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Abstract. The main goal of this paper is to extend sPBC with the
iteration operator, providing an operational semantics for the language,
as well as a denotational semantics, which is based on stochastic Petri
nets. With this new operator we can model some repetitive behaviours,
and then we obtain a formal method that can be easily used for the
design of communication protocols and distributed systems.
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1 Introduction

Petri Box Calculus (PBC) [4, 3, 5–7] is an algebraic model for the specification
of concurrent systems which has a natural and compositional translation into a
special kind of labelled Petri nets, called boxes. The description of a wider class
of systems, such as real-time systems and fault-tolerance systems, is the goal of
two timed extensions of PBC that we may find in the literature, namely tPBC
[11] and TPBC [15], both of them considering a deterministic model of time. In
the same line we presented sPBC in [14, 13], which is a Markovian extension of
PBC.

In sPBC we consider that each multiaction has associated a delay which
follows a Markovian distribution, as the transition delays of stochastic Petri
Nets (SPNs) [1]. Thus, a stochastic multiaction of sPBC is represented by a pair
< α, r >, where α represents a (classical) multiaction of PBC, and r ∈ R

+ is the
parameter of the associated exponential distribution. Moreover, as in SPNs, the
race policy governs the dynamic behaviour.

In the literature we may find some different approaches that deal with stochas-
tic extensions of process algebras such as PEPA [10], TIPP [8] and EMPA [2].
There are some important differences with respect to them. In sPBC we allow
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multiactions (multisets of actions), we consider a synchronization operator to-
tally independent from the parallel operator (as in PBC) and, finally, we obtain
the parameter of the new multiaction generated after synchronization following
a different technique (see [9] for a complete discussion about all the different al-
ternatives for that). The technique that we use is based on conflict rates, which
are inspired in the apparent rates of PEPA [10]. Nevertheless, in our approach
we can find an important advantage: we have been able to obtain a static trans-
lation into stochastic Petri nets, while in PEPA rates of transitions are in some
cases marking dependent [17].

In our two previous works we only considered finite sPBC [14, 13]. Then the
aim of this paper is twofold: including in the syntax the iteration operator and
proving that the operational and the denotational semantics (the latter based on
a special kind of labelled SPNs, called s-boxes) are fully abstract. The iteration
operator allows us to describe infinite behaviours and, therefore, it is a powerful
tool to describe the behaviour of concurrent systems. Then, with this formalism
we can deal with the design of communication protocols and distributed systems
with a Markov time, but joining in a single model both the advantages of process
algebras and Petri nets.

This paper tries to be, as far as possible, self-contained, so we will first review
the syntax, the operational semantics and the denotational semantics of the finite
operators. For further details the reader is referred to the previous works of the
authors [14, 13]. The paper is structured as follows: in Section 2 we present an
overview of the syntax. The operational and the denotational semantics can
be found in Sections 3 and 4, respectively. Section 5 contains an example, and
finally, Section 6 contains some conclusions and our plans for future work.

2 Syntax of stochastic Petri Box Calculus

In this section we present some notations and the syntax of sPBC, with an
informal interpretation of the operators. In this paper we do not consider the re-
cursion operator because it requires a more sophisticated treatment, as it occurs
in plain PBC. Nevertheless, with the iteration operator we are expanding the
power of description of sPBC significantly, and in fact some potentially infinite
behaviours can be described with it.

2.1 Notation

From now onwards we will use the following notation: A will be a countable

set of action names, ∀ a ∈ A, ∃ â ∈ A, such that a 6= â and ̂̂a = a, as in CCS
[16]. Letters a, b, â, ... will be used to denote the elements of A; L = B(A), will
represent the set of finite multisets of elements in A (multiactions). We will
consider relabelling functions f : A → A, which are functions that preserve

conjugates, i.e.: ∀a ∈ A, f(â) = f̂(a). We will only consider bijective relabelling
functions. We define the alphabet of α ∈ L by: A(α) = {a ∈ A |α(a) > 0},
and the set of stochastic multiactions by SL = {< α, r > |α ∈ L , r ∈ R

+}. We



allow the same multiaction α ∈ L to have different stochastic rates in the same
specification. Finally, we define the synchronization of multiactions: α⊕a β =def

γ , where:

γ(b) =

{
α(b) + β(b)− 1 if b = a ∨ b = â

α(b) + β(b) otherwise

which is only applicable when either a ∈ A(α) and â ∈ A(β), or â ∈ A(α) and
a ∈ A(β).

2.2 Syntax

As in plain PBC, static s-expressions are used to describe the structure of a
concurrent system, while dynamic s-expressions describe the current state of a
system (they correspond to unmarked and marked Petri nets, respectively). As a
system evolves by executing multiactions, the dynamic s-expression describing its
current state changes; this is captured by means of both overbars and underbars
that decorate the static s-expression. Static s-expressions of sPBC are those
defined by the following BNF expression:

E ::= <α, r> |E; E |E 2 E |E ‖E |E[f ] |E sy a |E rs a | [a : E] | [E ∗ E ∗ E]

where < α, r >∈ SL stands for the basic multiaction, which corresponds to the
simultaneous execution of all the actions in α, after a delay that follows a nega-
tive exponential distribution with parameter r. E1 ; E2 stands for the sequential
execution of E1 and E2, while E1 2 E2 is the choice between its arguments,
E[f ] is the relabelling operator, and E rs a denotes the restriction over the sin-
gle action a (this process cannot execute any stochastic multiactions < α, r >

with either a ∈ A(α) or â ∈ A(α)). The parallel operator, ‖, represents the
(independent) parallel execution of both components, where there is no any
synchronization embedded in the operator (as in PBC). Synchronization is in-
troduced by the operator sy, thus the process E sy a behaves in the same way
as E, but it can also execute those new multiactions generated by the synchro-
nization of a pair of actions (a, â). [a : E] is the derived operator scoping defined
by [a : E] = (E sy a) rs a. Finally, the iteration operator [E1 ∗ E2 ∗ E3] rep-
resents the process that performs E1, then executes several (possibly 0) times
E2, and finishes after performing E3. We can obtain infinite behaviours by ade-
quately combining both the iteration and the restriction operators; for instance,
[ < {a}, r1 > ∗ < {b}, r2 > ∗ < {c}, r3 > ] rs c , represents the process that per-
forms < {a}, r1 > once, and then it executes < {b}, r2 > infinitely many times.

However, we need to restrict the syntax of sPBC to those terms for which
no parallel behaviour appears at the highest level in a choice or in the two last
arguments of an iteration. In principle, with this restriction we slightly reduce
the expressiveness of the language, although we could prefix parallel operators
appearing at the highest level of a choice or in one argument of an iteration
by an empty multiaction, whose rate could be adequately selected in order to
preserve the probability of execution of the multiactions involved in the choice
or in the iteration. Terms fulfilling this restriction will be called regular terms,



and the operational semantics will be only defined for them. This restriction
is introduced in order to guarantee that the moment in which the rule for the
synchronization is applied does not affect the value that we obtain for the rate
of the stochastic multiaction obtained as result of a synchronization (this will
be illustrated in Example 1).

More exactly, regular static s-expressions E are those static s-expressions of
sPBC fulfilling:

D ::= < α, r > |D; E |D sy a |D rs a |D[f ] | [a : D] |D 2 D | [ D ∗ D ∗ D ]
E ::= < α, r > |E; E |E sy a |E rs a |E[f ] | [a : E] |E ‖E |D 2 D | [ E ∗ D ∗ D ]

The operational semantics of sPBC is defined on dynamic s-expressions G,
which derive from the static s-expressions, annotating them with either upper or
lower bars, which indicate the active components at the current instant of time.
Thus, we have:

G ::= E |E |G ; E |E ; G |G 2 E |E 2 G |G ‖G |G[f ] |G sy a |G rs a |
[ a : G ] | [G ∗ E ∗ E] | [E ∗ G ∗ E] | [E ∗ E ∗ G]

where E denotes the initial state of E, and E its final state. We will say that a
dynamic s-expression is regular if the underlying static s-expression is regular.
The set of regular dynamic s-expressions will be denoted by ReDynExpr.

3 Operational semantics

We have two kind of transitions: inaction transitions, annotated with ∅, which
just denote a rewriting of a term by redistributing its bars, in order to prepare
the term to apply new transitions; and stochastic transitions, which correspond
to the execution of a stochastic multiaction. Therefore, inaction rules define in
fact an equivalence between regular dynamic s-expressions as defined in Def. 2.
Inaction rules for sPBC are those presented in Tables 1 and 2.

Table 1. Inaction rules (I)

E; F
∅

−→ E; F E; F
∅

−→ E; F E; F
∅

−→ E; F

E2F
∅

−→ E2F E2F
∅

−→ E2F E2F
∅

−→ E2F

E2F
∅

−→ E2F E‖F
∅

−→ E‖F E‖F
∅

−→ E‖F

E[f ]
∅

−→ E[f ] E[f ]
∅

−→ E[f ] E sy a
∅

−→ E sy a

E sy a
∅

−→ E sy a E rs a
∅
−→ E rs a E rs a

∅
−→ E rs a

∀op ∈ {; , 2 }, G
∅

−→ G
′

G op E
∅

−→ G
′ op E

∀op ∈ {; , 2 }, G
∅

−→ G
′

E op G
∅

−→ E op G
′

G
∅

−→ G
′

G[f ]
∅

−→ G
′[f ]

G1
∅

−→ G
′
1

G1 ‖G2
∅

−→ G
′
1 ‖G2

G2
∅

−→ G
′
2

G1 ‖G2
∅

−→ G1 ‖G
′
2

∀op ∈ {sy , rs}, G
∅

−→ G
′

G op a
∅

−→ G
′ op a



Table 2. Inaction rules (II)

[ E ∗ F ∗E′ ]
∅

−→ [ E ∗ F ∗ E′ ] [ E ∗ F ∗ E′ ]
∅

−→ [ E ∗ F ∗E′ ]

[ E ∗ F ∗E′ ]
∅

−→ [ E ∗ F ∗ E′ ] [ E ∗ F ∗ E′ ]
∅

−→ [ E ∗ F ∗ E′ ]

[ E ∗ F ∗E′ ]
∅

−→ [ E ∗ F ∗ E′ ] G
∅

−→ G
′

[ G ∗E ∗ F ]
∅

−→ [ G′ ∗ E ∗ F ]

G
∅

−→ G
′

[ E ∗G ∗ F ]
∅

−→ [ E ∗G
′ ∗ F ]

G
∅

−→ G
′

[ E ∗ F ∗G ]
∅

−→ [ E ∗ F ∗G
′ ]

Definition 1. We say that a regular dynamic s-expression G is operative if it
is not possible to apply any inaction rule from it. We will denote the set of all
the operative regular dynamic s-expressions by OpReDynExpr . 2

Definition 2. We define the structural equivalence relation for regular dynamic
s-expressions by:

≡ =def (
∅
−→ ∪

∅
←−)∗

As usual, we denote the class of G with respect to ≡ by [G]≡ . 2

Rules defining the stochastic transitions are those presented in Table 3, to-
gether with those corresponding to the synchronization operator, which will be
described in detail later. We assume that all dynamic s-expressions that appear
on the left-hand sides of each transition in the rules are regular and operative.

Table 3. Rules defining the stochastic transitions (I)

(B)
< α, r >

<α,r>
−→ < α, r >

(S1) G
<α,r>
−→ G

′

G; F
<α,r>
−→ G

′; F

(S2) H
<α,r>
−→ H

′

E; H
<α,r>
−→ E; H ′

(Rs) G
<α,r>
−→ G

′

G rs a
<α,r>
−→ G

′ rs a
a, â 6∈ A(α)

(Re) G
<α,r>
−→ G

′

G[f ]
<f(α),r>
−→ G

′[f ]
(E1) G

<α,r>
−→ G

′

G2F
<α,r>
−→ G

′
2F

(E2) H
<α,r>
−→ H

′

E2H
<α,r>
−→ E2H

′
(C1) G

<α,r>
−→ G

′

G‖H
<α,r>
−→ G

′‖H

(C2) H
<α,r>
−→ H

′

G‖H
<α,r>
−→ G‖H ′

(It1) G
<α,r>
−→ G

′

[ G ∗E ∗ F ]
<α,r>
−→ [ G′ ∗ E ∗ F ]

(It2) G
<α,r>
−→ G

′

[ E ∗ G ∗ F ]
<α,r>
−→ [ E ∗ G

′ ∗ F ]
(It3) G

<α,r>
−→ G

′

[ E ∗ F ∗G ]
<α,r>
−→ [ E ∗ F ∗G

′ ]

Rules in Table 3 define a total order semantics, in the sense that it is not
contemplated the possibility of executing two multiactions at the same time.



Then, in order to define the semantics of the synchronization operator, we need
to calculate all the possible sets of bags of stochastic multiactions that could
be executed concurrently as result of one or several synchronizations over each
operative regular dynamic s-expression.

Definition 3. We define BC : OpReDynExpr −→ P(B(SL)), as follows:

– If G ∈ OpReDynExpr is final, i.e. G=E, we take BC (G) = ∅.
– If G ∈ OpReDynExpr is not final, we distinguish the following cases:
• BC (< α, r >) = {{< α, r >}}
• If γ ∈ BC (G), then: γ ∈ BC (G; E), γ ∈ BC (E; G), γ ∈ BC (E 2 G), γ ∈

BC (G 2 E), γ ∈ BC (G rs a) (when a, â 6∈ A(γ)), γ ∈ BC (G sy a),
f(γ) ∈ BC (G[f ]), γ ∈ BC ([ G ∗ E ∗ F ]) , γ ∈ BC ([ E ∗ G ∗ F ]) , γ ∈
BC ([ E ∗ F ∗ G ]) .

• If γ1 ∈ BC (G), γ2 ∈ BC (H), then γ1 ∈ BC (G‖H), γ2 ∈ BC (G‖H), and
γ1 + γ2 ∈ BC (G‖H).

• γ ∈BC (G sy a), and < α, r1 > , < β, r2 > ∈ γ, (with either < α, r1 > 6=
< β, r2 > or they are two different instances of the same stochastic
multiaction in γ), with a ∈ A(α), and â ∈ A(β), then: γ ′ ∈ BC (G sy a),
where: γ′ = (γ + {< α ⊕a β, R >}) \ {< α, r1 >, < β, r2 >} and R is
the rate of the new stochastic multiaction, to be later defined (see rule
Sy2 in Table 4).

2

In order to define the rates for the stochastic multiactions generated by a
synchronization we need to identify the situations of conflict. Concretely, for each
operative regular dynamic s-expression G we define the multiset of associated
conflicts for every instance of a stochastic multiaction <α, r>i executable from
G, which we will denote by Conflict(G, <α, r >i), but we will only take those
stochastic multiactions with exactly the same multiaction α. We will denote this
multiset of conflicts by Conflict(G, <α, r>i), although we will omit the subindex
i if it is clear which instance of < α, r > we are considering 1.

Definition 4. We define the following partial function:

Conflict : OpReDynExpr × SL −→ B(SL)

which for each instance i of the stochastic multiaction < α, r > executable from
G gives us the multiset of stochastic multiactions < α, r′ > in conflict with it.
We define the function in a structural way:

1. Conflict (< α, r >, < α, r >) = {< α, r >}
2. If < α, r > is executable from G, and C = Conflict (G, < α, r >), then:

(a) Conflict (G; E, < α, r >) = Conflict (E; G, < α, r >) = C,
(b) Conflict (G‖H, < α, r >) = Conflict (H‖G, < α, r >) = C,
(c) If a, â 6∈ A(α), then Conflict (G rs a, < α, r >) = C,
(d) For any bijective function f , Conflict (G[f ], < f(α), r >) = f(C),

1 To avoid a more sophisticated formal definition, we have preferred to omit the indices
in the definition.



(e) For the choice operator we need to distinguish the following two cases:
- If G 6≡ E : Conflict (G 2 F, < α, r >) = Conflict (F 2 G, < α, r >) = C

- If G ≡ E : Conflict (G 2 F, < α, r >) = Conflict (F 2 G, < α, r >) =

C +{|< α, rj > | ∃Hi ∈ OpReDynExpr , Hi ≡ F and Hi

<α,rj>
−→ H ′

i |}
(f) For the iteration operator we have:

– Conflict( [ G ∗ E ∗ F ], < α, r >) = C

– For the two last arguments of an iteration we have:
- If G 6≡ E′ : Conflict ( [ E ∗ G ∗ F ], < α, r >) =

Conflict ( [ E ∗ F ∗ G ], < α, r >) = C

- If G ≡ E′ : Conflict ( [ E ∗ G ∗ F ], < α, r >) =
Conflict ( [ E ∗ F ∗ G ], < α, r >) = C +

{|< α, rj > | ∃Hi ∈ OpReDynExpr , Hi ≡ F and Hi

<α,rj>
−→ H ′

i |}

(g) Conflict (G sy a, < α, r >) = C,

3. Let {< α1, r1 >, < α2, r2 >} ∈ BC (G sy a), a ∈ A(α1), â ∈ A(α2) and

G sy a
<α1 ⊕a α2,R12>

−→ G′ sy a obtained by applying rule Sy2 . Then:
Conflict (G sy a, < α1 ⊕a α2 , R12 >) =
{| < α1 ⊕a α2 , Rij > | < α1, ri >∈ C1, < α2, rj >∈ C2, where

Rij = ri

cr(Gsy a,<α1,r1>)
rj

cr(Gsy a,<α2,r2>) · min
i=1,2

{cr(G sy a, < αi, ri >)} |}

taking: Ci = Conflict(G sy a, < αi, ri >), i = 1, 2, and cr ( G, < α, r >i) is
the so called conflict rate for G and < α, r >i , defined by:

cr( G, < α, r >i) =
∑

<α,rj>∈Conflict ( G,<α,r>i)

rj · nj

where nj is the number of instances of < α, rj > in Conflict(G, < α, r >i).
2

Rules for the synchronization operator are shown in Table 4. Observe that
we take as rate of the generated stochastic multiaction the minimum of the
conflict rates of <α1, r1>, <α2, r2>, weighted by a factor, which is introduced
in order to guarantee that an equivalence relation defined in [12] is in fact a
congruence. For short, we will denote the stochastic multiaction obtained by
synchronization of the stochastic multiactions < α1, r1 > and < α2, r2 > by
< α1, r1 > ⊕a < α2, r2 > .

Definition 5. For each G ∈ ReDynExpr we define the set of the dynamic
s-expressions that can be derived from [G]≡ by:

[G〉 = {G′ |G′ ∈ [G]≡} ∪ {H ′ ∈ ReDynExpr | ∃ < α1, r1 >, . . . , < αn, rn >∈ SL

with G ≡ G′ <α1,r1>
−→ G1 ≡ G′

1
<α2,r2>
−→ . . . Gn−1 ≡ G′

n−1
<αn,rn>
−→ H ≡ H ′}

2

In [13] we proved for finite sPBC (without iteration) that for any bag γ of
stochastic multiactions executable from a regular dynamic s-expression G, any
serialization of γ can be executed from G, and the multiset of conflicts for any
stochastic multiaction in γ is preserved along the serialized execution of γ. This
result can be easily extended to sPBC with iteration, and we can use it in order
to compute the rate of the stochastic multiactions obtained after a number of
synchronizations.



Table 4. Rules for the synchronization operator

(Sy1) G
<α,r>
−→ H

G sy a
<α,r>
−→ H sy a

(Sy2) Let {< α1, r1 >, < α2, r2 >} ∈ BC(G sy a), a ∈ A(α1) , â ∈ A(α2), then

G sy a
<α1,r1>
−→ G1 sy a (

∅
−→)∗ G

∗
1 sy a

<α2,r2>
−→ G12 sy a

G sy a
<α1⊕aα2 , R>

−→ G12 sy a

R = r1

cr(G sy a,<α1,r1>)
r2

cr(G sy a,<α2,r2>)
· min

i=1,2
{cr (G sy a, < αi, ri >)}

Proposition 1. Let G be a regular operative dynamic s-expression, γ =
{< α1, r1 >, < α2, r2 >, . . . , < αn, rn >} ∈ BC (G), and a serialization of γ,
for which we may apply n− 1 times rule Sy2 :

G
<α1,r1>
−→ G1(

∅
−→)∗G∗

1
<α2,r2>
−→ . . .

<αn,rn>
−→ Gn

to obtain a single transition G
<β,R>
−→ Gn .

Then we have:
R = (

n

π
k=1

rk

cr(G,<αk,rk>) ) · min
k=1,...,n

{cr(G, < αk, rk >)}

cr(G, < β, R >) = min
k=1,...,n

{cr(G, < αk, rk >)}

Proof It can be found in [12]. 2

Consequently, for all the possible transition sequences obtained by a serializa-
tion of γ, if we can apply rule Sy2 a number of times to reach a single stochastic
multiaction, then we have that it does not matter the order in which rule Sy2
has been applied, neither the transition sequence used, i.e., we will always obtain
the same stochastic multiaction.

Corollary 1. Let G be a regular operative dynamic s-expression, γ =
{< α1, r1 >, < α2, r2 >, . . . , < αn, rn >} ∈ BC (G), and two permutations of
the set {1, · · · , n} : {i1, · · · , in} and {j1, · · · , jn}. Assuming that there are two
serializations:

G
<αi1

,ri1
>

−→ G1(
∅
−→)∗G∗

1

<αi2
,ri2

>
−→ . . .

<αin ,rin>
−→ Gn

G
<αj1

,rj1
>

−→ G′
1(

∅
−→)∗G′∗

1

<αj2
,rj2

>
−→ . . .

<αjn ,rjn>
−→ G′

n

from which we may apply n−1 times rule Sy2 (for the same actions a1, . . . , an−1,
possibly repeated, but the same number of times in both cases), to obtain a

single transition G
<βi,Ri>
−→ Gn and G

<βj ,Rj>
−→ G′

n, respectively, then we have:
Gn ≡ G′

n and < βi, Ri > = < βj , Rj > . 2

Now we show an example that motivates the need for the syntactical restric-
tion introduced, specifically in the case of iteration. With this example we will
raise the problem that appears when we consider a parallel behaviour in the
highest level in the body of an iteration.



Example 1. Let G be the following non-regular operative dynamic s-expression:

G = ( [ < {a}, r1 > ∗ (< {b}, r2 > ‖< {b}, r3 > ‖< {b̂, b̂}, r4 >) ∗ < {b}, r5 > ] ) sy a

It follows that γ = {< {b}, r2 >, < {b}, r3 > < {b̂, b̂}, r4 >} ∈ BC (G). Then,

according to the definition of BC, we also have γ1 = {< {b}, r2 >, < {b̂}, R34 >}
∈ BC (G), with

R34 =
r3

r3 + r5
·min{r3 + r5, r4}

However, not every serialization of γ1 is possible from G, because < {b̂}, R34 >

cannot be executed from G1, where G
<{b},r2>
−→ G1 and

G1 = ([< {a}, r1 > ∗ (< {b}, r2 > ‖< {b}, r3 > ‖< {b̂, b̂}, r4 >) ∗ < {b}, r5 >]) sy a

Actually, we can execute < {b̂}, R′
34 > from G1, with R′

34 = min{r3, r4}, and in
general we have R34 6= R′

34. 2

Definition 6. We define the labelled (multi)transition system of any regular
dynamic s-expression G, ts(G) = (V, A, v0), where:

– V = {[H ]≡ |H ∈ [ G 〉} is the set of states.
– v0 = [G]≡ is the initial state.
– A is the multiset of transitions, given by:

A = {| ([H ]≡, < α, r >, [J ]≡) |H ∈ [ G 〉 ∧ H
<α,r>
−→ J |}

In order to compute the number of different instances of each transition
([H ]≡, < α, r >, [J ]≡) in A, we consider equivalent all the different ways to derive
the same stochastic transition by considering the different serializations of the
same γ (Corollary 1). Therefore, for each equivalence class, we will only consider
one of its representatives, which can be chosen imposing that the stochastic
multiactions in each γ ∈ BC (G) will be executed in the same order as they
appear in the syntax of the s-expression G, i.e., we enumerate the stochastic
multiactions from left to right in the syntax of the s-expression, and then, when
we apply rule Sy2, the generated stochastic multiaction can be annotated with
the concatenation of the numbering of the corresponding stochastic multiactions
involved in the synchronization, so that when we detect that a permutation of
the numbering has been already obtained, by a previous application of the rule,
then that new stochastic transition will not be considered (see [14] for more
details). 2

The race policy will govern the dynamic behaviour of the system when two
or more stochastic multiactions are simultaneously enabled (i.e., when several
stochastic multiactions are possible, the fastest one will win the race). Then, as
we are using exponential distributions, the stochastic process associated with the
evolution of every regular dynamic s-expression E is a Continuous Time Markov
Chain (CTMC), which can be easily obtained from ts(E) in the same way as
we showed in [14]: we modify the multigraph ts(E) by combining into a single
edge all the edges connecting the same pair of nodes. These new edges will be
labelled by the sum of the rates of the combined edges.



4 Denotational semantics

We now present a denotational semantics for s-expressions, which is obtained
taking stochastic Petri nets as plain boxes. Therefore, the semantic objects that
we use will be called stochastic Petri boxes or just s-boxes. Thus, these s-boxes are
essentially SPNs, but they have the same structure as Petri boxes of PBC. These
boxes of PBC are labelled Petri nets fulfilling some restrictions. Concretely, they
are labelled Petri nets Σ = (S, T, W, λ), where (S, T, W ) is a Petri net, and λ is
a labelling function, which labels places with values from {e, i, x}, representing
entry places, internal places, and exit places respectively; and transitions with
elements in B(L)×L ; i.e., λ(t) is a relation which associates elements of L to bags
of multiactions. By convention, ◦Σ and Σ◦ will denote the set of e-labelled places
and the set of x-labelled places, respectively. Given a place s ∈ S, we will denote
by •s (s•) the set of input (output) transitions of s (called preconditions and
postconditions of s, respectively). A similar notation is used for preconditions
and postconditions of transitions. Both can be easily extended to sets of places
and sets of transitions. Then, our boxes are defined to be labelled simple nets
such that the following conditions hold: ◦Σ 6= ∅ 6= Σ◦, •( ◦Σ) = ∅ = (Σ◦)•

and ∀t ∈ T : •t 6= ∅ 6= t• . A box is said to be plain when for every t ∈ T , λ(t)
is a constant relation, i.e., an element of L.

Definition 7. A plain stochastic Petri box (or just plain s-box) is a tuple Σ =
(S, T, W, λ, µ), where (S, T, W, λ) is a plain box, and µ : T −→ R

+ is a stochastic
function, which associates a rate to every transition. 2

A plain s-box can be either marked or not 2. We will denote by Me the marking in
which only entry places are marked (each one with a single token); on the other
hand, Mx will denote the marking in which only exit places are marked, each one
with a single token. We say that a marking M is k-safe if for all s ∈ S, M(s) ≤ k,
and we say that M is clean if it is not a proper super-multiset of ◦Σ nor Σ◦.
Then, a marked plain s-box is k-safe if all its reachable markings are k-safe, safe
if all its its reachable markings are 1-safe, and clean if all its reachable markings
are clean.

4.1 Algebra of s-boxes

For each transition that we can obtain compositionally we need to know which
transitions are in conflict with it, in order to compute its conflict rates. Thus,
we enumerate stochastic multiactions appearing from left to right in the syntax
of regular static s-expressions, and we preserve this enumeration in the corre-
sponding transitions of the stochastic Petri net. Only with the synchronization
operator we can obtain some new transitions, which will be annotated with the
concatenation of the numeration of the transitions involved.

Another decision that we must take is the selection of the operator box
that we will use for the iteration, since we have two proposals in plain PBC

2 A marked plain s-box is essentially a kind of marked labelled stochastic Petri net,
whose behaviour follows the classical firing rule of SPNs.



for that [5]; one of them provides us with a 1-safe version (with six transitions
in the operator box), but there is also a simpler version, which has only three
transitions in the operator box. In general, in PBC, with the latter version we
may generate 2-safe nets, which only occurs when a parallel behaviour appears
at the highest level of the body of the iteration. Nevertheless, in our case, and
due to the syntactical restriction introduced, this particular case cannot occur,
so that the net obtained will be always 1-safe.

In order to define the semantic function that associates a plain s-box with
every regular term of sPBC, we need to consider the following functions:

η : T −→ N
∗ and κ : T −→ P(N∗)

where η(t) stands for the numeration of t according to our criterion (enumera-
tion from left to right, and concatenation in case of synchronization), and κ(t)
identifies the set of transitions in conflict with t. These functions will be defined
in a structural way, as we construct the corresponding plain s-box.

For each transition t ∈ T , we also define its corresponding conflict rate, and
we will denote it by cr(t):

cr(t) =
∑

η(tj )∈κ(t)

µ(tj)

Then, the structure of the net is obtained as in PBC, combining both refine-
ment and relabelling. Consequently, the s-boxes thus obtained will be safe and
clean. Therefore, the denotational semantics for regular static s-expressions can
be formally defined by the following homomorphism:

Box s(< α, r >i) = N<α,r>i

Box s(op(E1, . . . , En)) = Ωop(Box s(E1), . . . ,Box s(En))

As previously mentioned, we have to define η, κ for every operator of sPBC.

– Boxs (< α, r >i) = N<α,r>i
=

e < α, r >

ti

x

taking η(ti) = i and κ(ti) = {i}.

For the remaining operators of sPBC the corresponding operator s-boxes are
shown in Fig. 1, where the relabelling functions ρop ⊆ B(SL)×SL that appear
in that Figure are defined as follows:3

� ρid = {({< α, r >}, < α, r >) | < α, r >∈ SL}
� ρ[f ] = {({< α, r >}, < f(α), r >) | < α, r >∈ SL}
� ρrs a = {({< α, r >}, < α, r >) | < α, r >∈ SL ∧ a, â 6∈ A(α)}

Thus, the corresponding semantic functions are defined as follows, where
Boxs(Ei) = (Si, Ti, Wi, λi, µi) is the plain s-box corresponding to Ei, and ηi , κi

are the enumeration and conflict functions for Ti, i = 1, 2, 3.

– Boxs(E1 ; E2) = Ω;(Boxs(E1), Boxs(E2)). Then, we take:

η(t) =

{
η1(t) if t ∈ T1

η2(t) if t ∈ T2
κ(t) =

{
κ1(t) if t ∈ T1

κ2(t) if t ∈ T2

3 We separate the definition of ρsy a, which will be presented later, when we formally
define Boxs(E1 sy a).



Ωrs a =

e

ρrs a

vrs a

x

Ωsy a =

e

ρsy a

vsy a

x

Ω[a: ] =

e

ρ[a: ]

v[a: ]

x

Ω[f ] =

e

ρ[f ]

v[f ]

x

Ω ; = e ρid

v1
;

i ρid

v2
;

x

Ω2 =

e

ρid

v1
2

ρid

v2
2

x

Ω‖ =

e

ρid

v1
‖

x

e

ρid

v2
‖

x

Ω[ ∗ ∗ ] = e ρid

v1
[ ∗ ∗ ]

i

ρid v2
[ ∗ ∗ ]

ρid

v3
[ ∗ ∗ ]

x

Fig. 1. The operator s-boxes for sPBC

– Boxs(E1 ‖E2) = Ω‖(Boxs(E1), Boxs(E2)). η and κ are defined in exactly
the same way as in the previous case.

– Boxs(E1[f ]) = Ω[f ] (Boxs (E1) ).

η(t) = η1(t) , t ∈ T1 and κ(t) = κ1(t) , t ∈ T1

– Boxs(E1 2 E2) = Ω2(Boxs(E1), Boxs(E2)).

η(t) =

{
η1(t) if t ∈ T1

η2(t) if t ∈ T2

κ(t) =





κ1(t) ∪ κ2(t
′) if t ∈ T1,

•t ∈ ◦Boxs(E1), ∃ t′ ∈ T2,
•t′ ∈ ◦Boxs(E2), λ(t) = λ(t′)

κ1(t) if t ∈ T1,
•t ∈ ◦Boxs(E1), 6 ∃ t′ ∈ T2,

•t′ ∈ ◦Boxs(E2), λ(t) = λ(t′)
κ1(t) if t ∈ T1,

•t 6∈ ◦Boxs(E1)
κ2(t) ∪ κ1(t

′) if t ∈ T2,
•t ∈ ◦Boxs(E2), ∃ t′ ∈ T1,

•t′ ∈ ◦Boxs(E1), λ(t) = λ(t′)
κ2(t) if t ∈ T2,

•t ∈ ◦Boxs(E2), 6 ∃ t′ ∈ T1,
•t′ ∈ ◦Boxs(E1), λ(t) = λ(t′)

κ2(t) if t ∈ T2,
•t 6∈ ◦Boxs(E2)

– Boxs( [ E1 ∗ E2 ∗ E3 ] ) = Ω[ ∗ ∗ ](Boxs(E1), Boxs(E2), Boxs(E3)). No new
transitions are introduced with this operator, so the numeration of transi-
tions is preserved. However, it is clear that this operator will introduce some
new conflicts. Specifically, those transitions in T2 having their preconditions
in ◦Boxs(E2) are in conflict with those transitions in T3 with preconditions
in ◦Boxs(E3), if they have the same associated multiaction (the same la-
bel). Notice that since we are working with regular terms, Boxs(E2) and
Boxs(E3) will have a single entry place. Formally:

η(t) =





η1(t) if t ∈ T1

η2(t) if t ∈ T2

η3(t) if t ∈ T3



κ(t) =





κ1(t) if t ∈ T1

κ2(t) ∪ κ3(t
′) if t ∈ T2,

•t ∈ ◦Boxs(E2), ∃ t′ ∈ T3,
•t′ ∈ ◦Boxs(E3), λ(t) = λ(t′)

κ2(t) if t ∈ T2,
•t ∈ ◦Boxs(E2), 6 ∃ t′ ∈ T3,

•t′ ∈ ◦Boxs(E3), λ(t) = λ(t′)
κ2(t) if t ∈ T2,

•t 6∈ ◦Boxs(E2)
κ3(t) ∪ κ2(t

′) if t ∈ T3,
•t ∈ ◦Boxs(E3), ∃ t′ ∈ T2,

•t′ ∈ ◦Boxs(E2), λ(t) = λ(t′)
κ3(t) if t ∈ T3,

•t ∈ ◦Boxs(E3), 6 ∃ t′ ∈ T2,
•t′ ∈ ◦Boxs(E2), λ(t) = λ(t′)

κ3(t) if t ∈ T3,
•t 6∈ ◦Boxs(E3)

Notice that κ(t) is well defined for the second and fifth cases, because κ3(t
′)

coincides for every t′ ∈ T3,
•t′ ∈ ◦Boxs(E3), λ(t) = λ(t′), and respectively

for the other case.

– Boxs(E1 rs a) = Ωrs a (Boxs (E1) ).

η(t) = η1(t) , t ∈ T1 , a, â 6∈ λ(t) and κ(t) = κ1(t) , t ∈ T1 , a, â 6∈ λ(t)

– Boxs(E1 sy a) = Ωsy a (Boxs (E1) ). We take the following relation for the
synchronization: ρsy a ⊆ B(SL) × SL, as the least relabelling relation con-
taining ρid , and fulfilling:
(Γ, α + {a}) ∈ ρsy a ∧ (∆, β + {â}) ∈ ρsy a then (Γ + ∆, α + β) ∈ ρsy a

Thus, ρsy a allows us to obtain the net structure, as well as the multiactions
labelling the transitions. Now, for every t1, t2 ∈ T1, λ(t1) = α+{a}, λ(t2) =
β + {â}, a new transition t is generated by the synchronization, whose label
is α + β, and its rate is computed as follows:

µ1(t1)

cr(t1)
·

µ(t2)

cr(t2)
·min(cr(t1), cr(t2))

Moreover,

η(t) = η1(t1) . η1(t2)
κ(t) = κ1(t1)⊗ κ1(t2) = {n1 . n2 |n1 ∈ κ1(t1) , n2 ∈ κ2(t2) }

Notice that in order not to introduce redundant transitions, we only consider
in the plain s-box a single one of the possible transitions that we can obtain
by synchronizing (in different order) the same set of transitions. Furthermore,
those transitions that were in T1 have the same label, rate, numeration and
conflict as they had in Boxs(E1). On the other hand, with this construction
we can obtain in principle infinite nets, as it occurs in PBC, but, taking into
account that the obtained nets are safe, the arcs having non-unitary weight
will not enable the corresponding transitions, and thus, these transitions and
arcs can be removed from the net structure, without affecting its behaviour.

Finally, we show that given a regular static s-expression E, the operational se-
mantics of E and the semantics of the corresponding plain s-box are isomorphic.

Theorem 1. For any regular static s-expression E, the transition system ts(E)
associated with E, and the reachability graph of the marked SPN (Box s(E), Me)
are isomorphic.
Proof It is clear that at the functional level we have the same isomorphism
as in PBC, because we take a total order semantics both in the algebra and in
s-boxes. Furthermore, the stochastic multiactions obtained in the algebra and
the corresponding transitions in the plain s-box are labelled with the same rate;
thus, the transition system ts(E) and the reachability graph of the marked SPN
(Box s(E), Me) behave in exactly the same way. 2



5 A simple example: The Producer/Consumer System

In this section we consider the classical Producer/Consumer system, firstly con-
sidering a buffer with capacity 1, and afterwards we will see how to extend the
specification to a more general case (buffer with capacity n).

Each multiaction α in the specification has associated a delay that follows
a negative exponential distribution with rate rα. There are three different com-
ponents: P (Producer), C (Consumer) and B (Buffer). The three components
work in parallel, but they have to synchronize in a set of actions: i (for initiating
the process), f (for finishing it), s (for storing an item into the buffer) and g

(for getting an item from the buffer). The specification of every component is as
follows.
Producer : At the beginning, it is ready to initiate the process: < {i}, riP

>. Then,
it starts a cyclic behaviour consisting of producing an item < {p}, rp >, followed
by storing the item into the buffer < {s}, rs >. Finally, it ends its execution
(< {f}, rfP

>). This behaviour can be modelled by:

Producer = [ < {i}, riP
> ∗ (< {p}, rp >; < {s}, rs >) ∗ < {f}, rfP

> ]
Consumer : At the beginning, it is ready to initiate the process: < {i}, riC

>.
Then, it starts a cyclic behaviour consisting of getting an item from the buffer
< {g}, rg >, followed by consuming the item < {c}, rc >. Finally, it ends its ex-
ecution (< {f}, rfC

>). The corresponding specification in sPBC follows:

Consumer = [ < {i}, riC
> ∗ (< {g}, rg >; < {c}, rc >) ∗ < {f}, rfC

> ]

The corresponding plain s-boxes are:

e

p1P

< {i}, riP
>

t1

i

p2P

i

p3P

< {f}, rfP
>

t4

< {s}, rs >

t3

< {p}, rp >

t2

x

p4P

e

p1C

< {i}, riC
>

t5

i

p2C

i

p3C

< {f}, rfC
>

t8

< {c}, rc >

t7

< {g}, rg >

t6

x

p4C

Buffer1 : we first consider a buffer with capacity 1; the corresponding specifica-
tion in sPBC is:

Buffer1 = [ < {î, î}, riB
> ∗ ( < ŝ, rŝ > ; < ĝ, rĝ > ) ∗ < {f̂ , f̂}, rfB

> ]

Finally, the complete specification of the System is:

System = [ A : (Producer ‖Consumer ‖Buffer1 ) ]

where A = {i, f, s, g}.

The generalization to a buffer of capacity n (n ≥ 2) is straightforward, we just
need to change the specification of the buffer as follows:

I1 = ( < ŝ, rŝ >; < ĝ, rĝ > )
In = [ < ŝ, rŝ > ∗ In−1 ∗ < ĝ, rĝ > ], n ≥ 2

Buffern = [ < {î, î}, riB
> ∗ In ∗ < {f̂ , f̂}, rfB

> ]



The corresponding plain s-box for Buffern is shown in Fig. 2.

e
p1B

< {̂i, î}, riB
>

i

p2B

i

p3B

i

p4B

. . . . . . i

pn+1B

i

pn+2B

< {f̂ , f̂}, rfB
>

< ĝ, rĝ > < ĝ, rĝ > < ĝ, rĝ >

< ŝ, rŝ > < ŝ, rŝ > < ŝ, rŝ >

x
pn+3B

Fig. 2. Plain s-box of Buffern

In this case:
Systemn = [ A : (Producer ‖Consumer ‖Buffern ) ]

where A = {i, f, s, g}.

6 Conclusions and Future Work

sPBC is a Markovian extension of PBC which preserves the main features of
that model. Thus, the syntax of sPBC is a natural stochastic extension of PBC,
by annotating the multiactions with rates, which represent the parameter of an
exponential distribution.

In this paper we have extended the operational and the denotational seman-
tics that we presented in [14] for finite sPBC, by including the iteration operator,
and considering the new version for the semantics of the synchronization oper-
ator, which is inspired in that one presented in [13].

The denotational semantics of sPBC is defined using as semantic objects a
special kind of labelled stochastic Petri nets, called s-boxes. This will be a static
translation in the sense that the rates of the transitions of the corresponding
SPNs will not be marking dependent.

Our work in progress is focused to the definition of a stochastic bisimula-
tion, which will capture more precisely those processes that can be considered
equivalent taking into account the stochastic information. Our plans for future
work include the treatment of the recursion operator, and the inclusion of some
additional features in the language, such as immediate multiactions.
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