
Evolving Contracts

Gilles Barthe
IMDEA Software, Madrid

September 2009

(Work in progress with Gordon Pace and Gerardo Schneider)

Gilles Barthe Evolving Contracts



Motivations: contracts everywhere

1 Conventional contracts (legal, commercial, etc)

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)

Relation between pre- and post-conditions of routines, method
calls, invariants, temporal dependencies, etc

3 Service-Level Agreement (web services and SOA)

4 Behavioral interfaces

Specify the sequence of interactions between participants

5 Security policies

6 Contracts in virtual organisations, multi-agent systems, etc

Gilles Barthe Evolving Contracts



Motivations: contracts everywhere

1 Conventional contracts (legal, commercial, etc)

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)

Relation between pre- and post-conditions of routines, method
calls, invariants, temporal dependencies, etc

3 Service-Level Agreement (web services and SOA)

4 Behavioral interfaces

Specify the sequence of interactions between participants

5 Security policies

6 Contracts in virtual organisations, multi-agent systems, etc

Gilles Barthe Evolving Contracts



Motivations: contracts everywhere

1 Conventional contracts (legal, commercial, etc)

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)

Relation between pre- and post-conditions of routines, method
calls, invariants, temporal dependencies, etc

3 Service-Level Agreement (web services and SOA)

4 Behavioral interfaces

Specify the sequence of interactions between participants

5 Security policies

6 Contracts in virtual organisations, multi-agent systems, etc

Gilles Barthe Evolving Contracts



Motivations: contracts everywhere

1 Conventional contracts (legal, commercial, etc)

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)

Relation between pre- and post-conditions of routines, method
calls, invariants, temporal dependencies, etc

3 Service-Level Agreement (web services and SOA)

4 Behavioral interfaces

Specify the sequence of interactions between participants

5 Security policies

6 Contracts in virtual organisations, multi-agent systems, etc

Gilles Barthe Evolving Contracts



Motivations: contracts everywhere

1 Conventional contracts (legal, commercial, etc)

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)

Relation between pre- and post-conditions of routines, method
calls, invariants, temporal dependencies, etc

3 Service-Level Agreement (web services and SOA)

4 Behavioral interfaces

Specify the sequence of interactions between participants

5 Security policies

6 Contracts in virtual organisations, multi-agent systems, etc

Gilles Barthe Evolving Contracts



Motivations: contracts everywhere

1 Conventional contracts (legal, commercial, etc)

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)

Relation between pre- and post-conditions of routines, method
calls, invariants, temporal dependencies, etc

3 Service-Level Agreement (web services and SOA)

4 Behavioral interfaces

Specify the sequence of interactions between participants

5 Security policies

6 Contracts in virtual organisations, multi-agent systems, etc

Gilles Barthe Evolving Contracts



Evolvability

Principals evolve

Systems evolve

Contracts should evolve

Most works on contracts only deal with static contracts

One exception: administrative role-based access control

Gilles Barthe Evolving Contracts



Goals

Long-term goal: develop a unifying theory of contracts,
covering different issues such as:

contract generation, composition and evolution
contract analysis and verification
first-class contracts

Short-term goals:

model dynamicity of contracts: spillover, power
provide enforcement mechanisms for dynamic contracts
study the relationship and correctness of the distinct
enforcement mechanisms

Gilles Barthe Evolving Contracts



Contracts, informally

Agreements between a system involving two or more parties

asymmetric: user and provider, producer and consumer, etc.
symmetric: participants in social networks, P2P networks, etc

Regulate actions that a system may undertake

Static contracts are fully determined at onset.

We are interested in enforceable contracts:

ie contracts can be validated against a reference semantics (of
contracts and systems).

For the purpose of this talk, one can think of a system as a
(possibly distributed) program in which code from different
principals are executed.

Gilles Barthe Evolving Contracts



Focus

Formalize enforcement mechanisms for contracts

Prove/disprove equivalence between mechanisms

Plan

Start with static contracts

Extend to dynamic contracts

Gilles Barthe Evolving Contracts



Verifying Static Contracts

Gilles Barthe Evolving Contracts



Verifying Dynamic Contracts

Gilles Barthe Evolving Contracts



Setting – dimensions of choice

What is a system and which modelling language to use?

Which contract language (syntax and semantics) to use?

When does a system comply with a contract?

Each dimension is a topic on its own.

Gilles Barthe Evolving Contracts



Setting – formalisation

Systems are modelled as sequences of actions. Formally, we
consider a set A of actions and let Trace = A?.

Contracts are modelled as predicates over systems. Formally,
we consider a set Contract of contracts, and a relation
`offl⊆ Trace× Contract.

Pros: very general and applicable.

Captures essential issues of contract enforcement
Abstracts away the specifics of formalisms for contracts and
systems

Cons:

Time escapes the model, among many other parameters
Hyperproperties are not considered

There is still a story to tell. . .

Gilles Barthe Evolving Contracts



Motivating example: DRM (after Barth and Mitchell)

Consider a scenario with an online music store using DRM.

Users receive rights to play digital songs.

Alice may pay to obtain the permission to listen to songs a, b,
and c for a total of ten times.

For being a loyal customer, the following day, the store
decides to provide Alice with a promotion to either play song
d once before the end of the month, or to play either song d
or a once before the end of the month.

Gilles Barthe Evolving Contracts



Motivating example: DRM (after Barth and Mitchell)

Alice obtains the right to listen to songs a, b and c for a total of
ten times.

Alice plays song a twice, b four times, and c three times, for a total
of nine plays.

The DRM agent in her music player decrypts the songs, allows Alice
to play the songs, and notes that she has one play remaining.

The following day, Alice receives another promotion — she is
offered the choice of two rights:

the right to play song d once; or
the right to play either song a or song d once.

She opts for the second right because she reasons that it is more
flexible.

Gilles Barthe Evolving Contracts



DRM: Choosing rights and the right to choose

The rights Alice now possesses are:

Play either song a, b, or c (acquired the first day).
Play either song a or d before the end of the month.

If she now listens to song a, which right should the DRM manager
opt to strike out?

If it strikes out the second (as the more restrictive), she will not be
able to listen to d later on.

But if she had chosen the more restrictive promotion, the second
option would have been struck out, and she would have been able
to listen to song d later on.

In fact: no online algorithm can be complete.

The problem is due to non-atomic rights.

Gilles Barthe Evolving Contracts



Verification of static contracts: the big picture

We define three enforcement mechanisms

Offline verification

Online verification

History-based verification

State-based verification

and provide conditions under which they coincide.

Gilles Barthe Evolving Contracts



Online verification

Contract is updated after every action:

step ∈ A→ Contract→ Contract⊥

(step is undefined whenever the action violates the contract)

Satisfaction

〈〉 `dyn C
df
= 〈〉 `offl C

a :: t `dyn C
df
= t `dyn step(a, C ) if step(a, C ) 6= ⊥

a :: t `dyn C
df
= false if step(a, C ) = ⊥

Gilles Barthe Evolving Contracts



Soundness and completeness of online verification

Let C range over contracts, t over traces, and a over actions.

Soundness

t `offl step(a, C )⇒ a :: t `offl C

If step is sound, then for every contract C and trace t

t `onl C ⇒ t `offl C

Completeness

t `offl step(a, C )⇐ a :: t `offl C

If step is complete, then for every contract C and trace t

t `onl C ⇐ t `offl C

Gilles Barthe Evolving Contracts



Application: simple language of rights and obligations

A = R t O

Contract = R+ × O+ (multisets as conjunctions)

t `offl (Cr , Co) iff Co ⊆ to and tr ⊆ Cr

where to and tr are the projections of t over obligations and
rights.

Step function

step(a, (Cr , Co)) =


(Cr \ {a}, Co) if a ∈ R ∧ a ∈ Cr

⊥ if a ∈ R ∧ a 6∈ Cr

(Cr , Co \ {a}) if a ∈ O

(Note that \ is defined for multisets of actions, therefore removes
at most one occurence of an action from a multiset of actions.)

step is sound and complete.

Gilles Barthe Evolving Contracts



Non-application: non-atomic rights

Rights are disjunctions of atomic rights (a la DRM)

Contract = (R+)+ × O+ (multisets as conjunctions)

t `offl (Cr , Co) iff Co ⊆ to and tr v Cr where:

to and tr are the projections of t over obligations and rights
l v l ′ if there exists l0 ⊆ l ′ such that l ≤ l ′ pointwise.

Step function

step(a, (Cr , Co)) =


(Cr \ {b}, Co) if a ∈ R ∧ a ≤ b ∧ b ∈ Cr

⊥ if a ∈ R ∧ a 6∈ Cr

(Cr , Co \ {a}) if a ∈ O

(Note that step is not a function.)

No function whose graph is included in step is sound and complete.

Gilles Barthe Evolving Contracts



History-based verification

Contract is updated after a set of actions, and only when it does
not restrict future (legitimate) choices of users.

h-step ∈ Trace× Contract→ (Trace× Contract)⊥,void

h-step returns void if the trace/contract pair is not updated.

Satisfaction (simplified definition)

t `hist C
df
= t `offl C if h-step(t, C ) = void

t0 _ t `hist C
df
= t ′ _ t `hist C ′ if h-step(t0, C ) = (t ′, C ′)

t0 _ t `hist C
df
= false if h-step(t0, C ) = ⊥

Generalizes offline verification (always map to void), and online
verification (always update based on first element of the list).

Gilles Barthe Evolving Contracts



Soundness and completeness of history-based verification

Let C range over contracts, t over traces, and a over actions.

Soundness

t ′ _ t `offl C ′ ∧ h-step(t0 _ t, C ) = (t ′, C ′)⇒ t0 _ t `offl C

If h-step is sound, then for every contract C and trace t

t `hist C ⇒ t `offl C

Completeness

t ′ _ t `offl C ′ ∧ h-step(t0 _ t, C ) = (t ′, C ′)
∨
h-step(t0 _ t, C ) = void

⇐ t0 _ t `offl C

If step is complete, then for every contract C and trace t

t `hist C ⇐ t `offl C

Gilles Barthe Evolving Contracts



Application: non-atomic rights

One can define sound and complete history-based enforcement for
non-atomic rights. Many strategies:

Remove sets of rights as soon as possible

remove : R+ × (R+)+ ⇀ R+ × (R+)+

(w/o compromising soundness)

Step function

h-step(t, (Cr , Co)) =


(Cr , Co \ {a}) if a ∈ O
(t ′r , (C ′r , Co)) if t = a :: t0 ∧ a ∈ R∧

remove(tr , Cr ) = (t ′r , C
′
r )

. . .

One can try to remove sets of rights at regular intervals

One never removes sets of rights (offline verification is a
special case)

Gilles Barthe Evolving Contracts



Back to DRM

Recall the DRM system, in which Alice had a contract C , is a
set of disjunctions of permissions to listen to songs.

The history h is a multiset of rights that were consumed but
not yet deducted from the contract.

When Alice listens to a song s:

if there is a deterministic way of reducing the current contract
C with history s :: h then reduce it and remove the relevant
rights from C , and update history;
otherwise simply extend history with s.

For example, with contract (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ d), upon
hearing song a, we do not know which clause to remove, so
we don’t remove any. If we then receive a c, we can now use
up both the a and c to reduce the contract to get b ∨ d .

Gilles Barthe Evolving Contracts



Dynamic contracts

Contracts are sets of clauses

Clauses can be enacted or withdrawn throughout execution

We consider an extended set of actions with specific actions
for enacting and withdrawal of clauses

New phenomenae

What happens if a clause is withdrawn?

Who enacts or withdraws clauses

New notions

Spillover: what happens if a clause is withdrawn?

Power: who enacts or withdraws clauses

Warning

Work in progress.

Need to instantiate new notions to multiple languages.

Gilles Barthe Evolving Contracts



Dynamic contracts

Contracts are sets of clauses

Clauses can be enacted or withdrawn throughout execution

We consider an extended set of actions with specific actions
for enacting and withdrawal of clauses

New phenomenae

What happens if a clause is withdrawn?

Who enacts or withdraws clauses

New notions

Spillover: what happens if a clause is withdrawn?

Power: who enacts or withdraws clauses

Warning

Work in progress.

Need to instantiate new notions to multiple languages.

Gilles Barthe Evolving Contracts



Dynamic contracts

Contracts are sets of clauses

Clauses can be enacted or withdrawn throughout execution

We consider an extended set of actions with specific actions
for enacting and withdrawal of clauses

New phenomenae

What happens if a clause is withdrawn?

Who enacts or withdraws clauses

New notions

Spillover: what happens if a clause is withdrawn?

Power: who enacts or withdraws clauses

Warning

Work in progress.

Need to instantiate new notions to multiple languages.

Gilles Barthe Evolving Contracts



Dynamic contracts

Contracts are sets of clauses

Clauses can be enacted or withdrawn throughout execution

We consider an extended set of actions with specific actions
for enacting and withdrawal of clauses

New phenomenae

What happens if a clause is withdrawn?

Who enacts or withdraws clauses

New notions

Spillover: what happens if a clause is withdrawn?

Power: who enacts or withdraws clauses

Warning

Work in progress.

Need to instantiate new notions to multiple languages.

Gilles Barthe Evolving Contracts



What is spillover?

When a clause is withdrawn, some parts of it may spillover beyond
its termination. Examples:

For the coming week, if you pay for a song, you will get an
extra song download for free.

If you buy three songs, you get an extra one for free.

You are allowed to transfer resources tax-free to another
player, but if you leave the group before they are delivered,
you will have pay taxes on them.

Gilles Barthe Evolving Contracts



Extended setting

New actions to enact and withdraw a contract

A ::= A | enact(Loc, Contract) | withdraw(Loc, Loc)

(second location in withdrawal used for spillover)

Traces

Subject to well-formedness conditions. Should never:

contain two enactments at the same location;

withdraw twice at the same location;

update a contract at an already active location;

withdraw a clause that was not enacted or present at the
onset of executions;

set up a spillover clause through a withdrawal at a location in
use.

Gilles Barthe Evolving Contracts



Active and consumed locations

Start from a set L0 of initially active locations.

ActLocL0(〈〉) = L0

ActLocL0(enact(n, c) :: t) = {n} ∪ ActLocL0(t)
ActLocL0(withdraw(n, n′) :: t) = {n′} ∪ ActLocL0(t) \ {n}

ActLocL0(a :: t) = ActLocL0(t)

where in the last clause it is assumed that a neither enacts nor
withdraws an action.

ConsLocL0(〈〉) = L0

ConsLocL0(enact(n, c) :: t) = {n} ∪ ConsLocL0(t)
ConsLocL0(withdraw(n, n′) :: t) = {n′} ∪ ConsLocL0(t)

ConsLocL0(a :: t) = ConsLocL0(t)

Every active location is also consumed.

Gilles Barthe Evolving Contracts



Extracting subtraces wrt consumed locations

Let n be a consumed location in t. The active subtrace of t for n
is GL0(t, n) = reduce(t ′) where t ′ is uniquely determined by the
decomposition:

t = t ′ _ withdraw(n, n′) _ t1
t = t0 _ enact(n, c) _ t ′ _ withdraw(n, n′) _ t1
t = t0 _ enact(n, c) _ t ′

t = t0 _ withdraw(n′, n) _ t ′ _ withdraw(n, n′′) _ t1
t = t0 _ withdraw(n′, n) _ t ′

where in the first case it is implicitly assumed that n ∈ L0 and in
the third and fifth cases that withdraw(n, n′) 6∈ t ′.

Gilles Barthe Evolving Contracts



Initial clause of a location

Let spillover : A∗ × Contract→ Contract.

Let F : L0 → Contract.

Define F̂ : ∀t, ConsLocL0(t)× A
∗ → Contract.

F̂ (t, n) =


F (n) if n ∈ L0

c if t = t0 _ enact(n, c) _ t ′

spillover(t ′, F̂ (t ′, n′)) if t = t0 _ withdraw(n′, n) _ t1
and t ′ = GL0(t, n)

Gilles Barthe Evolving Contracts



Contract satisfaction

Let t be a trace and C be a contract mapping.

Local validity for a location n: t `offl (n, C ) iff
GL0(t, n) `offl F̂ (t, n)

Global validity: t `offl C iff t `offl (n, C ) for every
n ∈ ConsLocL0(t).

Gilles Barthe Evolving Contracts



Verification of dynamic contracts: the big picture

As before: we define three enforcement mechanisms

Offline verification

Online verification

History-based verification

State-based verification

and provide conditions under which they coincide.

Gilles Barthe Evolving Contracts



Power

Why do we need power?

To model who can modify contracts and how

The roads to power (in progress)

Use contracts to control contract evolution
Extend the set of actions
Reuse previous results on satisfaction and enforcement
mechanisms

Using power (to do)

cast existing frameworks for evolving security policies as power
more examples

Gilles Barthe Evolving Contracts



Models of power: adding principals

Consider a set of principals, and assign principals to actions

Specify rights and prohibitions of principals

Can be checked using a static check function, inducing just
side conditions to the definitions in the semantics

But rights and prohibitions of principals are static!

Gilles Barthe Evolving Contracts



Models of power: Permissions, Prohibitions and Power

Add operators for permission P(a) and prohibition F(a) to do
an action a, in the contract language.

Principal p has permission to write contract clause c at
location n can be written as Wp(c , a) = P(enactp(c , n)), and
prohibition to do so as Np(c , a) = F(enactp(c , n)).

Allow reasoning about power within the model itself.

This can be used to model power delegation.

Negotiation can also be modelled in this manner, eg by adding
rights to change a contract, until the point of agreement,
upon which the contract is frozen — all rights to change it
are withdrawn.

Gilles Barthe Evolving Contracts



Conclusions

Preliminary exploration of dynamic contracts

Captured two new ideas: spillover and power

Instantiations to more complex contract languages are
required

Only a first step towards first-class contracts

Next step is to embed a contract language in a programming
language. Hopefully modular in the contract language via a
suitable API.

Gilles Barthe Evolving Contracts


