broker
serv@Broker

id

Buyer Broker

Seller

}

Broker

service serv(t) {

if bad(x) then throw else
t?(x).

invoke serv@Seller(s);

µX. s?(x). t!�x + 10%�. X

try (t) {

try (t, s) {

catch { t � l1. . . . fwd . . . }

catch { t � l2. P �
abort }

Seller

serv@Seller
quote

Abort

EPP? (Broker)

Sunday, October 4, 2009

Buyer

quote

Broker
serv@Broker

id

Buyer Broker

conf

card

Seller

}

Broker

service serv(t) {

if bad(x) then throw else
t?(x).

invoke serv@Seller(s);

µX. s?(x). t!�x + 10%�. X

try (t) {

try (t, s) {

catch { t � l1. . . . fwd . . . }

catch { t � l2. P �
abort }

Seller

card
conf

serv@Seller
quote

EPP? (Broker)

Sunday, October 4, 2009

EPP? (Seller)

Carbone

thread 1, we have that TP(Protocol, 1) is:

chBroker(s+)[s+,

s+!identify�id� . rec X . s+?update(y) . if (y < 100) then throw else X,

merge(s+?conf(x) . s+!data�credit�, s+?reject(x) . P)]

where the merging merge(s+?conf(x) . s+!data�credit�, s+?reject(x) . P) is equal to
s+?(conf(x) . s+!data�credit� + reject(x) . P) where P is the thread projection of 1
in A. The projection of thread 2, TP(Protocol, 2) is

∗chBroker(s−)[

s−?identify(x) . if bad(x) then throw

else chSeller (t+)[(s−, t+),

rec X . t+?update(y) . s−!update�y + 10%� . X
�

default

t+?conf(x) . s−!conf�x� . s−?data(x) . t+!data�x�],
�

handler






default

s−!reject�reason� .A]
�

handler

Finally, thread 3 has the following projection:

∗chSeller(t−)[rec X . t−!update�quote� . X, t−!conf�cnum� . t−?data(x)]

Note that thread projection is not participant projection. In fact, each partici-
pant may contain more than one single service (unlike this example meant to focus
on the exception aspect of choreography).

5 Conclusions

We have introduced the notion of exception for choreography. In particular, we
have extended the syntax of the global calculus [3,4] with the exception mechanism
and given its formal semantics. The aim of this work was to show how exceptions
can be used at choreography level and, with examples, how they can be mapped
to end-points. In the global calculus, exceptions are a simple form of transferring
execution to a different choreography. But, together with a sound end-point pro-
jection, choreography becomes a powerful tool for designing end-point behaviour
where the raising of an exception will transfer the execution of all end-points to an
exception handling interaction.
Future Work. The global calculus with exceptions introduced in this work is
still limited to some basic operators and only includes values in messages. One
point that needs further investigation is to allow the passing of service and session
channels although this problem should also be carefully studied at end-point level.

The end-point projection has only been analysed through examples but it has
been revealed that it does not follow directly from the work done in [4]. However, the

19

Sunday, October 4, 2009

Other Stuff on Choreography

• Choreography as a Session Type (Multiparty Session Types)
[@POPL08] [Yoshida et al. @CONCUR08, ESOP09]

• Choreography and Strand Spaces (Security)
[PLACES09, ICE09 - jointly with J.Guttman]

• Scribble, a language based on choreography and session types
(Pi4Tech, K. Honda, R. Hu)

• ...

Sunday, October 4, 2009

Work in Progress

•Logic for choreography and Partial Specification

•Annotated Multiparty Session Types

•Secure EPP for Choreography

•Global View Extraction (Inverse of EPP)

Sunday, October 4, 2009

An open question?

Choreography GVE EP A1 EP An

Sunday, October 4, 2009

An open question?

Choreography GVE EP A1

•How do you do it? Still an open problem (in general)...

•Allows for round-trip engineering (reuse&de-coupling)
‣code ⇒ choreography (change) ⇒ code

EP An

Sunday, October 4, 2009

Thank you

Sunday, October 4, 2009

Well-Threadedness

Sunday, October 4, 2009

Well-Threadedness (2)

Sunday, October 4, 2009

Well-Threadedness (3)

Sunday, October 4, 2009

Parallel

P Q

Sunday, October 4, 2009

Parallel

P QP Q

Sunday, October 4, 2009

Parallel

P QP QI I’

Sunday, October 4, 2009

