Automatic Verification of the TLS HandShake Protocol

Gregorio Diaz, Fernando Cuartero, Valentin Valero and Fernando Pelayo
Formal Methods Concurrency Research Group
University of Castilla-La Mancha
Campus Universitario, Avd. Espafia s/n
02071, Albacete, Spain

(gregorio,fernando,valentin,fpelayo)@info-ab.uclm.es

ABSTRACT

E-commerce is based on transactions between client and
server agents. These transactions require a protocol that
provides privacy and reliability between these two agents.
A widely used protocol on e-commerce is Transport Layer
Security (TLS). In this paper we present a way to use For-
mal Methods to ensure the e-commerce properties of this
protocol. Specifically we use a known tool for Model Check-
ing (UPPAAL) to describe and analyze the behaviour of the
protocol (by means of timed automata). Thus, with this
tool we can make an automatic verification of TLS.

Categories and Subject Descriptors

K.4.4 [Electronic Commerce]: [Security]; C.2.2 [Network
Protocols]: [Protocol verification]; D.2.4 [Software / Pro-
gram verification]: [Model Checking].

General Terms
Authentication Protocols and Model Checking.

Keywords

e-Commerce, Security, Authentication Protocols, System Ver-
ification and Model Checking.

1. INTRODUCTION

Electronic commerce (e-commerce) became a buzzword as
the information society developed rapidly throughout the
1990s. Internet has made e-commerce available to a wider

user group, notably smaller enterprises and households. Amongst

the business community the search for increased productiv-
ity and efficiency is expected to lead to even more enterprises
adopting e-commerce as a way of doing business in the fu-
ture. Whilst an ever growing awareness of the opportunities,
technological developments in infrastructure and access de-
vices, and falling access costs will facilitate this, fears about
security and a lack of skills could hold it back.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SAC' 04 March 14-17, 2004, Nicosia, Cyprus

Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

An important goal over e-commerce is security [2, 9].
In order to ensure it, the Internet Engineering Task Force
(IETF)is working now in the Transport Layer Security (TLS)
[5]. The TLS protocol provides communications privacy over
Internet. This protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdrop-
ping, tampering, or message forgery.

According to EITO estimates, e-commerce on the Internet
was valued at 172 billion EUR in 2001 in European Union,
close to 2% of GDP (Gross Domestic Product). In that way
safety errors on e-commerce could be very expensive. But
we can use system validation in order to avoid it [3, 10].
System validation is the process of determining the correct-
ness of specifications, designs and products. Furthermore, it
is a technique to support the quality control of the system
design. A technique that implements system wvalidation is
Model Checking [8].

2. MODEL CHECKINGONE-COMMERCE
WITH UPPAAL

As said before, the system validation is an important goal
in order to avoid design errors. Thus, in e-commerce must
be a goal too. Verification allows us to check if our protocols
hold the expected behaviours and if they hold some safety
properties. In this paper, we present a model of TLS Hand-
shake protocol, which will be validated and verified using
Model Checking techniques.

To put it in a nutshell, model checking is an automated
technique that, given a finite-state model of a system and
a property stated in some appropriate logical formalism, it
systematically checks the validity of this property.

Methodology using Model Checking:

1. Model the system to capture the system
behaviour.

2. Validating the correctness of the system
model.

3. Specifying the property and Verifying
the system to check if the model holds it.

A tool that implements Model Checking is UPPAAL [7,
6, 1], which has been widely proved in theoretical and in-
dustrial use cases.

To model the system, UPPAAL uses as a basic semantical
model timed transition system, but a particular class of them
called networks of timed automata. Timed automata consist
of Locations and Transitions. The locations represent the

system states and the transitions represent changes between
these locations.

The validating phase allows users to mach if the model be-
haviour holds the system behaviour. To make it, UPPAAL
provides us a Simulator. As its name suggests, it can run
simulations of the system behaviour.

In the verification phase, we must first establish the prop-
erties that the system must hold. To specify them, UPPAAL
uses a temporal logic. We verify with UPPA AL simple safety
properties such as ”"can we guarantee that a bad thing will
not occur?” or ”are we sure that eventually a good thing will
occur?”. These properties could be formalized in temporal
logic as VOO—-bad — thing and 30Qgood — thing. In finite-state
systems this kind of properties can be verified by checking
all possible reachable states of a system.

3. THETLSPROTOCOL

The Transmission Control Protocol/Internet Protocol
(TCP/IP) governs the transport and routing of data over
Internet. Other protocols, such as the HyperText Transport
Protocol (HTTP), Lightweight Directory Access Protocol
(LDAP), or Internet Messaging Access Protocol (IMAP),
run "on top of” TCP/IP, in the sense that they all use
TCP/IP to support typical application tasks such as dis-
playing web pages or running email servers.

The Transport Layer Security protocol [5], TLS for short,
runs above TCP/IP and below higher-level protocols such
as HTTP or IMAP. It uses TCP/IP on behalf of the higher-
level protocols, and it allows a TLS-enabled server to au-
thenticate itself to an TLS-enabled client, it allows the client
to authenticate itself to the server, and it allows both ma-
chines to establish an encrypted connection. These capa-
bilities address fundamental concerns about communication
over Internet and other TCP/IP networks:

TLS server authentication allows a user to confirm a server’s

identity. TLS enabled client software can use standard tech-
niques of public-key cryptography to check that a server’s
certificate and public ID are valid and have been issued by a
certificate authority (CA) listed in the client’s list of trusted
CAs. This confirmation might be important if the user, for
example, is sending a credit card number over the network
and wants to check the receiving server’s identity.

TLS client authentication allows a server to confirm a
user’s identity. Using the same techniques as those used
for server authentication, TLS-enabled server software can
check that a client’s certificate and public ID are valid and
have been issued by a certificate authority (CA) listed in
the server’s list of trusted CAs. This confirmation might
be important if the server, for example, is a bank sending
confidential financial information to a customer and wants
to check the recipient’s identity.

An encrypted TLS connection requires all information
sent between a client and a server to be encrypted by the
sending software and decrypted by the receiving software,
thus providing a high degree of confidentiality. Confidential-
ity is important for both parties to any private transaction.
In addition, all data sent over an encrypted TLS connection
is protected with a mechanism for detecting tampering—that
is, for automatically determining whether the data has been
altered in transit.

The TLS Record Protocol is used for encapsulation of var-
ious higher level protocols. One such encapsulated protocol,
the TLS Handshake Protocol, allows the server and client to

authenticate each other and to negotiate an encryption al-
gorithm and cryptographic keys before the application pro-
tocol transmits or receives its first byte of data. The TLS
Handshake Protocol provides connection security that has
three basic properties:

e The peer’s identity can be authenticated using asym-
metric, or public key cryptography (e.g., RSA, DSS,
etc.). This authentication can be made optional, but
is generally required for at least one of the peers.

e The negotiation of a shared secret is secure: the nego-
tiated secret is unavailable to eavesdroppers, and for
any authenticated connection the secret cannot be ob-
tained, even by an attacker who can place himself in
the middle of the connection.

e The negotiation is reliable: no attacker can modify the
negotiation communication without being detected by
the parties of the communication.

3.1 TheTLSHandshake protocol

The cryptographic parameters of the session state are pro-
duced by the TLS Handshake Protocol, which operates on
top of the TLS Record Layer. When a TLS client and
server first start communicating, they agree on a protocol
version, select cryptographic algorithms, optionally authen-
ticate each other, and use public-key encryption techniques
to generate shared secrets.

The TLS Handshake Protocol involves the following steps:

e Exchange hello messages to agree on algorithms, ex-
change random values, and check for session resump-
tion.

e Exchange the necessary cryptographic parameters to
allow the client and server to agree on a premaster
secret.

e Exchange certificates and cryptographic information
to allow the client and server to authenticate them-
selves.

e Generate a master secret from the premaster secret
and exchanged random values.

e Provide security parameters to the record layer.

e Allow the client and server to verify that their peer has
calculated the same security parameters and that the
handshake occurred without tampering by an attacker.

The handshake protocol can be summarized as follows:
The client sends a client hello message to which the server
must respond with a server hello message, or else a fatal er-
ror will occur and the connection will fail. The client hello
and server hello are used to establish security enhancement
capabilities between client and server. Following the hello
messages, the server will send its certificate if it is to be au-
thenticated. If the server is authenticated, it may request
a certificate from the client. Now the server will send the
server hello done message, indicating that the hello-message
phase of the handshake is complete. The server will then
wait for a client response. If the server has sent a certifi-
cate request message, the client must send the certificate
message. The client key exchange message is now sent, and

Client Server
ClientHello — — — —p
ServerHello
— —_— — — Certificate’
ServerKeyExchange™
*Certificate CertificateRequest®
ClientKeyExchange ServerHelloDone
“CertificateVerify |— T T T >
[ChangeCipherSpec]
Finished
[ChangeCipherSpec]
¢ Finished
Application Data € = — —>»| Application Data

+#r Indicates optional or situation-dependent messages that are not always sent

Figure 1: Message flow for a full handshake

the content of that message will depend on the public key
algorithm selected between the client hello and the server
hello. If the client has sent a certificate with signing ability,
a digitally-signed certificate verify message is sent to explic-
itly verify the certificate. At this point, a change cipher spec
message is sent by the client, and the client copies the pend-
ing Cipher Spec into the current Cipher Spec. The client
then immediately sends the finished message under the new
algorithms, keys, and secrets. In response, the server will
send its own change cipher spec message, transfer the pend-
ing to the current Cipher Spec, and send its finished message
under the new Cipher Spec. At this point, the handshake is
complete and the client and server may begin to exchange
application layer data. We can see the corresponding flow
chart in Figure 1. Note that the ChangeChipherSpec is an
independent TLS Protocol content type, and it is not actu-
ally a TLS handshake message.

4. USING THEMODEL CHECKING TOOL
UPPAAL

UPPAAL is a tool suite for automatic verification of safety
and bounded liveness properties of real-time systems mod-
eled as networks of timed automata [6]. The UPPAAL
engine transforms a certain class of linear hybrid systems
to networks of timed automata, and implements techniques
based on constraint-solving. UPPAAL also supports diag-
nostic model-checking, providing diagnostic information in
the verification of a particular failure case of a real-time
systems. The current version of UPPAAL is available at
http://www.uppaal.
com. This tool was developed during the spring of 1995 but,
nowadays it is being extended with many additional fea-
tures, as distribution, guided, parameterized, cost-optimal,
hierarchical (UML) or probability (P_UPPAAL [4]).

In this section, we show how we can model the TLS Hand-
shake protocol, validate the protocol and finally verify safety
properties by using the tool UPPAAL.

4.1 Modeling the TL S Handshake protocol

The TLS protocol can considered as a real-time system
consisting of communicating processes with shared clocks.
Then it can be described by networks of timed automata
extended with auxiliary data variables together with a no-

tion of parallel composition. Instead of interpreting paral-
lel composition as logical conjunction, we use a CCS-like
interpretation of parallel composition, allowing one-to-one
communication and interleaving.

By definition, a timed automaton is a standard finite-state
automaton extended with a finite collection of real valued
clocks. Clocks are assumed to proceed at the same rate and
their values may be compared with natural numbers or reset
to 0. We have extended the notion of timed automata to
include integer variables, i.e. integer valued variables that
may be compared to natural numbers or assigned to any
value of the form ax 4 b where a,b € Z and z is the variable
being reassigned. The model also allows clocks not only to
be reset, but also to be set to any non-negative integer value.

DEFINITION 1. (Atomic Constraints) Let C' be a set of
real valued clocks an I a set of integer valued variables. An
atomic clock constraint over C' is a constraint of the form:
x ~mn, forx € C, ~¢ {<,>,=}and n € N. An atomic
integer constraint over I is a constraint of the form: i ~ n,
foriel, ~e {<,>,=}andn € Z.

By C.(C) we will denote the set of all clock constraints
over C, and C;(I) will denote the set of all integer con-
straints over I.

DEFINITION 2. (Guards) Let C be a set of real valued
clocks and I a set of integer valued variables. A guard g
over C and I is a formula generated by the following syntax:
g = clg A g, where c € (C.(C)|JCi(I)).

B(C, I) stands for the set of all guards over C' and 1.

DEFINITION 3. (Assignments) Let C' be a set of real val-
ued clocks and I a set of integer valued variables. A clock
assignment over C is a tuple (v, c), where v € C and ¢ € N.
An integer assignment over I is a tuple (v,c1,c2) repre-
senting the assignment v = Cy - v + ca2, where v € I and
Ci,c2 € Z.

We will use A(C, I) to denote the power-set of all assign-
ments over I and C.

DEFINITION 4. (Timed automata) A timed automaton A
over a finite set of actions Act, clocks C, and integer vari-
ables I is a tuple (L,lo, E), where L is a finite set of nodes
(control-nodes), lo is the initial node, and E C Lx B(C,I) x
Act x A(C, T) x L is the set of edges. We will write | 225 1/
to denote, (l,g,a,r,l') € E, .

In order to study compositionality problems we introduce
a parallel composition of timed automata. In order to get
the kind of parallel composition we want, we have to intro-
duce the notion of co-actions, which is done by defining a
synchronization function 7.

DEFINITION 5. (Synchronization Set) Let 7 C Act x Act
be a set of pairs such that:

(a,b) € T = (b,a) € T for all a,b € Act

DEFINITION 6. (Parallel Composition) Let A1, A2 be two
timed automata. Then, the parallel composition (A1]A2) is a
timed automaton (L,lo, E) where (l1|la) € L whenever 1 €
Ly andly € Lo, lo = (l1,0]l2,0). The set of edges E is defined
as follows:

<h\l2> ST, (4)14) if (I LRI) Al 202,
) (9—91 Ug2) (<G/1,a2>67) (=r UTQ)
) 225

o (lill) =25 (ko) if (h =25 17)
o (lifla) =25 (L) if (Ia =25 1)

Note that parallel composition is commutative and asso-
ciative.

Now, we show how the networks of timed automata may
evolve. A state of a timed automata A is a pair (I, u), where
[is a node of A and wu is an assignment, mapping each clock
in C to a value in Ry, and each integer variable in I to a
value in Z. We will use g(n) to denote that the assignment
u satisfies the guard g. The initial state of A is (lo, uo),
where ug is the assignment mapping all variables to 0. An
automata may take two types of transitions, from state to
state:

e Delay transitions: (I, u) £, (I, u') following the rules
given in Definition 7.

e Action transitions: (I,u) Z%% (I',u') following the
rules given in Definition 8.

DEFINITION 7. (Delay transitions) Let {l,u) and (I',u’)
be two states of a timed automaton A, and let d be a positive
real. Then

=1

o €O g o JH @ =@ +d Freo
(l,u) (', u') o (z) = u(z) ifrel
d < M(l,u)

Where M (I,) is the maximal delay of (I, u), as follows:

M(u) = sup{t|lg(u+t)} if 3V :.l 22y
0o otherwise
This value provides us an upper bound for the time that
the automaton can stay at that node I. Once reached that

time we are forced to evolve by executing some enabled ac-
tion transition.

DEFINITION 8. (Action transitions) Let (I,u) and (I',u’)
be two states of a timed automata A. Then

(lu) == (u) iff A gu) A

co ifexe CA{(x,co)ET
w(z) =< cu(x)+co ifr€IA{x,cr,c0) ET
u(x) otherwise

Now we have presented the main features of UPPAAL
models. Then, let us see how we can describe the TLS Hand-
shake protocol by means of timed automata. In this task we
firstly identify two processes in the protocol: the Client and
the Sever processes.

Once we have identified the protocol processes, we model
the message flow between them and their internal behaviour.
The message flow is described by means of synchronizations
between the Client and the Server (figures 2 and 3, respec-
tively). The internal behaviour of each process can be easily
modeled, by some ”local” state and transitions. Note that
the ” Anonymous” message is really a server ” KeyExchange”
message. But this ”KeyExchange” message is sent in an
anonymous negotiation. Furthermore, the ” HandShakeFail-
ure” message represents the possible errors.

HelloDone? Certificate?

SCertificate
HandShakeFailure!

SKey

He

CertificateRequest
HandShakeFailure!

HelloDone?

SHelloDone

KeyExchang

KeyExchange!
CKeyExchange

F|n|shed

Finish!

il re?

eouest!

lure?

Figure 3: The Server process

Server Client1

Hella

@ @ello

Hello

(=]

[HelloPhase | [=Heno]

HelloDone

[ExchangePhase] [SHelloDone]

KeyExchange

[FinishPhase] [CkeyExchange]

Finizh

@'@

Figure 4: Trace for an abbreviated Handshake

4.2 Validating the protocol

In the validating phase we can check whether the model
holds the system behaviour or not. This can partially be
made by means of simulations. These are made by choos-
ing different transitions and delays along the system evolu-
tion. At any moment during the simulation, you can see the
variable values and the enabled transitions. Thus, you can
choose the transition that you want to execute. Neverthe-
less, you can also select the random execution of transitions,
and thus, the system evolves by executing transitions and
delays which are selected randomly. We have some other
options in the Simulator. For example, you can save simu-
lations traces that can later be used to recover an specific
execution trace. Actually, the simulation is quite flexible at
this point, and you can back or forward in the sequence.

Then, with respect to our model of the TLS Handshake
protocol, our main goal in the validation phase is to check
the correctness of the message flow, taking into account the
protocol definition.

We have made a number of simulations; and we have
concluded that the system design satisfies the expected be-
haviour in terms of the message flow between the Client and
the Server. For example, we show, in Figure 4, the negotia-
tion trace for an abbreviated handshake.

4.3 Specifying and Verifying properties

Before starting the automatic verification, we must estab-
lish which are the properties that the model must fulfill.

We have divided these properties into three classes: Safety,
Liveness and Deadlocks. These properties are specified by
means of a Temporal Logic. The temporal Logic used by
UPPAAL is described in [6].

Safety Properties allow us to check if our model satis-
fies some security restrictions. For example, if we have two
trains that have to cross the same bridge, a security prop-
erty is that both trains can not cross at the same time the

bridge: VO (Trainl.crossing A Train2.crossing) or
=30 (Trainl.crossing A Train2.crossing)
The main Safety properties are:

e A Server could not send the ServerHello message if the
client has not sent the ClientHello message before, or
vice versa:

VOClient.SHello = Server.HelloPhase (1)

e A Client sends the KeyEzchange message immediately
after the server certificate message (or ServerHello mes-
sage, if this is an anonymous negotiation):

VO (Client.C KeyExchange = Server.HelloPhase) V
(Client.C KeyEzchange = Server.ExchangePhase) (2)

e The Finished message is always sent by the sender and
Client, once the key exchange and the authentication
processes are successful:

vOClient.Finished = Server.FinishPhase (3)

Liveness Properties intend is to check that our model
can evolve in the right order. Returning to the train exam-
ple, if a train approaches the bridge, some time later, the
train could cross it. Train.approach — Train.crossed

Liveness Properties for our model are simple. If a client
sends the message ClientHello, some time later, we could
reach the message finished. Translating it into Temporal
Logic we have:

Client.CHello — Client.Finished (4)

On the other hand, if a server sends a ServerHellow, some
time later, we could reach the message finished. Translating
it into Temporal Logic we have:

Server.HelloPhase — Server.Finished (5)

Deadlocks are clear restrictions. We could check if our
model is deadlocks free:

vO-Deadlock (6)

Let us now briefly describe how UPPAAL works in order
to check properties. The technique is based on an interpre-
tation using a finite-state symbolic semantics of networks.
More precisely, we interpret the logic with respect to sym-
bolic states of the form (I, D), where D is a constraint system
(i.e. a conjunction of atomic clocks and data constraints)
and [a control vector. Thus, a symbolic state (I, D) rep-
resents all the states (I,v), where v satisfies the constraint
D. Based on this notion of symbolic state, the heart of the
UPPAAL Model Checking procedure is the abstract reach-
ability algorithm that we show in Figure 5, which reduces
the reachability problem to that of solving simple constraint
systems. This algorithm checks whether a timed automaton
may reach a state satisfying a given formula § or not.

We observe that several operations of the algorithm are
critical for an efficient implementation. Firstly, the algo-
rithm depends heavily on the test operations for checking

PASSED = {}
WAITING := {(ly, Do)}
repeat
begin
get (I, D) from WAITING
if (I, D) E B then return " YES”
else if D ¢ D’ for all (I, D') € PASSED then
begin
add (I, D) to PASSED
SUCC :={(ls,Ds) : (I, D) ~ (Is, Ds) A Ds # 0}
for all (Iy/, Dy/) in SUCC do
put (I, Dy) to WAITING
end
end
until WAITING = {}
return "NO”

Figure 5: An Algorithm for Symbolic Reachability
Analysis.

the inclusion D C D’ (i.e. the inclusion between constraints
D and D') and the emptiness of D in constructing the
successor set SUCC of (I, D). Clearly, it is important to
design efficient data structures and algorithms for the rep-
resentation and manipulation of clock constraints. One such
well-known data structure is that of Difference Bounded Ma-
trices, DBM, which offers a canonical representation for con-
straint systems. It has been successfully employed by several
real-time verification tools, e.g. UPPAAL and KRONOS.

Thus, we have specified the properties in UPPAAL as we
have seen before and we have checked them by the UPPAAL
verifier. The verifier outputs that we have obtained allow
us to conclude that the safety properties 1, 2, 3 and the
deadlock freeness property 6 are held by our model.

But we have obtained a negative answer in the liveness
properties 4 and 5. By analyzing these properties, we sup-
posed that when a hello message has arrived, the message
finished will be sent later. But sometimes, the client or
the server can send the Handshake-Failure message, which
means ”something wrong has happened” and then the ne-
gotiation ends. Then, we can replace the properties 4 and 5
by: When the hello message has been sent, sometimes the
negotiation ends. It is expressed by 7 and 8, which are held
by our model.

VOClientl.C HelloimplyServer.FinishPhase — (7)

VO Server.HelloPhaseimplyClientl.Finished (8)

5. CONCLUSIONSAND FUTURE WORK

In this paper we have presented the validation and ver-
ification of the TLS Handshake Protocol. The properties
verified ensure the correct message flow. The techniques
used in this paper are not particularly novel, and they have
been used in some industrial and theoretical use cases and
protocols. Then we may ask ourselves, why incorrect proto-
cols and software are still appearing. One reason seems to
be that protocol developers and developers in general, are
failing to learn from the mistakes of others. Another rea-
son and perhaps the most significant one, is that they are

usually unaware of formal technique of verification, or even
they are applied incorrectly.

As future work we will develop a new tool in order to
model, validate and verify protocols and other systems called.
This tool is called P.UPPAAL [4]. It includes a new feature
with respect to UPPAAL, P_.UPPAAL has the capability to
work with Probabilistic Real-Time Systems. The main goal
is checking properties that merge at the same time proba-
bilistic and real-time requisites, e.g. properties such as "It
is possible to reach a certain state within three time units,
with a probability greater than 0.3”.

6. ACKNOWLEDGMENTS

This work has been supported by spanish grants CYCIT
(ref. TIC 2003-07848-C02-02) and JCCM (ref PAC-03001).

7. REFERENCES

[1] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
Yi Wang, and C. Weise, New Generation of UPPAAL,
Int. Workshop on Software Tools for Technology
Transfer, June 1998.

[2] D. Bolignano, Towards the formal verification of
electronic commerce protocols, In Proc. 10th IEEE
Computer Security Foundations Workshop, 1997.

[3] Philippa Broadfoot and Gavin Lowe, On distributed
security transactions that use secure transport
protocols, 2003.

[4] G. Diaz, D. Cazorla, F. Pelayo, F. Cuartero, and
V. Valero, Verifying and capturing probabilistic
bechaviours of real-time systems, 19th Annual UK
Performance Engineering Workshop, 2003.

[5] Internet Engineering Task Force, The tls protocol
version 1.1, work in progress (June 2003),
http://www.ietf.org/internet-drafts/draft-ietf-tls-
rfc2246-bis-05.txt.

[6] K. Larsen, P. Pettersson, and Wang Yi, UPPAAL in a
Nutshell, Int. Journal on Software Tools for
Technology Transfer 1 (1997), no. 1-2, 134-152.

[7] F. Larsson, K. Larsen, P. Pettersson, and Wang Yi,
Efficient Verification of Real-Time Systems: Compact
Data Structures and State-Space Reduction, Proc. of
the 18th IEEE Real-Time Systems Symposium, 1997.

[8] Gavin Lowe, Towards a completeness result for model
checking of security protocols, Proc. of The 11th
Computer Security Foundations Workshop, 1999.

[9] A. W. Roscoe, Proving security protocols with model
checkers by data independence techniques, In
Proceedings of the IEEE Computer Security
Foundations Workshop, 1998.

[10] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and
B. Roscoe, Modelling and analysis of security
protocols, Addison Wesley, 2001.

